

Am29833A/Am29853A

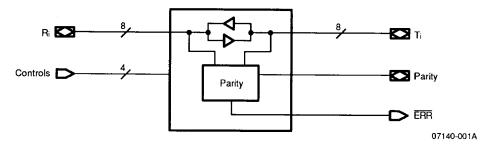
Parity Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- High-speed bidirectional bus transceivers for processor organized devices
 - T-R delay = 6 ns typical
 - Ri-Parity delay = 9 ns typical
- Error flag with open-collector output
- Generates odd parity for all-zero protection
- 200 mV minimum input hysteresis (Commercial) on input data ports
- High drive capability:
 - 48 mA Commercial los
- Higher speed, lower power versions of the Am29833 & Am29853

GENERAL DESCRIPTION

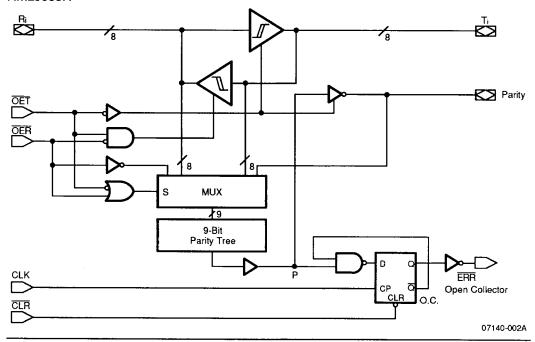
The Am29833A and Am29853A are high-performance parity bus transceivers designed for two-way communications. Each device can be used as an 8-bit transceiver, as well as a 9-bit parity checker/generator. In the transmit mode, data is read at the R port and output at the T port with a parity bit. In the receive mode, data and parity are read at the T port, and the data is output at the R port along with an ERR flag showing the result of the parity test.

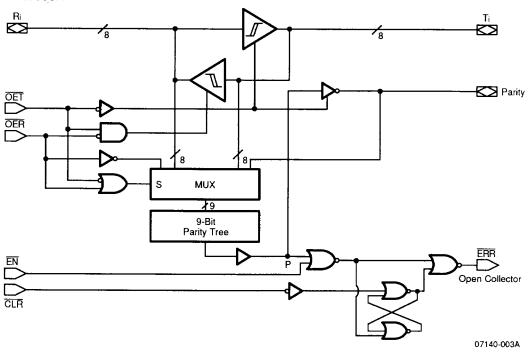

In the Am29833A, the error flag is clocked and stored in a register which is read at the open-collector ERR output. The CLR input is used to clear the error flag register. In the Am29853A, a latch replaces this register, and the EN and CLR controls are used to pass, store, sample or clear the error flag output. When both output enables

are disabled in the Am29853A and Am29833A, the parity logic defaults to the transmit mode, so that the ERR pin reflects the parity of the R port.

The output enables, \overline{OER} and \overline{OET} , are used to force the port outputs to the high-impedance state so that other devices can drive bus lines directly. In addition, the user can force a parity error by enabling both \overline{OER} and \overline{OET} simultaneously. This transmission of inverted parity gives the designer more system diagnostic capability.

Each of these devices is produced with AMD's proprietary IMOXTM bipolar process, and features typical propagation delays of 6 ns, as well as high-capacitive drive capability.

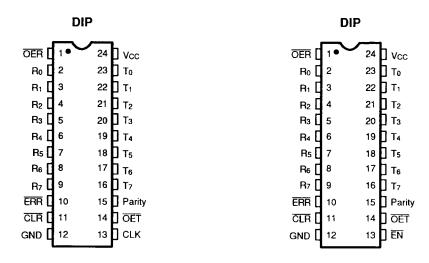

SIMPLIFIED BLOCK DIAGRAM


Publication# 07140 Rev. D Amendment/0 Issue Date: December 1990

BLOCK DIAGRAMS

Am29833A

Am29853A



CONNECTION DIAGRAMS (Top View)

Am29833A

Am29853A

07140-004A 07140-005A

FUNCTION TABLE

Am29833A (Register Option)

	Inputs							Out	puts			
ŌĒT	OER	CLR	CLK	Ri	Sum of H's of Ri	Ti	Sum of H's (T _i + Parity)	Ri	Ti	Parity	ERR	Function
L L L	H H H	X X X	X X X	H H L L	ODD EVEN ODD EVEN	NA NA NA NA	NA NA NA NA	NA NA NA NA	H L L	L H L H	NA NA NA	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
H H H	L L L	IIII	\leftarrow	NA NA NA NA	NA NA NA NA	H L L	ODD EVEN ODD EVEN	HLLL	NA NA NA	NA NA NA NA	ILIL	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
Х	Х	L	Х	Х	Х	Х	×	Х	Х	Х	Н	Clear error flag register.
H	H	ΗL	×	X	×	X	X X	Z Z	Z Z	Z Z	· I	Both transmitting and receiving paths are disabled.
H H L L	H H L L L L	HHXXXX	← × × × ×		ODD EVEN ODD EVEN ODD EVEN	X NA NA NA NA	X X NA NA NA	Z Z NA NA NA	Z Z H L L	Z Z H L H L	T L A A A A	Parity logic defaults to transmit mode. Forced-error checking.

H = HIGH

L = LOW

X = Don't Care

1 = LOW-to-HIGH Transition

Z = High Impedance

NA= Not Applicable

* = Store the State of the Last Receive Cycle ODD = Odd Number

EVEN= Even Number

i = 0, 1, 2, 3, 4, 5, 6, 7

FUNCTION TABLE Am29853A (Latch Option)

	Inputs]	Ou	tputs		
ŌĒŦ	OER	CLR	EN	Ri	Sum of H's of Ri	Ti	Sum of H's (T _i + Parity)	Ri	T _i	Parity	ERR	Function
L L L	エエエエ	X X X	X X X	H H L	ODD EVEN ODD EVEN	NA NA NA NA	NA NA NA NA	NA NA NA	H H L L	L H L H	NA NA NA NA	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
H H H		L L L	L	NA NA NA NA	NA NA NA NA	HHLL	ODD EVEN ODD EVEN	HLLL	NA NA NA NA	NA NA NA NA	# L H L	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
1 1 I	L L L	H H H	L L	NA NA NA	NA NA NA NA	HHLL	ODD EVEN ODD EVEN	H H L L	NA NA NA NA	NA NA NA	LTLT	Receive mode: transmits data from T port to R port, passes parity test resulting in error flag. Transmit path is disabled.
H	L	Н	Н	NA	NA	Х	Х	Х	NA	NA	*	Store the state of error flag latch.
X	Х	L	Н	Х	X	Х	X	Х	NA	NA	Н	Clear error flag latch.
H H H	H H H	H X X	H H L	X L X	X X ODD EVEN	X X X	X X X	Z Z Z Z	Z Z Z Z	Z Z Z Z	H	Both transmitting and receiving paths are disabled. Parity logic defaults to transmit mode.
	L L L	X X X	X X X	H H L L	ODD EVEN ODD EVEN	NA NA NA NA	NA NA NA NA	NA NA NA NA	THLL	H L H L		Forced-error checking.

H = HIGH

ODD = Odd Number EVEN= Even Number

i = 0, 1, 2, 3, 4, 5, 6, 7

L = LOW

^{1 =} LOW-to-HIGH Transition

X = Don't Care

Z= High Impedance NA= Not Applicable

^{*=} Store the State of the Last

Receive Cycle

TRUTH TABLES Error Flag Output

Am29833A

Inp	uts	Internal to Device			
CLR	CLR CLK		ERR _{n-1}	ERR	Function
н	↑	Н	Н	Н	
н	↑	X	L	L	Sample (1's Capture)
H		<u> </u>	×	L	
L	X	Х	X	Н	Clear

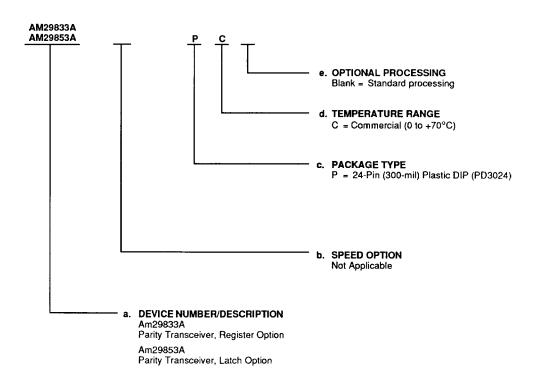
Note:

OET is HIGH and OER is LOW.

Am29853A

Inputs		Internal Outpu to Device Pre-sta		Output			
ĒN	EN CLR		ERR _{n-1}	ERR	Function		
L	L	L	Х	L			
L	L	н	×	Н	Pass		
L	Н	L	Х	L			
L	Н	X	L	L	Sample (1's Capture)		
L	Н	Н	н	н			
Н	L	Х	Х	Н	Clear		
н	Н	Х	L	L	<u>.</u>		
Н	Н	Х	н	Н	Store		

Note:


 $\overline{\text{OET}}$ is HIGH and $\overline{\text{OER}}$ is LOW.

ORDERING INFORMATION **Standard Products**

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

- a. Device Number
 b. Speed Option (if applicable)
 c. Package Type
- d. Temperature Range
- e. Optional Processing

Valid Combinations						
AM29833A	DO.					
AM29853A	PC					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

PIN DESCRIPTION Am29833A/Am29853A

OER

Output Enable Receive (Input, Active LOW)

When LOW in conjunction with OET HIGH, the devices are in the Receive mode (Ri are outputs, Ti and Parity are inputs).

OET

Output Enable Transmit (Input, Active LOW)

When LOW in conjunction with \overline{OER} HIGH, the devices are in the Transmit mode (R_i are inputs, T_i and Parity are outputs).

R_i

Receive Port (Input/Output, Three-State)

Ri are the 8-bit data inputs in the Transmit mode, and the outputs in the Receive mode.

Ti

Transmit Port (Input/Output, Three-State)

 $T_{\rm i}$ are the 8-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

Parity

Parity Flag (Input/Output, Three-State)

In the Transmit mode, the Parity signal is an active output used to generate odd parity. In the Receive mode, the T and Parity inputs are combined and checked for odd parity. When both output enables are HIGH, the Parity Flag is in the high impedance state. When both output enables are LOW, the Parity bit forces a parity error.

Am29833A Only

ERR

Error Flag (Output, Open Collector)

In the Receive mode, the parity of the T_i bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the register is cleared.

CLR

Clear (Input, Active LOW)

When CLR goes LOW, the Error Flag Register is cleared (ERR goes HIGH).

CLK

Clock (Input, Positive Edge-Triggered)

This pin is the clock input for the Error Flag register.

Am29853A Only

ERR

Error Flag (Output, Open Collector)

In the Receive mode, the parity of the Tibits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the latch is cleared.

CLR

Clear (Input, Active LOW)

When $\overline{\text{CLR}}$ goes LOW, and $\overline{\text{EN}}$ is HIGH, the Error Flag latch is cleared ($\overline{\text{ERR}}$ goes HIGH).

ĒΝ

Latch Enable (Input, Active LOW)

This pin is the latch enable for the Error Flag latch.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied

Supply Voltage to Ground

Potential Continuous -0.5 V to +7.0 V

DC Voltage Applied to Outputs For

High Output State -0.5 V to +5.5 V

DC Input Voltage -1.5 V to +6.0 V
DC Output Current, Into Outputs 100 mA

DC Input Current -30 mA to +5.0 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_A) 0 to +70°C Supply Voltage (Vcc) +4.5 to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

-55 to +125°C

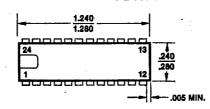
Parameter Symbol	Parameter Description	Test Condition	Min.	Max.	Unit		
Vон	Output HIGH Voltage	oltage Vcc = 4.5 V,		lo _H = −15 mA	2.4		
	Except (ERR)	Vin= Vinor Vil	VIN = VIHOR VIL		2.0	-	V
Vol	Output LOW Voltage	Vcc = 4.5 V,	ERR	IoL = 48 mA		0.5	V
		VIN = VIH Or VIL	All Other Outputs	lo. = 48 mA		0.5	٧
ViH	Input HIGH Voltage	Guaranteed Inp all inputs (Note	2.0		V		
VIL	Input LOW Voltage	Guaranteed Inp all inputs (Note		0.8	V		
Vı	Input Clamp Voltage	Vcc = 4.5 V, IIN		-1.2	V		
V _{HYST}	Hysteresis for Inputs Ri, Ti				200		mV
IzL	I/O Port LOW Current	Vcc = 5.5 V, VIN		-550	μА		
l _{IL}	Input LOW Current	Vcc = 5.5 V, VIN		-0.5	mA		
1 _{ін}	Input HIGH Current	Vcc = 5.5 V, VIN	ı = 2.7 V			50	μА
lı	Input HIGH Current	Vcc = 5.5 V, Vin	= 5.5 V			100	μA
IzH	I/O Port HIGH Current	Vcc = 5.5 V, VIN	= 2.7 V			100	μА
Izı	I/O Port HIGH Current	Vcc = 5.5 V, VIN	= 5.5 V			150	μА
Isc	Output Short-Circuit Current	Vcc = 5.5 V, Vo	Vcc = 5.5 V, Vo = 0 V (Note 2)				mA
loff	Bus Leakage Current	Vcc = 0 V, Vo =		100	μA		
lcc	Power Supply Current	Vcc = 5.5 V		Outputs LOW		180	· · · · · ·
		Outputs Loaded		Outputs HIGH		155	mA
				Outputs Hi-Z		170	

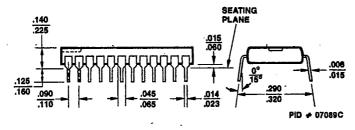
Notes:

- 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters.
- 2. Not more than one output shorted at a time. Duration of the short-circuit test should not exceed one second.

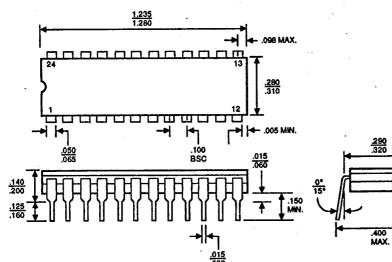
SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description		Test Conditions*	Min.	Max.	Unit
t _{PLH}	Propagation Delay to Ri to Ti	,			10	ns
t _{PHL}	Ti to Ri				10	ns
t _{PLH}					15	ns
t PHL	Propagation Delay Ri to Pari	ty			15	ns
tz⊦	Output Enable Time OER, Ol	ET to Ri, Ti		12		ns
tzl	and Parity				12	ns
tHZ	Output Disable Time OER, O	ET to Ri, Ti		12		ns
tız	and Parity		C _L = 50 pF		12	ns
ts	T _i , Parity to CLK Setup Time	(Note 1)		12		ns
tн	Ti, Parity to CLK Hold Time (Note 1)	$R_1 = 500 \Omega$	0		ns
trec	Clear (CLR_F) to CLK Set (Note 2)	up Time	$R_2 = 500 \Omega$	15		ns
tрwн	011 5 1115 111. (1) 11	HIGH		7		ns
tpwl.	Clock Pulse Width (Note 1)	LOW		7		ns
tpwl.	Clear Pulse Width	LOW		7		ns
t _{PHL}	Propagation Delay CLK to Ef	RR (Note 1)			12	ns
t PLH	Propagation Delay CLR to Ef	₹R			16	ns
tplH	Propagation Delay Ti, Parity	to ERR			22	ns
t _{PHL}	(PASS Mode Only) Am29853	3A			18	ns
tPLH	D				15	ns
t _{PHL}	Propagation Delay OER to P	arity			15	ns

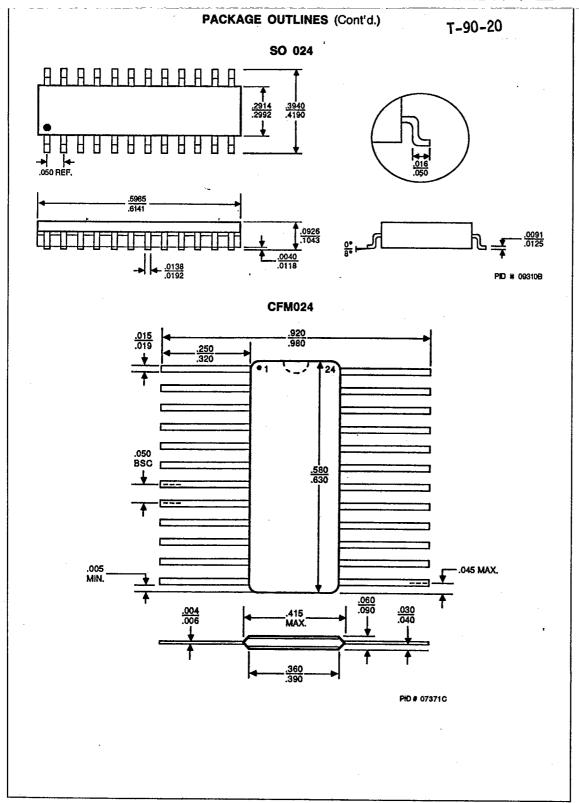

^{*}See test circuit and waveforms (Chapter 2).


Notes:

^{1.} For Am29853A, replace CLK with EN.

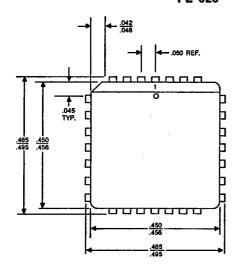

^{2.} Not applicable to Am29853A.

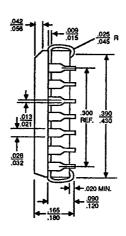
PD3024



CD3024

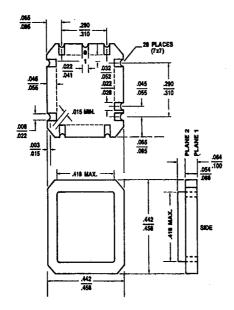
*For reference only.


1954 G-03


112

T-90-20

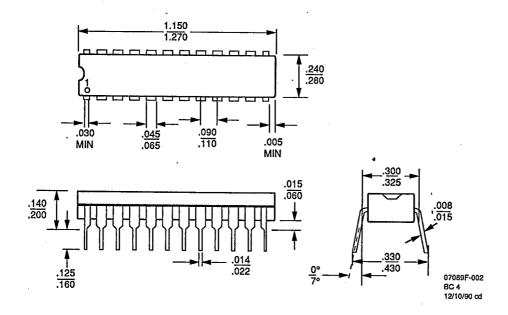
PL 028


PACKAGE OUTLINES (Cont'd.)

PID # 06751E

CL 028

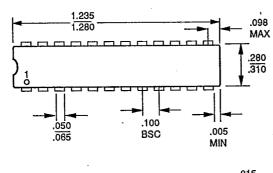
PIO # 06595D

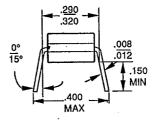

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA TEL: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450

© 1988 Advanced Micro Devices, Inc. Printed in U.S.A. AIS-WCP-20M-01/88-0

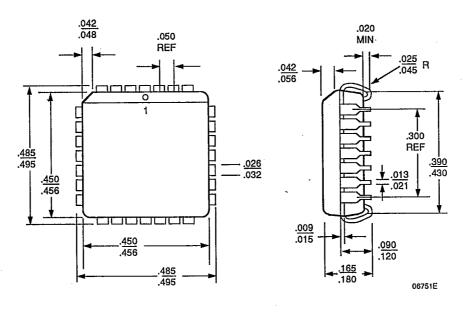
Bus Interface Products


PD3024 24-Pin 300-mil Plastic SKINNYDIP

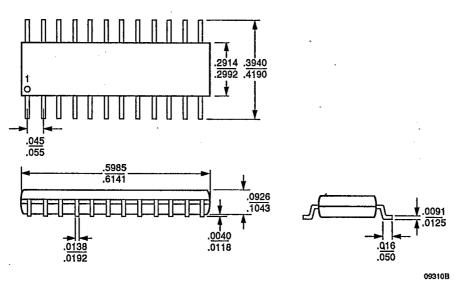

Note: For reference only. All dimensions measured in inches. BSC is an ANSI standard for Basic Space Centering.

T-90-20

CD3024 24-Pin 300-mil Ceramic SKINNYDIP



06850C


PL 028 28-Pin Plastic Leaded Chip Carrier

Bus Interface Products

\$0 024 24-Pin Plastic Small Outline Package

T-90-20

