Data Sheet No. PD10041C

International TOR Rectifier

Series PVI5013R

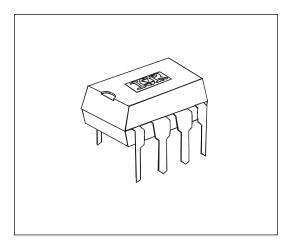
Photovoltaic Isolator Solid-State Opto-Isolated MOSFET Gate Driver Dual-Channel, 5V, 1.0µA

General Description

The PVI5013R Photovoltaic Isolator is a dual-channel, opto-isolated driver capable of directly driving gates of power MOSFETs or IGBTs. It utilizes a monolithic integrated circuit photovoltaic generator of novel construction as its output. The output is controlled by radiation from a GaAlAs light emitting diode (LED) which is optically isolated from the photovoltaic generator.

The PVI5013R is ideally suited for applications requiring high-current and/or high voltage switching with optical isolation between the low-level driving circuitry and high-energy or high-voltage load circuits. It can be used for directly driving gates of power MOSFETs. The dual-channel configuration allows its outputs to drive independent discrete power MOSFETs, or be connected in parallel or in series to provide higher-current drive for power MOSFETs or higher-voltage drive for IGBTs. PVI5013R employs a fast turn-off circuitry.

PVI5013R Photovoltaic Isolators are packaged in an 8-pin, molded DIP package with either through-hole or surface-mount (gull-wing) terminals. It is available in standard plastic shipping tubes or on tape-and-reel.


Please refer to Part Identification information opposite.

Applications

- Telecommunications
- Load Distribution
- Industrial Controls
- Instrumentation and Measurement

Features

- Monolithic construction
- 3,750 V_{RMS} I/O Isolation
- 1,200 V_{DC} output-to-output isolation
- Dual-Channel application flexibility
- Solid-State reliability
- UL recognized and BABT Certified

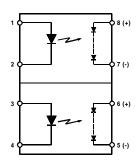
Part Identification

PVI5013R through-hole PVI5013RS surface-mount

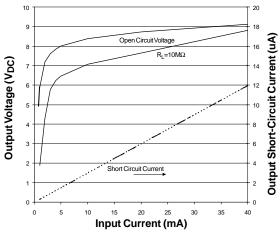
PVI5013RS-T surface-mount, Tape and

Reel

Electrical Specifications (-40°C \leq T_A \leq +85°C unless otherwise specified)


INPUT CHARACTERISTICS	Limits	Units
Minimum Input Current (see figure 1)	5.0	mA
Input Current Range (see figure 1)	3.0 to 25	mA
Maximum Continuous Input Current @ T _A =+25°C	40	mA
LED Forward Voltage Drop @ 5mA, T _A =+25°C (see figure 3)	1.4	V
Maximum Reverse Voltage	7.0	V
Maximum Reverse Current @ -7V _{DC} , T _A =+25°C	10	μA

OUTPUT CHARACTERISTICS	Limits	Units
Minimum Forward Voltage	8.0	V_{DC}
Maximum Reverse Current	10	μA _{DC}


COUPLED CHARACTERISTICS		Limits	Units
Minimum Output Voltage @ $I_{LED} = 5mA$, $R_{L} = 10M\Omega$		3	V
@ T _A =0°C to +70°C (see figures 1 and 2)			
Maximum Output Voltage @ $I_{LED} = 5mA$, $R_L = 10M\Omega$		8	V
@ T _A =0°C to +70°C (see figures 1 and 2)			
Maximum Voltage Differential Between Outputs		1.0	V
$@ I_{LED} = 5 \text{mA}, R_L = 10 \text{M}\Omega$			
Typical Output Short-Circuit Current		1.0	μA
@ $I_{LED} = 5mA$, @ $T_A = +25$ °C (see figures 1 and 2)			
Maximum Turn-On Time @ I _{LED} = 5mA, C _{LOAD} = 200pF (see figure 4)		5	ms
Max. Turn-Off Time @ I _{LED} = 5mA, C _{LOAD} = 200pF (see figure 4)		0.25	ms
Off-State Clamping Resistance:	minimum	100	Ω
!	maximum	3300	Ω

GENERAL CHARACTERISTICS	3	Limits	Units
Minimum Dielectric Strength, Input-Outpu	ut	3750	V _{RMS}
Minimum Dielectric Strength, Output-to-C	Output	1200	V _{DC}
Minimum Insulation Resistance, Input-to- @T _A =+25°C, 50%RH, 100V _{DC}	Output	10 ¹²	Ω
Maximum Capacitance, Input-Output		5.0	pF
Maximum Pin Soldering Temperature (10 seconds maximum)		+260	°C
Ambient Temperature Range:	Operating	-40 to +85	°C
	Storage	-40 to +125	°C

Connection Diagram

2 www.irf.com

Figure 1. Typical Output Characteristics

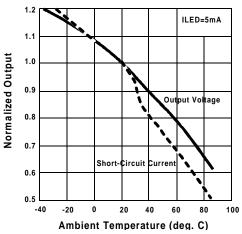


Figure 2. Typical Variation of Output

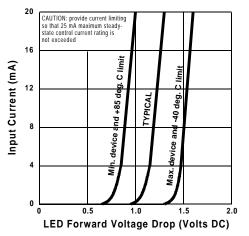


Figure 3. Input Characteristics (Current Controlled)

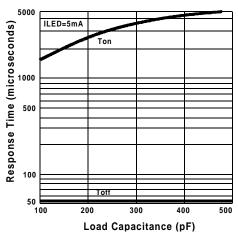
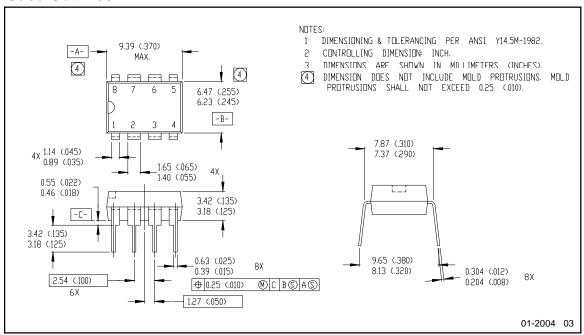
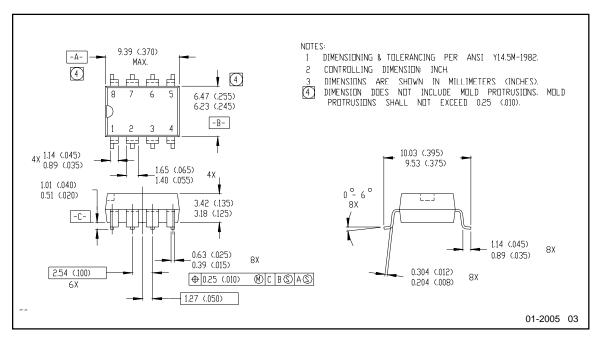




Figure 4. Typical Response Time

www.irf.com 3

Case Outlines

