PRELIMINARY T-52-33-05

82261 CMOS MULTI-FUNCTION LSI PERIPHERAL

- CMOS Multi-function Peripheral Combining Four Components into Single Chip:
 - -- 82C84A
 - 82C59A
 - -- 82C53
 - --- 82C55A
- Same Functions and Complete Compatibility with Discrete NMOS Components*
- Offers Optimal Board-Space Savings
- 80C86/C88 and 8086/88 Compatible
- 8 MHz Operation
- 100-Pin Gull-Wing Flat-package
- **Low-Power CMOS Technology**
- **TTL Compatible Inputs/Outputs**

The Intel 82261 is a high-performance CMOS multi-function peripheral designed to service the requirements of the 80C86/C88 and 8086/88 processors. The chip integrates four peripherals—82C84A, 82C59A, 82C53 and 82C55A, and is functionally identical to the discrete components. Its advanced, space-saving 100-pin gull-wing flat-package requires less than 1/3 board space of the separate components.

The clock oscillator (82C84A) generates up to 8 MHz system clock for the processor. The programmable interrupt controller (82C59A) can handle up to 8 vectored interrupts. Eight additional external interrupt controllers may be cascaded to support a maximum of 64 interrupts. The programmable interval timer (82C53) provides 3 independent 16-bit counters, each capable of handling clock inputs up to 5 MHz. The programmable I/O (82C55A) provides three 8-bit ports.

*Except 8284A. Identical to 82C84A.

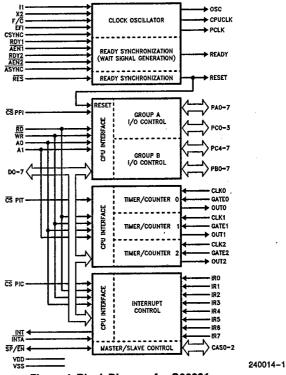


Figure 1. Block Diagram for G82261

PA1 22

PA0 23

V_{SS} **2**4

V_{DD} **□** 25

PRELIMINARY 82261 T-52-3 T-52-33-05 TOUR SERVICE OF SERVIC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 🗖 V_{SS} 74 🗖 🗚 v_{ss} **d** 73 A1 v_{ss} 口 72 🗖 IRO RDY1□ 71 🗖 IR1 AEN1 70 🗖 IR2 ASYNC 69 🗖 IR3 CSYNC 7 68 🗖 IR4 F/Ĉ□8 67 🗖 IR5 RES C 9 66 🗖 IR6 GATE2 10 65 🗖 IR7 OUT2 11 64 🗖 (NC) OUT1 12 63 (NC) о∪то 🗖 13 62 CSPIC (NC) ☐ 14 61 CSPIT V_{SS} **□** 15 60 ☐ CSPPI PA7 🗖 16 59 🗖 V_{SS} PA6 🗖 17 58 🗖 CLK2 PA5 18 57 GATE1 PA4 🗖 19 56 🗖 CLK1 PA3 🗖 20 55 CLK0 PA2 21

99D 57178

54 GATEO

53 INTA

52 1NT

51 **4** V_{SS}

240014-2

Figure 2. 82261 Pin Configuration

 intel

82261

PRELIMINARY

T-52-33-05

FUNCTIONAL DESCRIPTION

Figure 1 shows the functional block diagram of the 82261 LSI. A summary of features of individual functional units is listed below:

- A. Programmable Timer/Counter (Equivalent to 82C53)
- 3 16-bit counters—count binary/BCD
- Programmable rate generator
- Programmable one-shot
- · Square wave rate generator
- · Software triggered strobe
- Hardware triggered strobe
- B. Programmable Interrupt Controller (Equivalent to 89C59A)
- 8-level interrupt controller with programmable priorities
- Expandable to 64 levels in master/slave configuration
- · Masking capability for individual Interrupt levels

- C. Programmable I/O (Equivalent to 82C55A)
- 3 8-bit ports with programmable I/O operation
- Direct bit set/reset capabilities to ease peripheral control interface
- D. Clock Generator (Equivalent to 82C84A)
- Generates system and peripheral clocks for 8086/88 systems
- Supports a choice of a crystal or an external frequency source
- Provides READY synchronization
- Capable of clock synchronization with other 82C84A/82261 in multiprocessor configurations
- Generates system reset for the 8086/88 from Schmitt trigger input

For a detailed operation of these functional units, please refer to their respective data sheets in the Intel 'Microprocessor and Peripheral Handbook' (order #230843). The pin diagram and package dimensions for the 82261 are shown in Figure 2 and Figure 3 respectively.

240014-3

4826175 INTEL CORP (MIPRCS/PRPHL) PRELIMINARY 82261 T-52-33-05 18.00^{±0.2} 22.90^{±0.4} 0.10 = 0.10

Figure 3. Package Dimensions

UNIT = mm

99D 57181

PRELIMINARY

intel

82261

.T-52-33-05

- Table 1. 82261 Pin Definitions*

			Function				
Symbol	Pin	Туре					
D7-D0	78-85	1/0	Bidirectional, TRI-STATE data bus. The bus is floated when RD, WR, and INTA are all active high.				
A1-A0	73-74	I	These input signals, in conjunction with \overline{RD} , \overline{WR} , and \overline{CS} , are used to select the internal registers of each functional block. Refer to Tables 2–5 for a complete decoding information.				
WR	89	ı	An active low signal on this pin allows to write to the 82261. Data (D0-D7) is written to the 82261 at the rising edge of the \overline{WR} pulse.				
RD	88	l	An active low signal on this pin allows to read from the 82261.				
CSPIC	62	1	Chip-Select for the Interrupt Controller block.				
CSPIT	61	ı	Chip-Select for the Timer/Counter block.				
CSPPI	60	1	Chip-Select for the I/O Control Block.				
RESET	93	0	This is an active high signal used to reset the CPU. Internally, it is also used to reset the I/O port (82C55A). Its timing characteristics are determined by RES. All three ports, PA, PB, and PC, are set to the input mode upon reset.				
RES	9	ı	An active low on this pin generates the RESET signal. This is a schmitt trigger input to be connected to an R-C circuit to establish the power-up reset of proper duration.				
X1, X2	1, 100	. 1	Crystal connection terminals. Crystal frequency should be three times the desired CPU clock rate. When F/C is strapped high, X1 should be tied to V _{CC} or V _{SS} , and X2 should be left open.				
F/C	8	ı	F/\overline{C} is a strapping option. When strapped low, CPU clock (CLK) is generated from the crystal input (X1, X2). When strapped high, CLK is generated from the EFI input.				
EFI	98	ı	This input is used to generate the CPU clock (CLK) when the F/\overline{C} input is strapped high. The input signal is a square wave with 3 times the desired CPU clock. EFI must be tied high or low when F/\overline{C} is strapped low.				
CLK	.96	0	System clock used by the CPU and other devices which connect to the processor's local bus. It has 1/3 of the crystal or the EFI frequency, and 1/3 duty cycle.				
PCLK	94	0	Peripheral clock. It has 50% duty cycle and ½ of the CLK frequency.				
osc	97	0	TTL level output of the internal oscillator circuitry. Its frequency is that of the crystal. The output is not affected when CSYNC is active high.				
RDY1, RDY2	4 91	1	Data ready signals. When active high, it is an indication for the CPU from the currently selected device that data has been received, or is available. RDY1 is qualified by AEN1 while RDY2 is qualified by AEN2.				
AEN1 AEN2	5 90	ı	Address enable signals. When active low, AEN1 qualifies RDY1, and AEN2 qualifies RDY2. Two AEN signals are provided to access two multi-master system buses. In non multi-master configurations, the AEN inputs are tied low.				
READY	92	0	This is an active high signal synchronized with the RDY input. READY is cleared after the guaranteed hold time for the CPU has been met.				
ASYNC	6	ı	Ready synchronization mode select. When held low, READY becomes active after second synchronization. When high or open (an internal pull-up is provided), READY goes active with the first synchronization.				

99D 57182

82261

PRELIMINARY

T-52-33-05

-Table 1. 82261 Pin Definitions* (Continued)

			Finallar
Symbol	Pin	Туре	Function
CSYNC	7	l	Clock synchronization signal. This is an active high signal to permit other 82C84A and/or 82261 in the system to be synchronized to provide clocks that are in phase. Internal counters are reset when CSYNC is active high. Counting resumes when CSYNC goes low. CSYNC must be externally synchronized with EFI. Must be tied to ground when using the internal oscillator.
CLK0 CLK1 CLK2	55 56 58	-	Clock input signal for corresponding timers/counters. When a count is set in a counter, count-down begins at the next falling edge of the related CLK.
OUT0 OUT1 OUT2	13 12 11	0	Timer/Counter outputs. The output waveforms are synchronized with the respective clocks.
GATE0 GATE1 GATE2	54 57 10	ı	Gate Inputs. Control start/stop/reset operation in accordance with their respective timer/counter modes.
PA7-PA0	16-23	1/0	8-bit I/O latch/buffer (same as 82C55A port A).
PB7-PB0	35-43	1/0	8-bit I/O latch/buffer (same as 82C55A port B).
PC7-PC0	26-33	1/0	Same as 82C55A port C. It can be divided and used as two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and can be used for control signal outputs and status signal inputs in conjunction with ports A and B.
IR7-IR0	65-72	I	Interrupt request signals. These are asynchronous inputs. A device may request an interrupt by raising (low → high) one of the IR lines (edge triggered method), or simply by holding it high (level triggered method).
INTA	53	l	Interrupt acknowledge from the CPU. A sequence of INTA pulses issued by the CPU allows the 82261 to place the interrupt vector on the data bus.
INT	52	.0	CPU interrupt. This pin goes active high whenever a valid interrupt request (IR) is asserted.
SP/EN	48	1/0	Slave program/Buffer enable. Used in the buffer mode to control buffer transceivers. In non-buffered mode it is used to designate a master $(SP=1)$ or slave $(SP=0)$.
V _{SS}	2 3 15 24 34 44 51 59 75 77 86 95	1	Ground.
Vcc	25 49 87 99	ı	Supply Voltage.

^{*}Pins not listed here are all "No Connects" (NC).

4826175 0057183 5

4826175 INTEL CORP (MIPROS/PRPHL)

99D 57183

82261

T-52-33-05

PRELIMINARY

Table 2. Chip Selects for Individual Functional Blocks

WR	RD	CSPIT	CSPIO	CSPIC	ĪNTA	D0-7	Operation of Data Bus
1	0	0	1	1	1	OUT	Timer/Counter Part → Data
i	0	1	0	1	1	OUT	I/O Part → Data
i	Ö	1	1	0	1	OUT	Interrupt Control Part → Data
1 1	Ì	1	1	1	0	OUT	Interrupt Control Part → Data
0	1	0	1	1	1	IN	Data → Timer/Counter Part
0	1	1	0	1	1	IN	Data → I/O Part
Ö	1	1	1	0	• 1	IN	Data → Interrupt Control Part
1	0	Х	X	Х	1	Z	Data Bus High Impedance
×	X	1	1	1	1	Z	Data Bus High Impedance

NOTE:

X stands for don't care

Table 3. Chip Selects for I/O Control Block

A1	A0	WR	RD	CSPIO	Operation	
0	0	1	0	0	PA → Data Bus*	
. 0	1	1	0	0	PB → Data Bus	Read
1	0	1	0	0	PC → Data Bus	
1	1	1	0	0	Inhibit	
0	0	0	1	0	Data Bus → PA	-
Ō	1 1	l o	· 1	0	Data Bus → PB	
1	l ò	l ò	1 1	0	Data Bus → PC	Write
1	1	0	1	0	Data Bus → Control	
X	· X	Х	Х	1	Data Bus High Impedance	
X	X	1	1	0	Data Bus High Impedance	

Table 4. Chip Selects for Timer/Counter Block

A1	A0	WR	RD	CSPIT	Operation of Bus
0	0	1	0	0	Read from Counter #0
Ŏ	1	1	0	0	Read from Counter #1
1	0	1	0	0	Read from Counter #2
1	1	1	0	0	No Operation (High Impedance)
0	0	0	1	0	Write to Counter #0
Õ	1	0	1 1	0	Write to Counter #1
ì	0	0	1 1	0	Write to Counter #2
1	1	0	1	0	Write Mode Word
X	Х	1	1	х	Disable (High Impedance)

Table 5. Chip Selects for Interrupt Control Block

	Table 3. Only delete for interrupt definition block										
D4	D3	.A0	WR	RD	CSPIC	INTA	Operation of Bus				
X	X	0	1	0	0	1	Read from IRR, ISR				
X	X	1	1	0	0 .	1	Read from IMR				
0	0	0	0	1	0	1	Write OCW2				
Õ	1	Ö	Ŏ	1	Ö	1	Write OCW3				
1	x	٥	Ó	1	0	1 1	Write ICW1				
X	x	1	Ó	1	0	1	Write ICW2, ICW3 and ICW4				
X	х	Х	1	1	0	1	High Impedance				
X	X	X	l x	X	1	1	High Impedance				
X	X	Х	1	1	1	0	Read the Interrupt Vector				

99D

PRELIMINARY

82261

T-52-33-05

ABSOLUTE MAXIMUM RATINGS

Operating Temperature0°C to +70°C Storage Temperature -65°C to +150°C Supply Voltage V_{DD} -0.3V to +7.0VVoltage on any Input -0.3V to $V_{DD} + 0.3V$ Voltage on any Output -0.3V to $V_{DD} + 0.3V$ Power Dissipation 500 mW

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 10\%$.

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{IL}	Input Low Voltage	+0.3V	0.8	٧	
ViH	Input High Voltage	2.0	Vcc	V	2.5V for RES
V _{OL}	Output Low Voltage		0.45V	٧	(Note 1)
V _{OH}	Output High Voltage	(Note 2)		V	(Note 2)
ILI	Input Leakage Current	(Note 3)	+10	μΑ	V _{IN} = V _{CC} to 0V
lofL	Output Float Leakage Current	-10	+10	μΑ	V _{IN} = V _{CC} to 0V
I _{DAR}	Darlington Drive Current	-1		mA	For ports A, B, C of I/0 Control
I _{DD}	V _{CC} Supply Current		80	mA	(Note 4)
ICCSB	V _{CC} Supply Current-Standby		10	μΑ	V _{CC} = 5.5V V _{IN} = V _{CC} or GND Port Conditions If I/P = Open/High O/P = Open Only With Data Bus = High/Low CS = High Reset = Low Pure Inputs = Low/High
V _{INH} -V _{IHR}	RES Input Hysteresis	0.25		V	

NOTES:

= 5 mA for CLK, PCLK, OSC, READY, RESET

= 2.5 mA for Ports A, B, C of I/O Control Block

= 2.2 mA for other outputs

= 2.2 mA for other outputs 2. $V_{OH} = 4V$, $I_{OH} = -1$ mA for CLK = 2.8V, $I_{OH} = -1$ mA for PCLK, OSL, READY, RESET = 3.5V, $I_{OH} = -100$ μ A for INT = 2.4V, $I_{OH} = -400$ μ A for other outputs 3. I_{LI} Min = -300 μ A for IRO-IR7 and -200 μ A for ASYNC 4. Output: Open, $f_{CLKO} \sim 2 = 5$ MHz, $f_{OSC} = 24$ MHz

CAPACITANCE TA = 25°C, VCC = GND = 0V

Symbol	Parameter	Min	Max	Units	Test Conditions
C _{IN}	Input Capacitance*		10	pF	Unmeasured pins returned
C _{I/O}	I/O Capacitance*		20	pF	to GND f _c = 1 MHz

^{*}Except X1, X2, OSC, CLK, PCLK, READY, RESET.

82261

T-52-33-05

A.C. CHARACTERISTICS $-T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{DD} = 5.0V \pm 10\%$

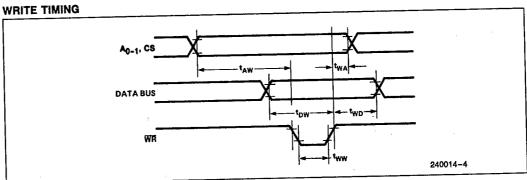
TIMINGS FOR READ/WRITE CYCLES (for timer/counter, I/O, and Interrupt control blocks)

READ CYCLE

Symbol	Parameter	Min	Max	Units
t _{AR}	CS*, Address Stable before READ for Timer/Counter for I/O and Interrupt Control	30 0		ns ns
t _{RA}	CS*, Address Hold Time for READ	0	•	ns
tan	READ Pulse Width	150		ns
t _{RD}	Data Delay from READ (Note 1)		120	ns
t _{DF}	READ to Data Floating (Note 2)	10	85	ns
t _{BV}	Command Recovery Time	200		ns

WRITE CYCLE

Symbol	Parameter	Min	Max	Units
	CS, Address Stable before WRITE	0		ns
t _{WA}	CS, Address Hold Time for WRITE	0		ns
tww	WRITE Pulse Width for Timer/Counter for I/O and Interrupt Control	160 120		ns ns
t _{DW}	Data Set Up Time for WRITE	120		ns
twp	Data Hold Time for WRITE	0		ns
t _{RV}	Command Recovery Time	200	<u> </u>	ns


^{*}CS means CSPIT, CSPPI, or CSPIC.

NOTES:

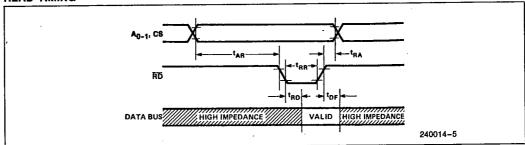
1. $C_L = 150 \text{ pF}.$ 2. $C_L = 20 \text{ pF}, R_L = 2 \text{ K}\Omega.$

WAVEFORMS FOR READ/WRITE CYCLES

(for Timer/Counter, I/O, and Interrupt Control Blocks)

2-323

intel

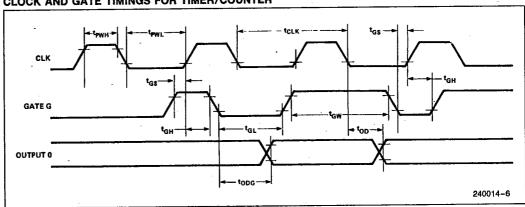

82261

PRELIMINARY T-52-33-05

A.C. CHARACTERISTICS (Continued)

WAVEFORMS FOR READ/WRITE CYCLES (for Timer/Counter, I/O, and Interrupt Control Blocks) (Continued)

READ TIMING



CLOCK AND GATE TIMINGS FOR TIMER/COUNTER

Symbol	Parameter	Min	Max	Units
tCLK	Clock Period	200	DC	ns
tpwH	High Pulse Width	80		ns
t _{PWL}	Low Pulse Width	60		ns
t _{GW}	Gate Width High	50		ns
t _{GL}	Gate Width Low	50		ns
tgs	Gate Set Up Time to CLK↑	50		ns
tgн	Gate Hold Time after CLK ↑	50		ns
top	Output Delay from CLK ↓ (Note 1)		150	ns
topg	Output Delay from Gate ↓ (Note 1)		120	ns

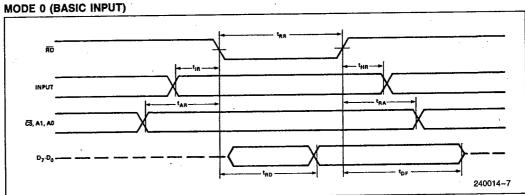
NOTES:

CLOCK AND GATE TIMINGS FOR TIMER/COUNTER

^{1.} C_L = 150 pF.

99D 57187

82261

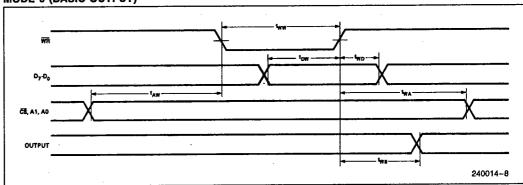

PRELIMINARY T-52-33-05

TIMING FOR I/O CONTROL BLOCK

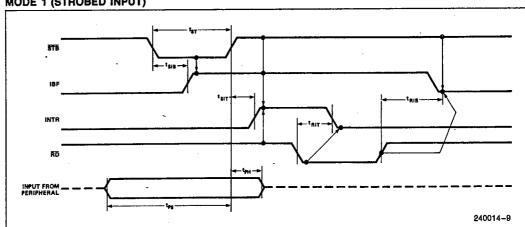
Symbol	Parameter	Min	Max	Units	Test Conditions
t _{WB}	WR = 1 to Output		350	ns	C _L = 150 pF
t _{IR}	Peripheral Data Before RD	0		ns	
tHR	Peripheral Data After RD	0		ns	
t _{AK}	ACK Pulse Width	300		ns	
tsT	STB Pulse Width	350		ns	
tps	Per. Date Before STB High	0		ns	·
t _{PH}	Per. Data After STB High	150		ns	
t _{AD}	ACK = 0 to Output		300	ns	$C_{L} = 150 pF$
t _{KD}	ACK = 1 to Output Float	20	250	ns	C _L = 150 pF
twoB	$\overline{WR} = 1 \text{ to } \overline{OBF} = 0$		300	ns	C _L = 150 pF
tAOB	$\overline{ACK} = 0$ to $\overline{OBF} = 1$		350	ns	C _L = 150 pF
t _{SIB}	STB = 0 to IBF = 1		300	ns	C _L = 150 pF
t _{RIB}	$\overline{RD} = 1 \text{ to IBF} = 0$		300	ns	$C_{L} = 150 pF$
tRIT	RD = 0 to INTR = 1		400	ns	C _L = 150 pF
tsıt	STB = 1 to INTR = 1	-	300	ns	C _L = 150 pF
tAIT	ACK = 1 to INTR = 1		350	ns	$C_{L} = 150 pF$
t _{WIT}	$\overline{WR} = 0$ to $\overline{INTR} = 0(1)$		450	ns	C _L = 150 pF

WAVEFORMS FOR I/O CONTROL BLOCK

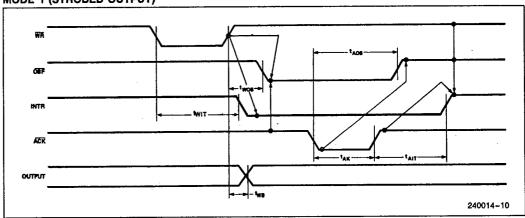
NOTE: 1. INTR \uparrow may occur as early as $\overline{\text{WR}} \downarrow$.


PRELIMINARY

82261


T-52-33-05

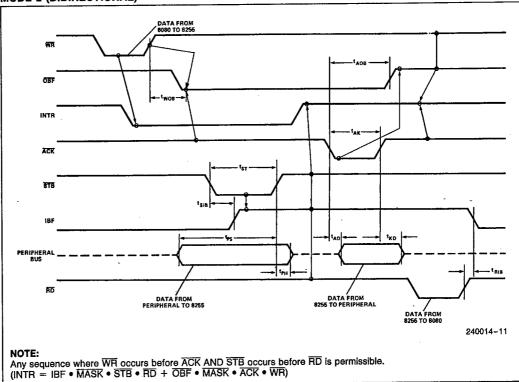
A.C. CHARACTERISTICS (Continued)


MODE 0 (BASIC OUTPUT)

MODE 1 (STROBED INPUT)

MODE 1 (STROBED OUTPUT)

99D 57189


82261

PRELIMINARY

T-52-33-05

WAVEFORMS FOR I/O CONTROL BLOCK (Continued)

MODE 2 (BIDIRECTIONAL)

99D 57190

82261

THE GREEN THE STATE OF THE STATE OF

PRELIMINARY

T-52-33-05

TIMING FOR INTA CYCLES

TIMING REQUIREMENTS

Symbol	Parameter	Min	Max	Units	Test Conditions
TAHRL	A0/CS Setup to INTA ↓	0		ns	
TRHAX	A0/CS Hold after ĪNTĀ↑	0		ns	
TRLRH	RD/INTA Pulse Width	120		ns	
TJLJH	Interrupt Request Width (Low)	100		ns	(Note 1)
TCVIAL	Cascade Setup to Second or Third INTA ↓ (Slave Only)	40		ns	
TRHRL	End of INTA to next INTA within an INTA sequence only	160		ns	
TCHCL	End of Command to next Command (Not same command type) End of INTA sequence to next INTA sequence (Note 2)	250		ns	

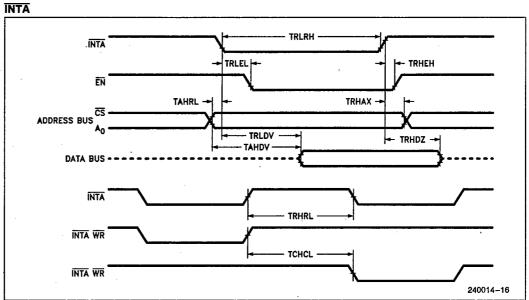
NOTES:

TIMING FOR INTA CYCLES (Continued)

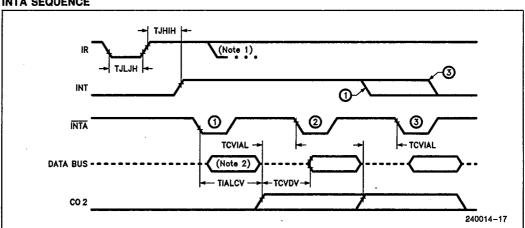
TIMING RESPONSES

Symbol	Parameter	Min	Max	Units
TRLDV	Data Valid from ĪNTĀ ↓		120	ns
TRHDZ	Data Float after INTA ↑	10	85	ns
TJHIH	Interrupt Output Delay		300	ns
TIALCV	Cascade Valid from First INTA ↓ (Master Only)		360	ns
TRLEL	Enable Active from RD ↓ or INTA ↓		100	ns
TRHEH	Enable Inactive from RD↑ or INTA↑	,	150	ns
TAHDV	Data Valid from Stable Address (CS, A0, INT)		200	ns
TCVDV	Cascade Valid to Valid Data		200	пѕ

^{1.} This is the low time required to clear the input latch in the edge triggered mode.


2. Worst case timing for TCHCL in an actual microprocessor system is typically much greater than 400 ns (i.e. 8085A = 1.6 μs, 8085-A2 = 1 μs, 80C86 = 1 μs, 80C86-2 = 625 ns).

99D 57191


82261

PRELIMINARY T-52-33-05

WAVEFORMS FOR INTA CYCLES

INTA SEQUENCE

NOTES:

- Interrupt request must remain HIGH at least until leading edge of first INTA.
 Cycle 1 in 80C86 and 80C88 systems, the Data Bus Is not active.

99D 57192

82261

PRELIMINARY T-52-33-05

TIMINGS FOR CLOCK GENERATOR BLOCK

TIMING REQUIREMENTS

Symbol	Parameter	Min	Max	Units	Test Conditions
t _{EHEL}	External Frequency HIGH Time	13		ns	90%-90% V _{IN}
teleh	External Frequency LOW Time	13		ns	10%-10% V _{IN}
tELEL	EFI Period	41.6		ns	
	XTAL Frequency	8	24	MHz	
t _{R1VCL}	RDY1, RDY2 Active Setup to CLK	35		ns	ASYNC = HIGH
^t R1VCH	RDY1, RDY2 Active Setup to CLK	35		ns	ASYNC = LOW
t _{R1VCL}	RDY1, RDY2 Inactive Setup to CLK	35		ns	
t _{CLR1X}	RDY1, RDY2 Hold to CLK	0		ns	
tayvcl	ASYNC Setup to CLK	50		ns	
tCLAYX	ASYNC Hold to CLK	0		ns	
t _{A1VR1V}	AEN1, AEN2 Setup to RDY1, RDY2	15		ns	
t _{CLA1X}	AEN1, AEN2 Hold to CLK	0		ns	
tyHEH	CSYNC Setup to EFI	20		ns	
t _{EHYL}	CSYNC Hold to EFI	10		ns	
tyHYL	CSYNC Width	2 • t _{ELEL}		ns	
t _{I1HCL}	RES Setup to CLK (Note 3)	65		ns	(Note 2)
t _{CLI1H}	RES Hold to CLK	20		ns	(Note 2)
tiliH	Input Rise Time		20	ns	(Note 1)
t _{IHIL}	Input Fall Time		12	ns	(Note 1)

NOTES:

1. Transition between 0.8V and 2.0V.

2. Setup and hold necessary only to guarantee recognition at next clock.

3. For system reset, period of RES pulse must be at least 50 μs during or after power-on. Subsequent reset pulse should be 500 ns min.

99D 57193

82261

PRELIMINARY

T-52-33-05

TIMINGS FOR CLOCK GENERATOR BLOCK (Continued)

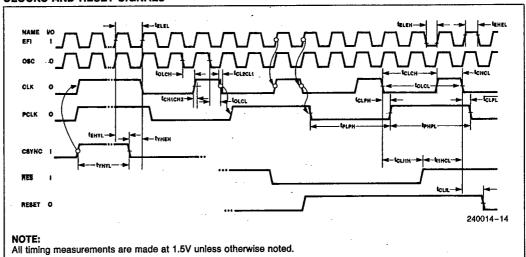
TIMING RESPONSES

Symbol	Parameter	Min	Max	Units	Test Conditions
t _{CLCL}	CLK Cycle Period	125		ns	
^t CHCL	CLK HIGH Time	(1/3 t _{CLCL}) + 2		ns	
^t CLCH	CLK LOW Time	(2/3 t _{CLCL}) -15		ns	
tCH1CH2 tCL2CL1	CLK Rise or Fall Time		10	ns	1.0V to 3.5V
t _{PHPL}	PCLK HIGH Time	t _{CLCL} - 20		ns	
t _{PLPH}	PCLK LOW Time	t _{CLCL} - 20		ns	
^t RYLCL	Ready Inactive to CLK (Note 2)	-8		ns	
^t RYHCH	Ready Active to CLK (Note 1)	(² / ₃ t _{CLCL}) — 15		ns	
tCLIL	CLK to Reset Delay		40	ns	
tCLPH	CLK to PCLK HIGH DELAY		22	ns	
tCLPL	CLK to PCLK LOW Delay		22	ns	
tolch	OSC to CLK HIGH Delay	-5	22	ns	
tolcl	OSC to CLK LOW Delay	2	35	ns	
^t OLOH	Output Rise Time (expect CLK)		20	ns	Except CLK from 0.8V to 2.0V
^t OHOL	Output Fall Time (expect CLK)		12	ns	Expect CLK from 2.0V to 0.8V

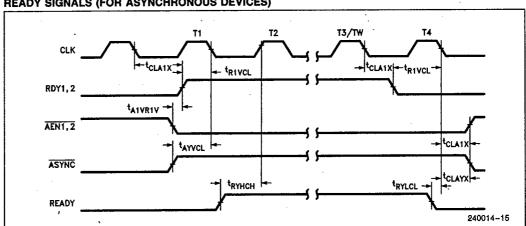
NOTES:

Applies only to T3 and TW states.
 Applies only to T2 states.

PRELIMINARY


4826175 INTEL CORP (MIPRCS/PRPHL)

82261

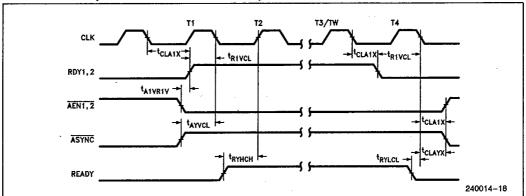

T-52-33-05

WAVEFORMS FOR CLOCK GENERATOR BLOCK

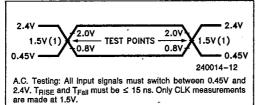
CLOCKS AND RESET SIGNALS

READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

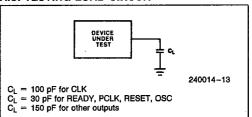
PRELIMINARY

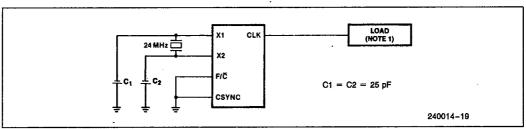

T-52-33-05

inte

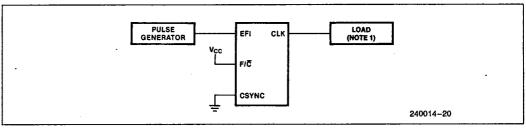

82261

WAVEFORMS FOR CLOCK GENERATOR BLOCK (Continued)


READY SIGNALS (FOR SYNCHRONOUS DEVICES)



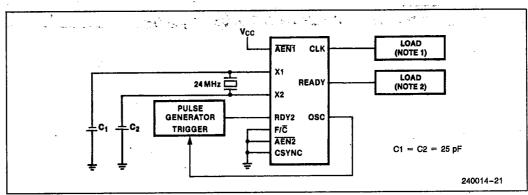
A.C. TESTING INPUT, OUTPUT WAVEFORM



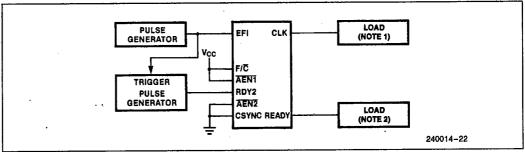
A.C. TESTING LOAD CIRCUIT

Clock High and Low Time (Using X1, X2)

Clock High and Low Time (Using EFI)


NOTE: 1. C_L = 100 pF

99D 57196


D PRELIMINARY

82261

T-52-33-05

Ready to Clock (Using X1, X2)

Ready To Clock (Using EFI)

NOTES: 1. C_L = 100 pF 2. C_L = 30 pF