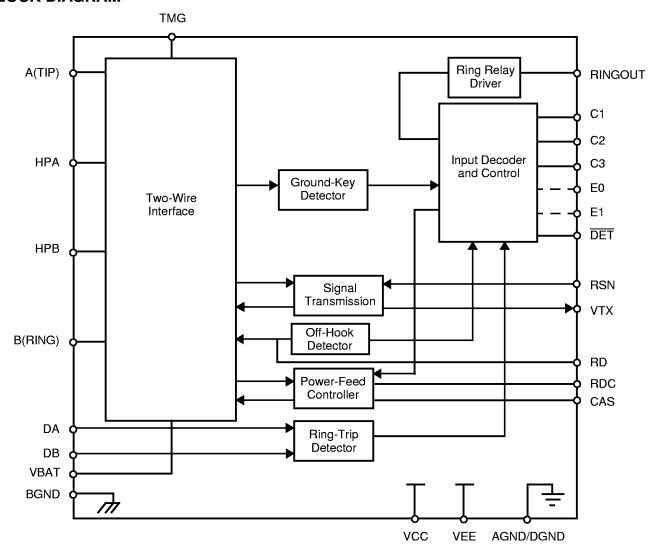


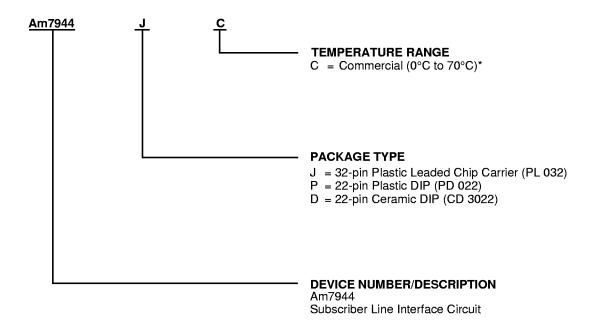
Am7944


Subscriber Line Interface Circuit

DISTINCTIVE CHARACTERISTICS

- Programmable constant-current feed
- Current gain = 200
- Programmable loop-detect threshold
- Low standby power
- Ground-key detector
- Tip Open state for ground-start lines
- -19 V to -56.5 V battery operation

- On-chip Thermal Management (TMG) feature
- Two-wire impedance set by single external impedance
- On-hook transmission
- On-chip ring relay driver and relay snubber circuit
- Ideal for DLC, PABX, and Fiber to the Curb/Home applications


BLOCK DIAGRAM

ORDERING INFORMATION

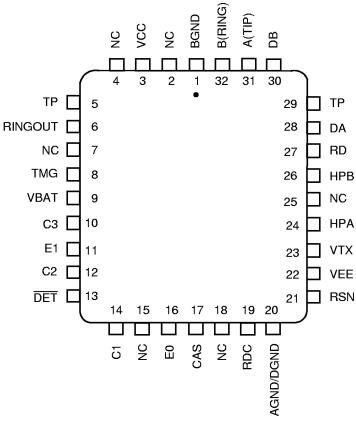
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

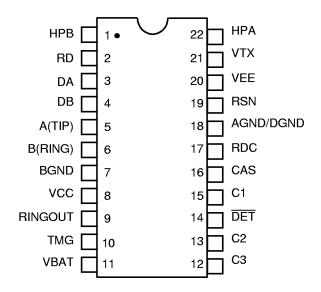
Valid Com	binations
Am7944	DC, JC

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.


Note:

^{*} Functionality of the device from $0^{\circ}C$ to $+70^{\circ}C$ is guaranteed by production testing. Performance from $-40^{\circ}C$ to $+85^{\circ}C$ is guaranteed by characterization and periodic sampling of production units.


CONNECTION DIAGRAMS

Top View

32-Pin PLCC

22-Pin Plastic DIP or 22-Pin Ceramic DIP

Notes:

- 1. Pin 1 is marked for orientation.
- 2. TP is a thermal conduction pin tied to substrate.
- 3. NC = No Connect

PIN DESCRIPTIONS

Pin Names	Туре	Description
AGND/DGND	Gnd	Analog and Digital ground.
A(TIP)	Output	Output of A(TIP) power amplifier.
BGND	Gnd	Battery (power) ground.
B(RING)	Output	Output of B(RING) power amplifier.
C3-C1	Input	Decoder. TTL compatible. C3 is MSB and C1 is LSB.
CAS	Capacitor	Anti-saturation pin for capacitor to filter reference voltage when operating in anti-saturation region.
DA	Input	Ring-trip negative. Negative input to ring-trip comparator.
DB	Input	Ring-trip positive. Positive input to ring-trip comparator.
DET	Output	Switchhook detector. When enabled, a logic Low indicates the selected detector is tripped. The detector is selected by the logic inputs (C3–C1, E1–E0). The output is open-collector with a built-in 15 k Ω pull-up resistor.
E0	Input	DET Enable. A logic High enables DET. A logic Low disables DET. (DET = Logic High). (PLCC only)
E1	Input	Ground-Key Enable. E1 = High connects the ground-key detector to DET. E1 = Low connects the off-hook or ring-trip detector to DET. (PLCC only)
HPA	Capacitor	High-Pass Filter Capacitor. A(TIP) side of high-pass filter capacitor.
HPB	Capacitor	High-Pass Filter Capacitor. B(RING) side of high-pass filter capacitor.
RD	Resistor	Detector resistor. Detector threshold set and filter pin.
RDC	Resistor	DC feed resistor. Connection point for the DC feed current programming network. The other end of the network connects to the receiver summing node (RSN). Connection point for the DC feed current programming network. The other end of the network connects to the receiver summing node (RSN). V _{RDC} is negative for normal polarity and positive for reverse polarity.
RINGOUT	Output	Ring Relay Driver. Open-collector driver with emitter internally connected to BGND.
RSN	Input	Receive Summing Node. The metallic current (AC and DC) between A(TIP) and B(RING) is equal to 200 times the current into this pin. The networks that program receive gain, two-wire impedance, and feed current all connect to this node.
TMG	_	Thermal management. A resistor connected from this pin to VBAT reduces the on-chip power dissipation in the normal polarity, Active state only. Refer to Table 2.
TP	Thermal	Thermal pin. Connection for heat dissipation. Internally connected to substrate (VBAT). Leave as open circuit or connected to VBAT. In both cases, the TP pins can connect to an area of copper on the board to enhance heat dissipation
VBAT	Battery	Battery supply.
VCC	Power	+5 V power supply.
VEE	Power	−5 V power supply.
VTX	Output	Transmit Audio. This output is a unity gain version of the A(TIP) and B(RING) metallic voltage. VTX also sources the two-wire input impedance programming network.

ABSOLUTE MAXIMUM RATINGS

Storage temperature	–55°C to +150°C
V_{CC} with respect to AGND/DGND	. −0.4 V to +7.0 V
V _{EE} with respect to AGND/DGND	. +0.4 V to -7.0 V
V _{BAT} with respect to AGND/DGND: Continuous	
BGND with respect to AGND/DGND.	
A(TIP) or B(RING) to BGND: Continuous 10 ms (f = 0.1 Hz) 1 ms (f = 0.1 Hz) 10 µs (f = 0.1 Hz)	–70 V to +1 V –70 V to +5 V –80 V to +8 V
Current from A(TIP) or B(RING)	±150 mA
Current from TMG	100 mA
Voltage on RINGOUT: During transient During steady state	
Current through relay drivers	
DA and DB inputs Voltage on ring-trip inputs Current into ring-trip inputs C3–C1, E0, E1	±10 mA
to AGND/DGND0.4	V to V_{CC} + 0.4 V
Maximum power dissipation, T _A = 85 No heat sink (See Note):	°C
In 22-pin ceramic DIP package In 22-pin plastic DIP package In 32-pin PLCC package	1.0 W 1.4 W
Thermal data	50°C/W typ 56°C/W typ

Note:Thermal limiting circuitry on chip will shut down the circuit at a junction temperature of about 165°C. The device should never be exposed to this temperature. Operation above 145°C junction temperature may degrade device reliability. See the SLIC Packaging Considerations for more information.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient temperature	0°C to +70°C*
V _{CC}	4.75 V to 5.25 V
V _{EE}	4.75 V to -5.25 V
V _{BAT}	–19 V to –56.5 V
AGND/DGND	0 V
BGND with respect to AGND/DGND	–100 mV to +100 mV
Load resistance on VTX	to ground10 k Ω min

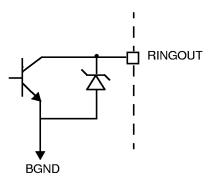
Operating Ranges define those limits between which device functionality is guaranteed.

^{*} Functionality of the device from 0°C to +70°C is guaranteed by production testing. Performance from -40°C to +85°C is guaranteed by characterization and periodic sampling of production units.

ELECTRICAL CHARACTERISTICS

The Am7944 device is tested under the following conditions unless otherwise noted: BAT = -48 V, V_{CC} = +5 V, V_{EE} = -5 V, R_L = 900 Ω . The device is not tested in Polarity Reversal state.

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Analog (V _{TX}) output impedance			3		Ω	
Analog (V _{TX}) output offset	0°C to +70°C	-35		+35	mV	_
	–40°C to +85°C	-4 0		+40	IIIV	4
Analog (RSN) input impedance	300 Hz to 3.4 kHz		1	20	Ω	4
Longitudinal impedance at A or B				35	22	
Overload level	4-wire and 2-wire, Active state	-2.5		+2.5	Vpk	2a
	On hook, $R_{LAC} = 900 \Omega$	0.95			Vrms	2b
	Active or OHT state					
Transmission Performance						
2-wire return loss	200 to 3400 Hz	26			dB	4, 8
(See Test Circuit D)						
Longitudinal Balance (2-Wire an	d 4-Wire, See Test Circuit C); R _L	= 740 Ω a	t V _{BAT} = 4	18 V		
Longitudinal to metallic L-T, L-4	200 Hz to 1 kHz					
normal polarity	0°C to +70°C	63				_
	−40°C to +85°C	58				4
	1 kHz to 3.4 kHz				dB	
	0°C to +70°C	58				_
	–40°C to +85°C	54				4, 9
Longitudinal signal generation 4-L	300 Hz to 800 Hz	42				
Longitudinal current per pin	Active state and OHT state	27	35		mArms	
Insertion Loss (2- to 4-Wire and BAT = –48 V, R_L = 900 Ω	4- to 2-Wire, See Test Circuits A	and B)				
Gain accuracy	0 dBm, 1 kHz					
	0°C to +70°C	-0.15		+0.15		_
	−40°C to +85°C	-0.20		+0.20		4
Gain accuracy, OHT state	$-$ 10 dBm, on hook, R_{LAC} = 900 Ω	- 0.5		+0.5		4
Variation with frequency	300 Hz to 3.4 kHz				dB	
	relative to 1 kHz				GD.	
	0°C to +70°C	-0.10		+0.10		
	-40°C to +85°C	-0.15		+0.15		4
Gain tracking	+7 dBm to -55 dBm	-0.1		+0.1		4
	Reference: 0 dBm	0.45		0.45		
	–40°C to +85°C	- 0.15		+0.15		4
Balance Return Signal (4- to 4-W BAT = -48 V, R _L = $900~\Omega$	/ire, See Test Circuit B)					
Gain accuracy	0 dBm, 1 kHz					
	0°C to +70°C	-0.15		+0.15		3
	−40°C to +85°C	-0.20		+0.20		4
Variation with frequency	300 Hz to 3.4 kHz					
	relative to 1 kHz	.		.		_
	0°C to +70°C	−0.1 −0.15		+0.1 +0.15	dB	3 4
	-40°C to +85°C	70.15		+0.15		4
Gain tracking	+3 dBm to -55 dBm					
	Reference: 0 dBm	0.1				2 4
	0°C to +70°C −40°C to +85°C	−0.1 −0.15		+0.1 +0.15		3, 4 4
Group dolay	f = 1 kHz	3.10		4		
Group delay	1 = 1 KMZ			4	μs	4, 8

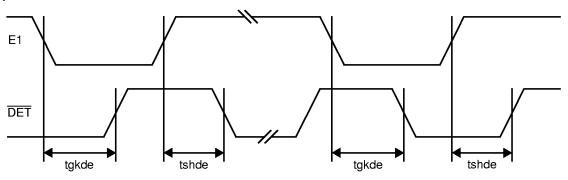

ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Тур	Max	Unit	Note	
·	to 4-Wire or 4- to 2-Wire, See Test	Circuits A	and B)			
BAT = -48 V, R _L = 900 Ω					T	1
Harmonic distortion	2-wire level = 0 dBm		-64	-50	dB	
300 Hz to 3400 Hz	2-wire level = +7 dBm		- 55	-40		
Idle Channel Noise (2-Wire an	d 4-Wire)					1
C-message weighted	2-wire, 0°C to +70°C		+7	+10		4
	2-wire, —40°C to +85°C		+7	+12	dBrnC	4
	4-wire, 0°C to +70°C		+7	+10		4
	4-wire, —40°C to +85°C		+7	+12		4
Psophometric weighted	2-wire, 0°C to +70°C		-83	-80		_
	2-wire, —40°C to +85°C		-83	-78	dBmp	4
	4-wire, 0°C to +70°C		-83	-80	·	_
	4-wire, -40°C to +85°C		-83	-78		4
Line Characteristics, Active S	 		T		I	1
Short loops, Active state	BAT = -48 V , $R_{LDC} = 600 \Omega$	25.0	27.0	29.0		
Long loops, Active state	BAT = -48 V , $R_{LDC} = 1.9 \text{ k}\Omega$	18.0	20.4			
OHT state	BAT = -48 V , $R_{LDC} = 600 \Omega$	16.0	18.0	20.0		
Standby state	$I_{L} = \frac{ V_{BAT} - 3 V}{R_{I} + 1800}, T_{A} = 25^{\circ}C$	0.7I _L	 	1.31լ	mA	
	$R_L = 600 \Omega, BAT = -48 V$	15.0	17.4			
	T _A = 70°C					
Loop current	Tip Open state, R _L = 0			100		
sop danem	Disconnect state, R _L = 0			100	μΑ	
	Tip Open state, Bwire to GND	22	30	44		
	Tip Open state, Bwire = V _{BAT} + 6 V	20	30	45	mA	
I _I LIM (I _{TIP} + I _{BING})	Tip and ring shorted to GND		100	130		
Ground-start signaling	Active state					
(tip voltage)	R_{TIP} to $-48 \text{ V} = 7.0 \text{ k}\Omega$	-7.5	-5.0			
	R_{RING} to GND = 100 Ω				V	
Open circuit voltage	Active and OHT states BAT = -48 V	40.5	42.0			
Power Dissipation, BAT = –48	V		-	-	-	
On hook, Open Circuit state			25	70		
On hook, OHT state			120	210		
On hook, Active state	R _{TMG} = Open		160	230		
,	$R_{TMG} = 1700 \Omega$		195	280	mW	
On hook, Standby state	11155		35	85		
Off hook, OHT state	$R_L = 300 \Omega, R_{TMG} = \infty$ BAT = -48 V		735	1050		
Off hook, Active state	$R_L = 300 \Omega, R_{TMG} = \infty$ BAT = -48 V		1.25	1.45		
	$R_L = 300 \Omega$, $R_{TMG} = \infty$		0.57	0.85	W	
Off hook, Standby state	$R_{I} = 600 \Omega$, $T_{A} = 25^{\circ}C$		0.68	1.0	1	

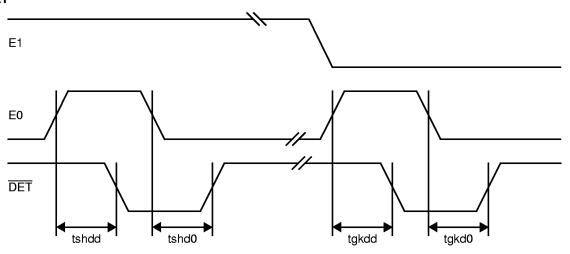
ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Supply Currents, BAT = -48 V				•		
V _{CC} on-hook supply current	Open Circuit state		1.7	2.5		
	OHT state		4.9	7.5		
	Standby state		2.2	3.0		
	Active state		6.3	8.5		
V _{EE} on-hook supply current	Open Circuit state		0.7	2.0		
	OHT state		2.0	3.5	mA	
	Standby state		0.77	2.0		
	Active state		2.1	5.0		
V _{BAT} on-hook supply current	Open Circuit state		0.18	1.0		
	OHT state		1.9	4.7		
	Standby state		0.45	1.5		
	Active state		4.2	5.7		
	V _{RIPPLE} = 50 mVrms), Active Nor		,_ 1	Т		
V _{CC}	50 Hz to 3.4 kHz	33	40			
V _{EE}	50 Hz to 3.4 kHz	29	35		dB	5
V_{BAT}	50 Hz to 3.4 kHz	30	50			
Effective internal resistance	CAS pin to GND	85	170	255	kΩ	4
RFI rejection	100 Hz to 30 MHz			1.0	mVrms	4
	(See Figure E)					
Off-Hook Detector						
Current threshold	375	-10		+10	%	
	$I_{DET} = \frac{375}{R_D}$					
	, and the second					
Ground-Key Detector Threshold	1					
Ground-key resistance threshold	B(RING) to GND	2.0	5.0	10.0	kΩ	
Ground-key current threshold	B(RING) to GND		9.0		mA	
Ring-Trip Detector Input						
Bias current		-0.5	-0.05		μΑ	
Offset voltage	Source resistance = 2 $M\Omega$	-50	0	+50	mV	6
Logic Inputs C3-C1, E0, E1						
Input High voltage		2.0				
Input Low voltage				0.8	V	
Input High current	All inputs except C3 and E1	-75		40		
	Input C3	- 75		200	μΑ	
	Input E1	- 75		45	•	
Input Low current		-0.4			mA	
Logic Output (DET)				'		
Output Low voltage	I _{OUT} = 0.8 mA			0.4		
Output High voltage	I _{OUT} = -0.1 mA	2.4			V	
Relay Driver Output (RINGOUT)	1 301			<u>I</u>		I
On voltage	35 mA sink		+0.25	+0.4	V	
Off leakage	V _{OH} = +5 V			100	μA	
Zener breakover	100 μΑ	6	7.2	100	μι	
	30 mA	O			V	
Zener On voltage	SU MA		10			

RELAY DRIVER SCHEMATIC



SWITCHING CHARACTERISTICS (32-pin PLCC only)


Symbol	Parameter	Test Conditions	Temperature Ranges	Min	Тур	Max	Unit	Note
	E1 Low to DET High (E0 = 1)		0°C to 70°C			3.8		
tgkde tgkdd	E1 Low to DET Low (E0 = 1)	Ground-Key Detect state R _I open, R _G connected	-40°C to +85°C 0°C to 70°C -40°C to +85°C			4.0 1.1 1.6		
takdd	E0 High to \overline{DET} Low (E1 = 0)	(See Figure H)	0°C to 70°C			1.1		
3			-40°C to +85°C			1.6		
tgkd0	E0 Low to \overline{DET} High (E1 = 0)		0°C to 70°C			3.8		
igitao	Lo Low to BETTINGH (ET = 0)		-40°C to +85°C			4.0	แร	4
	E1 High to \overline{DET} Low (E0 = 1)		0°C to 70°C			1.2	μο	
l			-40°C to +85°C			1.7		
tshde	E1 High to \overline{DET} High (E0 = 1)		0°C to 70°C			3.8		
		Switchhook Detect state $R_1 = 600 \Omega$, R_G open	-40°C to +85°C			4.0		
4 - 1 - 1 - 1	FOURTH AS DET LOW (Ed. 1)	(See Figure G)	0°C to 70°C			1.1		
เรทนด	E0 High to DET Low (E1 = 1)	(555) (95) (4)	-40°C to +85°C			1.6		
tshde E-	FOL I DET III I (F4 4)		0°C to 70°C			3.8	7	
tsnau	E0 Low to \overline{DET} High (E1 = 1)		-40°C to +85°C			4.0		

SWITCHING WAVEFORMS

E1 to DET

E0 to DET

Note:

All delays measured at 1.4 V level.

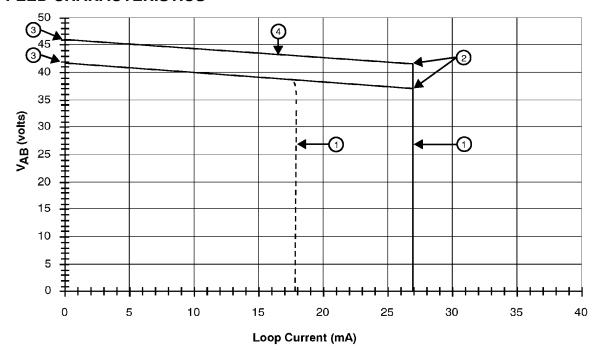
Notes:

- 1. Unless otherwise noted, test conditions are V_{CC} = +5 V, V_{EE} = -5 V, C_{HP} = 0.33 μ F, R_{DC1} = R_{DC2} = 9.26 $k\Omega$, C_{DC} = 0.33 μ F, R_D = 35.4 $k\Omega$, C_{CAS} = 0.33 μ F, no fuse resistors, BAT = -48 V, R_L = 900 Ω , and R_{TMG} = 1700 Ω .
- 2. a. Overload level is defined when THD = 1%.b. Overload level is defined when THD = 1.5%
- 3. Balance return signal is the signal generated at V_{TX} by V_{RX} . This specification assumes the two-wire AC load impedance matches the programmed impedance.
- 4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.
- 5. This parameter is tested at 1 kHz with a termination impedance of 900 Ω and an R_L of 600 Ω in production. Performance at other frequencies is guaranteed by characterization.
- 6. Tested with 0 Ω source impedance. 2 $M\Omega$ is specified for system design only.
- 7. Assumes the following Z_T networks:

8. Group delay can be considerably reduced by using a Z_T network such as that shown in Note 7 above. The network reduces the group delay to less than 2 μ s. The effect of group delay on the linecard performance may be compensated for by using the QSLACTM or DSLACTM device.

Table 1. SLIC Decoding

					DET	Output
State	C 3	C2	C1	Two-Wire Status	E1 = 1	E1 = 0
0	0	0	0	Open Circuit	Ring trip	Ring trip
1	0	0	1	Ringing	Ring trip	Ring trip
2	0	1	0	Active	Loop detector	Ground key
3	0	1	1	On-Hook TX (OHT)	Loop detector	Ground key
4	1	0	0	Tip Open	Loop detector	Ground key
5	1	0	1	Standby	Loop detector	Ground key
6	1	1	0	Reserved		
7	1	1	1	Reserved		


Note:

E0 and E1 are internally pulled High in the 22-pin DIP package option. E0 High enables the \overline{DET} pin.

Table 1. User-Programmable Components

$Z_{\rm T} = 200(Z_{\rm 2WIN} - 2R_{\rm F})$	Z_T is connected between the VTX and RSN pins. The fuse resistors are $R_F, \ \mbox{and} \ Z_{2WIN}$ is the desired 2-wire AC input impedance. When computing $Z_T,$ the internal current amplifier pole and any external stray capacitance between VTX and RSN must be taken into account.
$Z_{\rm RX} = \frac{Z_{\rm L}}{G_{\rm 42L}} \bullet \frac{500 \bullet Z_{\rm T}}{Z_{\rm T} + 200(Z_{\rm L} + 2R_{\rm F})}$	Z_{RX} is connected from V_{RX} to $R_{SN}.\ Z_T$ is defined above, and G_{42L} is the desired receive gain.
$R_{DC1} + R_{DC2} = \frac{500}{I_{LOOP}}$	$R_{DC1},R_{DC2},$ and C_{DC} form the network connected to the RDC pin. R_{DC1} and R_{DC2} are approximately equal. I_{LOOP} is the desired loop current in the constant-current region.
$C_{DC} = 1.5 \text{ ms} \bullet \frac{R_{DC1} + R_{DC2}}{R_{DC1} \bullet R_{DC2}}$	
$R_{\rm D} = \frac{375}{I_{\rm T}}, C_{\rm D} = \frac{0.5 \text{ ms}}{R_{\rm D}}$	$\rm R_D$ and $\rm C_D$ form the network connected from RD to –5 V and $\rm I_T$ is the threshold current between on hook and off hook.
$I_{OHT} = \frac{500 \text{ V} \bullet 0.66}{R_{DC1} + R_{DC2}}$	OHT loop current (constant-current region).
$C_{CAS} = \frac{1}{3.4 \cdot 10^5 \pi f_c}$	C_{CAS} is the filter regulator filter capacitor and f_{c} is the desired filter cutoff frequency.
Thermal Management Equations (Normal Active ar	nd Tip Open States)
$R_{\rm TMG} \ge \frac{V_{\rm BAT} - 6 \text{ V}}{I_{\rm LOOP}}$	R_{TMG} is connected from T_{MG} to V_{BAT} and is used to limit power dissipation within the SLIC in Normal Active and Tip Open states only.
$P_{RTMG} = \frac{(V_{BAT} - 6 \ V - (I_L \bullet R_L))^2}{R_{TMG}}$	Power dissipated in the thermal management resistor, $R_{\mbox{\scriptsize TMG}}$, during Active and Tip Open states.
$P_{SLIC} = V_{BAT} \bullet I_L - P_{RTMG} - R_L(I_L)^2 + 0.12 \text{ W}$	Power dissipated in the SLIC while in Active and Tip Open states.

DC FEED CHARACTERISTICS

 $\mathsf{R}_{\mathsf{DC}1} + \mathsf{R}_{\mathsf{DC}2} = \mathsf{R}_{\mathsf{DC}} = 18.52 \; \mathsf{k} \Omega$

Active state

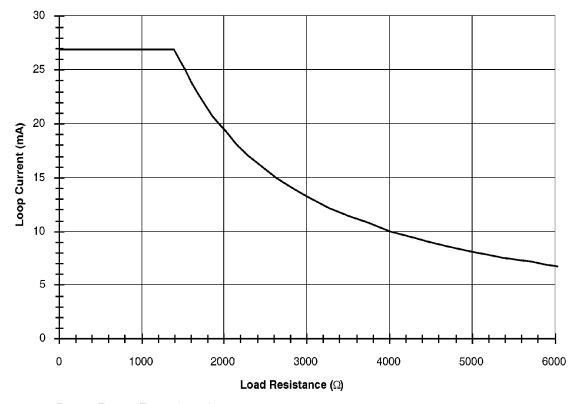
----- OHT state

Notes:

1. Constant-current region:

Active state,
$$I_{L} = \frac{500}{R_{DC}}$$

OHT state,
$$I_{L} = \frac{2}{3} \bullet \frac{500}{R_{DC}}$$


2. Anti-sat (battery tracking) turn-on: $V_{AB} = 1.017 |V_{BAT}| - 10.7$

3. Open circuit voltage: $V_{AB} = 1.017 |V_{BAT}| - 6.3$

4. Anti-sat (battery tracking) region: $V_{AB} = 1.017 |V_{BAT}| - 6.3 - I_L \frac{R_{DC}}{120}$

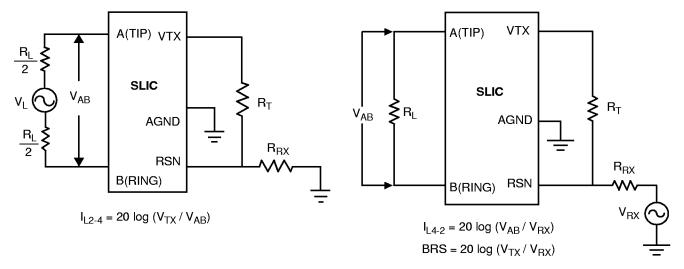
a. V_A–V_B (V_{AB}) Voltage vs. Loop Current (Typical)

DC FEED CHARACTERISTICS (continued)

 $\mathsf{R}_{\mathsf{DC}1} + \mathsf{R}_{\mathsf{DC}2} = \mathsf{R}_{\mathsf{DC}} = 18.52 \; \mathsf{k}\Omega$

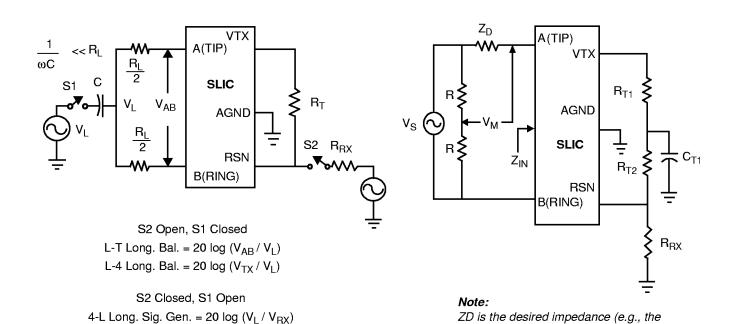
 $V_{BAT} = 47.3 \text{ V}$

b. Loop Current vs. Load Resistance (Typical)



Feed current programmed by R_{DC1} and R_{DC2}

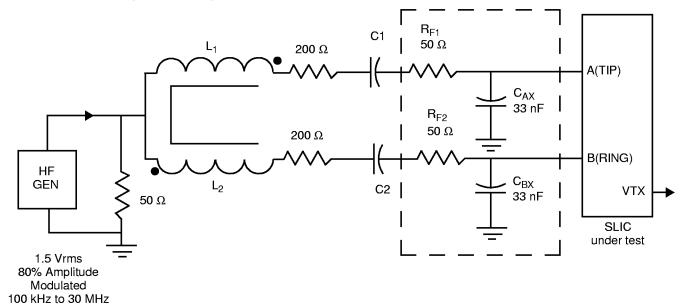
c. Feed Programming


Figure 1. DC Feed Characteristics

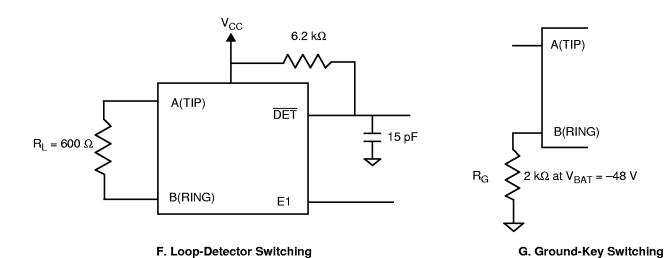
TEST CIRCUITS

A. Two- to Four-Wire Insertion Loss

B. Four- to Two-Wire Insertion Loss and Balance Return Signal

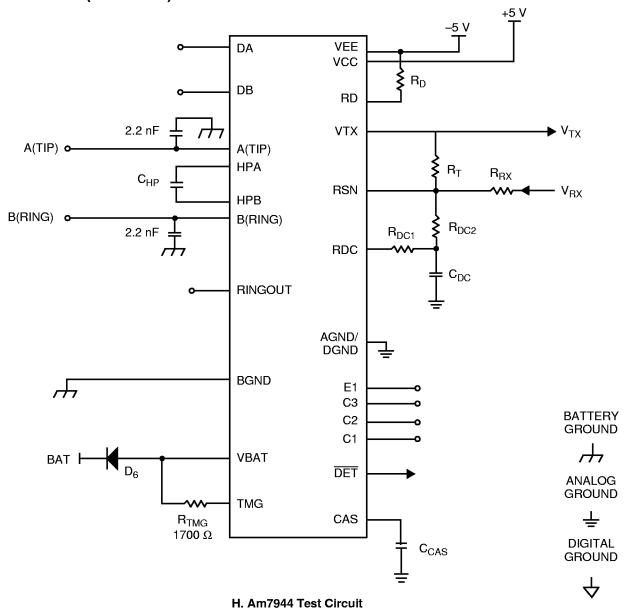

C. Longitudinal Balance

D. Two-Wire Return Loss Test Circuit


 $R_L = -20 \log (2 V_M / V_S)$

characteristic impedance of the line).

TEST CIRCUITS (continued)



E. RFI Test Circuit

SLIC Products

TEST CIRCUITS (continued)

REVISION SUMMARY

Revision A to B

• Minor changes were made to the data sheet style and format to conform to AMD standards.

Revision B to Revision C

- In Pin Description table, inserted/changed TP pin description to: "Thermal pin. Connection for heat dissipation. Internally connected to substrate (QBAT). Leave as open circuit or connected to QBAT. In both cases, the TP pins can connect to an area of copper on the board to enhance heat dissipation."
- Minor changes were made to the data sheet style and format to conform to AMD standards.

Trademarks

Copyright © 1998 Advanced Micro Devices, All rights reserved.

AMD, the AMD logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.

DSLAC and QSLAC are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

PRELIMINARY

T-49-17-15

MC

The Maximum Count bit is set whenever the timer reaches its final maximum count value. If the timer is configured in dual MAX COUNT register mode, this bit will be set each time the value in MAX COUNT register A is reached, and each time the value in MAX COUNT register B is reached. This bit is set regardless of the timer's interrupt-enable bit. The MC bit gives the user the ability to monitor timer status through software instead of through interrupts.

Programmers' intervention is required to clear this bit.

RTG

Retrigger bit is only active for internal clocking (EXT = 0). In this case it determines the control function provided by the input pin.

If RTG = 0, the input level gates the internal clock on and off. If the input pin is High, the timer will count; if the input pin is Low, the timer will hold its value. As indicated previously, the input signal may be asynchronous with respect to the 80C186 clock.

When RTG = 1, the input pin detects Low-to-High transitions. The first such transition starts the timer running, clearing the timer value to 0 on the first clock, and then incrementing thereafter. Further transitions on the input pin will again reset the timer to 0, from which it will start counting up again. If CONT=0, when the timer has reached maximum count, the EN bit will be cleared, inhibiting further timer activity.

D

The Prescaler bit is ignored unless internal clocking has been selected (EXT = 0). If the P bit is a 0, the timer will count at one-fourth the Internal CPU clock rate. If the P bit is a 1, the output of Timer 2 will be used as a clock for the timer. Note that the user must initialize and start Timer 2 to obtain the prescaled clock.

EXT

The External bit selects between internal and external clocking for the timer. The external signal may be asynchronous with respect to the 80C186 clock.

If this bit is set, the timer will count Low-to-High transitions on the input pin. If cleared, it will count an internal clock while using the input pin for control. In this mode, the function of the external pin is defined by the RTG bit. The maximum input to output transition latency time may be as much as six clocks. However, clock inputs may be pipelined as closely together as every four clocks without losing clock pulses.

ALT

The ALT bit determines which of two MAX COUNT registers is used for count comparison. If ALT = 0, register A for that timer is always used, while if ALT = 1, the comparison will alternate between register A and register B when each maximum count is reached. This alternation allows the user to change one MAX COUNT register while the other is being used, and thus provides a method of generating non-repetitive waveforms. Square waves and pulse outputs of any duty cycle are a subset of available signals obtained by not changing the final count registers. The ALT bit also determines the function of the timer output pin. If ALT is 0, the output pin will go Low for one clock, the clock after the maximum count is reached. If ALT is 1, the output pin will reflect the current MAX COUNT register being used (0/1 for B/A).

CONT

Setting the CONT bit causes the associated timer to run continuously, while resetting it causes the timer to halt upon maximum count. If CONT=0 and ALT=1, the timer will count to the MAX COUNT register A value, reset, count to the register B value, reset, and halt.

Not all mode bits are provided for Timer 2. Certain bits are hardwired as indicated below:

ALT=0, EXT=0, P=0, RTG=0, RIU=0

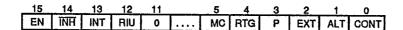


Figure 18. Timer Mode/Control Register

13087D-019

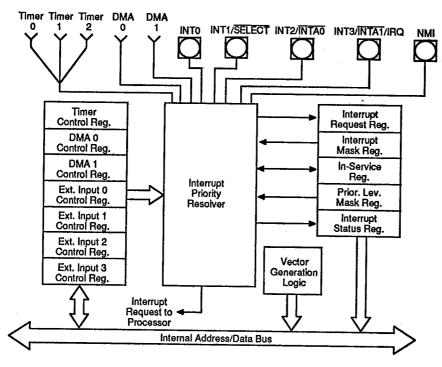
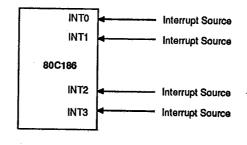


Figure 19. Interrupt Controller Block Diagram


13087D-020

Master Mode Features

Programmable Priority

The user can program the interrupt sources into any of eight different priority levels. The programming is done by placing a 3-bit priority level (0–7) in the control register of each interrupt source. (A source with a priority level of 4 has higher priority over all priority levels from 5 to 7. Priority registers containing values lower than 4 have greater priority.) All interrupt sources have preprogrammed default priority levels (see Table 3).

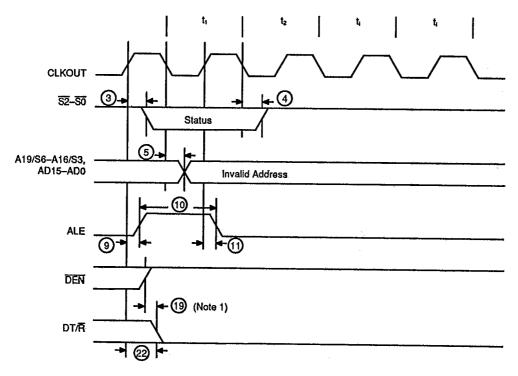
If two requests with the same programmed priority level are pending at once, the priority ordering scheme shown in Table 3 is used. If the serviced interrupt routine reenables interrupts, it allows other interrupt requests to be serviced.

13087D-021

Figure 20. Fully Nested (Direct) Mode Interrupt Controller Connections

â

SWITCHING CHARACTERISTICS (continued)


T-49-17-15 **Software Halt Cycle Timings**

Ta=0°C to +70°C, $V\infty = 5 \text{ V} \pm 10\%$ except $V\infty = 5 \text{ V} \pm 5\%$ at f > 12.5 MHz

			Preliminary									
			80C186		80C1	80C186-12		80C186-16		80C186-20		
No	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
800	186 Ger	eral Timing Respons	es (Listed i	More Th	nan Once)					· · · · · · ·	<u> </u>	
3	t _{CHSV}	Status Active Delay	5	45	5	35	5	31	5	25	ns	
4	tcush	Status Inactive Delay	5	46	5	35	5	30	5	25	ns	
5	tclav	Address Valid Delay	5	44	5	36	5	33	5	30	ns	
9	t _{CHLH}	ALE Active Delay		30]	25		20		20	ns	
10	tunce	ALE Width	t _{cucu} – 15		taca 15		touce-15		touce - 15		ns	
11	tснц	ALE Inactive Delay		30		25		20		20	ns	
19	toxoL	DEN Inactive to DT/R Low*		0		0		0	0	0	ns	
22	t _{CHGTV}	Control Active Delay 2	5	44	5	37	5	31	5	27	ns	

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-200$ pF (10 MHz) and $C_L = 50-100$ pF (12.5–20 MHz). For AC tests, input $V_{IL} = 0.45$ V and $V_{HI} = 2.4$ V except at X_1 where $V_{HI} = V_{CC} = 0.5$ V. *Equal Loading

Software Halt Cycle Waveforms

Note: 1. For write cycle followed by halt cycle.

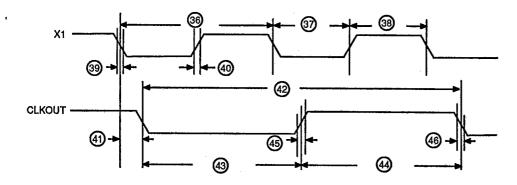
AMD

PRELIMINARY

T-49-17-15

SWITCHING CHARACTERISTICS (continued)

Clock Timings $T_A = 0^{\circ}C \text{ to } +70^{\circ}C, V_{\infty} = 5 \text{ V} \pm 10\% \text{ except } V_{\infty} = 5 \text{ V} \pm 5\% \text{ at } f > 12.5 \text{ MHz}$


		*	Preliminary								İ
			80C186		80C186-12		80C186-16		80C186-20		İ
No	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
800 (floa	C186 CLK at).	(IN Requirements Me	asurements t	aken w	ith following o	onditio	ons. External c	lock inpu	nt to X1 and X	2 not co	nected
36	t _{ckin}	CLKIN Period	50		40		31.25		25		ns
37	tc.cx	CLKIN Low Time 1.5 V ⁽²⁾	20		16		13		7		ns
38	t _{снск}	CLKIN High Time 1.5 V ⁽²⁾	20		16		13		8		ns
39	ŧ _{скн} .	CLKIN Fall Time 3.5 to 1.0 V		5	·	5		5		5	ns
40	t _{скін}	CLKIN Rise Time 1.0 to 3.5 V		5		5		5		5	ns
80C	186 CLF	OUT Timing		·	*		·	·			
41	tcico	CLKIN to CLKOUT Skew		25		21		17		13	ns
12	t _{CLCL}	CLKOUT Period	100		80		62.5		50		ns
13	t _{CLCH}	CLKOUT Low Time C _L = 100 pF ⁽²⁾ C _L = 50 pF ⁽³⁾	0.5 t _{clcl} – 8 0.5 t _{clcl} – 6		0.5 t _{c.c.} – 7 0.5 t _{c.c.} – 5		0.5 t _{clcl} -7 0.5 t _{clcl} -5		0.5 t _{clos} 7 0.5 t _{clos} 5		ns ns
14	t _{CHCL}	CLKOUT High Time C _L = 100 pF ⁽⁴⁾ C _L = 50 pF ⁽³⁾	0.5 t _{c.c.} – 8 0.5 t _{c.c.} – 6		0.5 t _{cici} 7 0.5 t _{cici} 5		0.5 t _{clcl} -7 0.5 t _{clcl} -5		0.5 t _{c.c.} – 7 0.5 t _{c.c.} – 5		ns ns
15	[‡] сн1сн2	CLKOUT Rise Time 1.0 to 3.5 V		10		10		10		10	ns
16	tclacks	CLKOUT Fall Time		10		10		10		10	ns

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with C_L = 50–200 pF (10 MHz) and C_L = 50–100 pF (12.5–20 MHz). For AC tests, input V_K = 0.45 V and V_H = 2.4 V except at X_1 where V_H = V_{CO} = 0.5 V.

- Notes: 1. t_{CLCK} and t_{CHCK} (CLKIN Low and High times) should not have a duration less than 40% of t_{CKM}.
 2. Tested under worst case conditions: V_{CC} = 5.5 V (5.25 V @ 20 MHz), T_A = 70°C.

 - 2. Tested under worst case conditions: V_{CC} = 5.5 V (5.25 V @ 20 MHz), T_A = 70°C 3. Not tested.
 4. Tested under worst case conditions: V_{CC} = 4.5 V (4.75 V @ 20 MHz), T_A = 0°C.

Clock Waveforms

