GaAs MMIC VSAT Power Amplifier 1.4W 14.0 - 14.5 GHz

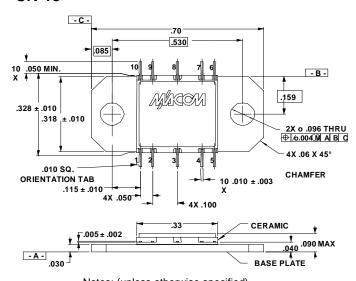
Features

• High Linear Gain: 22 dB Typ.

• High Saturated Output Power: +31.5 dBm Typ.

• High Power Added Efficiency: 22% Typ.

- 50Ω Input/Output Broadband Matched
- Integrated Output Power Detector
- High Performance Ceramic Bolt Down Package


Description

M/A-COM's AM42-0002 is a three-stage MMIC linear power amplifier in a ceramic bolt down style hermetic package. The AM42-0002 employs a fully matched chip with interally decoupled Gate and Drain bias networks and an output power detector. The AM42-0002 is designed to be operated from a constant voltage Drain supply.

The AM42-0002 is designed for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components.

M/A-COM's AM42-0002 is fabricated using a mature 0.5 micron GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

CR-15

Notes: (unless otherwise specified)

1. Dimensions are in inches.

2. Tolerance: .XXX = ± 0.005
.XX = ± 0.010

Ordering Information

Part Number	Package
AM42-0002	Ceramic Bolt Down Package

Electrical Specifications: $T_C = +25$ °C, VDD = +9V, VGG = -5.0V, $Z_0 = 50\Omega$, Frequency = 14.0-14.5 GHz

Abbv.	Test Conditions	Units	Min.	Тур.	Max.
G_L	$P_{IN} \le 0 dBm$	dB	19	22	_
VSWR _{IN}	$P_{IN} \le 0 dBm$	_	_	2.5:1	2.7:1
VSWR _{OUT}	_	_	_	2.7:1	_
P _{SAT}	P _{IN} = +14 dBm	dBm	30.5	31.5	_
P _{1dB}		dBm	_	29.5	_
IP ₃	(Refer to Note 1)	dBm	_	41	_
PAE	$P_{IN} = +14 \text{ dBm}$	%	_	22	
I _{DD}	$P_{IN} = +14 \text{ dBm}$	mA	_	950	1400
θЈС	25°C Heat Sink	°C/W	_	9.5	_
V _{det}	R_L =10K Ω min.	V	_	+3.5	_
	$\begin{array}{c} G_L \\ VSWR_{IN} \\ VSWR_{OUT} \\ \hline P_{SAT} \\ \hline P_{1dB} \\ \hline IP_3 \\ PAE \\ \hline I_{DD} \\ \hline \theta_{JC} \\ \end{array}$	$\begin{array}{c c} G_L & P_{IN} \! \leq \! 0 \text{ dBm} \\ \hline VSWR_{IN} & P_{IN} \! \leq \! 0 \text{ dBm} \\ \hline VSWR_{OUT} &$	$\begin{array}{c ccccc} G_L & P_{IN} \leq 0 \ dBm & dB \\ \hline VSWR_{IN} & P_{IN} \leq 0 \ dBm & \\ \hline VSWR_{OUT} & & \\ \hline P_{SAT} & P_{IN} = +14 \ dBm & dBm \\ \hline P_{1dB} & dBm \\ \hline IP_3 & (Refer to \ Note \ 1) & dBm \\ \hline PAE & P_{IN} = +14 \ dBm & \% \\ \hline I_{DD} & P_{IN} = +14 \ dBm & mA \\ \hline \theta_{JC} & 25^{\circ}C \ Heat \ Sink & ^{\circ}C/W \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

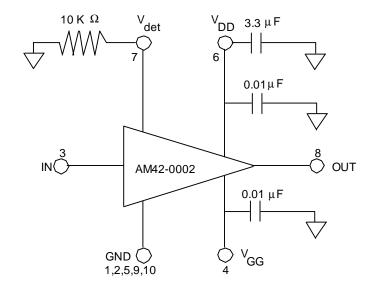
IP₃ is measured with two +21 dBm output tones @ 1 MHz spacing.

Specifications subject to change without notice.

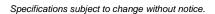
■ North America: Tel. (800) 366-2266, Fax (800) 618-8883

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020



Absolute Maximum Ratings 1,2,3,4


Parameter	Absolute Maximum
V_{DD}	12 Volts
$V_{ m GG}$	-10 Volts
Power Dissipation	13.2 W
RF Input Power	+23 dBm
Channel Temperature	150°C
Storage Temperature	-65°C to +150°C
I _{ds}	1900 mA

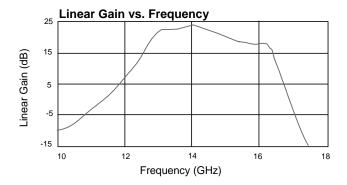
- Operation of this device outside any of these limits may cause permanent damage.
- 2. Case Temperature $(T_C) = +25$ °C.
- Nominal bias is obtained by first connecting -5 volts to pin 4 (V_{GG}), followed by connection +9 volts to pin 6 (V_{DD}). Note sequence.
- RF ground and thermal interface is the flange (case bottom).
 Adequate heat sinking is required.
- 5. No dc bias voltage appears at the RF ports.
- 6. The dc resistance at the input port is an open circuit and at the ouput port is a short circuit.
- 7. For optimum IP_3 performance, the V_{DD} bypass capacitors should be placed within 0.5 inches of pin 6.
- Resistor and capacitors surrounding the amplifier are suggestions and not included as part of the AM42-0002.

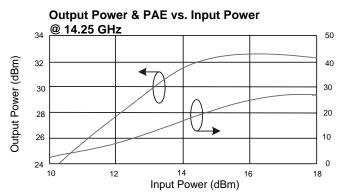
Typical Bias Configuration^{3,4,7,8}

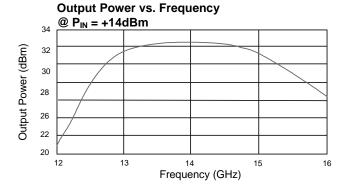
Pin No.	Pin Name	Description
1	GND	DC and RF Ground
2	GND	DC and RF Ground
3	IN	RF Input
4	V_{GG}	Gate Supply
5	GND	DC and RF Ground
6	V_{DD}	Voltage Drain Supply
7	V_{det}	Output Power Detector
8	OUT	RF Output
9	GND	DC and RF Ground
10	GND	DC and RF Ground

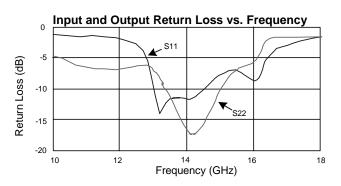
■ North America: Tel. (800) 366-2266, Fax (800) 618-8883

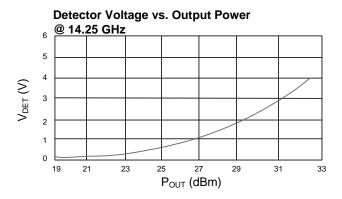
■ Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

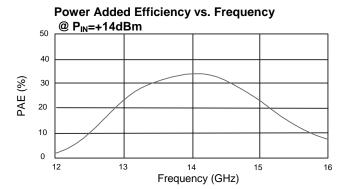

■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

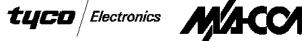





Typical Performance @ +25°C


Test Conditions are listed in the section "Electrical Specifications".





Specifications subject to change without notice.

■ North America: Tel. (800) 366-2266, Fax (800) 618-8883

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

