
14-A Low-Voltage Programmable Integrated Switching Regulator



(Revised 10/2/2001)



#### **Features**

- 12V Input
- 14-A Output Current
- 5-Bit Programmable Output: 1.1V to 1.85V (25mV Steps)
- VRM 9.0 Compatible
- 82% Efficiency
- Standby On/Off Control
- Differential Remote Sense
- Over-Voltage Protection Drive
- Power Good Signal
- Short Circuit Protection
- Space Saving Solderable Case
- 4.7.106 Hrs. MTBF

## **Description**

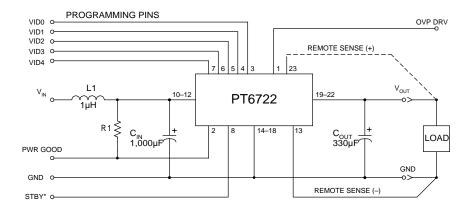
The PT6722 is a fully integrated 14-A switching regulator housed in a space-saving solderable package. The PT6722 operates from 12V to provide a high-performance low-voltage output that is programmable over the range 1.1V to 1.85V. This output voltage range is specifically suited to high performance μP and DSP applications that require core supply voltages below 1.3V. The voltage control inputs are also TTL compatible. Additional features include output short circuit protection, a "Power Good" output, and an over-voltage protection (OVP) drive.

## **Ordering Information**

**PT6722**□ = 1.1 to 1.85 Volts

## PT Series Suffix (PT1234x)

| Case/Pin<br>Configuration | Order<br>Suffix | Package<br>Code |
|---------------------------|-----------------|-----------------|
| Vertical                  | N               | (ELD)           |
| Horizontal                | Α               | (ELA)           |
| SMD                       | C               | (ELC)           |


(Reference the applicable package code drawing for the dimensions and PC layout)

## **Pin-Out Information**

| Pin Function       | Pin Function                  |
|--------------------|-------------------------------|
| 1 OVP Drive        | 13 Rem Sense Gnd (2)          |
| 2 Pwr Good         | 14 GND                        |
| 3 VID0             | 15 GND                        |
| 4 VID1             | 16 GND                        |
| 5 VID2             | 17 GND                        |
| 6 VID3             | 18 GND                        |
| 7 VID4             | 19 V <sub>out</sub>           |
| 8 STBY*            | 20 V <sub>out</sub>           |
| 9 Do not connect   | 21 V <sub>out</sub>           |
| 10 V <sub>in</sub> | 22 V <sub>out</sub>           |
| 11 V <sub>in</sub> | 23 Rem Sense V <sub>out</sub> |
| 12 V <sub>in</sub> |                               |

For STBY\* pin: open = output enabled ground = output disabled.

## **Standard Application**



Cin/Cout: Required electrolytic capacitors -see footnotes.

L<sub>1</sub>: Optional 1μH input choke –see footnotes R<sub>1</sub>: 10-kΩ pull-up for Pwr Good signal.

R<sub>1</sub>: 10-kΩ pull-up for Pwr Good signal. Pwr Good is high when the output is within specification.

## **Programming Information**

|      |      |      |      | VID4=1 | VID4=0 |
|------|------|------|------|--------|--------|
| VID3 | VID2 | VID1 | VID0 | Vout   | Vout   |
| 1    | 1    | 1    | 1    | 0.000V | 1.475V |
| 1    | 1    | 1    | 0    | 1.100V | 1.500V |
| 1    | 1    | 0    | 1    | 1.125V | 1.525V |
| 1    | 1    | 0    | 0    | 1.150V | 1.550V |
| 1    | 0    | 1    | 1    | 1.175V | 1.575V |
| 1    | 0    | 1    | 0    | 1.200V | 1.600V |
| 1    | 0    | 0    | 1    | 1.225V | 1.625V |
| 1    | 0    | 0    | 0    | 1.250V | 1.650V |
| 0    | 1    | 1    | 1    | 1.275V | 1.675V |
| 0    | 1    | 1    | 0    | 1.300V | 1.700V |
| 0    | 1    | 0    | 1    | 1.325V | 1.725V |
| 0    | 1    | 0    | 0    | 1.350V | 1.750V |
| 0    | 0    | 1    | 1    | 1.375V | 1.775V |
| 0    | 0    | 1    | 0    | 1.400V | 1.800V |
| 0    | 0    | 0    | 1    | 1.425V | 1.825V |
| 0    | 0    | 0    | 0    | 1.450V | 1.850V |

Logic 0 = Pin 13 potential (remote sense gnd) Logic 1 = Open circuit (no pull-up resistors)
VID4 may not be changed while the unit is operating.

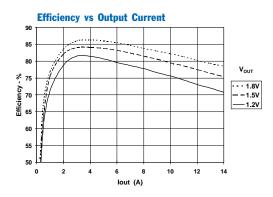
## **PT6700 Product Family Comparison**

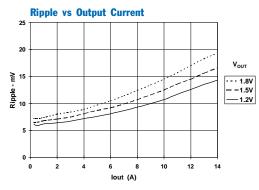
|   |        | Input<br>Voltage | Adjust<br>Method | Program OVP/<br>Range Pwr Good |   | +12V Bias<br>Required |
|---|--------|------------------|------------------|--------------------------------|---|-----------------------|
|   | PT6701 | 5V               | 5-Bit            | 1.3V - 3.5V                    | ✓ |                       |
|   | PT6702 | 3.3V             | 4-Bit            | 1.3V - 2.05V                   | ✓ |                       |
|   | PT6703 | 3.3V/5V          | 5-Bit            | 1.1V- 1.85V                    | ✓ |                       |
| # | PT6705 | 5V               | Resistor         | 1.5V-3.3V                      |   | ✓                     |
| # | PT6715 | 5V               | Resistor         | 1.5V-3.3V                      |   |                       |
|   | PT6721 | 12V              | 5-Bit            | 1.3V-3.5V                      | ✓ |                       |
|   | PT6722 | 12V              | 5-Bit            | 1.1V- 1.85V                    | ✓ |                       |
| # | PT6725 | 12V              | Resistor         | 1.5V-5.0V                      |   |                       |

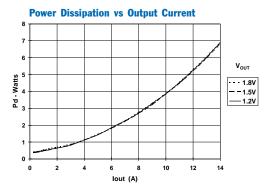
-Indicates a series of products that have a nominal output voltage set-point and may be adjusted with an external resistor.

## **Specifications** (Unless otherwise stated, $T_a = 25$ °C, $V_{in} = 12$ V, $C_{out} = 330 \mu F$ , and $I_o = I_o max$ )

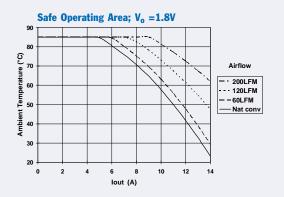
|                                                                                |                                                       |                                                                            |                    | PT6722        |                 |           |
|--------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|--------------------|---------------|-----------------|-----------|
| Characteristic                                                                 | Symbol                                                | Conditions                                                                 | Min                | Тур           | Max             | Units     |
| Output Current                                                                 | $I_{o}$                                               | T <sub>a</sub> =+60°C, 200LFM<br>T <sub>a</sub> =+25°C, natural convection | 0.1 (1)<br>0.1 (1) |               | 14<br>14        | A         |
| Input Voltage Range                                                            | $V_{in}$                                              | Over Io Range                                                              | 10.8               | _             | 13.2            | VDC       |
| Set Point Voltage Tolerance                                                    | V <sub>o</sub> tol                                    |                                                                            | _                  | ±10           | ±20 (2)         | mV        |
| Temperature Variation                                                          | Reg <sub>temp</sub>                                   | $-40^{\circ} > T_a > +85^{\circ}C$                                         | _                  | ±0.5          | _               | $%V_{o}$  |
| Line Regulation                                                                | Regline                                               | Over V <sub>in</sub> range                                                 | _                  | ±2.5          | ±5              | mV        |
| Load Regulation                                                                | Regload                                               | Over I <sub>o</sub> range                                                  | _                  | ±2.5          | ±10             | mV        |
| Total Output Voltage Variation                                                 | $\Delta V_{o}$ tot                                    | Includes set-point, line, load,<br>$-40^{\circ} > T_a > +85^{\circ}C$      | _                  | ±25           | ±36             | mV        |
| Efficiency                                                                     | η                                                     | $I_o$ =8A $V_o$ =1.8V $V_o$ =1.2V                                          | _                  | 83<br>78      | _               | %         |
| V <sub>o</sub> Ripple (pk-pk)                                                  | $V_{r}$                                               | 20MHz bandwidth                                                            | _                  | 20            | _               | $mV_{pp}$ |
| Transient Response                                                             | t <sub>tr</sub>                                       | 0.1A/μs load step, 6A to 12A                                               | _                  | 50            | _               | μs        |
|                                                                                | $\Delta V_{tr}$                                       | Vo over/undershoot                                                         | _                  | ±70           | _               | mV        |
| Short Circuit Current                                                          | $I_{sc}$                                              |                                                                            | _                  | 20            | 30              | A         |
| Switching Frequency                                                            | $f_{\mathrm{o}}$                                      | Over V <sub>in</sub> range                                                 | 300                | 350           | 400             | kHz       |
| Standby Control (pin 8) Input High Voltage Input Low Voltage Input Low Current | $egin{array}{c} V_{IH} \ V_{IL} \ I_{IL} \end{array}$ | Referenced to GND (pin 14) Pin 8 to GND                                    | 4.0<br>-0.2<br>—   | <br>0.4<br>10 | Open (3)<br>1.0 | V<br>μA   |
| Standby Input Current                                                          | I <sub>in</sub> standby                               | pins 8 & 14 connected                                                      | _                  | 5             | 10              | mA        |
| External Output Capacitance                                                    | Cout                                                  |                                                                            | 330 (4)            | _             | 15,000          | μF        |
| Operating Temperature Range                                                    | Ta                                                    | Over V <sub>in</sub> range                                                 | -40                | _             | +85 (5)         | °C        |
| Storage Temperature                                                            | $T_s$                                                 | _                                                                          | -40                | _             | +125            | °C        |
| Reliability                                                                    | MTBF                                                  | Per Bellcore TR-332<br>50% stress, T <sub>a</sub> =40°C, ground benign     | 11.7               | _             | _               | 106 Hrs   |
| Mechanical Shock                                                               | _                                                     | Per Mil-Std-883D, method 2002.3,<br>1mS, half-sine, mounted to a fixture   | _                  | 500           | _               | G's       |
| Mechanical Vibration                                                           | _                                                     | Per Mil-Std-883D, method 2007.2,<br>20-2000Hz, soldered in a PC board      | _                  | 15 (6)        | _               | Gs        |
| Weight                                                                         | _                                                     | _                                                                          | _                  | 26            | _               | grams     |
| Flammability                                                                   | _                                                     | Materials meet UL 94V-0                                                    |                    |               |                 |           |

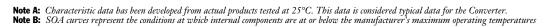

- Notes: (1) ISR-will operate down to no load with reduced specifications.
  (2) If the remote sense ground is not used, pin 13 must be connected to pin 14 for optimal output voltage accuracy.
  (3) The Standby control (pin 8) has an internal pull-up, and if left open-circuit the module will operate when input power is applied. A small low-leakage (<100nA) MOSFET must be used to control this input. The open-circuit voltage is less than 10V. See application notes for further information.
  - (4) For operation below 0°C, Cin and Cout must have stable characteristics. Use either low ESR tantalum or Oscon® capacitors.
  - (5) See Safe Operating Area curves.
  - (6) The case pins on the through-hole package types (suffixes N & A) must be soldered. For more information see the applicable package outline drawing.


External Capacitors: The PT6722 requires a minimum ouput capacitance of 330µF, and a minimum input capacitance of 1,000µF for proper operation. The input capacitance must be rated for a minimum of 1.6Arms of ripple current. For transient or dynamic load applications, additional input and output capacitance may be required. The maximum allowable output capacitance is 15,000µF. For more information refer to the application note regarding capacitor selection for this product. Input Inductor: An input filter inductor is optional for most applications. The inductor must be sized to handle 3ADC with a typical value of 1µH.




14-A Low-Voltage Programmable Integrated Switching Regulator


## PT6722 Performance; V<sub>in</sub> =12V (See Note A)








## PT6722 Thermal Derating; V<sub>in</sub> =12V (See Note A)





## Operating Features of the Programmable PT6700 "Excalibur™" Series ISRs

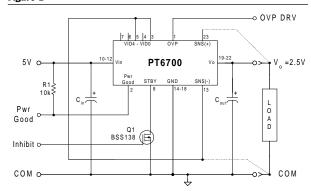
#### **Power Good**

Programmable versions of the PT6700 Series regulators incorporate a *PWR Good* output (pin 2). This output is open-drain and generates an acitve-high signal when the sensed output from the ISR is within a nominal  $\pm 10\%$  of the programmed set point. When the regulated output is outside this range, pin 2 asserts a logic low (typically <0.1V). A  $10\text{-k}\Omega$  pull-up resistor to a valid bus voltage is required. If the power good feature is not used, the pull-up resistor can be omitted. The maximum voltage that may be applied to the pull-up resistor is 15V.

#### **Over-Voltage Protection (OVP)**

The PT6700 programmable regulators also incorporate an OVP function. The *OVP DRV* (pin 1) normally has a logic low output (typically <0.1V). When the ISR's sensed output exceeds the programmed output setting by 15%, pin 1 produces a 60mA, +12V drive signal. This drive signal can trigger an SCR, which can be used to disable the input voltage (via a fuse), or alternatively interface to another external monitoring device. When the ISR output voltage returns to within 15% of its programmed setting, pin 1 reverts back to its low state. If the OVP function is not used, pin 1 may be left open circuit.

## **Stand-By Function**


The PT6700 series ISRs incorporate a standby function. This feature may be used for power-up sequencing, or wherever there is a requirement for the output voltage to be controlled by external circuitry.

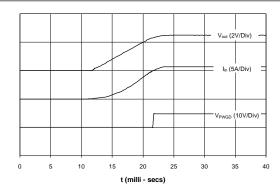
If the  $STBY^*$  input (pin 8) is left open-circuit the regulator operates normally, providing a regulated output when a valid supply voltage is applied to  $V_{\rm in}$  (pins 10-12) with respect to GND (pins 14-18). Connecting pin 8 to ground¹ places the regulator in standby mode ², and reduces the input current to typically 20mA (30mA max). Applying a ground signal to pin 8 prior to power-up, will disable the output during the period that input power is applied. To ensure that the regulator output is properly enabled, pin 8 must be open circuit.

Table 1 Standby Control Requirements 2

| Parameter  | Min         | Тур  | Max  |  |
|------------|-------------|------|------|--|
| Enable     | Open Cct. 1 |      |      |  |
| Disable    | -0.1V       | 0.4V | 1.0V |  |
| $I_{stbv}$ |             | 10μΑ |      |  |

Figure 1




## Notes:

- 1. The standby on a PT6700 series regulator must be controlled with an open-drain low-leakage (<100nA) MOSFET (See fig. 1). Table 1 gives the threshold requirements. <u>Do Not</u> use a pull-up resistor. The control input has an open-circuit voltage of between 4Vdc and 5Vdc. To set the regulator output to zero, the control pin must be "pulled" to less than 1.0Vdc by sinking current to ground.
- When placed in the standby mode, the regulator output may assert a low impedance to ground. If an external voltage is applied to the output, it will sink current and possibly overstress the part.

## **Turn-On Time**

Turning  $Q_1$  in Figure 1 off, removes the low-voltage signal at pin 8. After a 10-15ms delay the regulator output rises and reaches full output voltage within 30ms. Fig. 2 shows the typical waveforms of a PT6701 following the prompt turn-off of  $Q_1$  at time t =0 secs. The output voltage was set to 2.5V, and the waveforms were measured with a 5V input source, and 10A resistive load.

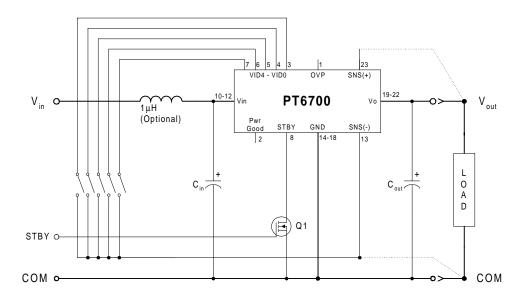
Figure 2



## Pin-Coded Output Voltage Programming on Non-Isolated "Excalibur™" Series ISRs

Programmable versions of the PT6700 and PT6720 series of Excalibur ISRs incorporate a pin-coded output voltage control. These regulators include up to five control pins, identified VID0-VID4 (pins 3–7) respectively. By selectively grounding VID0-VID4, the output voltage of these regulators can be programmed in incremental steps over a specified output voltage range. The program code and voltage range is designed to be compatible with the "Voltage ID" specification defined for popular microprocessors. Refer to Figure 1 for the connection schematic, and the applicable data sheet for the program code.

## **Notes:**


- The programming convention is as follows: Logic 0: Connect to pin13 (Remote Sense Ground).
   Logic 1: Open circuit/open drain (See notes 2, & 4)
- Do not connect pull-up resistors to the voltage programming pins.
- 3. To minimize output voltage error, always use pin 13 (Remote Sense Ground) as the logic "0" reference. While the regular ground (pins 14-18) can also be used for programming, doing so will degrade the load regulation of the product.
- If active devices are used to ground the voltage control pins, low-level open drain MOSFET devices should be used over

bipolar transistors. The inherent  $V_{ce}(sat)$  in bipolar devices introduces errors in the device's internal voltage control circuit. Discrete transistors such as the BSS138, 2N7002, IRLML2402, are examples of appropriate devices.

#### **Active Voltage Programming:**

Special precautions should be taken when making changes to the voltage control progam code while the unit is powered. It is highly recommended that the ISR be either powered down or held in standby. Changes made to the program code while Vout is enabled induces high current transients through the device. This is the result of the electrolytic output capacitors being either charged or discharged to the new output voltage set-point. The transient current can be minimized by making only incremental changes to the binary code, i.e. one LSB at a time. A minimum of 100us settling time between each program state is also recommended. Making non-incremental changes to VID3 and VID4 with the output enabled is discouraged. If they are changed, the transients induced can overstress the device and may also activate the OVP drive output. If the program code cannot be asserted prior to power-up, pull pin 8 (STBY) to GND during the period that the input voltage is applied. The release of pin 8 will then to allow the device to initiate a soft-start power-up to the program voltage.

Figure 1



PT6721/6722, & PT6725 Series

# Capacitor Recommendations for the PT6721, PT6722, and PT6725 Series of Regulators

## **Input Capacitors**

The recommended input capacitance is determined by 1.6 ampere minimum ripple current rating and  $1000\mu F$  minimum capacitance. Tantalum capacitors listed below cannot be used on the input bus since they are not rated for 12V operation. Ripple current and Equivalent Series Resistance (ESR) values are the major considerations along with temperature when selecting the proper capacitor.

## **Output Capacitors**

The minimum required output capacitance is 330µF with a maximum ESR less than or equal to 50mW. Failure to observe this requirement may lead to regulator instability or oscillation. Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz, but excellentlow frequency transient response. Above the ripple frequency ceramic decoupling capacitors are necessary to improve the transient response and reduce any microprocessor high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in the Table 1 below.

#### **Tantalum Characteristics**

Tantalum capacitors may be used on the output bus but only the AVX TPS series, Sprague 593D/594/595 series, or Kemet T495/T510 series. These capacitors are recommended over many other tantalum types due to their high surge current, excellent power dissipation and ripple current ratings. As a caution, the TAJ Series by AVX is not recommended. This series has considerably higher ESR, reduced power dissipation, and lower ripple current capability. The TAJ series is less reliable compared to the TPS series when determining power dissipation capability.

#### **Capacitor Table**

Table 1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The suggested minimum quantities per regulator for both the input and output buses are identified.

This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The RMS ripple current rating and ESR (Equivalent Series Resistance at 100kHz) are the critical parameters necessary to insure both optimum regulator performance and long capacitor life.

Table 1 Capacitors Characteristic Data

| Capacitor<br>Vendor/<br>Series           | Capacitor Characteristics |                     |                                       |                                          | Quantity                      |                  |               |                                                                                           |
|------------------------------------------|---------------------------|---------------------|---------------------------------------|------------------------------------------|-------------------------------|------------------|---------------|-------------------------------------------------------------------------------------------|
|                                          | Working<br>Voltage        | Value(µF)           | (ESR) Equivalent<br>Series Resistance | 105°C Maximum<br>Ripple<br>Current(Irms) | Physical<br>Size(mm)          | Input<br>Bus     | Output<br>Bus | Vendor Part Number                                                                        |
| Panasonic<br>FC Series/<br>FA Series     | 35V<br>25V<br>25V         | 680<br>1000<br>1000 | 0.043Ω<br>0.038Ω<br>0.038Ω            | 1655mA<br>1655mA<br>1690mA               | 12.5x20<br>12.5x20<br>16x15   | 2<br>1<br>1      | 1<br>2<br>1   | EEUFC1V681<br>EEUFC1E102<br>EEUFC1E102S                                                   |
| United<br>Chemi-con<br>LFVSeries         | 35V<br>35V<br>16V         | 680<br>1000<br>470  | 0.034Ω<br>0.038Ω<br>0.084Ω÷2 =0.042Ω  | 1690mA<br>1630mA<br>825mA (x2)           | 12.5x25<br>16x20<br>10x16     | 2<br>1<br>N/R(1) | 1<br>1<br>2   | LXV35VB680M12X25LL<br>LXV35VB102M16X20LL<br>LXV16VB471M10X16LL                            |
| Nichicon<br>PL Series/<br>PM Series      | 35V<br>25V<br>35V         | 680<br>1200<br>1000 | 0.036Ω<br>0.039Ω<br>0.034Ω            | 1660mA<br>1600mA<br>1770mA               | 12.5x25<br>18x15<br>16x20     | 2<br>1<br>1      | 1<br>1<br>1   | UPL1V681MHH<br>UPL1E122MHH6<br>UPM1V102MHH6                                               |
| Panasonic<br>FC Series<br>Surface Mtg    | 35V<br>25V<br>35V         | 1000<br>1000<br>470 | 0038Ω<br>0.038Ω<br>0.043Ω             | 2000mA<br>2000mA<br>1690mA               | 18x16.5<br>18x16.5<br>16x16.5 | 1<br>1<br>2      | 1<br>1<br>1   | EEVFC1V102N<br>EEVFC1E102N<br>EEVFC1V471N                                                 |
| Oscon-<br>SS/SV Series                   | 10V<br>10V                | 330<br>330          | 0.025Ω<br>0.020Ω                      | 3500mA<br>3800mA                         | 10x10.5<br>10.3x10.3          | N/R(1)<br>N/R(1) | 1<br>1        | 10SS330M (If V <sub>o</sub> <5V)<br>10SV330 (If V <sub>o</sub> <5V)<br>Surface Mount (SV) |
| AVX<br>Tantalum<br>TPS Series            | 10V<br>10V                | 330<br>330          | 0.1Ω÷2 =0.05Ω<br>0.06Ω÷2 =0.03Ω       | >2500mA<br>>3000mA                       | 7.3L x<br>5.7W x<br>4.1H      | N/R(1)<br>N/R(1) | 2             | TPSE337M010R0100 TPSV337M010R0060 Surface Mount                                           |
| Kemet<br>Tantalum<br>T510/T495<br>Series | 10V<br>10V                | 330<br>220          | 0.033Ω<br>0.07Ω÷2 =0.035Ω             | 1400mA<br>>2000mA                        | 4.3Wx7.3L<br>x4.0H            | N/R(1)<br>N/R(1) | 1 2           | 510X337M010AS<br>T495X227M0100AS<br>Surface Mount                                         |
| Sprague<br>Tantalum<br>594D Series       | 10V                       | 330                 | 0.045Ω                                | 2360mA                                   | 7.2L x<br>6W x<br>4.1H        | N/R(1)           | 1             | 594D337X0010R2T<br>Surface Mount                                                          |

**Note:** (N/R) 10V tantalums are not recommend for the input bus.



## **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265