

DC Brushless Motor Driver IC

PT-308F-B/PAVB **PWM Speed Control**

HIN

VDD

PWM

FG

Туре

0

G

0

0

0

Т

Р

I

Package: SOP8

01 GND

02

RD

Pin

1

2

3

4

5

6

7

8

Pin Description Name

01

GND

02

RD

FG

PWM

VDD

HIN

XXXX

Description

DC ground

First output pin

Second output pin

DC power supply

Hall IC signal input

Frequency Generation

Rotation Detector, L: Rotation, H: Stop

Pulse width modulation speed control

PAVB

Applications

- · Double coils DC brushless motor.
- DC 4V ~ 18V.

Features

- PWM speed control
- · Motor lock protection and automatic restart
- Rotate Detection output(Alarm)
- Frequency Generation output
- · Low power dissipation and high driving efficiency

Input Devices

· Hall IC

Specifications

Absolute Maximum Ratings (Ta = 25° C)

V				
Parameter	Symbol	Conditions	Ratings	Units
Maximum supply voltage	Vdd ^{max}		18	v
Allowable power dissipation	Pd		650 [*]	mW
Operating temperature	Та		-30 ~ +100	°C
Storage temperature	Ts		-55 ~ +150	°C
Output current	lout	Continoue	750	mA
		Peak	950	mA

*On 50mm x 50mm x 1.6mm glass epoxy board

- Any and all PROLIFIC products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your PROLIFIC representative nearest you before using any PROLIFIC products described or contained herein in such applications.
- PROLIFIC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all PROLIFIC products described or contained herein.

PROLIFIC TECHNOLOGY INC. 7F, No.48, Sec.3, Nan Kang Rd., Nan Kang, Taipei, 115, Taiwan

Electrical Characteristics

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Units
Supply Voltage	V_{DD}		4		18	V
Output Sink	V _{DS(ON)}	R _L =15@12V	0.68	0.75	0.9	V
Voltage						
Output	V _{BV(ON)}		18	22	30	V
Breakdown						
Voltage						
Supply Current	I _{DD}	Output open@12V			10	mA
Driving Current	Ιo	R _L =15@12V	735	750	755	mA
		R _L =20@12V	562	570	575	mA
		R _L =30@12V	384	385	389	mA
		R _L =50@12V	234	235	236	mA
		R _L =100@12V	119	119	119	mA
FG/RD flow-in	I _{FG} /I _{RD}	Pull-high resistor is		25		mA
Current		470ohm@12V				
FG/RD Supply					18	V
Voltage						
FG Frequency		Hall IC input signal				
		devide one				
Hin Input Voltage	High		V _{DD} -1.2		V_{DD}	V
	Low		GND		0.3	V
Hin Input Current	I _{IN}	Hin=12V		85		uA
PWM Input		V _{DD} =12V		10		uA
Curent						
PWM vs Duty		see Fig. 1				
Ratio						

 R_L : DC impedance of inductor

Truth Table

Hin	01	02
Н	GND	VDD
L	VDD	GND

PWM Speed Control

This Driver IC uses the pulse width modulation (PWM) to control motor's speed. Motor's speed is controlled by the PWM input voltage to adjust the PWM duty ratio (see figure 1). The PWM's control has two modes. One is the digital control, 0V for full speed and Vdd for low speed. The other is linear control, which can linear control the PWM duty ratio from 100/0 to 35/65.

Fig 1. PWM Speed Control

Rotation Frequency and Detector

This driver IC outputs the FG and RD signals for some special applications. For FG application, the driver IC will generate square wave to indicate the motor rotation frequency. According to the motor internal structure, the pole number is different for different motors. The FG will output the real motor's rotation frequency by dividing the pole number. For RD application, the driver IC will output a high signal to indicate the stop of the motor and a low signal to indicate the normal operation of the motor.

Lock Protection

In order to protect the motor, the driver IC will stop to driving the coil when the motor is locked over 0.4 seconds. Then, it restarts to drive the motor after 2.8 seconds. Figure 2 shows the timing diagram between the hall input signal and driver's output state.

Fig 2. Lock Protection

The driver IC architecture block diagram is shown in Fig. 3

-4-

Application Circuits / Double Coil

2. Thermistor

Example :

NTC 204GT Temp.(C)	Thermistor Kohm	PWM Ratio(on/off)	FAN Speed
0	720.3	48%	Low speed
10	421.8	54%	
20	254.6	62%	
30	158.2	71%	
40	100.8	80%	
50	65.85	90%	
60	43.99	100.0%	Full speed

Application Circuits / Double Coil

Application Circuits / Double Coil

Package Outline

