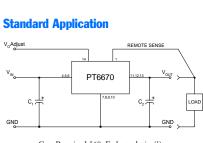
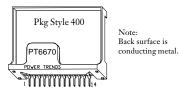
PT6670 Series

5V/3.3V Input 20W Boost Integrated Switching Regulator


SLTS039A

(Revised 6/30/2000)

- Input Voltage Range: 3.1 to 3.6V
 4.5 to 5.5V
- Adjustable Output Voltage
- 85% Efficiency
- Remote Sense Capability
- Soft Start


The PT6670 is a series of high-output Integrated Switching Regulators (ISRs) designed to provide a voltage boost function. Housed in a 14-Pin SIP (Single In-line Package), the PT6670 series incorporates regulators for either a +3.3V or +5.0V input and provide output voltages from +5V to +12V. Applications include power for auxilliary circuits requiring up to 20W.

Pin-Out Information

 C_1 = Required 560µF electrolytic ⁽¹⁾ C_2 = Required 560µF electrolytic ⁽¹⁾

Pin	Function	Pin	Function
1	Remote Sense	8	GND
2	Do not connect	9	GND
3	Do not connect	10	GND
4	Vin	11	Vout
5	Vin	12	Vout
6	Vin	13	Vout
7	GND	14	V _{out} Adjust

Ordering Information

+3.3V Input	+5V Input	<u>Vout</u>
PT6671	_	+5.0 Volts
PT6672	PT6675	+9.0 Volts
PT6673	PT6674	+12.0 Volts

PT Series Suffix (PT1234X)

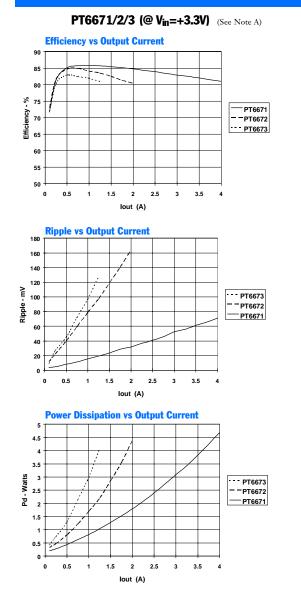
Case/Pin	Heat
Configuration	Spreader
Vertical Through-Hole	Р
Horizontal Through-Hole	D
Horizontal Surface Mount	E

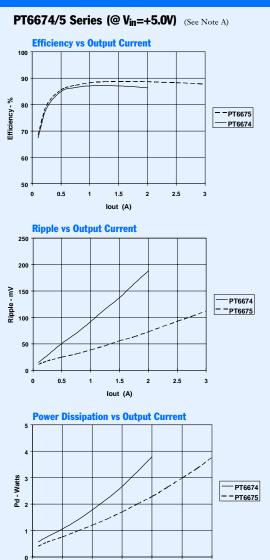
Preliminary Specifications

Characteristics					PT6670 SER	NES	
(T _a = 25°C unless noted)	Symbols	Conditions		Min	Тур	Max	Units
Output Current	Io	$T_a = 60^{\circ}C$, 200 LFM, pkg P $T_a = 25^{\circ}C$, natural convection	PT6671 PT6672 PT6673 PT6674 PT6675	0.1 0.1 0.1 0.1 0.1 0.1 0.1	 	TBD 4.0 1.67 1.25 2.0 3.0	A
Input Voltage Range	V_{in}	Over $V_{\rm o} and I_{\rm o} range$	PT6671/2/3 PT6674/5	3.1 4.5	3.3 5.0	3.6 5.5	V
Inrush Current	I_{ir}	On start-up		_	_	TBD	А
Output Voltage Tolerance	ΔV_{o}			—	1.5	—	$%V_{o}$
Output Voltage Adjust Range	V_{oadj}	Pin 14 to V_o or ground	PT6671 PT6672/5 PT6673/4	3.8 8.2 9.6		5.5 9.2 12.8	V
Line Regulation	Regline	Over V _{in} range, I _o = I _{omax}		_	±0.25	±0.5	$%V_{o}$
Load Regulation	Regload	$V_{in} = V_{in(TYP)}, 0.1 \le I_o \le I_{omax}$		_	±0.25	±0.5	$%V_{o}$
V _o Ripple/Noise	V_n	Vin =Vin(TYP), Io = Iomax		_	3		$%V_{o}$
Transient Response with C ₁ = C ₂ = 560µF	$\mathop{\rm V}_{os}^{t_{tr}}$	I_o step between ${}^{1\!\!\!/}_{2}I_{omax}$ and I_{omax} V_o over/undershoot		_	500 5	_	μSec %Vo
Efficiency	η	V_{in} = $V_{in(TYP)}$, $I_o = \frac{1}{2}I_{omax}$	PT6671 PT6672 PT6673 PT6675 PT6674	 	85 84 83 88 87	 	%
		Vin =Vin(TYP), Io = Iomax	PT6671 PT6672 PT6673 PT6675 PT6674	 	82 80 82 87 86		%

(Continued)

PT6670 Series


5V/3.3V Input 20W Boost Integrated Switching Regulator


Preliminary Specifications (continued)

Characteristics			PT6670 SERIES				
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units	
Switching Frequency	$f_{ m o}$	Over V_{in} range $0.1A \le I_o \le I_{omax}$	_	300	_	kHz	
Absolute Maximum Operating Temperature Range	Та		-40	—	+85	°C	
Recommended Operating Temperature Range	T_a	Free Air Convection (40-60 LFM) Over V _{in} and I _o ranges with heat tab	-40	-	+65	°C	
Storage Temperature	Ts	_	-40	—	+125	°C	
Mechanical Shock	—	Per Mil-STD-883D, Method 2002.3	_	500	_	G's	
Mechanical Vibration	—	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	_	7.5	—	G's	
Weight	_	_	_	14	_	grams	

Notes: (1) The PT6670 Series requires two 560µF electrolytic capacitors (input and output) for proper operation in all applications. (2) This product does not include short circuit protection.

TYPICAL CHARACTERISTICS

Note A: All characteristic data in the above graphs bas been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

W Texas Instruments

1

1.5

lout (A)

2

2.5

3

0.5

0

PT6670 Series

Adjusting the Output Voltage of the PT6670 Series Boost Voltage ISR

The Power Trends PT6670 ISRs are a series of converters that operate from a 3.3V or 5V input bus voltage. In each case, the output voltage can be adjusted higher or lower than the factory trimmed pre-set voltage. Adjustment requires the addition of a single external resistor. Table 1 gives the permissible adjustment range for each model in the series as V_a (min) and V_a (max) respectively.

Adjust Up: To increase the output, add a resistor R2 between pin 14 (V_o Adjust) and pins 7-10 (GND).

Adjust Down:Add a resistor (R1), between pin 14 $(V_0$ Adjust) and pin 1 (Remote Sense).

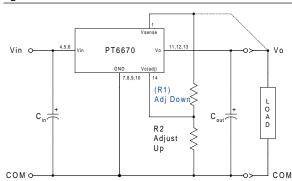
Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

- 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- 2. <u>Do not exceed</u> the maximum advised adjustment voltage. Doing so could over stress the part.
- Never connect capacitors to the V_o Adjust control pin. Any capacitance added to this pin will affect the stability of the ISR.
- 4. In the case of the PT6671, when the output is adjusted lower than the pre-trimmed output, the maximum input voltage to the ISR should not exceed ($V_0 0.5$)V.

The adjust up and adjust down resistor values can also be calculated using the following formulas. Be sure to select the correct formula parameters from Table 1 for the model being adjusted.

$$(R1) = \frac{K_o (V_a - 2.5)}{2.5 (V_o - V_a)} - R_s k\Omega$$


$$R2 \qquad = \quad \frac{K_o}{V_a - V_o} \qquad - \ R_s \quad k\Omega$$

Where:

 V_o = Original output voltage V_a = Adjusted output voltage

- $K_{\rm o}~$ = The multiplier constant in Table 1
- R_s = The series resistance from Table 1

PT6670 ADJUSTMENT RANGE AND FORMULA PARAMETERS Series Pt #					
5.0V Bus		PT6675	PT6674		
Vo(nom) 5.0V 9.0V 12.0V					

Va(min)	3.8V	8.2V	9.6V	
Va(max)	5.5V	9.2V	12.8V	
Ko (V·kΩ)	25.0	48.75	47.41	
R _s (kΩ)	4.99	80.6	54.9	

Table 2

PT6670 ADJUSTMENT RESISTOR VALUES

3.3V Bus	PT6671		PT6672	PT6673
5.0V Bus			PT6675	PT6674
Vo(nom)	5.0V		9.0V	12.0V
Va(req'd)		Va(req'd)		
3.8	(5.8)kΩ	8.2	(58.3)kΩ	
3.9	(7.7)kΩ	8.4	(111.0)kΩ	
4.0	(10.0kΩ	8.6	(217.0)kΩ	
4.1	(12.8)kΩ	8.8	(534.0)kΩ	
4.2	(16.3)kΩ	9.0		
4.3	(20.7)kΩ	9.2	163.0kΩ	
4.4	(26.7)kΩ	9.4		
4.5	(35.0)kΩ	9.6		(1.2)kΩ
4.6	(47.5)kΩ	9.8		(8.0)kΩ
4.7	(68.3)kΩ	10.0		(16.2)kΩ
4.8	(110.0)kΩ	10.2		(26.2)kΩ
4.9	(235.0)kΩ	10.4		(38.7)kΩ
5.0		10.6		(54.8)kΩ
5.1	245.0kΩ	10.8		(76.3)kΩ
5.2	120.0kΩ	11.0		(106.0)kΩ
5.3	78.3kΩ	11.2		(151.0)kΩ
5.4	57.5kΩ	11.4		(226.0)kΩ
5.5	45.0kΩ	11.6		(376.0)kΩ
		11.8		(827.0)kΩ
		12.0		
		12.2		182.0kΩ
		12.4		63.3kΩ
		12.6		24.1kΩ
		12.8		4.4kΩ

R1 = (Blue) R2 = Black

🐺 Texas Instruments

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated