Am27C1024

1 Megabit ($65,536 \times 16$-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 55 ns maximum access time

Low power consumption

- $100 \mu \mathrm{~A}$ typical CMOS standby current

JEDEC-approved pinouts

- 40-Pin DIP/PDIP
- 44-Pin PLCC

Single +5 V power supply

■ $\pm 10 \%$ power supply tolerance available

- 100\% Flashrite programming
- Typical programming time of 8 seconds

■ Latch-up protected to 100 mA from -1 V to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$

- High noise immunity

■ Versatile features for simple interfacing

- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27C1024 is a 1 Mbit ultraviolet erasable programmable read-only memory. It is organized as 64 K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.
Typically, any byte can be accessed in less than 70 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C1024 offers separate Output Enable (OE) and Chip Enable (CE)
controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C1024 supports AMD's Flashrite programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in a typical programming time of 8 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No:	Am27C1024						
Ordering Part No: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	$\mathbf{- 5 5}$						$\mathbf{- 2 5 5}$
	$\mathbf{- 5 5}$	$\mathbf{- 7 0}$	$\mathbf{- 9 0}$	$\mathbf{- 1 2 0}$	$\mathbf{- 1 5 0}$	$\mathbf{- 2 0 0}$	
Max Access Time (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access (ns)	40	40	40	50	65	75	75

CONNECTION DIAGRAMS

Top View

DIP			
$V_{P P}$	1	40	$\square \mathrm{v}_{\mathrm{cc}}$
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}})$	2	39	$\overline{\text { PMG }}(\overline{\mathrm{P}})$
DQ15	3	38	A16
DQ14	4	37	A15
DQ13	5	36	A14
DQ12	6	35	A13
DQ11	7	34	A12
DQ10	8	33	A11
DQ9	9	32	A10
DQ8	10	31	A9
V_{SS}	11	30	V_{SS}
DQ7	12	29	A8
DQ6	13	28	A7
DQ5	14	27	A6
DQ4	15	26	A5
DQ3	16	25	A4
DQ2	17	24	A3
DQ1	18	23	A2
DQ0	19	22	A1
$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}})$	20	21	A0

Note:

1. JEDEC nomenclature is in parenthesis.

PIN DESIGNATIONS

A0-A15 = Address Inputs
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}}) \quad=$ Chip Enable
DQ0-DQ15 = Data Inputs/Outputs
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \quad=$ Output Enable Input
$\overline{\mathrm{PGM}}(\overline{\mathrm{P}}) \quad=$ Program Enable Input
$V_{C C} \quad=V_{C C}$ Supply Voltage
VPP $\quad=$ Program Voltage Input
$V_{S S} \quad=$ Ground
NC = No Internal Connection
DU $\quad=$ No External Connection (Do Not Use)

LOGIC SYMBOL

067801-4

ORDERING INFORMATION

UV EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
$\begin{gathered} \mathrm{AM} 27 \mathrm{C} 1024-55 \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \end{gathered}$	DC5, DC5B, DI5, DI5B
$\begin{gathered} \mathrm{AM} 27 \mathrm{C} 1024-55 \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$	DC, DCB, DI, DIB
AM27C1024-70	
AM27C1024-90	
AM27C1024-120	DC, DCB, DE, DEB, DI, DIB
AM27C1024-150	
AM27C1024-200	
$\begin{aligned} & \text { AM27C1024-255 } \\ & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \end{aligned}$	DC, DCB, DI, DIB

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
$\begin{gathered} \mathrm{AM} 27 \mathrm{C} 1024-55 \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \end{gathered}$	PC5, Pl5, JC5, JI5
$\begin{gathered} \mathrm{AM} 27 \mathrm{C} 1024-55 \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$	
AM27C1024-70	
AM27C1024-90	
AM27C1024-120	PC, PI, JC, JI
AM27C1024-150	
AM27C1024-200	
AM27C1024-255 $V_{C C}=5.0 \mathrm{~V} \pm 5 \%$	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Erasing the Am27C1024

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C1024 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C1024. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of 2537 (\AA) -with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C1024 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C1024 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C1024 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C1024

Upon delivery or after each erasure the Am27C1024 has all $1,048,576$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C1024 through the procedure of programming.
The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the V_{PP} pin and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at V_{IL}.
For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C1024. This part of the algorithm is done at $\mathrm{V}_{\mathrm{CC}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.
Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C1024 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs of the parallel Am27C1024 may be common. A TTL low-level program pulse applied to an

Am27C1024 $\overline{\mathrm{CE}}$ input with $\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$, and $\overline{\text { PGM Low will program that Am27C1024. A high-level }}$ $\overline{C E}$ input inhibits the other Am27C1024 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ and $\overline{C E}$ at $V_{I L}$, $\overline{P G M}$ at V_{IH} and V_{PP} between $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C1024.
To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ open address the A 9 of the Am27C1024. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.
Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device code. For the Am27C1024, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}})$ is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (t_{CE}). Data is available at the outputs t_{OE} after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C C}-t_{O E}$.

Standby Mode

The Am27C1024 has a CMOS standby mode which reduces the maximum V_{CC} current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V}$. The Am27C1024 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA . It is placed in TTL-standby when $\overline{C E}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a two-line control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V_{CC} and $\mathrm{V}_{\text {SS }}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE	OE	PGM	A0	A9	$V_{\text {PP }}$	Outputs
Read		$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	X	X	X	X	Dout
Output Disable		X	V_{IH}	X	X	X	X	Hi-Z
Standby (TTL)		V_{IH}	X	X	X	X	X	Hi-Z
Standby (CMOS)		$\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V}$	X	X	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Program		V_{IL}	X	$\mathrm{V}_{\text {IL }}$	X	X	$V_{\text {PP }}$	D_{IN}
Program Verify		$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	X	X	$V_{P P}$	Dout
Program Inhibit		V_{IH}	X	X	X	X	$V_{P P}$	Hi-Z
Autoselect (Note 3)	Manufacturer Code	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	V_{H}	X	01H
	Device Code	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	V_{IH}	V_{H}	X	8CH

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 15=V_{I L}$
4. See DC Programming Characteristics for $V_{P P}$ voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V_{SS}
All pins except $\mathrm{A} 9, \mathrm{~V}_{\mathrm{PR}} \mathrm{V}_{\mathrm{CC}} \ldots-0.6 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
A9 and V_{PP} (Note 2) -0.6 V to +13.5 V
VCC (Note 1). -0.6 V to +7.0 V
Notes:

1. Minimum DC voltage on input or I/O pins is -0.5 V . During voltage transitions, the inputs may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I / O pins is $V_{C C}+0.5 \mathrm{~V}$. During voltage transitions, input and I/O pins may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods up to $20 n s$.
2. Minimum DC input voltage on $A 9$ pin is -0.5 V . During voltage transitions, $A 9$ and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns. A9 and $V_{C C}$ must not exceed +13.5 V for any period of time.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \ldots \ldots0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Ambient Temperature (T_{A}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (E) Devices
Ambient Temperature (T_{A}) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

V_{CC} for Am27C1024-55, $255 \ldots+4.75 \mathrm{~V}$ to +5.25 V
V_{CC} for Am27C1024 (All Others) . +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2, and 4)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.45	V
V_{IH}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	+0.8	V
I_{LI}	Input Load Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{CC}}$	C/I Devices		1.0	$\mu \mathrm{A}$
			E Devices		5.0	
ILO	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {CC }}$			5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} 1}$	$\mathrm{V}_{\text {CC }}$ Active Current (Note 3)	$\begin{aligned} & \overline{C E}=V_{\text {IL }}, f=10 \mathrm{MHz} \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	C/I Devices		50	mA
			E Devices		60	
$\mathrm{I}_{\mathrm{CC} 2}$	$\mathrm{V}_{\text {CC }}$ TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
$\mathrm{I}_{\mathrm{CC} 3}$	$V_{\text {CC }}$ CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {CC }} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP 1	V_{PP} Current During (Read)	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$

Notes:

1. $V_{C C}$ must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27C1024 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. $I_{C C 1}$ is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is $V_{C C}+0.5 \mathrm{~V}$, which may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods less than 20 ns .

Figure 1. Typical Supply Current vs. Frequency $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

067801-5
Figure 2. Typical Supply Current vs. Frequency $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV040		PD 040		PL 044		Unit
			Typ	Max	Typ	Max	Typ	Max	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	9	12	7	12	8	10	pF
$\mathrm{Cout}^{\text {a }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0$	12	14	11	14	11	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

AC CHARACTERISTICS

Parameter Symbols		Description	Test Setup		Am27C1024							Unit
JEDEC	Standard				-55	-70	-90	-120	-150	-200	-255	
${ }^{\text {tavQV }}$	$t_{\text {ACC }}$	Address to Output Delay	$\overline{\mathrm{CE}},$	Max	55	70	90	120	150	200	250	ns
$\mathrm{t}_{\text {ELQV }}$	$\mathrm{t}_{\text {CE }}$	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Max	55	70	90	120	150	200	250	ns
$\mathrm{t}_{\text {GLQV }}$	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	Max	40	40	45	50	65	75	75	ns
$t_{\text {EHQZ }}$ $t_{G H Q Z}$	$t_{D F}$ (Note 3)	Chip Enable to Output High Z or Output Enable to Output High Z to Output Float, whichever occurs first		Max	30	30	40	50	50	50	50	ns
$\mathrm{t}_{\text {AXQX }}$	${ }^{\text {toh }}$	Output Hold Time from Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, whichever occurs first		Min	0	0	0	0	0	0	0	ns

Notes:

1. Caution: Do not remove the Am27C1024 from (or insert it into) a socket or board that has $V_{P P}$ or $V_{C C}$ applied.
2. $V_{C C}$ must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
3. This parameter is sampled and not 100% tested.
4. Switching characteristics are over operating range, unless otherwise specified.
5. Test Conditions for Am27C1024-55:

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$
Input rise and fall times: 20 ns
Input pulse levels: 0.0 V to 3.0 V
Timing measurement reference level Inputs and Outputs: 1.5 V
Test Conditions for all others:
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input rise and fall times: 20 ns
Input pulse levels: 0.45 V to 2.4 V
Timing measurement reference level Inputs and Outputs: 0.8 and 2.0 V

AMD

SWITCHING TEST CIRCUIT

067801-8
Test Conditions

SWITCHING TEST WAVEFORM

AC Testing for -55 devices: Inputs are driven at 3.0 V for a logic " 1 " and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

AC Testing (except for -55 devices): Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. OE may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of the addresses without impact on $t_{A C C}$
2. DF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

AMD

REVISION SUMMARY FOR AM27C1024

Distinctive Characteristics:

The fastest speed grade available is now 55 ns .

Product Selector Guide:

Added 55 ns column.

Ordering Information, UV EPROM Products:

The 55 ns part number is now listed in the example. The nomenclature now has a method of clearly designating the voltage operating range and speed grade.

Ordering Information, OTP EPROM Products:
Changed the part number example from -70 to -55 . The nomenclature now has a method of clearly designating the voltage operating range and speed grade.

Operating Ranges:

Changed Supply Read Voltages listings to match those in the Product Selector Guide.

AC Characteristics:

Added column for 55 ns speed grade, rearranged notes, moved text from table title to Note 4, renamed table.

Switching Test Circuit:

Added 55 ns to the C_{L} note on 30 pF test condition.

Switching Test Waveform:

Added the 3 V test waveform.

