

4

4524 Group User's Manual

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER
720 FAMILY / 4500 SERIES

720 FAMILY / 4500 SERIES

Before using this material, please visit our website to confirm that this is the most current document available.

Rev. 2.00

Revision date: Aug 06, 2004

Renesas Technology www.renesas.com

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

REVISION HISTORY

4524 Group User's Manual

Rev.	Date		Description		
		Page Summary			
1.00	Dec 19, 2003	-	First edition issued		
	Dec 19, 2003 Aug 06, 2004		First edition issued Words standardized: On-chip oscillator, A/D converter Power dissipation revised. Description of RESET pin revised. Fig.26: Note 9 added. Some description revised. Fig.31: "DI" instruction added. Table 11:Revised. (5) LCD power supply circuit revised. Fig.51: State of quartz-crystal oscillator added. Fig.55: Note 5 added, "T5F" added to the transitions between from state E to states B, A, C and D "Key-on wakeup"—"Wakeup" Note on Power source Voltage added. Table 2.5.1: Notes 4 revised. Fig.2.7.4: State of quartz-crystal oscillator added. Fig.2.9.1: Note 5 added, "T5F" added to the transitions between from state E to states B, A, C and D "Key-on wakeup"—"Wakeup" Note on Power source Voltage added.		

BEFORE USING THIS USER'S MANUAL

This user's manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such as hardware design or software development.

1. Organization

• CHAPTER 1 HARDWARE

This chapter describes features of the microcomputer and operation of each peripheral function.

CHAPTER 2 APPLICATION

This chapter describes usage and application examples of peripheral functions, based mainly on setting examples of related registers.

CHAPTER 3 APPENDIX

This chapter includes necessary information for systems development using the microcomputer, such as the electrical characteristics, the list of registers.

As for the Mask ROM confirmation form, the ROM programming confirmation form, and the Mark specification form which are to be submitted when ordering, refer to the "Renesas Technology Corp." Hompage (http://www.renesas.com/en/rom).

As for the Development tools and related documents, refer to the Product Info - 4524 Group (http://www.renesas.com/eng/products/mpumcu/specific/lcd_mcu/expand/e4524.htm) of "Renesas Technology Corp." Homepage.

Table of contents

CHAPTER 1 HARDWARE

DESCRIPTION	2
FEATURES	2
APPLICATION	
PIN CONFIGURATION	3
BLOCK DIAGRAM	4
PERFORMANCE OVERVIEW	5
PIN DESCRIPTION	6
MULTIFUNCTION	7
DEFINITION OF CLOCK AND CYCLE	7
PORT FUNCTION	
CONNECTIONS OF UNUSED PINS	
PORT BLOCK DIAGRAMS	
FUNCTION BLOCK OPERATIONS	18
CPU	18
PROGRAM MEMORY (ROM)	21
DATA MEMORY (RAM)	22
INTERRUPT FUNCTION	23
EXTERNAL INTERRUPTS	27
TIMERS	32
WATCHDOG TIMER	
A/D CONVERTER (COMPARATOR)	
SERIAL I/O	53
LCD FUNCTION	57
RESET FUNCTION	
VOLTAGE DROP DETECTION CIRCUIT	
POWER DOWN FUNCTION	
CLOCK CONTROL	
ROM ORDERING METHOD	
LIST OF PRECAUTIONS	
CONTROL REGISTERS	
INSTRUCTIONS	
SYMBOL	
INDEX LIST OF INSTRUCTION FUNCTION	
MACHINE INSTRUCTIONS (INDEX BY ALPHABET)	
MACHINE INSTRUCTIONS (INDEX BY TYPES) (CONTINUED)	
INSTRUCTION CODE TABLE	
BUILT-IN PROM VERSION	150

CHAPTER 2 APPLICATION

2.1 I/O pins	2
2.1.1 I/O ports	2
2.1.2 Related registers	5
2.1.3 Port application examples	
2.1.4 Notes on use	
2.2 Interrupts	
2.2.1 Interrupt functions	
2.2.2 Related registers	
2.2.3 Interrupt application examples	
2.2.4 Notes on use	
2.3 Timers	
2.3.1 Timer functions	
2.3.2 Related registers	
2.3.3 Timer application examples	
2.3.4 Notes on use	
2.4 A/D converter	50
2.4.1 Related registers	51
2.4.2 A/D converter application examples	
2.4.3 Notes on use	
2.5 Serial I/O	56
2.5.1 Carrier functions	56
2.5.2 Related registers	
2.5.3 Operation description	
2.5.4 Serial I/O application example	
2.5.5 Notes on use	
2.6 LCD function	66
2.6.1 Operation description	
2.6.2 Related registers	
2.6.3 LCD application examples	
2.6.4 Notes on use	
2.7 Reset	72
2.7.1 Reset circuit	72
2.7.2 Internal state at reset	73
2.7.3 Notes on use	74
2.8 Voltage drop detection circuit	75
2.8.1 Note on use	
2.9 Power down	77
2.9.1 Power down mode	78
2.9.2 Related registers	81
2.9.3 Power down function application example	85
2.9.4 Notes on use	86
2.10 Oscillation circuit	87
2.10.1 Oscillation circuit	87
2.10.2 Oscillation operation	
2.10.3 Related register	
2.10.4 Notes on use	

CHAPTER 3 APPENDIX

3.1 Elec	ctrical characteristics	2
3.1.	1 Absolute maximum ratings	2
3.1.2	2 Recommended operating conditions	3
3.1.3	3 Electrical characteristics	5
3.1.4	4 A/D converter recommended operating conditions	7
3.1.5	5 Voltage drop detection circuit characteristics	8
3.1.6	6 Basic timing diagram	8
3.2 Typ	ical characteristics	9
3.2.	1 Vdd-ldd characteristics	9
	2 Frequency characteristics	
3.2.3	3 Port typical characteristics (VDD = 5.0 V)	18
3.2.4	4 Port typical characteristics (VDD = 3.0 V)	21
3.2.5	5 Input threshold characteristics	24
3.2.6	6 Pull-up resistor: Vdd-RPU characteristics example	27
3.2.7	7 Internal resistor for LCD power: Ta-RVLC	28
3.2.8	8 A/D converter typical characteristics	29
3.2.9	9 Analog input current characteristics example	32
	10 A/D converter operation current (VDD-IADD) characteristics	
	11 Voltage drop detection circuit characteristics	
3.3 List	t of precautions	38
	1 Program counter	
3.3.2	2 Stack registers (SKs)	38
3.3.3	3 Notes on I/O port	38
3.3.4	4 Notes on interrupt	41
3.3.5	5 Notes on timer	42
3.3.6	6 Notes on A/D conversion	43
	7 Notes on serial I/O	
3.3.8	8 Notes on LCD function	45
	9 Notes on reset	
	10 Notes on voltage drop detection circuit	
	11 Notes on power down	
	12 Notes on oscillation circuit	
	13 Electric characteristic differences between Mask ROM and One Time PROM version MCU	
	14 Notes on Power Source Voltage	
3.4 Not	es on noise	48
	1 Shortest wiring length	
	2 Connection of bypass capacitor across Vss line and VDD line	
	3 wiring to analog input pins	
	4 Oscillator concerns	
	5 setup for I/O ports	
	6 providing of watchdog timer function by software	
3.5 Pac	kage outline	54

List of figures

CHAPTER 1 HARDWARE

Pin configuration (top view) (4524 Group)	3
Block diagram (4524 Group)	4
Port block diagram (1)	10
Port block diagram (2)	11
Port block diagram (3)	12
Port block diagram (4)	13
Port block diagram (5)	14
Port block diagram (6)	15
Port block diagram (7)	16
Port block diagram (8)	17
Fig. 1 AMC instruction execution example	18
Fig. 2 RAR instruction execution example	18
Fig. 3 Registers A, B and register E	18
Fig. 4 TABP p instruction execution example	18
Fig. 5 Stack registers (SKs) structure	19
Fig. 6 Example of operation at subroutine call	19
Fig. 7 Program counter (PC) structure	20
Fig. 8 Data pointer (DP) structure	20
Fig. 9 SD instruction execution example	
Fig. 10 ROM map of M34524ED	
Fig. 11 Page 1 (addresses 0080 ₁₆ to 00FF ₁₆) structure	
Fig. 12 RAM map	
Fig. 13 Program example of interrupt processing	24
Fig. 14 Internal state when interrupt occurs	
Fig. 15 Interrupt system diagram	
Fig. 16 Interrupt sequence	26
Fig. 17 External interrupt circuit structure	
Fig. 18 External 0 interrupt program example-1	30
Fig. 19 External 0 interrupt program example-2	30
Fig. 20 External 0 interrupt program example-3	30
Fig. 21 External 1 interrupt program example-1	31
Fig. 22 External 1 interrupt program example-2	31
Fig. 23 External 1 interrupt program example-3	31
Fig. 24 Auto-reload function	32
Fig. 25 Timer structure (1)	34
Fig. 26 Timer structure (2)	35
Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216")	42
Fig. 28 CNTR1 output auto-control function by timer 3	43
Fig. 29 Timer 4 count start/stop timing	44
Fig. 30 Watchdog timer function	45
Fig. 31 Program example to start/stop watchdog timer	46
Fig. 32 Program example to enter the mode when using the watchdog timer	46
Fig. 33 A/D conversion circuit structure	
Fig. 34 A/D conversion timing chart	50
Fig. 35 Setting registers	50
Fig. 36 Comparator operation timing chart	
Fig. 37 Definition of A/D conversion accuracy	52

Fig. 38 Serial I/O structure	53
Fig. 39 Serial I/O register state when transfer	
Fig. 40 Serial I/O connection example	
Fig. 41 Timing of serial I/O data transfer	
Fig. 42 LCD clock control circuit structure	
Fig. 43 LCD controller/driver	
Fig. 44 LCD RAM map	
Fig. 45 LCD controller/driver structure	
Fig. 46 LCD power source circuit example (1/3 bias condition selected)	
Fig. 47 Reset release timing	
Fig. 48 RESET pin input waveform and reset operation	62
Fig. 49 Structure of reset pin and its peripherals, and power-on reset operation	63
Fig. 50 Internal state at reset	
Fig. 51 Internal state at reset	65
Fig. 52 Voltage drop detection reset circuit	66
Fig. 53 Voltage drop detection circuit operation waveform	66
Fig. 54 Vdd and Vrst	
Fig. 55 State transition	69
Fig. 56 Set source and clear source of the P flag	69
Fig. 57 Start condition identified example using the SNZP instruction	69
Fig. 58 Clock control circuit structure	72
Fig. 59 Switch to ceramic oscillation/RC oscillation	73
Fig. 60 Handling of XIN and XOUT when operating on-chip oscillator	73
Fig. 61 Ceramic resonator external circuit	73
Fig. 62 External RC oscillation circuit	73
Fig. 63 External clock input circuit	74
Fig. 64 External quartz-crystal circuit	74
Fig. 65 External 0 interrupt program example-1	
Fig. 66 External 0 interrupt program example-2	
Fig. 67 External 0 interrupt program example-3	
Fig. 69 External 1 interrupt program example-2	
Fig. 70 External 1 interrupt program example-3	
Fig. 71 A/D converter program example-3	
Fig. 72 Analog input external circuit example-1	
Fig. 73 Analog input external circuit example-2	
Fig. 74 Vdd and Vrst	
Fig. 75 Pin configuration of built-in PROM version	
Fig. 76 PROM memory map	
Fig. 77 Flow of writing and test of the product shipped in blank	151
CHAPTER 2 APPLICATION	
Fig. 2.1.1 Key input by key scan	13
Fig. 2.1.2 Key scan input timing	13
Fig. 2.2.1 External 0 interrupt operation example	23
Fig. 2.2.2 External 0 interrupt setting example	24
Fig. 2.2.3 External 1 interrupt operation example	
Fig. 2.2.4 External 1 interrupt setting example	
Fig. 2.2.5 Timer 1 constant period interrupt setting example	
Fig. 2.2.6 Timer 2 constant period interrupt setting example	
Fig. 2.2.7 Timer 3 constant period interrupt setting example	
Fig. 2.2.8 Timer 4 constant period interrupt setting example	
Fig. 2.2.9 Timer 5 constant period interrupt setting example	31

	2.3.1 Peripheral circuit example	
Fig.	2.3.2 Timer 4 operation	40
Fig.	2.3.3 Watchdog timer function	41
Fig.	2.3.4 Constant period measurement setting example	42
Fig.	2.3.5 CNTR ₀ output setting example	43
Fig.	2.3.6 CNTR ₀ input setting example	44
Fig.	2.3.7 Timer start by external input setting example	45
	2.3.8 PWM output control setting example	
Fig.	2.3.9 Constant period counter by timer 5 setting example	47
	2.3.10 Watchdog timer setting example	
Fig.	2.4.1 A/D converter structure	50
Fig.	2.4.2 A/D conversion mode setting example	53
Fig.	2.4.3 Analog input external circuit example-1	54
Fig.	2.4.4 Analog input external circuit example-2	54
Fig.	2.4.5 A/D converter operating mode program example	54
Fig.	2.5.1 Serial I/O block diagram	56
	2.5.2 Serial I/O connection example	
Fig.	2.5.3 Serial I/O register state when transfer	59
Fig.	2.5.4 Serial I/O transfer timing	60
Fig.	2.5.5 Setting example when a serial I/O of master side is not used	63
_	2.5.6 Setting example when a serial I/O interrupt of slave side is used	
	2.6.1 LCD clock control circuit structure	
Fig.	2.6.2 LCD RAM map	67
Fig.	2.6.3 LCD display panel example	69
Fig.	2.6.4 Segment assignment example	69
Fig.	2.6.5 LCD RAM assignment example	69
	2.6.6 Initial setting example	
	2.7.1 Structure of reset pin and its peripherals,, and power-on reset operation	
Fig.	2.7.2 Oscillation stabilizing time after system is released from reset	72
	2.7.3 Internal state at reset	
Fig.	2.7.4 Internal state at reset	74
	2.8.1 Voltage drop detection circuit	
Fig.	2.8.2 Voltage drop detection circuit operation waveform example	75
_	2.8.3 Vdd and Vrst	
Fig.	2.9.1 State transition	77
_	2.9.2 Start condition identified example	
	2.9.3 Software setting example	
	2.10.1 Switch to ceramic oscillation/RC oscillation	
	2.10.2 Handling of X _{IN} and X _{OUT} when operating on-chip oscillator	
	2.10.3 Ceramic resonator external circuit	
_	2.10.4 External RC oscillation circuit	
_	2.10.5 External clock input circuit	
_	2.10.6 External quartz-crystal circuit	88
Fia	2.10.7 Structure of clock control circuit	89

4524 Group List of figures

CHAPTER 3 APPENDIX

Fig. 3.2.1 A/D conversion characteristics data	29
Fig. 3.3.1 Analog input external circuit example-1	43
Fig. 3.3.2 Analog input external circuit example-2	43
Fig. 3.3.3 A/D converter operating mode program example	43
Fig. 3.3.4 V _{DD} and V _{RST}	45
Fig. 3.4.1 Selection of packages	48
Fig. 3.4.2 Wiring for the RESET input pin	
Fig. 3.4.3 Wiring for clock I/O pins	49
Fig. 3.4.4 Wiring for CNVss pin	49
Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version	50
Fig. 3.4.6 Bypass capacitor across the Vss line and the VdD line	50
Fig. 3.4.7 Analog signal line and a resistor and a capacitor	51
Fig. 3.4.8 Wiring for a large current signal line	51
Fig. 3.4.9 Wiring to a signal line where potential levels change frequently	52
Fig. 3.4.10 Vss pattern on the underside of an oscillator	52
Fig. 3.4.11 Watchdog timer by software	53

List of tables

CHAPTER 1 HARDWARE

Table Selection of system clock	7
Table 1 ROM size and pages	
Table 2 RAM size	22
Table 3 Interrupt sources	23
Table 4 Interrupt request flag, interrupt enable bit and skip instruction	23
Table 5 Interrupt enable bit function	
Table 6 Interrupt control registers	
Table 7 External interrupt activated conditions	27
Table 8 External interrupt control register	29
Table 9 Function related timers	33
Table 10 Timer related registers	36
Table 11 A/D converter characteristics	47
Table 12 A/D control registers	48
Table 13 Change of successive comparison register AD during A/D conversion	49
Table 14 Serial I/O pins	53
Table 15 Serial I/O control register	53
Table 16 Processing sequence of data transfer from master to slave	56
Table 17 Duty and maximum number of displayed pixels	57
Table 18 LCD control registers	59
Table 19 Port state at reset	63
Table 20 Voltage drop detection circuit operation state	66
Table 21 Functions and states retained at power down	67
Table 22 Return source and return condition	68
Table 23 Key-on wakeup control register, pull-up control register and interrupt control register	70
Table 24 Clock control register MR	74
Table 25 Product of built-in PROM version	150
CHAPTER 2 APPLICATION	
Table 2.1.1 Timer control register W3	5
Table 2.1.2 Timer control register W4	
Table 2.1.3 Timer control register W6	
Table 2.1.4 Serial I/O control register J1	
Table 2.1.5 A/D control register Q2	7
Table 2.1.6 A/D control register Q3	
Table 2.1.7 Pull-up control register PU0	8
Table 2.1.8 Pull-up control register PU1	8
Table 2.1.9 Port output structure control register FR0	
Table 2.1.10 Port output structure control register FR1	
Table 2.1.11 Port output structure control register FR2	
Table 2.1.12 Port output structure control register FR3	
Table 2.1.13 Key-on wakeup control register K0	
Table 2.1.14 Key-on wakeup control register K1	
Table 2.1.15 Key-on wakeup control register K2	12
Table 2.1.16 Connections of unused pins	15

Table 2.2.1 Interrupt control register V1	
Table 2.2.2 Interrupt control register V2	
Table 2.2.3 Interrupt control register I1	
Table 2.2.4 Interrupt control register I2	
Table 2.2.5 Interrupt control register I3	
Table 2.3.1 Interrupt control register V1	
Table 2.3.2 Interrupt control register V2	
Table 2.3.3 Interrupt control register I3	
Table 2.3.4 Timer control register PA	
Table 2.3.5 Timer control register W1	
Table 2.3.6 Timer control register W2	
Table 2.3.7 Timer control register W3	
Table 2.3.8 Timer control register W4	
Table 2.3.9 Timer control register W5	
Table 2.3.10 Timer control register W6	
Table 2.4.1 Interrupt control register V2	
Table 2.4.2 A/D control register Q1	
Table 2.4.3 A/D control register Q2	
Table 2.4.4 A/D control register Q3	
Table 2.4.5 Recommended operating conditions (when using A/D converter)	
Table 2.5.1 Interrupt control register V2	
Table 2.5.2 Interrupt control register I3	
Table 2.5.3 Serial I/O mode register J1	
Table 2.6.1 Duty and maximum number of displayed pixels	
Table 2.6.2 LCD control register L1	
Table 2.6.3 LCD control register L2	
Table 2.6.4 Timer control register W6	
Table 2.8.1 Voltage drop detection circuit operation state	
Table 2.9.1 Functions and states retained at power down mode	
Table 2.9.2 Return source and return condition	
Table 2.9.3 Start condition identification	
Table 2.9.4 Interrupt control register I1	
Table 2.9.5 Interrupt control register I2	
Table 2.9.6 Clock control register MR	
Table 2.9.7 Pull-up control register PU0	
Table 2.9.8 Pull-up control register PU1	
Table 2.9.9 Key-on wakeup control register K0	
Table 2.9.10 Key-on wakeup control register K1	
Table 2.9.11 Key-on wakeup control register K2	
Table 2.10.1 Clock control register MR	90
CHAPTER 3 APPENDIX	
Table 3.1.1 Absolute maximum ratings	2
Table 3.1.2 Recommended operating conditions 1	3
Table 3.1.3 Recommended operating conditions 2	
Table 3.1.4 Electrical characteristics 1	5
Table 3.1.5 Electrical characteristics 2	
Table 3.1.6 A/D converter recommended operating conditions	
Table 3.1.7 A/D converter characteristics	
Table 3.1.8 Voltage drop detection circuit characteristics	
Table 3.3.1 Connections of unused pins	
Table 3.3.2 Recommended operating conditions (when using A/D converter)	

CHAPTER 1

HARDWARE

DESCRIPTION
FEATURES
APPLICATION
PIN CONFIGURATION
BLOCK DIAGRAM
PERFORMANCE OVERVIEW
PIN DESCRIPTION
FUNCTION BLOCK OPERATIONS
ROM ORDERING METHOD
LIST OF PRECAUTIONS
CONTROL REGISTERS
INSTRUCTIONS
BUILT-IN PROM VERSION

DESCRIPTION

The 4524 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with main clock selection function, serial I/O, four 8-bit timers (each timer has one or two reload registers), 10-bit A/D converter, interrupts, and LCD control circuit.

The various microcomputers in the 4524 Group include variations of the built-in memory size as shown in the table below.

FEATURES

Timer 5 16-bit timer (fixed dividing frequency)

●Interrupt
● Key-on wakeup function pins
● LCD control circuit
Segment output
Common output
● Serial I/O
● A/D converter10-bit successive approximation method
● Voltage drop detection circuit (Reset)Typ. 3.5 V

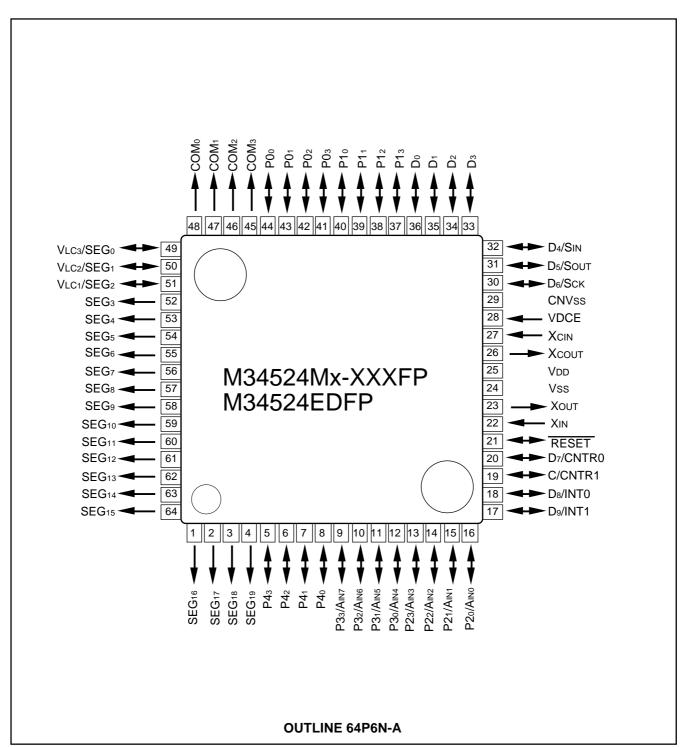
- ■Watchdog timer
- Clock generating circuit

Main clock

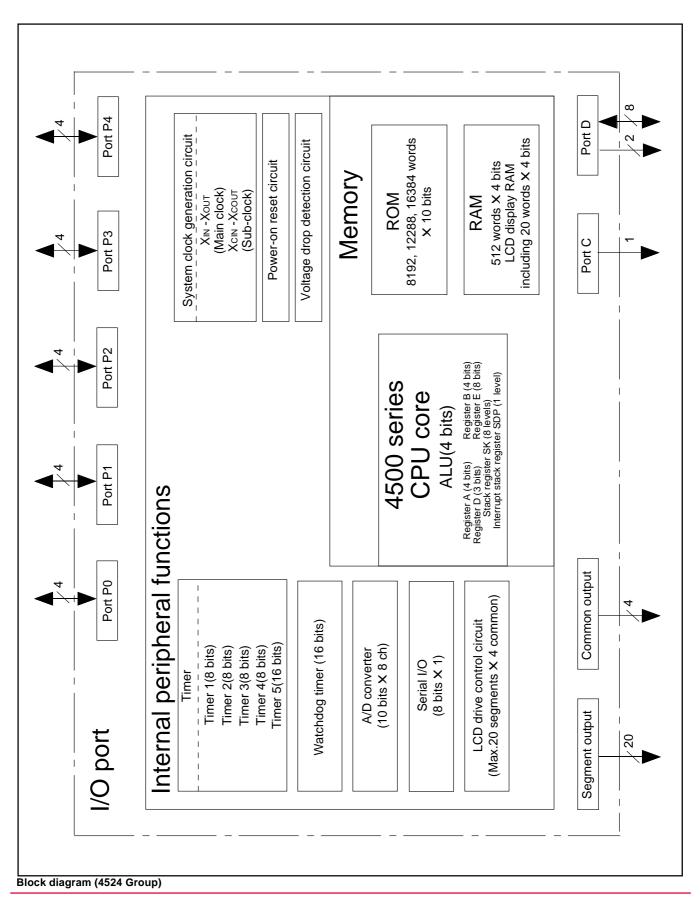
(ceramic resonator/RC oscillation/on-chip oscillator) Sub-clock

(quartz-crystal oscillation)

●LED drive directly enabled (port D)


APPLICATION

Household appliance, consumer electronics, office automation equipment


Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34524M8-XXXFP	8192 words	512 words	64P6N-A	Mask ROM
M34524MC-XXXFP	12288 words	512 words	64P6N-A	Mask ROM
M34524EDFP (Note)	16384 words	512 words	64P6N-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4524 Group)

PERFORMANCE OVERVIEW

Parameter			Function						
Number of basic instructions			159						
Minimum instruction execution time			0.5 μ s (at 6 MHz oscillation frequency, in high-speed through mode)						
Memory sizes	ROM	M34524M8	8192 words X 10 bits						
		M34524MC	12288 words X 10 bits						
		M34524ED	16384 words X 10 bits						
	RAM		512 words X 4 bits (including LCD display RAM 20 words X 4 bits)						
Input/Output ports	D0-D7	I/O	Eight independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Ports D4, D5, D6 and D7 are also used as SIN, SOUT, SCK and CNTR0 pin.						
	D8, D9	Output	Two independent output ports. Ports D8 and D9 are also used as INT0 and INT1, respectively.						
	P00-P03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.						
	P10-P13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.						
	P20-P23	I/O	4-bit I/O port; Ports P20–P23 are also used as AIN0–AIN3, respectively.						
	P30-P33	I/O	4-bit I/O port; Ports P30–P33 are also used as AIN4–AIN7, respectively.						
	P40-P43	I/O	4-bit I/O port; The output structure can be switched by software.						
	C Output		1-bit output; Port C is also used as CNTR1 pin.						
Timers	Timer 1		8-bit programmable timer with a reload register and has an event counter.						
	Timer 2		8-bit programmable timer with a reload register.						
	Timer 3		8-bit programmable timer with a reload register and has an event counter.						
	Timer 4		8-bit programmable timer with two reload registers.						
	Timer 5		16-bit timer, fixed dividing frequency						
A/D converter	ļ		10-bit X 1, 8-bit comparator is equipped.						
Serial I/O			8-bit X 1						
LCD control	Selective	bias value	1/2, 1/3 bias						
circuit	Selective	duty value	2, 3, 4 duty						
	Common	output	4						
	Segment	output	20						
	Internal re		2r X 3, 2r X 2, r X 3, r X 2 (they can be switched by software.)						
Interrupt	Sources		9 (two for external, five for timer, A/D, serial I/O)						
	Nesting		1 level						
Subroutine nesting			8 levels						
Device structure			CMOS silicon gate						
Package			64-pin plastic molded QFP (64P6N)						
Operating temperature range		ange	−20 °C to 85 °C						
Supply	Mask RO	M version	2 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)						
voltage	One Time	PROM version	2.5 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)						
Power	Active mo	de	2.8 mA (Ta=25°C, VDD = 5 V, f(XIN) = 6 MHz, f(XCIN) = 32 kHz, f(STCK) = f(XIN))						
dissipation	Clock ope	erating mode	20 μA (Ta=25°C, VDD = 5 V, f(Xcin) = 32 kHz)						
	At RAM b	ack-up	$0.1 \mu\text{A} (\text{Ta}=25^{\circ}\text{C},\text{VDD}=5\text{V})$						

PIN DESCRIPTION

Pin	RIPTION	Input/Output	Function			
VDD	Name	Input/Output				
	Power supply	_	Connected to a DV power supply.			
Vss	Ground	_	Connected to a 0 V power supply. Connect CNVss to Vss and apply "I " (0V) to CNVss certainly			
CNVss	CNVss		Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.			
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.			
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer, the built-in power-on reset, or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.			
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them.			
XOUT	Main clock output	Output	When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.			
XCIN	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32 kHz quartz-crystal oscillator			
XCOUT	Sub-clock output	Output	between pins XCIN and XCOUT. A feedback resistor is built-in between them.			
D0-D7	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports D4–D7 is also used as SIN, SOUT, SCK and CNTR0 pin.			
D8, D9	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D8 and D9 are also used as INT0 pin and INT1 pin, respectively.			
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.			
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-cha open-drain or CMOS by software. For input use, set the latch of the specified the "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function a pull-up function. Both functions can be switched by software.			
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P20–P23 are also used as AINO–AIN3, respectively.			
P30-P33	I/O port P3	I/O	Port P3 serves as a 4-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P30–P33 are also used as AIN4–AIN7, respectively.			
P40-P43	I/O port P4	I/O	Port P4 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain.			
Port C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR1 pin.			
COM ₀ – COM ₃	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at 1/2 duty, pins COMo-COM2 are used at 1/3 duty and pins COMo-COM3 are used at 1/4 duty.			
SEG0-SEG19	Segment output	Output	LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively.			
VLC3–VLC1	LCD power supply	-	LCD power supply pins. When the internal resistor is used, VDD pin is connected to VLc3 pin (if luminance adjustment is required, VDD pin is connected to VLc3 pin through a resistor). When the external power supply is used, apply the voltage $0 \le VLC1 \le VLC2 \le VLC3 \le VDD$. VLc3–VLc1 pins are used as SEG0–SEG2 pins, respectively.			
CNTR0, CNTR1	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D7 and C, respectively.			
INT0, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports D8 and D9, respectively.			
AIN0-AIN7	Analog input	Input	A/D converter analog input pins. AIN0–AIN7 are also used as ports P20–P23 and P30–P33, respectively.			
Sck	Serial I/O data I/O	I/O	Serial I/O data transfer synchronous clock I/O pin. SCK pin is also used as port D6.			
Sout	Serial I/O data output	Output	Serial I/O data output pin. Sout pin is also used as port D5.			
SIN	Serial I/O clock input	Input	Serial I/O data input pin. SIN pin is also used as port D4.			

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D4	Sin	SIN	D4	С	CNTR1	CNTR1	С
D ₅	Sout	SOUT	D5	P20	AIN0	AIN0	P20
D6	Sck	Sck	D6	P21	AIN1	AIN1	P21
D7	CNTR0	CNTR0	D7	P22	AIN2	AIN2	P22
D8	INT0	INT0	D8	P23	AIN3	AIN3	P23
D9	INT1	INT1	D9	P30	AIN4	AIN4	P30
VLC3	SEG0	SEG ₀	VLC3	P31	AIN5	AIN5	P31
VLC2	SEG1	SEG1	VLC2	P32	AIN6	AIN6	P32
VLC1	SEG2	SEG ₂	VLC1	P33	AIN7	AIN7	P33

Notes 1: Pins except above have just single function.

- 2: The output of D8 and D9 can be used even when INT0 and INT1 are selected.
- 3: The input of ports D4–D6 can be used even when SIN, SOUT and SCK are selected.
- 4: The input/output of D7 can be used even when CNTR0 (input) is selected.
- 5: The input of D7 can be used even when CNTR0 (output) is selected.
- 6: The port C "H" output function can be used even when CNTR1 (output) is selected.

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(Xcin)) by the external quartz-crystal oscillation

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

● Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

	Register MR			System clock	Operation mode			
MR ₃	MR2	MR1	MR ₀					
0	0	0	0	f(STCK) = f(XIN) or f(RING)	High-speed through mode			
		×	1	f(STCK) = f(XCIN)	Low-speed through mode			
0	1	0	0	f(STCK) = f(XIN)/2 or f(RING)/2	High-speed frequency divided by 2 mode			
		×	1	f(STCK) = f(XCIN)/2	Low-speed frequency divided by 2 mode			
1	0	0	0	f(STCK) = f(XIN)/4 or f(RING)/4	High-speed frequency divided by 4 mode			
		×	1	f(STCK) = f(XCIN)/4	Low-speed frequency divided by 4 mode			
1	1	0	0	f(STCK) = f(XIN)/8 or f(RING)/8	High-speed frequency divided by 8 mode			
		X	1	f(STCK) = f(XCIN)/8	Low-speed frequency divided by 8 mode			

X: 0 or 1

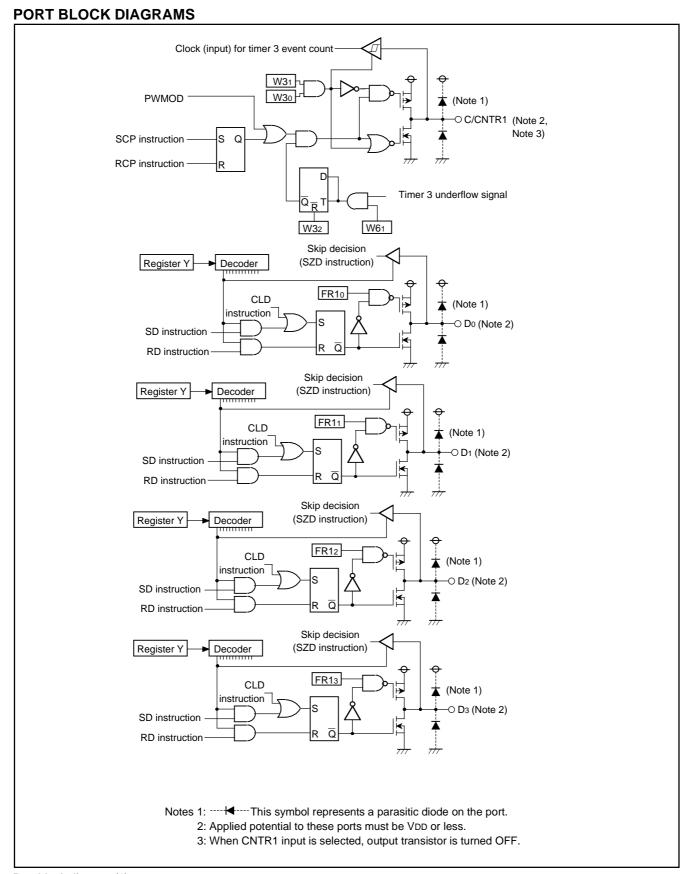
Note: The f(RING)/8 is selected after system is released from reset.

PORT FUNCTION

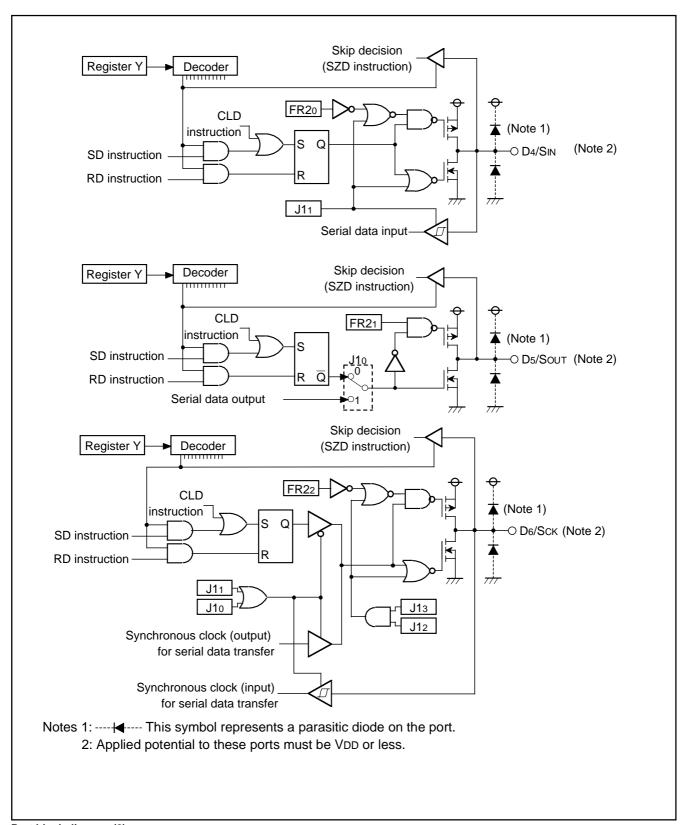
4524 Group

Port	Pin	Input	Output atmosture	I/O	Control	Control	Domark		
FOIL PIII		Output	Output structure	unit	instructions	registers	Remark		
Port D	D0-D3, D4/SIN,	I/O	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection		
	D5/SOUT, D6/SCK,	(8)	CMOS		SZD	J1	function (programmable)		
	D7/CNTR0				CLD	W6			
	D8/INT0, D9/INT1	Output	N-channel open-drain			I1, I2	Key-on wakeup function		
		(2)				K2	(programmable)		
Port P0	P00-P03	I/O	N-channel open-drain/	4	OP0A	FR0	Built-in programmable pull-up		
		(4)	CMOS		IAP0	PU0	functions and key-on wakeup		
						K0	functions (programmable)		
Port P1	P10-P13	I/O	N-channel open-drain/	4	OP1A	FR0	Built-in programmable pull-up		
		(4)	CMOS		IAP1	PU1	functions and key-on wakeup		
						K1	functions (programmable)		
Port P2	P20/AIN0-P23/AIN3	I/O	N-channel open-drain	4	OP2A	Q2			
		(4)			IAP2				
Port P3	P30/AIN4-P33/AIN7	I/O	N-channel open-drain	4	ОР3А	Q3			
		(4)			IAP3				
Port P4	P40-P43	I/O	N-channel open-drain/	4	OP4A	FR3	Output structure selection		
		(4)	CMOS		IAP4		function (programmable)		
Port C	C/CNTR1	Output	CMOS	1	RCP	W4			
		(1)			SCP				

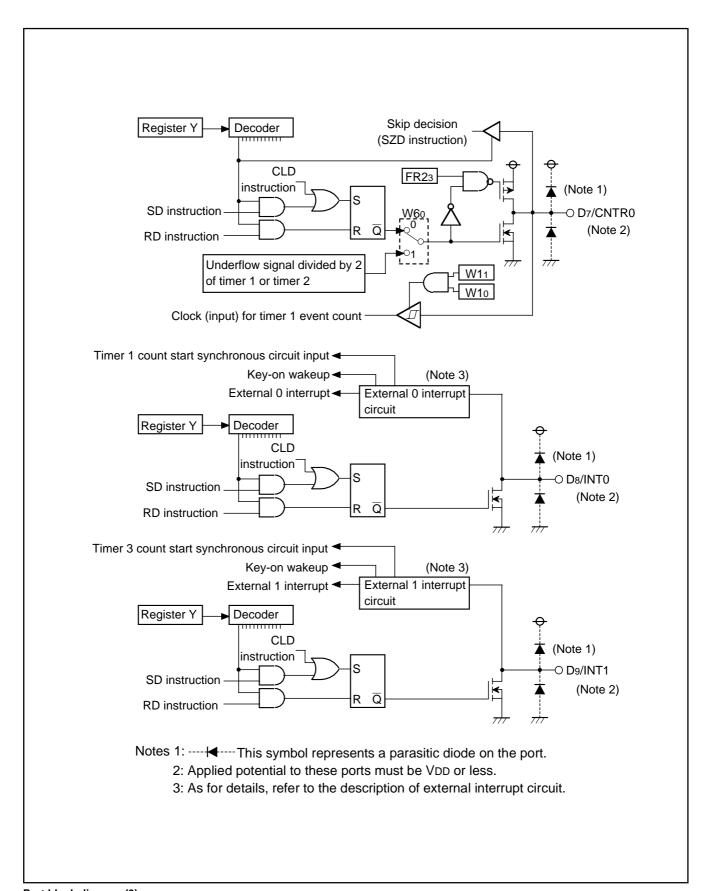
CONNECTIONS OF UNUSED PINS

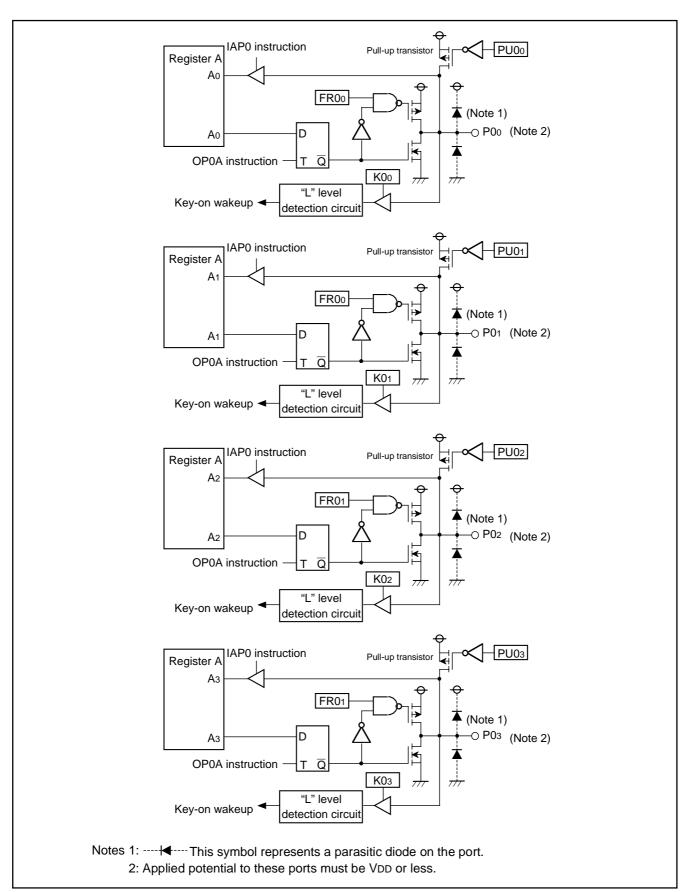

Pin	Connection	Usage condition					
XIN Connect to Vss.		Internal oscillator is selected (CMCK and CRCK instructions are not executed.)					
		(Note 1)					
		Sub-clock input is selected for system clock (MR0=1). (Note 2)					
Open.		Internal oscillator is selected (CMCK and CRCK instructions are not executed.)					
		(Note 1)					
		RC oscillator is selected (CRCK instruction is executed)					
		External clock input is selected for main clock (CMCK instruction is executed).					
		(Note 3)					
		Sub-clock input is selected for system clock (MR0=1). (Note 2)					
Xcin	Connect to Vss.	Sub-clock is not used.					
Хсоит	Open.	Sub-clock is not used.					
D0-D3	Open.						
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 4)					
D4/SIN	Open.	SIN pin is not selected.					
	Connect to Vss.	N-channel open-drain is selected for the output structure.					
D5/SOUT	Open.						
	Connect to Vss.	N-channel open-drain is selected for the output structure.					
D6/SCK	Open.	SCK pin is not selected.					
	Connect to Vss.	N-channel open-drain is selected for the output structure.					
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.					
	Connect to Vss.	N-channel open-drain is selected for the output structure.					
D8/INT0	Open.	"0" is set to output latch.					
	Connect to Vss.						
D9/INT1	Open.	"0" is set to output latch.					
	Connect to Vss.						
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.					
P00-P03	Open.	The key-on wakeup function is not selected. (Note 4)					
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5)					
		The pull-up function is not selected. (Note 4)					
		The key-on wakeup function is not selected. (Note 4)					
P10-P13	Open.	The key-on wakeup function is not selected. (Note 4)					
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5)					
		The pull-up function is not selected. (Note 4)					
		The key-on wakeup function is not selected. (Note 4)					
P20/AIN0-	Open.						
P23/AIN3	Connect to Vss.						
P30/AIN4-	Open.						
P33/AIN7	Connect to Vss.	<u> </u>					
P40-P43	Open.						
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5)					
СОМо-СОМз	Open.						
VLC3/SEG0	Open.	SEG ₀ pin is selected.					
VLC2/SEG1	Open.	SEG1 pin is selected.					
VLC1/SEG2	Open.	SEG2 pin is selected.					
SEG3-SEG19	Open.	<u> </u>					

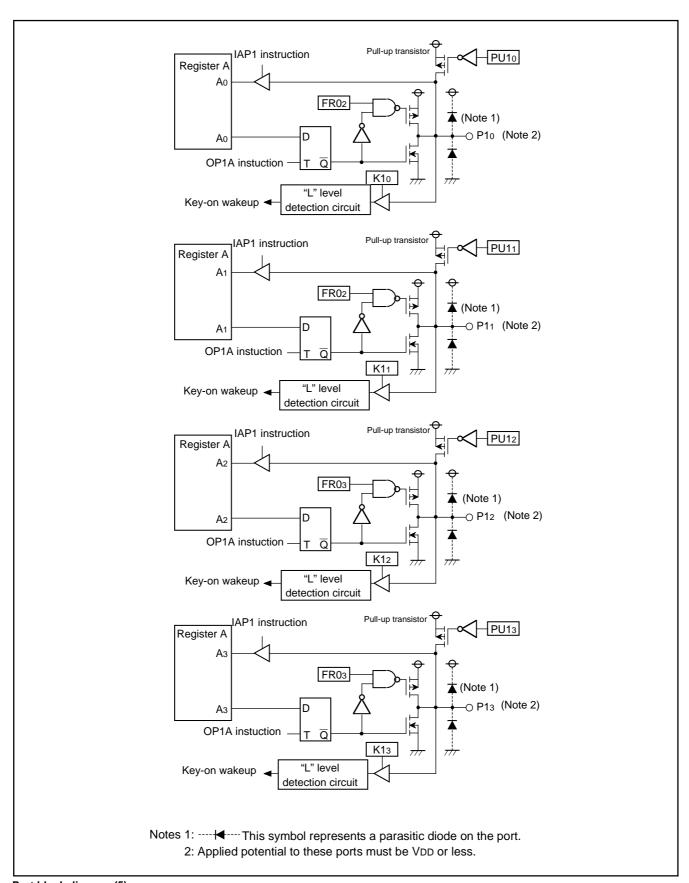
Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.

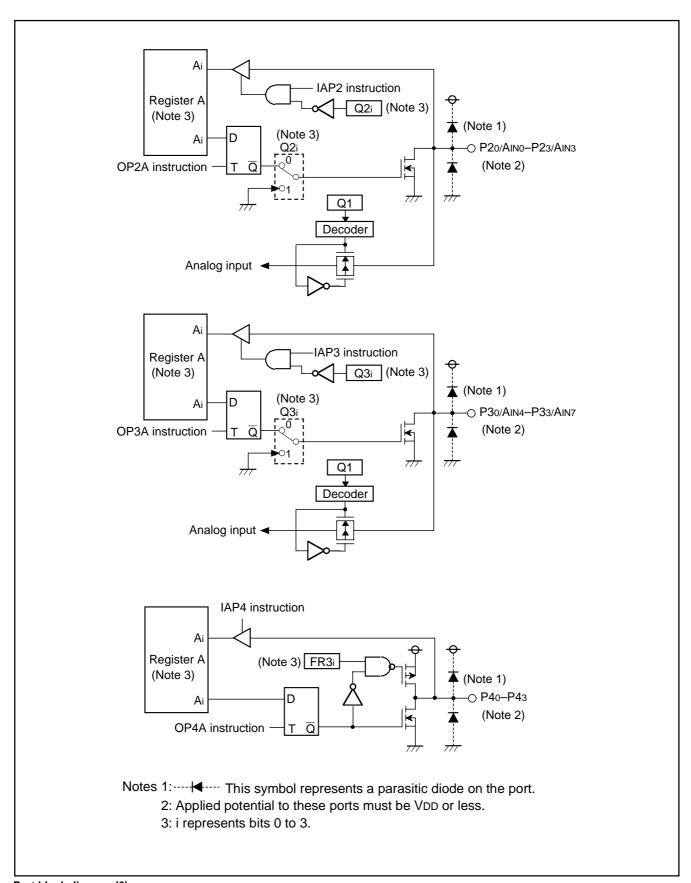

- 2: When sub-clock (XCIN) input is selected (MR0 = 1) for the system clock by setting "1" to bit 1 (MR1) of clock control register MR, main clock is stopped.
- 3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
- 4: Be sure to select the output structure of ports D0–D3 and P40–P43 and the pull-up function and key-on wakeup function of P00–P03 and P10–P13 with every one port. Set the corresponding bits of registers for each port.
- 5: Be sure to select the output structure of ports P00-P03 and P10-P13 with every two ports. If only one of the two pins is used, leave another one open.

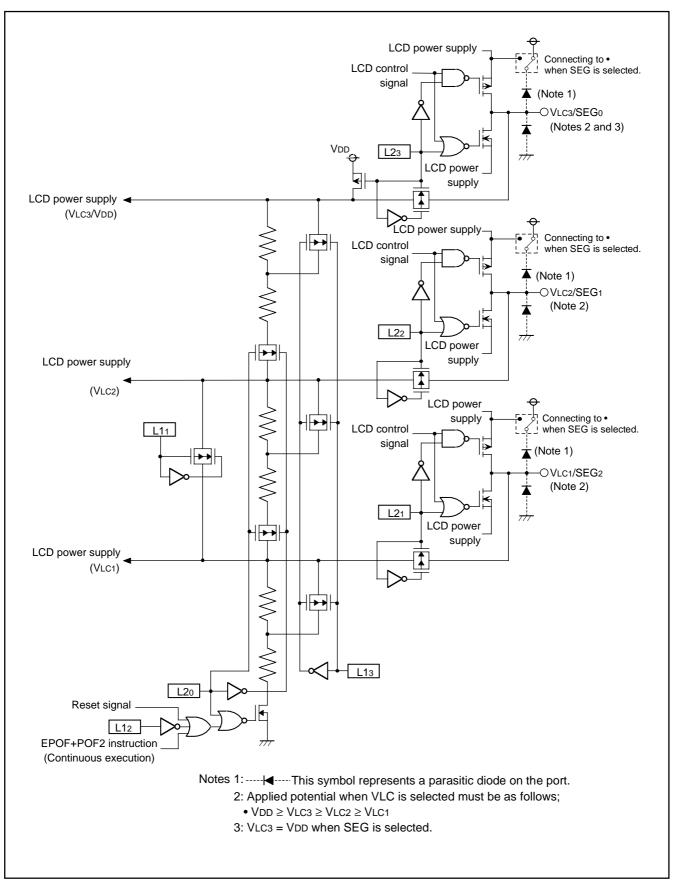
(Note when connecting to Vss and Vdd)

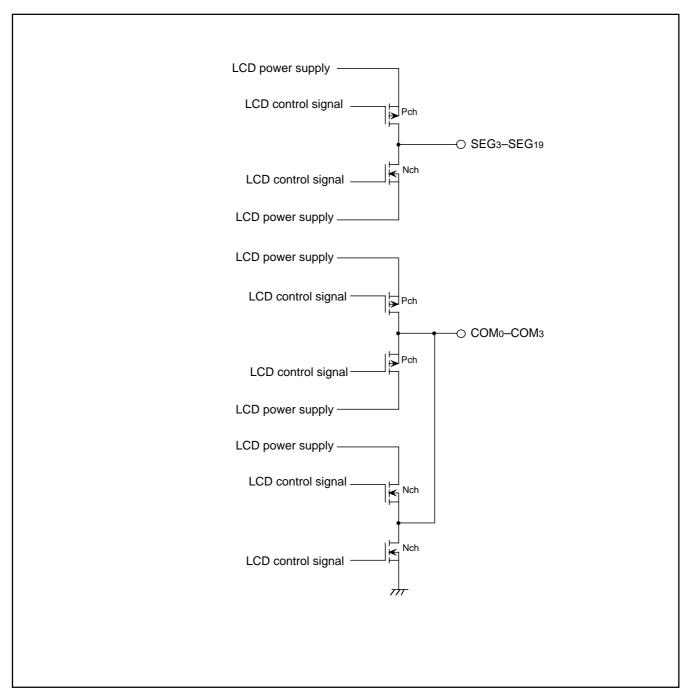

• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.


Port block diagram (1)


Port block diagram (2)


Port block diagram (3)


Port block diagram (4)


Port block diagram (5)

Port block diagram (6)

Port block diagram (7)

Port block diagram (8)

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

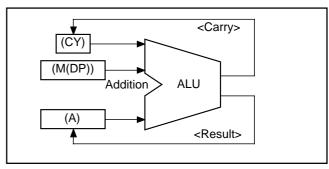


Fig. 1 AMC instruction execution example

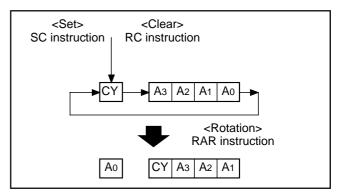


Fig. 2 RAR instruction execution example

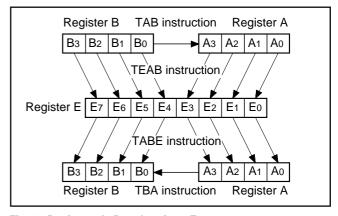


Fig. 3 Registers A, B and register E

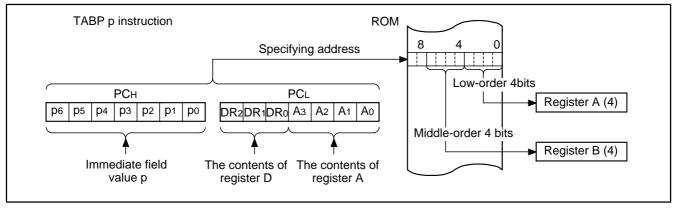


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

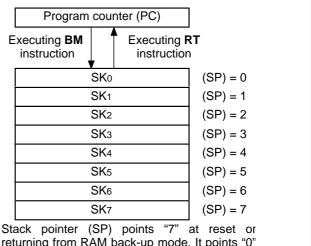
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first **BM** instruction, and the contents of program counter is stored in SKo. When the **BM** instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

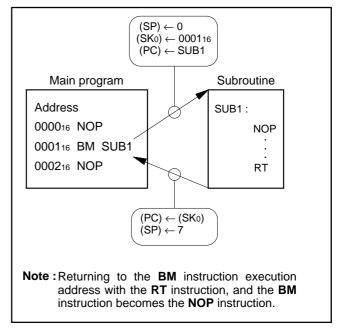


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

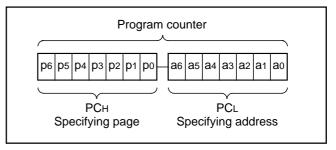


Fig. 7 Program counter (PC) structure

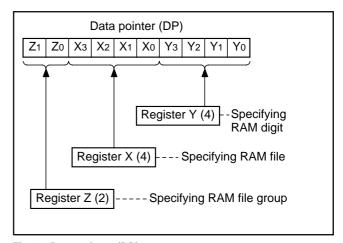


Fig. 8 Data pointer (DP) structure

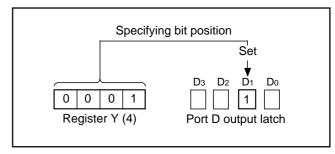


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34524ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34524M8	8192 words	64 (0 to 63)
M34524MC	12288 words	96 (0 to 95)
M34524ED	16384 words	128 (0 to 127)

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.

Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

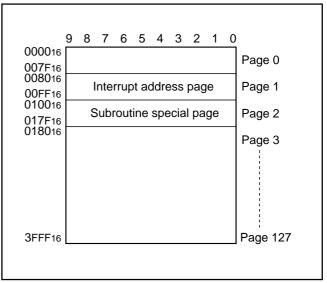


Fig. 10 ROM map of M34524ED

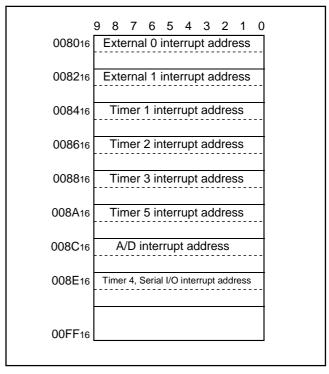


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34524M8	512 words X 4 bits (2048 bits)
M34524MC	512 words X 4 bits (2048 bits)
M34524ED	512 words X 4 bits (2048 bits)

RAM 512 words X 4 bits (2048 bits)

	Register Z		0						1										
	Register X	0	1	2	3		12	13	14	15	0	1	2		11	12	13	14	15
	0																		
	1																		
	2																		
	3																		
	4																		
	5																		
>	6																		
iter	7																		
Register Y	8															0	8	16	
ď	9															1	9	17	
	10															2	10	18	
	11															3	11	19	
	12															4	12		
	13															5	13		
	14															6	14		
	15															7	15		

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set to "1" when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until it is cleared to "0" by the interrupt occurrence or the skip instruction.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set to "1" when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Table 3 III	terrupt sources		
Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 5 interrupt	Timer 5 underflow	Address A in page 1
7	A/D interrupt	Completion of A/D conversion	Address C in page 1
8	Timer 4 interrupt or Serial I/O interrupt (Note)	Timer 4 underflow or completion of serial I/O transmit/ receive	Address E in page 1

Note: Timer 4 interrupt or serial I/O interrupt can be selected by the timer 4, serial I/O interrupt source selection bit (I3o).

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt nable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 5 interrupt	T5F	SNZT5	V21
A/D interrupt	ADF	SNZAD	V22
Timer 4 interrupt	T4F	SNZT4	V23
Serial I/O interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction		
1	Enabled	Invalid		
0	Disabled	Valid		

1-23

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

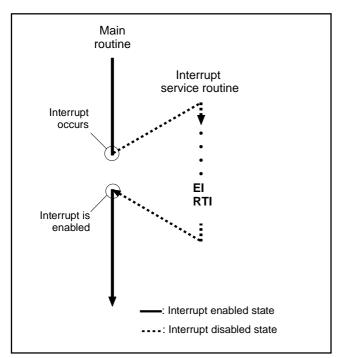


Fig. 13 Program example of interrupt processing

REJ09B0107-0200Z

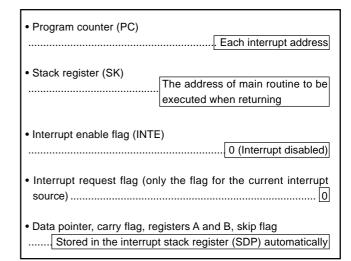


Fig. 14 Internal state when interrupt occurs

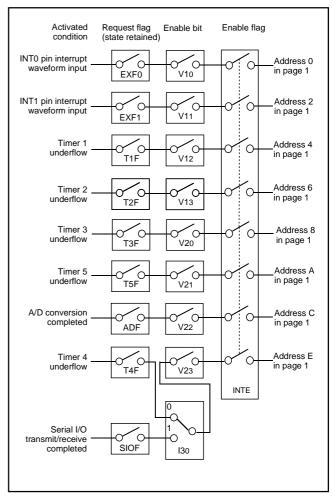


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1
 - Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.
- Interrupt control register V2

The timer 3, timer 5, A/D, Timer 4 and serial I/O interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

• Interrupt control register I3

The timer 4, serial I/O interrupt source selection bit is assigned to register I3. Set the contents of this register through register A with the TI3A instruction. The TAI3 instruction can be used to transfer the contents of register I3 to register A.

Table 6 Interrupt control registers

	errupt control registers					
	Interrupt control register V1		reset: 00002	at power down : 00002	R/W TAV1/TV1A	
V13	V/4 - Time and intermediate hit		Interrupt disabled ((SNZT2 instruction is valid)		
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid) (Note	2)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)			
V 12		1	Interrupt enabled (SNZT1 instruction is invalid) (Note	2)	
V11	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)		
V 11	External 1 interrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid) (Note 2)	
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)			
V 10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)	

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W TAV2/TV2A
\/Oo	Timer 4 corial I/O interrupt enable bit (Note 3)	0	Interrupt disabled	(SNZT4, SNZSI instruction is valid)	
V23	Timer 4, serial I/O interrupt enable bit (Note 3)	1	Interrupt enabled (SNZT4, SNZSI instruction is invalid	l) (Note 2)
\/0-	A/D into worth and blackit	0	Interrupt disabled	(SNZAD instruction is valid)	
V22	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid) (Note	2)
\/O.	Timer 5 interrupt enable hit	0	Interrupt disabled	(SNZT5 instruction is valid)	
V21	Timer 5 interrupt enable bit	1	Interrupt enabled (SNZT5 instruction is invalid) (Note	2)
\/0-	Timer 2 interrupt enable hit	0	Interrupt disabled	(SNZT3 instruction is valid)	
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid) (Note	2)

	Interrupt control register I3		at reset : 02		at power down : state retained	R/W TAI3/TI3A
ſ	I 30	Timer 4, serial I/O interrupt source selection	0	Timer 4 interrupt va	alid, serial I/O interrupt invalid	
1	130	bit	1	Serial I/O interrupt	valid, timer 4 interrupt invalid	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: These instructions are equivalent to the NOP instruction.
- 3: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (I3o).

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10-V13, V20-V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the machine cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles when the interrupt conditions are satisfied on execution of two-cycle instructions or three-cycle instructions. (Refer to Figure 16).

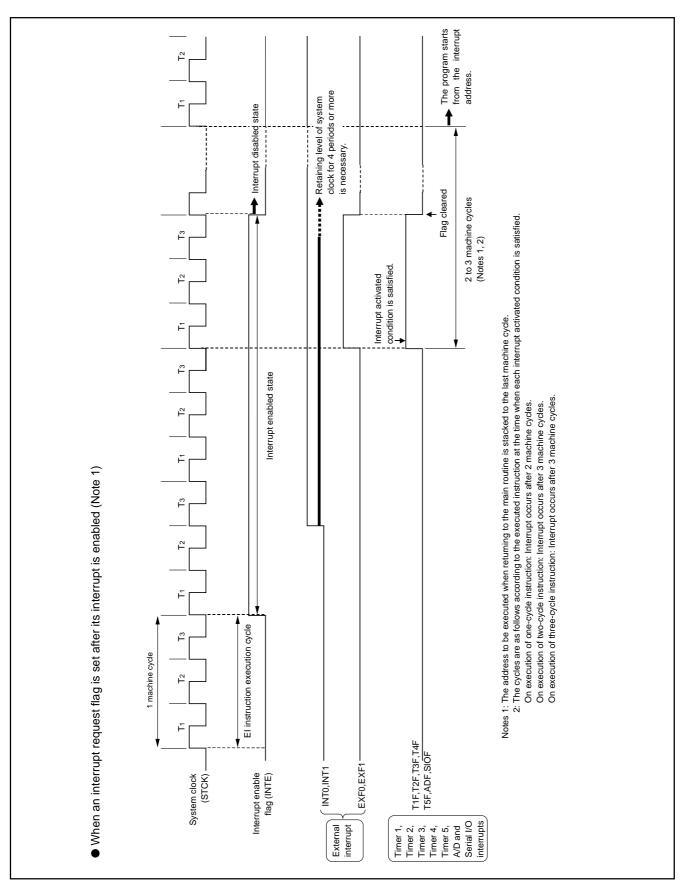


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4524 Group has the external 0 interrupt and external 1 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D8/INT0	When the next waveform is input to D8/INT0 pin	l11
		 Falling waveform ("H"→"L") 	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	
External 1 interrupt	D9/INT1	When the next waveform is input to D9/INT1 pin	I21
		 Falling waveform ("H"→"L") 	122
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

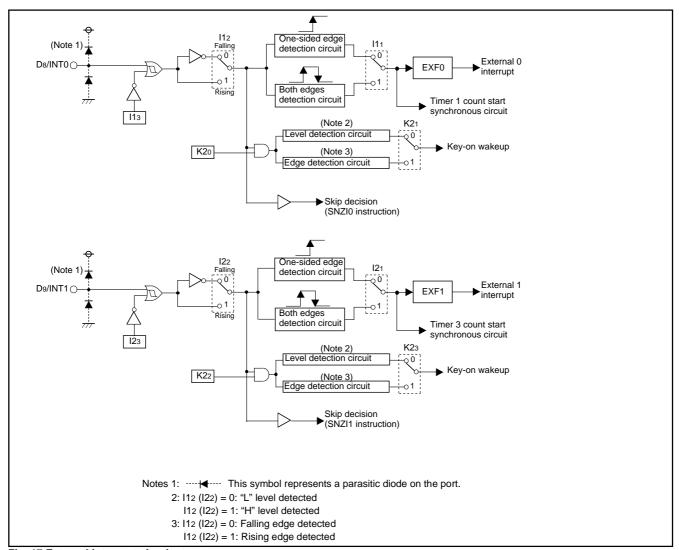


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D8/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D8/INT0 pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D8/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to D9/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction

• External 1 interrupt activated condition

External 1 interrupt activated condition is satisfied when a valid waveform is input to D9/INT1 pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.

- ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I2.
- ③ Clear the EXF1 flag to "0" with the SNZ1 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ1 instruction.
- Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the D9/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

• Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A	
110	INT0 pin input control bit (Note 2)		INT0 pin input disa	INT0 pin input disabled		
113			INT0 pin input ena	bled		
l12	Interrupt valid waveform for INT0 pin/	0	Falling waveform/" instruction)	L" level ("L" level is recognized with	the SNZI0	
112	return level selection bit (Note 2)	1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI0	
l1 ₁	INTO pin odgo detection circuit central hit	0	One-sided edge de	etected		
1111	INT0 pin edge detection circuit control bit	1	Both edges detected	ed		
110	INT0 pin Timer 1 count start synchronous	0	Timer 1 count start	synchronous circuit not selected		
110	circuit selection bit	1	1 Timer 1 count start synchronous circuit selected			

	Interrupt control register I2		reset : 00002	at power down : state retained	R/W TAI2/TI2A
120	INT1 pin input control bit (Note 2)	0	INT1 pin input disa	abled	
123	I23 INT1 pin input control bit (Note 2)		INT1 pin input ena	bled	
 2 2	Interrupt valid waveform for INT1 pin/	0	Falling waveform/" instruction)	L" level ("L" level is recognized with	the SNZI1
122	return level selection bit (Note 2)	1	Rising waveform/" instruction)	H" level ("H" level is recognized with	the SNZI1
104	INITA pin added detection circuit control bit	0	One-sided edge de	etected	
l 21	INT1 pin edge detection circuit control bit	1	Both edges detect	ed	
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count star	t synchronous circuit not selected	
120	circuit selection bit			t synchronous circuit selected	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of these bits (I12, I13, I22 and I23) are changed, the external interrupt request flag (EXF0, EXF1) may be set.

(4) Notes on External 0 interrupts

- ① Note [1] on bit 3 of register I1
 - When the input of the INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 182).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

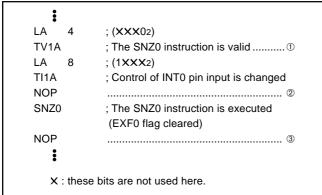


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared, the power down function is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled, invalidate the key-on wakeup function of INT0 pin (register K20 = "0") before system goes into the power down mode. (refer to Figure 19①).

```
LA 0 ; (XXX02)

TK2A ; INT0 key-on wakeup invalid ...... ①

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

- 3 Note on bit 2 of register I1
- When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20[®]).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20³).

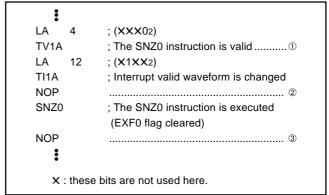


Fig. 20 External 0 interrupt program example-3

(5) Notes on External 1 interrupts

① Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21⁽¹⁾) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 21®)

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 21®).

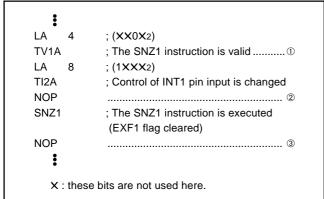


Fig. 21 External 1 interrupt program example-1

- 2 Note [2] on bit 3 of register I2
 - When the bit 3 of register I2 is cleared, the power down function is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled, invalidate the key-on wakeup function of INT1 pin (register K22 = "0") before system goes into the power down mode. (refer to Figure 22①).

```
LA 0 ; (X0XX2)

TK2A ; INT1 key-on wakeup invalid .......... ①

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 22 External 1 interrupt program example-2

- 3 Note on bit 2 of register I2
- When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the Dg/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23⁽¹⁾) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23³).

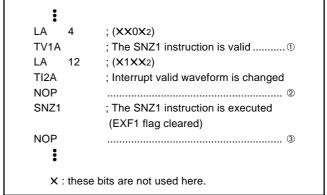


Fig. 23 External 1 interrupt program example-3

TIMERS

The 4524 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

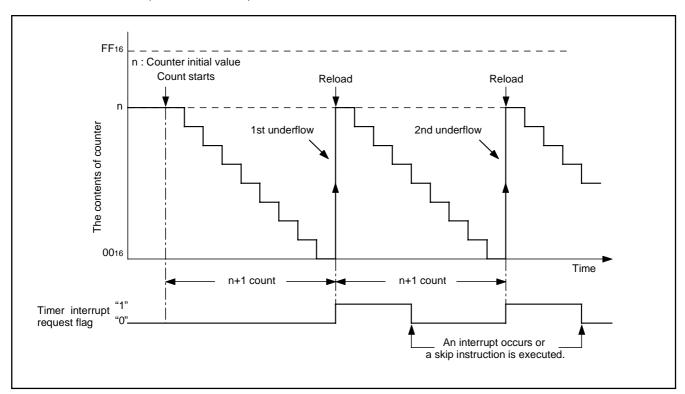


Fig. 24 Auto-reload function

The 4524 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1: 8-bit programmable timer
- Timer 2: 8-bit programmable timer
- Timer 3 : 8-bit programmable timer
- Timer 4: 8-bit programmable timer
- Timer 5: 16-bit fixed dividing frequency timer
- Timer LC: 4-bit programmable timer
- Watchdog timer: 16-bit fixed dividing frequency timer
 (Timers 1, 2, 3, 4 and 5 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, 4, 5 and LC can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	Instruction clock (INSTCK)	1 to 256	• Timer 1, 2, 3, 4 and LC count sources	PA
Timer 1	8-bit programmable	Instruction clock (INSTCK)	1 to 256	Timer 2 count source	W1
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	W2
	(link to INT0 input)	Timer 5 underflow		Timer 1 interrupt	
		(T5UDF)		-	
		CNTR0 input			
Timer 2	8-bit programmable	System clock (STCK)	1 to 256	Timer 3 count source	W2
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	
		Timer 1 underflow		Timer 2 interrupt	
		(T1UDF)			
		PWM output (PWMOUT)			
Timer 3	8-bit programmable	PWM output (PWMOUT)	1 to 256	CNTR1 output control	W3
	binary down counter	Prescaler output (ORCLK)		Timer 3 interrupt	
	(link to INT1 input)	Timer 2 underflow			
		(T2UDF)			
		CNTR1 input			
Timer 4	8-bit programmable	XIN input	1 to 256	Timer 2, 3 count source	W4
	binary down counter	Prescaler output (ORCLK)		CNTR1 output	
	(PWM output function)			Timer 4 interrupt	
Timer 5	16-bit fixed dividing	XCIN input	8192	Timer 1, LC count source	W5
	frequency		16384	Timer 5 interrupt	
			32768		
			65536		
Timer LC	4-bit programmable	Bit 4 of timer 5	1 to 16	• LCD clock	W6
	binary down counter	Prescaler output (ORCLK)			
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65534	System reset (count twice)	
timer	frequency			WDF flag decision	

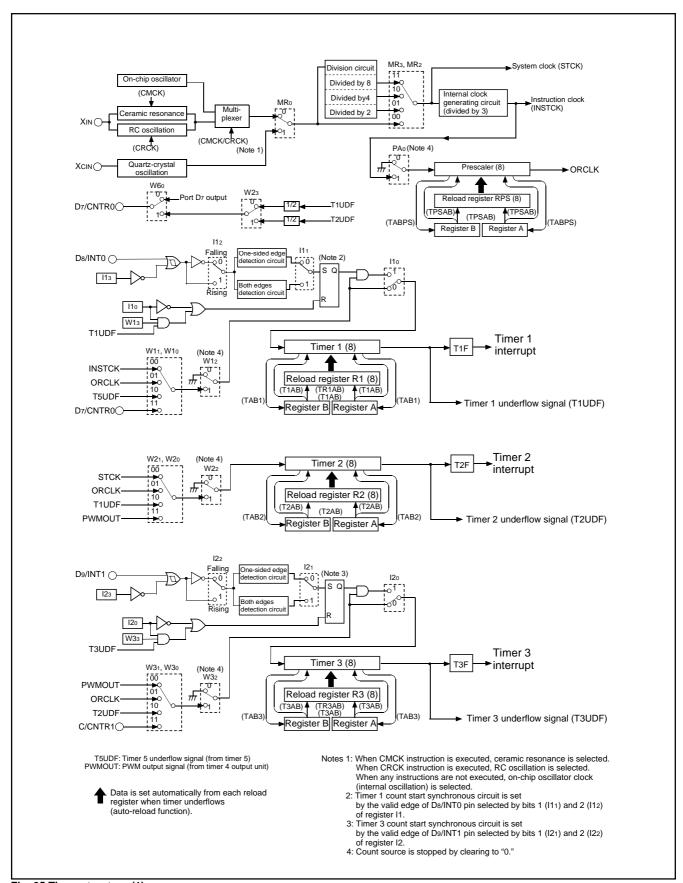


Fig. 25 Timer structure (1)

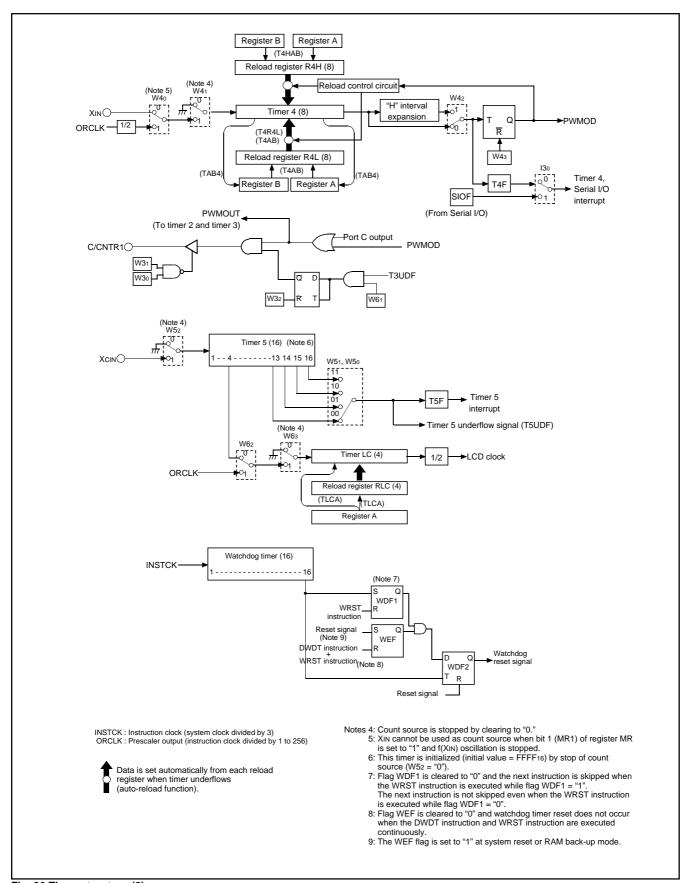


Fig. 26 Timer structure (2)

Table 10 Timer related registers

Timer control register PA		at reset : 02		at power down : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
FAU		1	Operating		

	Timer control register W1		at	reset: 00002	at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	()	Timer 1 count auto-	stop circuit not selected	
****	bit (Note 2)	1		Timer 1 count auto-	stop circuit selected	
W12	Timer 1 control bit	()	Stop (state retained)		
VV 12		1	1	Operating		
		W11	W10		Count source	
W11		0	0	Instruction clock (IN	ISTCK)	
	Timer 1 count source selection bits	0	1	Prescaler output (O	PRCLK)	
W10		1	0	Timer 5 underflow s	signal (T5UDF)	
		1	1	CNTR0 input		

	Timer control register W2		at i	reset : 00002	at power down : state retained	R/W TAW2/TW2A
W23	W23 CNTR0 output control bit)	Timer 1 underflow	signal divided by 2 output	
1120	CNTRO output control bit	1		Timer 2 underflow	signal divided by 2 output	
W22	Timer 2 control bit	0		Stop (state retained)		
VVZZ			1	Operating		
		W21	W20		Count source	
W21		0	0	System clock (STC	K)	
	Timer 2 count source selection bits	0	1	Prescaler output (C	ORCLK)	
W20		1	0	Timer 1 underflow signal (T1UDF)		
		1	1 1 PWM signal (PWMOUT)		OUT)	

	Timer control register W3		at	reset : 00002	at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	()	Timer 3 count auto	-stop circuit not selected	
""	bit (Note 3)	1		Timer 3 count auto	-stop circuit selected	
W32	Timer 3 control bit	0		Stop (state retained)		
VV32	Timer 3 control bit	1	1	Operating		
		W31	W3 0		Count source	
W31	Times 2 count counts and ation hits	0	0	PWM signal (PWM	OUT)	
	Timer 3 count source selection bits	0	1	Prescaler output (0	DRCLK)	
W30	(Note 4)	1	0	Timer 2 underflow	signal (T2UDF)	
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
- 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I2o="1").

 4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

	Timer control register W4		reset : 00002	at power down : 00002	R/W TAW4/TW4A	
W43	CNTR1 output control bit	0	CNTR1 output inva	alid		
VV43	CNTRT output control bit	1	CNTR1 output vali	d		
W42	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid			
VV42		1	PWM signal "H" int	terval expansion function valid		
W41	Timer 4 control bit	0	Stop (state retaine	d)		
VV41	Timer 4 control bit	1	Operating			
W40	Timer 4 count source selection bit	0	XIN input			
VV40	Timer 4 count source selection bit	1	Prescaler output (0	ORCLK) divided by 2		

	Timer control register W5		at	reset : 00002	at power down : state retained	R/W TAW5/TW5A		
W53	Not used	0		This bit has no function, but read/write is enabled.				
\//50	W52 Timer 5 control bit)	Stop (state initialized)				
VV32			1	Operating				
		W51	W5 0	Count value				
W51	Timer 5 count value selection bits	0	0	Underflow occurs e	Underflow occurs every 8192 counts			
		0	1	Underflow occurs every 16384 counts				
W50		1	0	Underflow occurs every 32768 counts				
			1	Underflow occurs every 65536 counts				

Timer control register W6		at reset : 00002		at power down : state retained	R/W TAW6/TW6A			
W63	Timer LC control bit	0	Stop (state retained)					
VV03	Timer Lo control bit	1	Operating					
W62	Timer LC count source selection bit	0	Bit 4 (T54) of timer 5					
VV02	Timer LC count source selection bit	1	Prescaler output (ORCLK)					
W61	CNTR1 output auto-control circuit	0	CNTR1 output auto	o-control circuit not selected				
VVO1	selection bit	1	CNTR1 output auto					
W60	D7/CNTR0 pin function selection bit		D7(I/O)/CNTR0 input					
1 ******	(Note 2)	1	CNTR0 input/output	ut/D7 (input)				

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the selection of timer 3 count auto-stop circuit, and the count operation and count source of timer 3. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W5

Register W5 controls the count operation and count source of timer 5. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the operation and count source of timer LC, the selection of CNTR1 output auto-control circuit and the D7/CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, 4 and LC count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INTO pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1".

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process:

- 1) set data in timer 2.
- 2 select the count source with the bits 0 and 1 of register W2, and
- 3 set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

- ① set data in timer 3
- 2 set count source by bits 0 and 1 of register W3, and
- 3 set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1."

Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

(6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.

Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.

When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows

Timer 4 starts counting after the following process;

- 1 set data in timer 4
- 2 set count source by bit 0 of register W4, and
- 3 set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).

When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow.

Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin.

When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.

In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4, avoid a timing when timer 4 underflows.

(7) Timer 5 (interrupt function)

Timer 5 is a 16-bit binary down counter.

Timer 5 starts counting after the following process;

- ① set count value by bits 0 and 1 of register W5, and
- 2 set the bit 2 of register W5 to "1."

Count source for timer 5 is the sub-clock input (XCIN).

Once count is started, when timer 5 underflows (the set count value is counted), the timer 5 interrupt request flag (T5F) is set to "1," and count continues.

Bit 4 of timer 5 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W5 is cleared to "0", timer 5 is initialized to "FFFF16" and count is stopped.

Timer 5 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 5 underflow occurs at clock operating mode, system returns from the power down state.

(8) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

- ① set data in timer LC,
- 2 select the count source with the bit 2 of register W6, and
- 3 set the bit 3 of register W6 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

(9) Timer input/output pin (D7/CNTR0 pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.

CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4. When the PWM signal is output from C/CNTR1 pin, set "0" to the output latch of port C.

The D7/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising waveform of CNTR0 input.

When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising waveform of CNTR1 input. Also, when the CNTR1 input is selected, the output of port C is invalid (high-impedance state).

(10) Timer interrupt request flags (T1F, T2F, T3F, T4F, T5F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4, SNZT5).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(11) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed.

Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1" and the control by INT1 pin input can be performed.

When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin.

The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 or I20 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

(12) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.

This function is valid only when the timer 3 count start synchronous circuit is selected.

(13) Precautions

Note the following for the use of timers.

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

· Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

· Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

· Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.

· Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

• Timer 4

Avoid a timing when timer 4 underflows to stop timer 4. When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

• Timer 5

Stop timer 5 counting to change its count source.

• Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

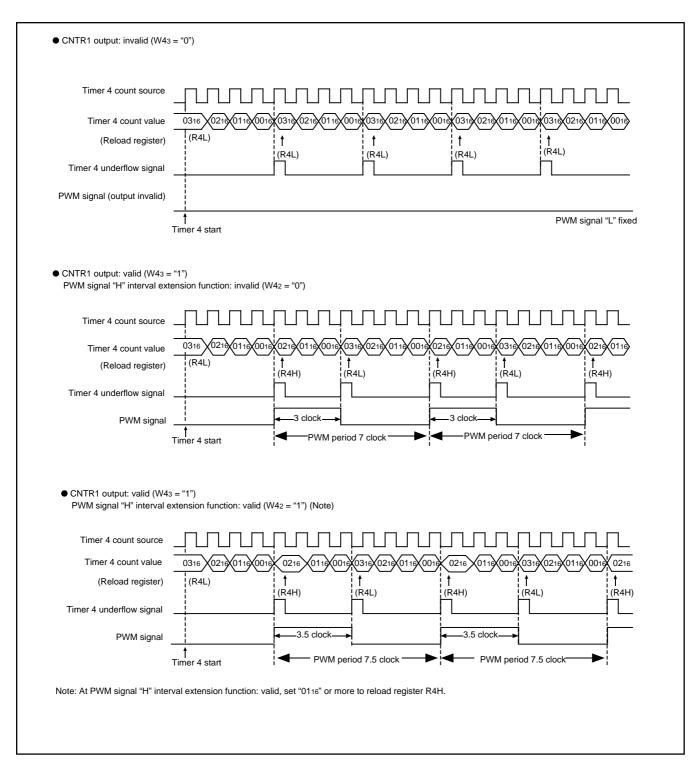


Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

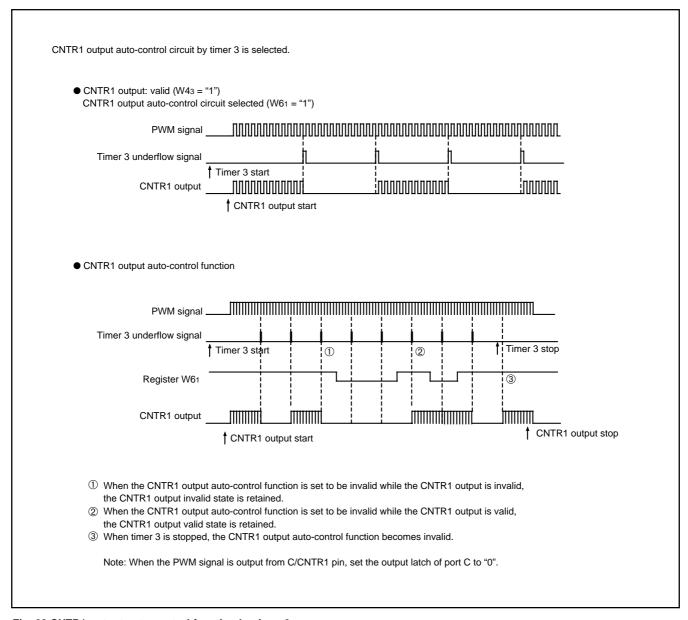


Fig. 28 CNTR1 output auto-control function by timer 3

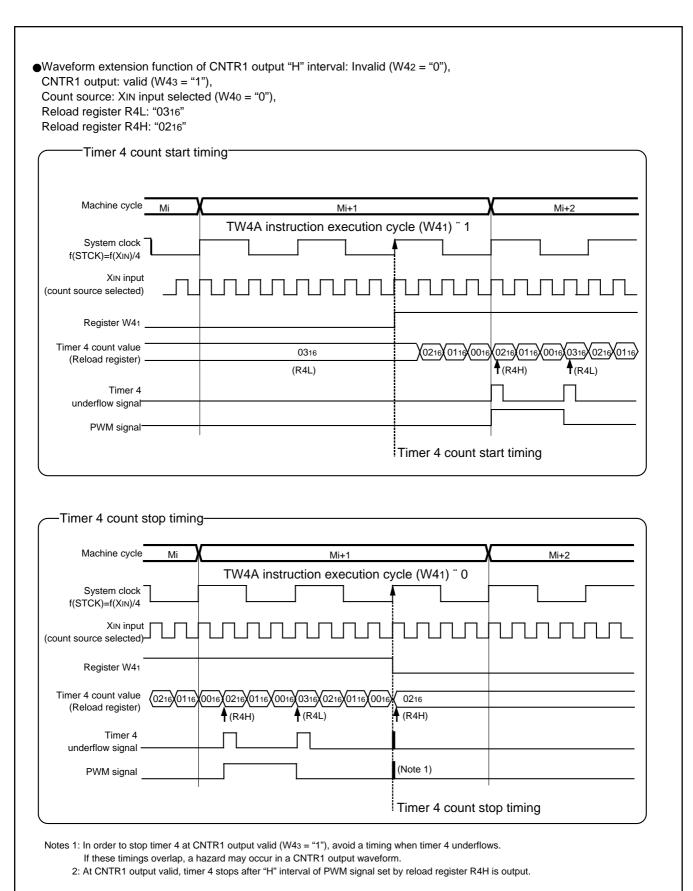


Fig. 29 Timer 4 count start/stop timing

WATCHDOG TIMER

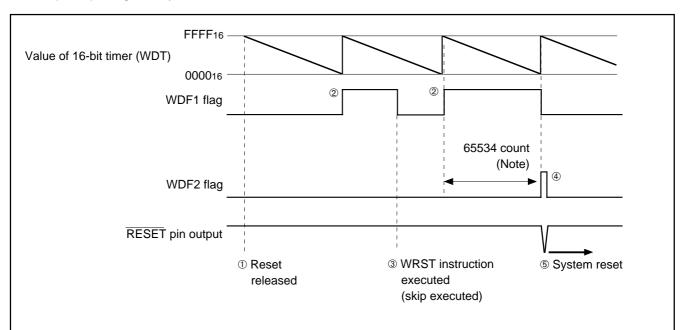
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016." the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of less than 65534 machine cycle by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- § The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 30 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at a cycle of less than 65534 machine cycles with the WRST instruction.

When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 31).

The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the system enters the power down state (refer to Figure 32).

The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, stop the watchdog timer function with the DWDT instruction and the WRST instruction continuously every system is returned from the power down.

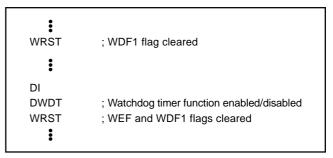


Fig. 31 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

↓
Oscillation stop
```

Fig. 32 Program example to enter the mode when using the watchdog timer

A/D CONVERTER (Comparator)

The 4524 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB
	Differential non-linearity error: ±0.9LSB
Conversion speed	31 μ s (High-speed through-mode at 6.0 MHz oscillation frequency)
Analog input pin	8

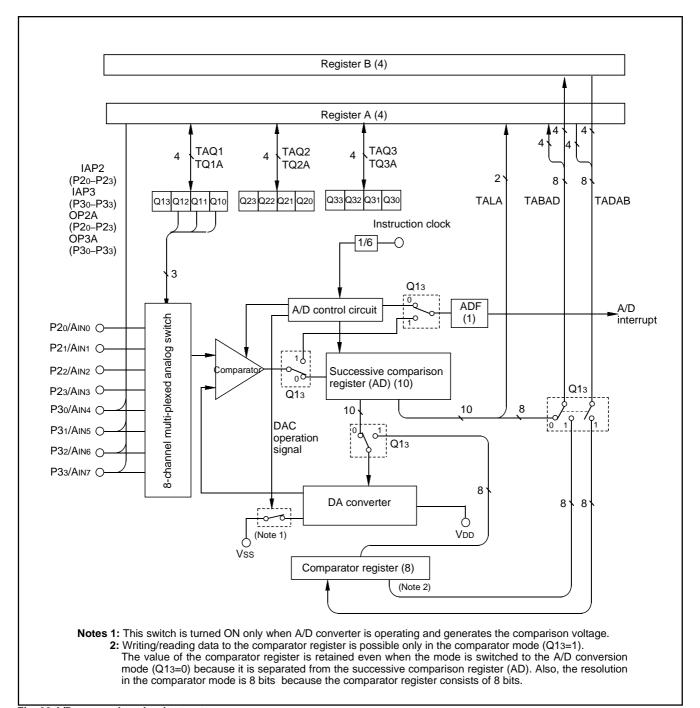


Fig. 33 A/D conversion circuit structure

Table 12 A/D control registers

TUDIC IZ	A/D control registers					T	ı
	A/D control register Q1		at reset : 00002			at power down : state retained	R/W TAQ1/TQ1A
Q13	A/D operation mode selection bit		A/D conversion mode Comparator mode				
		Q12	Q11	Q10		Analog input pins	
Q12		0	0	0	AIN0		
	Analog input pin selection bits	0	0	1	AIN1		
		0	1	0	AIN2		
Q11		0	1	1	AIN3		
		1	0	0	AIN4		
Q10		1	0	1	AIN5		
		1	1	0	AIN6		
		1	1	1	AIN7		

A/D control register Q2		at reset : 00002		at power down : state retained	R/W TAQ2/TQ2A
Q23	P23/AIN3 pin function selection bit	0	P23		
Q23	1 23/Ains piir function selection bit	1	AIN3		
Q22	P22/AIN2 pin function selection bit	0	P22		
QZZ	F 22/Ain2 piir function selection bit	1	AIN2		
Q21	P21/AIN1 pin function selection bit	0	P21		
QZ1	F21/AINT PITTUTICUOTI SELECUOTI DIL	1	AIN1		
Q20	DOS/Automin function coloration hit	0	P20		
Q 20	P20/AIN0 pin function selection bit	1	AIN0		

A/D control register Q3		at reset : 00002		at power down : state retained	R/W TAQ3/TQ3A
Q33	P33/AIN7 pin function selection bit	0	P33		
Q03	1 33/AIN/ pill fullction selection bit	1	AIN7		
Q32	P32/AIN6 pin function selection bit	0	P32		
Q32	P 32/AiNe piri furiction selection bit	1	AIN6		
Q31	D24/Albus pin function coloration bit	0	P31		
Q31	P31/AIN5 pin function selection bit	1	AIN5		
Q30	D2s/Augustin franction coloration hit	0	P30		
Q30	P30/AIN4 pin function selection bit	1	AIN4		

Note: "R" represents read enabled, and "W" represents write enabled.

(1) A/D control register

· A/D control register Q1

Register Q1 controls the selection of A/D operation mode and the selection of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A

• A/D control register Q2

Register Q2 controls the selection of P20/AIN0–P23/AIN3. Set the contents of this register through register A with the TQ2A instruction. The TAQ2 instruction can be used to transfer the contents of register Q2 to register A.

A/D control register Q3

Register Q3 controls the selection of P30/AIN4–P33/AIN7. Set the contents of this register through register A with the TQ3A instruction. The TAQ3 instruction can be used to transfer the contents of register Q3 to register A.

(2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(5) A/D conversion start instruction (ADST)

 $\mbox{A/D}$ conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- When the A/D conversion starts, the register AD is cleared to "00016"
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage V_{ref} is compared with the analog input voltage V_{IN}
- When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4524 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (31 μ s when f(XIN) = 6.0 MHz in high-speed through mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 34).

Table 13 Change of successive comparison register AD during A/D conversion

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u>
2nd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3rd comparison	*1 *2 1 0 0 0 0 VDD ± VDD 4 ± VDD 8
After 10th comparison	A/D conversion result VDD
completes	*1 *2 *3 *8 *9 *A 2 = 1024

*1: 1st comparison result*3: 3rd comparison result

*2: 2nd comparison result*8: 8th comparison result

*9: 9th comparison result

*A: 10th comparison result

(7) A/D conversion timing chart

Figure 34 shows the A/D conversion timing chart.

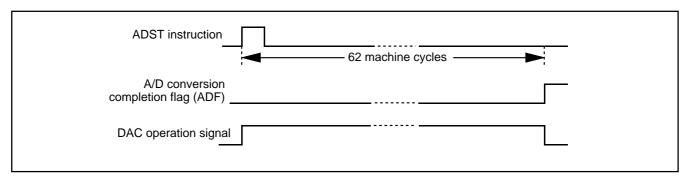


Fig. 34 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P30/AIN4 pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

- ① Select the AIN4 pin function with the bit 0 of the register Q3. Select the AIN4 pin function and A/D conversion mode with the register Q1 (refer to Figure 35).
- ② Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- $\ensuremath{\mathbb{C}}$ Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).

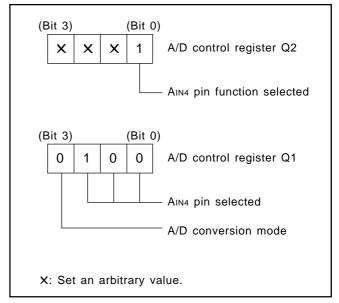


Fig. 35 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage
$$V_{ref}$$

$$V_{ref} = \frac{V_{DD}}{256} \times n$$
n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (4 μ s at f(XIN) = 6.0 MHz in high-speed through mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A/D conversion

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

• Operation mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

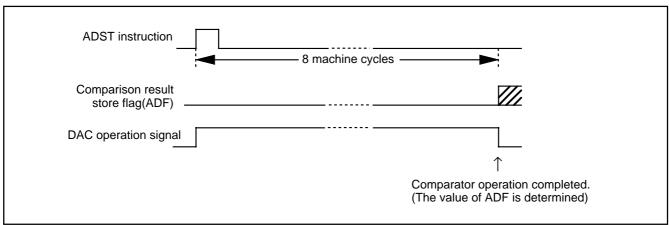


Fig. 36 Comparator operation timing chart

(14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 37).

- · Relative accuracy
 - ① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

- 1LSB at relative accuracy $\rightarrow \frac{VFST-V0T}{1022}$ (V)
- 1LSB at absolute accuracy $\rightarrow \frac{VDD}{1024}$ (V)

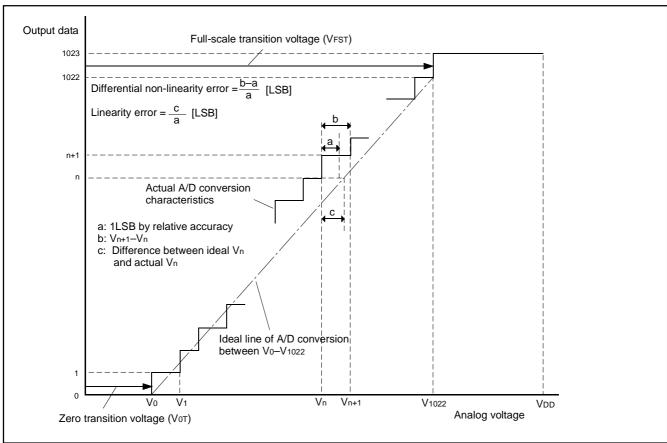


Fig. 37 Definition of A/D conversion accuracy

SERIAL I/O

The 4524 Group has a built-in clock synchronous serial I/O which can serially transmit or receive 8-bit data.

Serial I/O consists of;

- serial I/O register SI
- serial I/O control register J1
- serial I/O transmit/receive completion flag (SIOF)
- serial I/O counter

Registers A and B are used to perform data transfer with internal CPU, and the serial I/O pins are used for external data transfer.

The pin functions of the serial I/O pins can be set with the register ${\sf J1}$.

Table 14 Serial I/O pins

Pin	Pin function when selecting serial I/O
D6/SCK	Clock I/O (Sck)
D5/SOUT	Serial data output (Sout)
D4/SIN	Serial data input (SIN)

Note: Even when the SCK, SOUT, SIN pin functions are used, the input of D6, D5, D4 are valid.

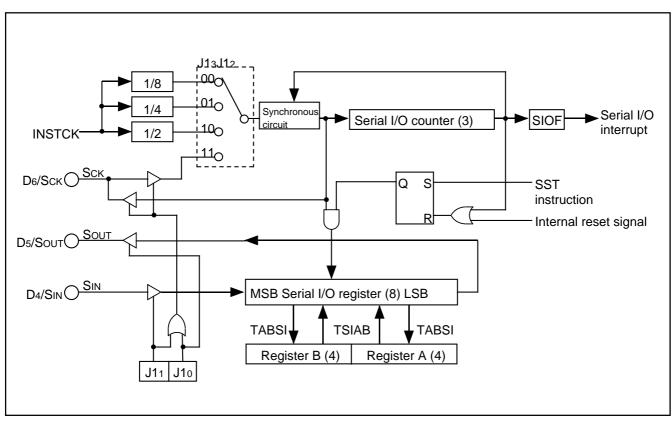


Fig. 38 Serial I/O structure

Table 15 Serial I/O control register

	Serial I/O control register J1			reset : 00002	at power down : state retained	R/W TAJ1/TJ1A			
		J13	J12	Synchronous clock					
J13		0	0	Instruction clock (II	NSTCK) divided by 8				
	J12 Serial I/O synchronous clock selection bits	0	1	Instruction clock (II	Instruction clock (INSTCK) divided by 4				
J12		1	0	Instruction clock (INSTCK) divided by 2					
		1	1	External clock (Sck input)					
		J11	J10	Port function					
J11		0	0	D6, D5, D4 selected/SCK, SOUT, SIN not selected					
	Serial I/O port function selection bits	0	1	SCK, SOUT, D4 sele	SCK, SOUT, D4 selected/D6, D5, SIN not selected				
J1 0		1	0	SCK, D5, SIN selected/D6, SOUT, D4 not selected					
		1	1	SCK, SOUT, SIN selected/D6, D5, D4 not selected					

Note: "R" represents read enabled, and "W" represents write enabled.

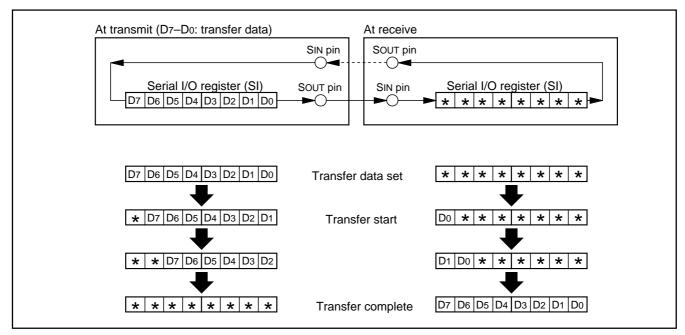


Fig. 39 Serial I/O register state when transfer

(1) Serial I/O register SI

Serial I/O register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI, and the contents of register B is transmitted to the high-order 4 bits of register SI.

During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI, and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).

When register SI is used as a work register without using serial I/O, do not select the SCK pin.

(2) Serial I/O transmit/receive completion flag (SIOF)

Serial I/O transmit/receive completion flag (SIOF) is set to "1" when serial data transmit or receive operation completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(3) Serial I/O start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to "0" and then serial I/O transmission/reception is started.

(4) Serial I/O control register J1

Register J1 controls the synchronous clock, D6/SCK, D5/SOUT and D4/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.

(5) How to use serial I/O

Figure 40 shows the serial I/O connection example. Serial I/O interrupt is not used in this example. In the actual wiring, pull up the

wiring between each pin with a resistor. Figure 40 shows the data transfer timing and Table 16 shows the data transfer sequence.

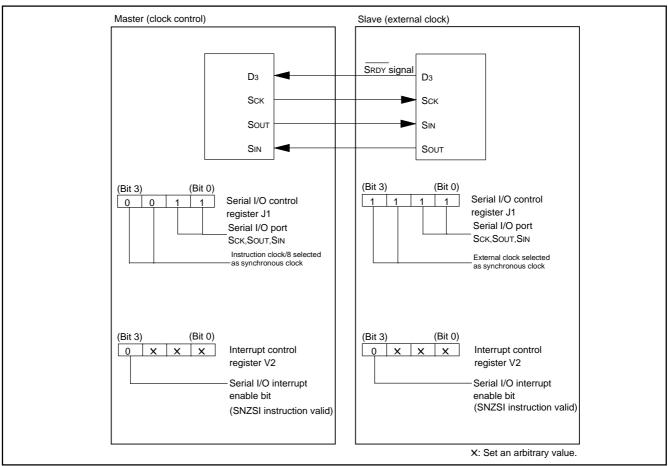


Fig. 40 Serial I/O connection example

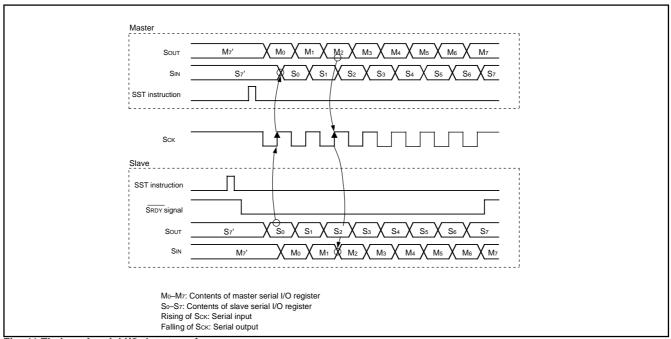


Fig. 41 Timing of serial I/O data transfer

Table 16 Processing sequence of data transfer from master to slave

Table 16 Processing sequence of data transfer fro	om master to slave				
Master (transmission)	Slave (reception)				
[Initial setting]	[Initial setting]				
• Setting the serial I/O mode register J1 and interrupt control register V2 shown in Figure 40.	• Setting serial I/O mode register J1, and interrupt control register V2 shown in Figure 40.				
TJ1A and TV2A instructions	TJ1A and TV2A instructions				
Setting the port received the reception enable signal (SRDY) to the input mode.	Setting the port transmitted the reception enable signal (SRDY) and outputting "H" level (reception impossible).				
(Port D3 is used in this example)	(Port D3 is used in this example)				
SD instruction	SD instruction				
* [Transmission enable state]	*[Reception enable state]				
• Storing transmission data to serial I/O register SI.	• The SIOF flag is cleared to "0."				
TSIAB instruction	SST instruction				
	• "L" level (reception possible) is output from port D3.				
	RD instruction				
[Transmission]	[Reception]				
•Check port D ₃ is "L" level.					
SZD instruction					
Serial transfer starts.					
SST instruction					
•Check transmission completes.	Check reception completes.				
SNZSI instruction	SNZSI instruction				
•Wait (timing when continuously transferring)	• "H" level is output from port D3.				
	SD instruction				
	[Data processing]				

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *. When an external clock is selected as a synchronous clock, the clock is not controlled internally. Control the clock externally because serial transmit/receive is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

LCD FUNCTION

The 4524 Group has an LCD (Liquid Crystal Display) controller/driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W6), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.

4 common signal output pins and 20 segment signal output pins can be used to drive the LCD. By using these pins, up to 80 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2. The internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 17 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
1/2	40 segments	COM ₀ , COM ₁ (Note)
1/3	60 segments	COM0-COM2 (Note)
1/4	80 segments	COM0-COM3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W62), timer LC control bit (W63), and timer LC. Accordingly, the LCD clock frequency (F) is obtained by the following formula. Numbers (① to ③) shown below the formula correspond to numbers in Figure 42, respectively.

 When using the prescaler output (ORCLK) as timer LC count source (W62="1")

• When using the bit 4 of timer 5 as timer LC count source (W62="0")

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)

Frame period =
$$\frac{n}{F}$$
 (s)

F: LCD clock frequency

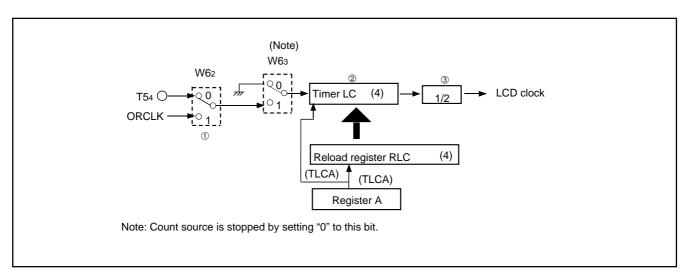


Fig. 42 LCD clock control circuit structure

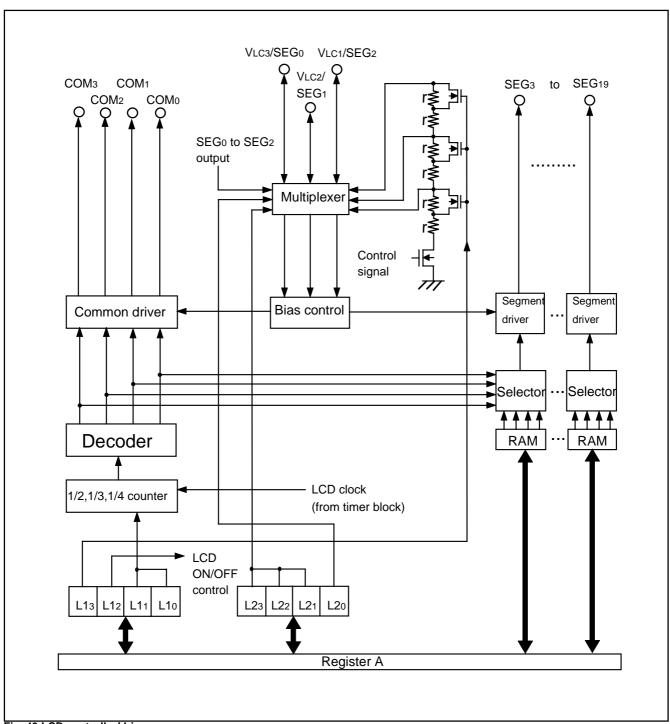


Fig. 43 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

	Z						1						
	Χ			12				13		14			
Υ	Bits	3	2	1	0	3	2	1	0	3	2	1	0
	8	SEG0	SEG ₀	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16
	9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17
	10	SEG2	SEG2	SEG2	SEG2	SEG ₁₀	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18
	11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19
	12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12				
	13	SEG5	SEG5	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13				
	14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14				
	15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15				
	СОМ	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM1	COM ₀

Note: The area marked " ____ " is not the LCD display RAM.

Fig. 44 LCD RAM map

Table 18 LCD control registers

Table 16 LCD Control registers												
LCD control register L1			at reset : 00002		at power down : state retained		R/W TAL1/TL1A					
L13	Internal dividing resistor for LCD power	()	2r X 3, 2r X 2								
LIS	supply selection bit (Note 2)		1	r X 3, r X 2								
L12	LCD control bit	0		Off								
			1	On								
L11	LCD duty and bias selection bits	L11	L10	Duty		Bias	;					
		0	0	Not available								
L10		0	1	1/2 1/2								
		1	0	1/3 1/3								
		1	1	1/4		1/3						

LCD control register L2		at reset : 11112		at power down : state retained	W TL2A	
L23	VLC3/SEGo pin function switch bit (Note 3)	0	SEG ₀			
		1	VLC3			
L22	VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1			
		1	VLC2			
L21	VLC1/SEG2 pin function switch bit (Note 4)	0	SEG2			
		1	VLC1			
L20	Internal dividing resistor for LCD power	0	Internal dividing resistor valid			
	supply control bit	1	Internal dividing resistor invalid			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.
- 3: VLC3 is connected to VDD internally when SEG0 pin is selected.
- 4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

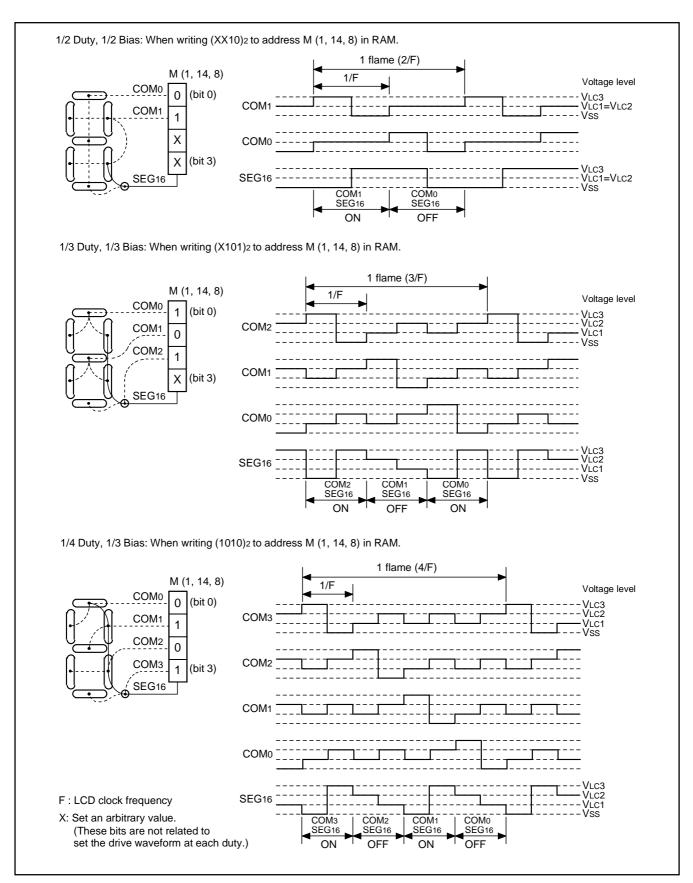


Fig. 45 LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power circuit suitable for the LCD panel.

The LCD control circuit structure is fixed by the following setting.

- ① Set the control of internal dividing resistor by bit 0 of register L2.
- 2 Select the internal dividing resistor by bit 3 of register L1.
- 3 Select the bias condition by bits 0 and 1 of register L1.

· Internal dividing resistor

The 4524 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to "0", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit $\ensuremath{\mathbf{2}}$ of register L1 to "0", the internal dividing resistor is turned off.

The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- L13 = "0", 1/3 bias used: 2r X 3 = 6r
- L13 = "0", 1/2 bias used: 2r X 2 = 4r
- L13 = "1", 1/3 bias used: r X 3 = 3r • L13 = "1", 1/2 bias used: r X 2 = 2r

• VLC3/SEG0 pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEGo pin function is selected, VLC3 is connected to VDD internally.

• VLC2/SEG1, VLC1/SEG2 pin

The selection of VLc2/SEG1 pin function is controlled with the bit 2 of register L2.

The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0<VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin has the same electric potential at 1/2 bias. When SEG1 and SEG2 pin function is selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividingg voltage.

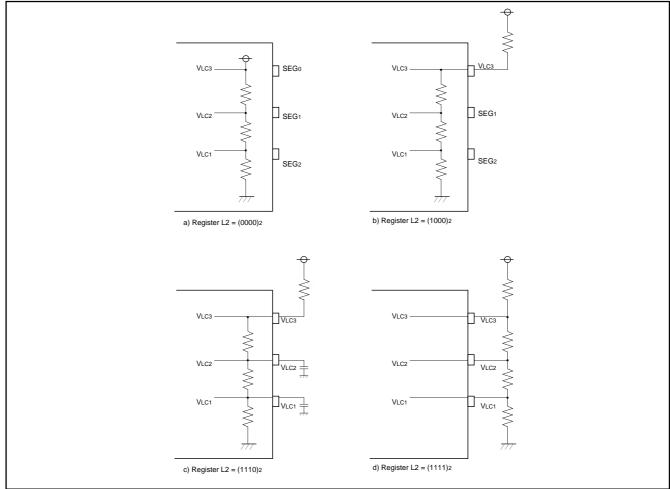


Fig. 46 LCD power source circuit example (1/3 bias condition selected)

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, program starts from address 0 in page 0.

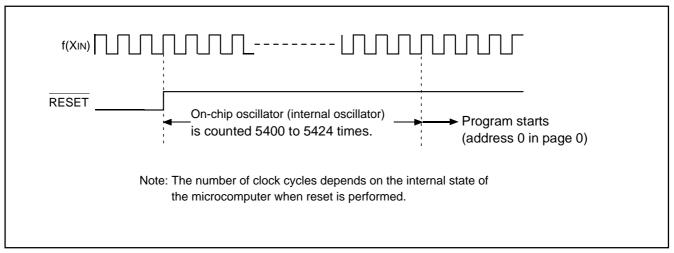


Fig. 47 Reset release timing

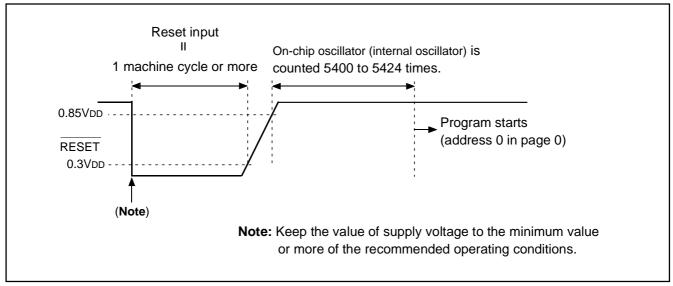


Fig. 48 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to 100 μ s or less. If the rising time ex-

ceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

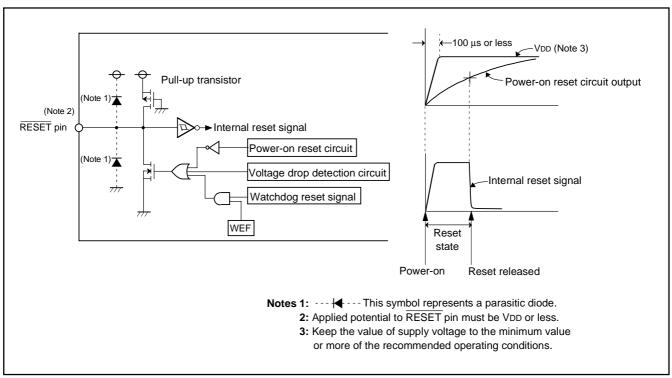


Fig. 49 Structure of reset pin and its peripherals, and power-on reset operation

Table 19 Port state at reset

Name	Function	State	
D0-D3	D0-D3	High-impedance (Notes 1, 2)	
D4/SIN, D5/SOUT, D6/SCK	D4-D6	High-impedance (Notes 1, 2)	
D7/CNTR0	D7	High-impedance (Notes 1, 2)	
D8/INT0, D9/INT1	D8, D9	High-impedance (Note 1)	
P00-P03	P00-P03	High-impedance (Notes 1, 2, 3)	
P10-P13	P10-P13	High-impedance (Notes 1, 2, 3)	
P20/AIN0-P23/AIN3	P20-P23	High-impedance (Note 1)	
P30/AIN4-P33/AIN7	P30-P33	High-impedance (Note 1)	
P40-P43	P40-P43	High-impedance (Notes 1, 2)	
C/CNTR1	С	"L" (Vss) level	

Notes 1: Output latch is set to "1."

- 2: Output structure is N-channel open-drain.
- 3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 50 and 51 show internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 50 are undefined, so set the initial value to them.

Program counter (PC)	0000000	0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.		· · · · · · · · · · · · · · · · · · ·
Interrupt enable flag (INTE)	0	(Interrupt disabled)
Power down flag (P)		
External 0 interrupt request flag (EXF0)		
External 1 interrupt request flag (EXF1)		
Interrupt control register V1		(Interrupt disabled)
Interrupt control register V2		(Interrupt disabled)
Interrupt control register I1		
Interrupt control register I2		
Interrupt control register I3		
Timer 1 interrupt request flag (T1F)		
Timer 2 interrupt request flag (T2F)	=	
Timer 3 interrupt request flag (T3F)	=	
Timer 4 interrupt request flag (T4F)		
Timer 5 interrupt request flag (T5F)		
Watchdog timer flags (WDF1, WDF2)		
Watchdog timer enable flag (WEF)	1	
Timer control register PA		(Prescaler stopped)
Timer control register W1	0 0 0 0	(Timer 1 stopped)
Timer control register W2	0000	(Timer 2 stopped)
Timer control register W3	0 0 0 0	(Timer 3 stopped)
Timer control register W4	0 0 0 0	(Timer 4 stopped)
Timer control register W5	0 0 0 0	(Timer 5 stopped)
Timer control register W6	0 0 0 0	(Timer LC stopped)
Clock control register MR	1 1 0 0	
Serial I/O transmit/receive complation flag (SIOF)	0	
Serial I/O mode register J1	0 0 0 0	(External clock selected,
		serial I/O port not selected)
Serial I/O register SIX	x x x x x x x x	
A/D conversion completion flag (ADF)	0	
A/D control register Q1	0 0 0 0	
A/D control register Q2	0 0 0 0	
A/D control register Q3	0 0 0 0	
Successive approximation register AD	x x x x x x x x	
Comparator register	x x x x x x x x	
LCD control register L1	0 0 0 0	
LCD control register L2		
		"X" represents undefined.

Fig. 50 Internal state at reset

Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K1 Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	
Port output structure control register FR0 Port output structure control register FR1	
Port output structure control register FR1 Port output structure control register FR2	
Port output structure control register FR2 Port output structure control register FR2	
Port output structure control register FR3	
Carry flag (CY)	
Register A	
Register B	
Register D	
• Register E	
Register X	
Register Y	
Register Z	
Stack pointer (SP)	1 1 1 1
Operation source clock	On-chip oscillator (operating)
Ceramic resonator circuit	Operating
RC oscillation circuit	Stop
Quarts-crystal oscillator	Operating

Fig. 51 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

The voltage drop detection circuit is valid when CPU is active while the VDCE pin is "H".

Even after system goes into the power down mode, the voltage drop detection circuit is also valid with the SVDE instruction.

Execution of SVDE instruction is valid only at once.

In order to release the execution of the SVDE instruction, system reset is not required.

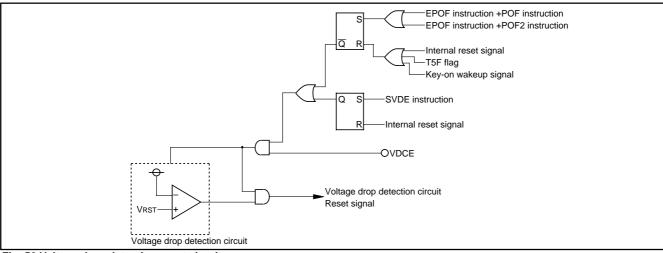


Fig. 52 Voltage drop detection reset circuit

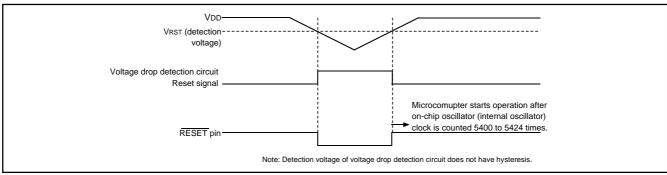


Fig. 53 Voltage drop detection circuit operation waveform

Table 20 Voltage drop detection circuit operation state

	-		
VDCE pin	At CPU operating	At power down (SVDE instruction is not executed)	At power down (SVDE instruction is executed)
"L"	Invalid	Invalid	Invalid
"H"	Valid	Invalid	Valid

■ Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 54);

supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

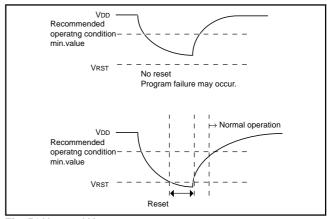


Fig. 54 VDD and VRST

POWER DOWN FUNCTION

The 4524 Group has 2-type power down functions.

System enters into each power down state by executing the following instructions.

Clock operating mode	EPOF and POF instructions
RAM back-up mode	EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- LCD display
- Timer 5

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 5 underflow occurs

in the power down mode.

In either case, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- reset pulse is input to RESET pin,
- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed. In this case, the P flag is "0."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T5F flag.

Table 21 Functions and states retained at power down

	Power do	wn mode
Function	Clock	RAM
Dragram counter (DC) A D	operating	back-up
Program counter (PC), registers A, B,	×	×
carry flag (CY), stack pointer (SP) (Note 2)		
Contents of RAM	0	0
Interrupt control registers V1, V2	X	X
Interrupt control registers I1 to I3	0	0
Selected oscillation circuit	0	0
Clock control register MR	0	0
Timer 1 to timer 4 functions	(Note 3)	(Note 3)
Timer 5 function	0	0
Timer LC function	0	(Note 3)
Watchdog timer function	X (Note 4)	X (Note 4)
Timer control registers PA, W4	×	×
Timer control registers W1 to W3, W5, W6	0	0
Serial I/O function	X	X
Serial I/O control register J1	0	0
A/D function	X	X
A/D control registers Q1 to Q3	0	0
LCD display function	0	(Note 5)
LCD control registers L1, L2	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers	0	0
FR0 to FR3		
External interrupt request flags	X	X
(EXF0, EXF1)		
Timer interrupt request flags (T1F to T4F)	(Note 3)	(Note 3)
Timer interrupt request flag (T5F)	0	0
A/D conversion completion flag (ADF)	X	X
Serial I/O transmit/receive completion flag	X	X
SIOF		
Interrupt enable flag (INTE)	×	×
Watchdog timer flags (WDF1, WDF2)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)	X (Note 4)
Notes 1:"O" represents that the function can be		

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at power down, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at power down.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
- 5: LCD is turned off.
- 6: When the SVDE instruction is executed and "H" level is applied to the VDCE pin, this function is valid at power down.
- 7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 5 interrupt request flag (T5F) is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.

Table 22 shows the return condition for each return source.

(7) Control registers

· Key-on wakeup control register K0

contents of register K0 to register A.

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1
 Register K1 controls the port P1 key-on wakeup function. Set the
 contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the
- Key-on wakeup control register K2
 Register K2 controls the INT0 and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

- Pull-up control register PU1
 Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.
- External interrupt control register I1
 Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT0 pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.
- External interrupt control register I2
 Register I2 controls the valid waveform of the external 1 interrupt, the input control of INT1 pin and the return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 22 Return source and return condition

F	Return source	Return condition	Remarks
signal	Ports P00–P03 Ports P10–P13	Return by an external "L" level input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the power down state.
External wakeup	INTO pin INT1 pin	"L" level input, or rising edge	Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
	ner 5 interrupt uest flag (T5F)	Return by timer 5 underflow or by setting T5F to "1".	Clear T5F with the SNZT5 instruction before system enters into the power down state.
		It can be used in the clock operating mode.	When system enters into the power down state while T5F is "1", system returns from the state immediately because it is recognized as return condition.

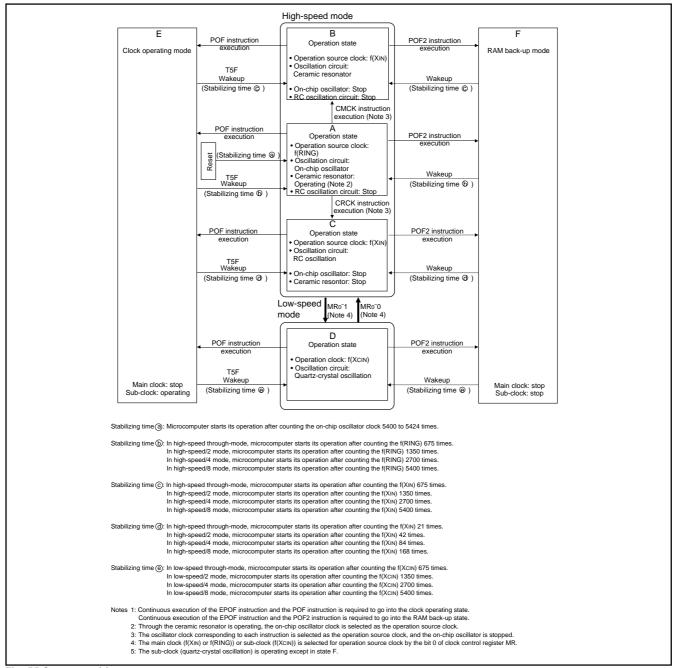


Fig. 55 State transition

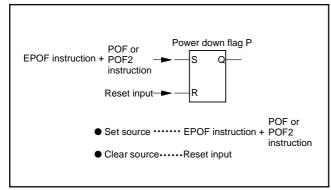


Fig. 56 Set source and clear source of the P flag

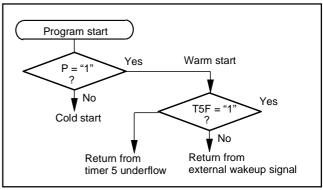


Fig. 57 Start condition identified example using the SNZP instruction

Table 23 Key-on wakeup control register, pull-up control register and interrupt control register

Table 25 Ney-on wakeup control register, pun-up control register and interrupt control register							
Key-on wakeup control register K0		at	reset : 00002	at power down : state retained	R/W TAK0/ TK0A		
K0°	Port P03 key-on wakeup	0	Key-on wakeup not	used			
K03	control bit	1	1 Key-on wakeup used				
1/0-	Port P02 key-on wakeup	0	Key-on wakeup not used				
K02	control bit	1 Key-on wakeup use		ed			
1/0.	Port P01 key-on wakeup	0	Key-on wakeup not used				
K01	control bit	1	Key-on wakeup used				
1/0-	Port P00 key-on wakeup	0	Key-on wakeup not used				
K0 0	control bit	1	Key-on wakeup use	ed			

	Key-on wakeup control register K1	at	reset : 00002	at power down : state retained	R/W TAK1/ TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup use	ed	
K13	control bit	1	Key-on wakeup not	used	
K12	Port P12 key-on wakeup	0 Key-on wakeup not used			
K 12	control bit	1 Key-on wakeup used			
K11	Port P11 key-on wakeup	0	0 Key-on wakeup not used		
NII	control bit	1 Key-on wakeup used			
K10	Port P10 key-on wakeup	0 Key-on wakeup not used			
KIO	control bit	1	Key-on wakeup use	ed	

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/ TK2A
K23	INT1 pin	0	Return by level		
N23	return condition selection bit	1	Return by edge		
K22	INT1 pin	0 Key-on wakeup not used			
N22	key-on wakeup control bit	1 Key-on wakeup used			
K21	INT0 pin	0 Return by level			
N21	return condition selection bit	1 Return by edge			
K20	INT0 pin	0 Key-on wakeup not used			
N20	key-on wakeup control bit	1	Key-on wakeup use	ed	

Note: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/ TPU0A
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
P003	control bit	1 Pull-up transistor ON			
DLIOs	Port P02 pull-up transistor	0 Pull-up transistor OFF			
PU02	control bit	1 Pull-up transistor ON			
DUO	Port P01 pull-up transistor	0	0 Pull-up transistor OFF		
PU01	control bit	1	1 Pull-up transistor ON		
DLIOs	Port P00 pull-up transistor	0 Pull-up transistor OFF			
PU00	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1 Pull-up transistor ON			
DI I4-	Port P12 pull-up transistor	0 Pull-up transistor OFF			
PU12	control bit	1 Pull-up transistor ON			
DUI4.	Port P11 pull-up transistor	0	0 Pull-up transistor OFF		
PU11	control bit	1	1 Pull-up transistor ON		
DUIA	Port P10 pull-up transistor	0 Pull-up transistor OFF			
PU10	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
l13	INT0 pin input control bit (Note 2)	0	INT0 pin input disa	abled	
113	in 10 pin input control bit (Note 2)	1	INT0 pin input ena	bled	
l12	Interrupt valid waveform for INTO pin/	0	Falling waveform/" instruction)	L" level ("L" level is recognized with	the SNZI0
112	return level selection bit (Note 2)	1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI0
I1 ₁	INITO nin adda datastian aircuit control hit	0	One-sided edge de	etected	
''1	INT0 pin edge detection circuit control bit	1	Both edges detected		
110	INT0 pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected	
110	circuit selection bit			t synchronous circuit selected	

	Interrupt control register I2		reset : 00002	at power down : state retained	R/W TAI2/TI2A	
120	INT1 pip input control bit (Note 2)	0	INT1 pin input disa	abled		
123	I23 INT1 pin input control bit (Note 2)		INT1 pin input ena	INT1 pin input enabled		
		0	Falling waveform/"	L" level ("L" level is recognized with	the SNZI1	
120	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	instruction)			
122		4	Rising waveform/"H" level ("H" level is recognized with the SNZI1			
		1	instruction)			
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected			
121	INT I pin eage detection circuit control bit	1	Both edges detected	ed		
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count start	synchronous circuit not selected		
120	circuit selection bit	1	Timer 3 count start synchronous circuit selected			

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 58 shows the structure of the clock control circuit.

RC oscillator, respectively.

The 4524 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4524 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

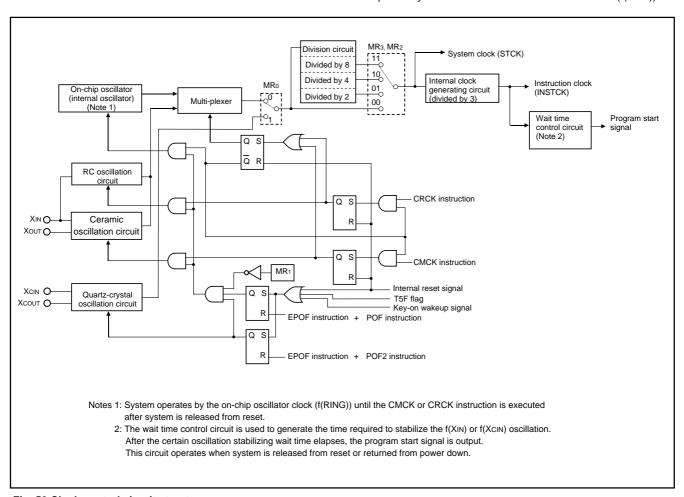


Fig. 58 Clock control circuit structure

(1) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction is valid only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, this MCU operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator or the RC oscillation, connect XIN pin to VSs and leave XOUT pin open (Figure 60).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that margin of frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 61).

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 62).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

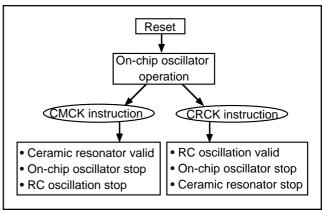


Fig. 59 Switch to ceramic oscillation/RC oscillation

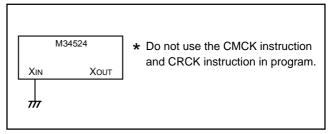


Fig. 60 Handling of XIN and XOUT when operating on-chip oscillator

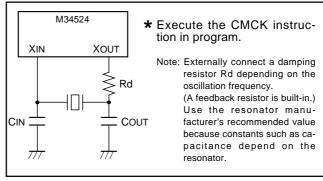


Fig. 61 Ceramic resonator external circuit

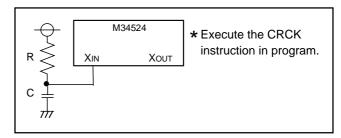
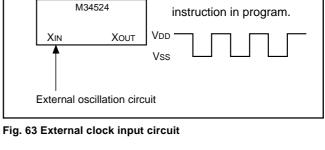


Fig. 62 External RC oscillation circuit

* Execute the CMCK

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 63).


Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down function (POF or POF2 instruction) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(XCIN)

The quartz-crystal oscillator can be used for the sub-clock signal f(XCIN). Connect a quartz-crystal oscillator and this external circuit to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 64).

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

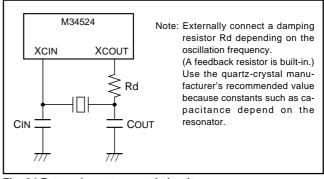


Fig. 64 External quartz-crystal circuit

Table 24	l Clock	control	register	MR
----------	---------	---------	----------	----

Clock control register MR			at reset : 11002		at power down : state retained	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode (free	quency not divided)	
	Operation mode selection bits	0	1	Frequency divided I	by 2 mode	
MR ₂		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided I	by 8 mode	
MR1	Main clock oscillation circuit control bit	C)	Main clock oscillation	on enabled	
IVIIX	Main clock oscillation circuit control bit	1		Main clock oscillation	on stop	
MR ₀	System clock selection bit	C)	Main clock (f(XIN) o	r f(RING))	
IVIKU		1		Sub-clock (f(XCIN))		

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

- 1.Mask ROM Order Confirmation Form*
- 2.Mark Specification Form*
- 3. Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

*For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- · use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at power down. After system is returned from power down, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

® Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

② Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

® Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data

Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

© Timer 4

Avoid a timing when timer 4 underflows to stop timer 4.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

11 Timer 5

Stop timer 5 counting to change its count source.

Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

®Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction, the WRST instruction continuously, and clear the WEF flag to "0".
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the WRST instruction before system enters into the power down state.

Multifunction

- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input of ports D4–D6 can be used even when SIN, SOUT and SCK pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin are selected.
- Be careful that the input of port D7 can be used even when output of CNTR0 pin are selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin are selected.

® Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

16 D8/INT0 pin

• Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register I1 in program, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 65⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 65©)

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 65³).

```
ΙA
           ; (XXX02)
TV1A
           ; The SNZ0 instruction is valid ..... ①
LA
           ; (1XXX2)
TI1A
           ; Control of INT0 pin input is changed
NOP
           ...... 2
SNZ0
           ; The SNZ0 instruction is executed
           (EXF0 flag cleared)
NOP
           :
  X: these bits are not used here.
```

Fig. 65 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared, the power down function is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled, invalidate the key-on wakeup function of INT0 pin (register K20 = "0") before system goes into the power down mode. (refer to Figure 66①).

```
LA 0 ; (XXX02)

TK2A ; INT0 key-on wakeup invalid ....... ①

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 66 External 0 interrupt program example-2

Note on bit 2 of register I1

When the interrupt valid waveform of the Ds/INT0 pin is changed with the bit 2 of register I1 in program, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 67^①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 67②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 67³).

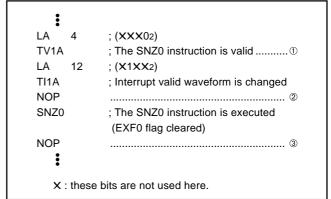


Fig. 67 External 0 interrupt program example-3

① D9/INT1 pin

• Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in program, be careful about the following notes.

Depending on the input state of the Dg/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 68^①) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 682).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 68³).

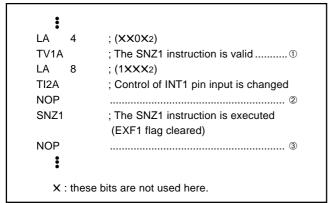


Fig. 68 External 1 interrupt program example-1

- Note [2] on bit 3 of register I2
 - When the bit 3 of register I2 is cleared, the power down function is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled, invalidate the key-on wakeup function of INT1 pin (register K22 = "0") before system goes into the power down mode. (refer to Figure 69①).

```
LA 0 ; (X0XX2)

TK2A ; INT1 key-on wakeup invalid ...... ①

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 69 External 1 interrupt program example-2

Note on bit 2 of register I2

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in program, be careful about the following notes.

Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 70①) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 70®).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 70³).

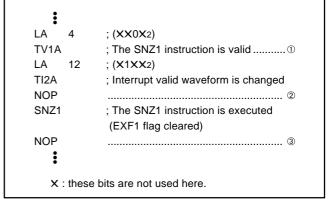


Fig. 70 External 1 interrupt program example-3

[®]A/D converter-1

- When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."
- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

```
LA 8 ; (X0XX2)

TV2A ; The SNZAD instruction is valid .......①

LA 0 ; (0XXX2)

TQ1A ; Operation mode of A/D converter is changed from comparator mode to A/D conversion mode.

SNZAD

NOP

X: these bits are not used here.
```

Fig. 71 A/D converter program example-3

A/D converter-2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins (Figure 72).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 73. In addition, test the application products sufficiently.

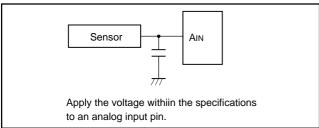


Fig. 72 Analog input external circuit example-1

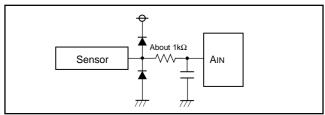


Fig. 73 Analog input external circuit example-2

Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 74);

supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

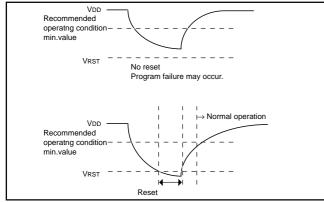


Fig. 74 VDD and VRST

POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

@On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that margin of frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the margin of frequency of the on-chip oscillator clock.

External clock

When the external clock signal is used as the main clock (f(XIN)), note that the power down mode (POF or POF2 instruction) cannot be used.

Difference between Mask ROM version and One Time PROM version Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, built-in ROM, and a layout pattern.

- a characteristic value
- the amount of noise-proof
- a margin of operation
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at power down: 00002	R/W TAV1/TV1A
V13	V/4- Times O interment anable bit		Interrupt disabled	(SNZT2 instruction is valid)	
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)	
V 12	Timer i interrupt eriable bit	1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)	
V 11	External i interrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)	
V10	External 0 interrupt anable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
V 10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A
\/Os	Timer 4, serial I/O interrupt enable bit	0	Interrupt disabled	Interrupt disabled (SNZT4, SNZSI instruction is valid)	
V23	Timer 4, serial i/O interrupt enable bit	1	Interrupt enabled (SNZT4, SNZSI instruction is invalid))
\/Oc	A/D interment anable hit	0	Interrupt disabled	(SNZAD instruction is valid)	
V22	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)	
\/O.	Timer 5 interrupt enable bit	0	Interrupt disabled	(SNZT5 instruction is valid)	
V21	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT5 instruction is invalid)	
\/Os	Timor 3 interrupt anable hit	0	Interrupt disabled	(SNZT3 instruction is valid)	
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)	

	Interrupt control register I1		reset: 00002	at power down : state retained	R/W TAI1/TI1A
l13	INTO pin input control bit (Note 2)	0	INT0 pin input disa	abled	
113	INTO pin input control bit (Note 2)		INT0 pin input ena	bled	
		0	Falling waveform/"	L" level ("L" level is recognized with	the SNZI0
112	Interrupt valid waveform for INT0 pin/	U	instruction)		
112	return level selection bit (Note 2)	4	Rising waveform/"H" level ("H" level is recognized with the SNZI0		
		'	instruction)		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
'''	IN 10 pin eage detection circuit control bit	1	Both edges detected		
I10	INT0 pin Timer 1 count start synchronous	0	Timer 1 count start	synchronous circuit not selected	
110	circuit selection bit		Timer 1 count start synchronous circuit selected		

	Interrupt control register I2		reset: 00002	at power down : state retained	R/W TAI2/TI2A
120	INT1 pin input control bit (Note 2)	0	INT1 pin input disa	abled	
123	I23 INT1 pin input control bit (Note 2)		INT1 pin input ena	bled	
			Falling waveform/"	L" level ("L" level is recognized with	the SNZI1
122	Interrupt valid waveform for INT1 pin/	0	instruction)		
122	return level selection bit (Note 2)	1	Rising waveform/"H" level ("H" level is recognized with the SNZI1		
		'	instruction)		
I2 ₁	INT1 pin edge detection circuit control bit	0	One-sided edge de	etected	
121	in i i pin eage detection circuit control bit	1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count star	t synchronous circuit not selected	
120	circuit selection bit	1	Timer 3 count star	rt synchronous circuit selected	

Interrupt control register I3		at reset : 02		at power down : state retained	R/W TAI3/TI3A
I3 0	Timer 4, serial I/O interrupt source selection	0	Timer 4 interrupt va	alid, serial I/O interrupt invalid	
130	bit	1	Serial I/O interrupt	valid, timer 4 interrupt invalid	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set to "1".

	Clock control register MR		at reset : 11002		at power down : state retained	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode (free	uency not divided)	
	Operation mode selection bits MR2	0	1	Frequency divided b	by 2 mode	
MR ₂		1	0	Frequency divided b	by 4 mode	
		1	1	Frequency divided b	by 8 mode	
MR1	Main clock oscillation circuit control bit	C)	Main clock oscillation	n enabled	
IVIKT	INIAIN CIOCK OSCIIIATION CIFCUIT CONTROL DIT	1		Main clock oscillation	on stop	
MRo	Contain alone and attended	C	0 Main clock (f(XIN) or f(RING))		r f(RING))	
IVINO	System clock selection bit			Sub-clock (f(XCIN))		

Timer control register PA		at reset : 02		at power down : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
FAU	Frescaler control bit	1	Operating		

	Timer control register W1		at	reset : 00002	at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	()	Timer 1 count auto	-stop circuit not selected	
*****	bit (Note 2)	1		Timer 1 count auto	-stop circuit selected	
W12	Times described hit	0		Stop (state retaine	d)	
VV 12	Timer 1 control bit	•	1	Operating		
		W11	W10		Count source	
W11		0	0	Instruction clock (II	NSTCK)	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
W10		1	0	Timer 5 underflow signal (T5UDF)		
		1	1	CNTR0 input		

	Timer control register W2		at reset : 00002		at power down : state retained	R/W TAW2/TW2A	
W23	CNTR0 output control bit	0		Timer 1 underflow	Timer 1 underflow signal divided by 2 output		
1125	Civillo duput control bit	(1		Timer 2 underflow	signal divided by 2 output	
W22	W22 Timer 2 control bit		0	Stop (state retained	top (state retained)		
VVZ2	Timer 2 control bit		1	Operating			
		W21	W20		Count source		
W21		0	0	System clock (STC	K)		
	Timer 2 count source selection bits	0	1	Prescaler output (C	ORCLK)		
W20		1	0	Timer 1 underflow signal (T1UDF)			
		1	1	PWM signal (PWMOUT)			

	Timer control register W3	а		reset : 00002	at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	0		Timer 3 count auto	-stop circuit not selected	•
1103	bit (Note 3)	1 0 1 W31 W30	1	Timer 3 count auto-stop circuit selected		
W32	Times 2 control hit	0		Stop (state retained)		
VV32	W32 Timer 3 control bit		1	Operating		
		W31	W30	Count source		
W31	The second secon	0	0	PWM signal (PWM	OUT)	
	Timer 3 count source selection bits	0	1	Prescaler output (C	DRCLK)	
W30	W30 (Note 4)	1	0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- R Tepresents read enabled, and W Tepresents white enabled.
 This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
 This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
 Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

	Timer control register W4	at	reset : 00002	at power down : 00002	R/W TAW4/TW4A		
W43	W43 CNTR1 output control bit		CNTR1 output inva	alid			
VV+3	DWM signal	1	CNTR1 output vali				
\\//10	W42 PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid				
VV42		1	PWM signal "H" interval expansion function valid				
W41	Timer 4 control bit	0	Stop (state retained)				
VV41	Timer 4 control bit	1	Operating				
W40	Timer 4 count source selection bit	0	XIN input				
VV40	Timer 4 count source selection bit	1	Prescaler output (0	ORCLK) divided by 2			

	Timer control register W5		at reset : 00002		at power down : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no function, but read/write is enabled.		
W52	Timer 5 control bit	0		Stop (state initialized)		
VV32	VV52 Timer 5 control bit		1 Operating			
		W51	W50		Count value	
W51		0	0	Underflow occurs e	every 8192 counts	
	Timer 5 count value selection bits	0	1	Underflow occurs e	every 16384 counts	
W50	Times o count value selection bits	1	0	Underflow occurs e	every 32768 counts	
		1	1	Underflow occurs e	every 65536 counts	

	Timer control register W6		reset : 00002	at power down : state retained	R/W TAW6/TW6A		
W63	W63 Timer LC control bit		Stop (state retaine	d)			
VV03	WOS TIME! LO CONTION DIL	1	Operating				
W6a	W62 Timer LC count source selection bit	0	Bit 4 (T54) of timer 5				
VV02		1	Prescaler output (ORCLK)				
W61	CNTR1 output auto-control circuit	0	CNTR1 output auto-control circuit not selected				
VVO	selection bit	1	CNTR1 output auto-control circuit selected				
W60	D7/CNTR0 pin function selection bit	0 D7(I/O)/CNTR0 inp		out			
VV00	(Note 2)	1	CNTR0 input/output/D7 (input)				

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

	Serial I/O control register J1		at	eset: 00002 at power down: state retained		R/W TAJ1/TJ1A
		J13	J12		Synchronous clock	
J13		0	0	Instruction clock (II	NSTCK) divided by 8	
	Serial I/O synchronous clock selection bits	0	1	Instruction clock (II	NSTCK) divided by 4	
J12	12	1	0	Instruction clock (INSTCK) divided by 2		
		1	1	External clock (Scr	(input)	
		J11	J1 0		Port function	
J11		0	0	D6, D5, D4 selected	I/Sck, Sout, Sin not selected	
	Serial I/O port function selection bits	0	1	SCK, SOUT, D4 sele	cted/D6, D5, SIN not selected	
J 10		1	0	SCK, D5, SIN select	ed/D6, Sout, D4 not selected	
		1	1	SCK, SOUT, SIN sele	SCK, SOUT, SIN selected/D6, D5, D4 not selected	

	A/D control register Q1	at reset : 00002		t : 00002	at power down : state retained	R/W TAQ1/TQ1A	
Q13	A/D operation mode selection bit	A/D conversion mode			on mode		
	7 4 2 operation meas selection at	Coi	mpar	ator	mode		
		Q12	Q11	Q10		Analog input pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
	Analog input pin selection bits	0	1	0	AIN2		
Q11	Analog input pin selection bits	0	1	1	AIN3		
		1	0	0	AIN4		
		1	0	1	AIN5		
Q10		1	1	0	AIN6		
		1	1	1	AIN7		

	A/D control register Q2	at	reset : 00002	at power down : state retained	R/W TAQ2/TQ2A
Q23	P23/AIN3 pin function selection bit	0	P23		
Q23	237 till 5 pir rundum selection bit	1	AIN3		
022	Q22 P22/AIN2 pin function selection bit	0	P22		
Q22		1	AIN2		
Q21	P21/AIN1 pin function selection bit	0	P21		
QZ1	P21/AIN1 pill fullction selection bit	1	AIN1		
Q20	P20/AINIO pin function coloction bit	0	P20		
Q20	P20/AIN0 pin function selection bit	1	AIN0		

	A/D control register Q3		reset : 00002	at power down : state retained	R/W TAQ3/TQ3A
Q33	P33/AIN7 pin function selection bit	0	P33		
QUS	200 1 00/7 MAY PIN TUNCTION SOLUTION BIL	1	AIN7		
Q32 P32/AIN6 pin function selection	P32/AIN6 pin function selection bit	0	P32		
Q32	P32/AIN6 pin function selection bit	1	AIN6		
Q31	P31/AIN5 pin function selection bit	0	P31		
QST	F31/Alins pill fullction selection bit	1	AIN5		
Q30	P30/AIN4 pin function selection bit	0	P30		
Q30		1	AIN4		

Note: "R" represents read enabled, and "W" represents write enabled.

	LCD control register L1		at	reset : 00002	at power dov	vn : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	0		2r X 3, 2r X 2			
LIS	supply selection bit (Note 2)	1	l	r X 3, r X 2			
L12 1.Cr	LCD control bit	()	Off			
L12		1	ı	On			
		L11	L10	Duty		Bias	;
L11		0	0		Not av	ailable	
	LCD duty and bias selection bits	0	1	1/2		1/2	
L10		1	0	1/3		1/3	
-10		1	1	1/4		1/3	

	LCD control register L2		reset : 11112	at power down : state retained	W TL2A		
L23	L23 VLC3/SEG0 pin function switch bit (Note 3)		0 SEG0				
LZ3	vico/olego pin function switch bit (Note 3)	1	VLC3				
1.00	L22 VLc2/SEG1 pin function switch bit (Note 4)	0	SEG1				
LZ2	VLC2/SEG1 pin function switch bit (Note 4)	1	VLC2				
1.04	VI 04/SECo pin function quitab bit (Note 4)	0	SEG2				
L21	VLC1/SEG2 pin function switch bit (Note 4)	1	VLC1				
1.20	Internal dividing resistor for LCD power	0 Internal dividing resi		sistor valid			
L20	supply control bit	1	Internal dividing res	sistor invalid			

Pull-up control register PU0		at	reset : 00002	at power down : state retained	R/W TAPU0/ TPU0A	
DLIO	Port P03 pull-up transistor	0	Pull-up transistor O	FF		
PU03	control bit	1 Pull-up transistor ON		N		
DUIG	Port P02 pull-up transistor	0 Pull-up transistor OI		FF		
PU02	control bit	1	Pull-up transistor ON			
DUIG	Port P01 pull-up transistor	0	Pull-up transistor O	FF		
PU01	control bit	1	Pull-up transistor ON			
DUO	Port P00 pull-up transistor	0	Pull-up transistor O	FF		
PU00	control bit	1	Pull-up transistor O	N		

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A	
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF		
PU13	control bit	1 Pull-up transistor ON				
DUA	Port P12 pull-up transistor	0	0 Pull-up transistor OFF			
PU12	control bit	1 Pull-up transistor ON				
DUA.	Port P11 pull-up transistor	0	Pull-up transistor O	FF		
PU11	control bit	1 Pull-up transistor ON		N		
DUA	Port P10 pull-up transistor	0 Pull-up transistor OFF				
PU10	control bit	1	Pull-up transistor O	N		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.
- 3: VLC3 is connected to VDD internally when SEG0 pin is selected.

 4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Port output structure control register FR0		at reset : 00002		at power down : state retained	W TFR0A	
FR03	Ports P12, P13 output structure selection	0	N-channel open-dra	ain output		
FR03	bit	1 CMOS output				
ED00	Ports P10, P11 output structure selection	0 N-channel open-drain output				
FR02	FR02 bit		CMOS output			
ED0.	Ports P02, P03 output structure selection	0	N-channel open-dra	ain output		
FR01	bit	1	CMOS output			
ED00	Ports P00, P01 output structure selection	0 N-channel open-o		-drain output		
FR00	bit	1	CMOS output			

Port output structure control register FR1		at reset: 00002		at power down : state retained	W TFR1A		
ED10	FR13 Port D3 output structure selection bit		N-channel open-dra	ain output			
FKI3			CMOS output	CMOS output			
ED4e	ED4. Deat December of street and action 1.11	0	N-channel open-drain output				
FR12	Port D2 output structure selection bit	1	CMOS output				
ED4.	Bart Barata da tractica a la disa di la	0	N-channel open-drain output				
FR11	Port D1 output structure selection bit	1	CMOS output				
FR10	Don't Do cutout atmost up calcution hit	0	N-channel open-drain output				
FK10	Port D ₀ output structure selection bit	1	CMOS output				

Por	Port output structure control register FR2		reset : 00002	at power down : state retained	W TFR2A
ED20	Dort D7/CNTD0 output of ructure coloction hit	0	N-channel open-dra	ain output	
FR23	FR23 Port D7/CNTR0 output structure selection bit		CMOS output		
ED20	FR22 Port D6/SCK output structure selection bit	0	N-channel open-drain output		
FR22		1	CMOS output		
ED0.	Dort De/Court autout atmost us aslastica hit	0	N-channel open-drain output		
FR21	Port D5/Sout output structure selection bit	1	CMOS output		
ED0s	FR20 Port D4/SIN output structure selection bit	0	N-channel open-drain output		
FR20		1	CMOS output		

Port output structure control register FR3		at reset : 00002		at power down : state retained	W TFR3A	
ED20	FR33 Port P43 output structure selection bit		N-channel open-dra	ain output		
FR33			CMOS output			
ED20	FD0	0	N-channel open-drain output			
FR32	Port P42 output structure selection bit	1	CMOS output			
ED0.	Bart BA	0	N-channel open-drain output			
FR31	Port P41 output structure selection bit	1	CMOS output			
ED20	Dowt D.40 output atmost use calcution in the	0	N-channel open-drain output			
FR30	Port P40 output structure selection bit	1	CMOS output			

Note: "R" represents read enabled, and "W" represents write enabled.

	Key-on wakeup control register K0		reset : 00002	at power down : state retained	R/W TAK0/ TK0A
KOo	K03 Port P03 key-on wakeup control bit		Key-on wakeup not	used	
KU3			Key-on wakeup used		
I/Os	Dort Doo key on wakeyn central hit	0	Key-on wakeup not used		
K02	Port P02 key-on wakeup control bit	1	Key-on wakeup used		
KO4	Port P04 key on wekeyn central hit	0	Key-on wakeup not used		
K01	Port P01 key-on wakeup control bit	1	Key-on wakeup used		
K0°	K00 Port P00 key-on wakeup control bit	0	Key-on wakeup not used		
N00		1	Key-on wakeup used		

	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A		
K10	Dort D4a key on wakeyn central hit	0	Key-on wakeup not	used			
K13	K13 Port P13 key-on wakeup control bit		Key-on wakeup used				
K12	V4	0	Key-on wakeup not used				
K12	Port P12 key-on wakeup control bit	1	Key-on wakeup used				
124.	Best B4 along a sector late	0	Key-on wakeup not used				
K11	Port P11 key-on wakeup control bit	1	Key-on wakeup used				
1/4 0	Part P4a lass as such as a saturable to	0	Key-on wakeup not used				
K10	Port P10 key-on wakeup control bit	1	Key-on wakeup used				

	Key-on wakeup control register K2		reset : 00002	at power down : state retained	R/W TAK2/ TK2A		
K2a	K23 INT1 pin return condition selection bit		Returned by level				
N23			Returned by edge	Returned by edge			
K22	INITA nin koy on wakaya cantral hit	0	Key-on wakeup invalid				
N22	INT1 pin key-on wakeup control bit	1	Key-on wakeup valid				
K21	INITO min and turn and distant and action his	0	Returned by level				
K21	INT0 pin return condition selection bit	1	Returned by edge				
V20	INITO pin key on wekeyn central hit	0	Key-on wakeup invalid				
K20	INT0 pin key-on wakeup control bit	1	Key-on wakeup valid				

Note: "R" represents read enabled, and "W" represents write enabled.

4524 Group INSTRUCTIONS

INSTRUCTIONS

The 4524 Group has the 136 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	T3	Timer 3
- V1	Interrupt control register V1 (4 bits)	T4	Timer 4
V2	Interrupt control register V2 (4 bits)	T5	Timer 5
11	Interrupt control register I1 (4 bits)	TLC	Timer LC
12	Interrupt control register I2 (4 bits)	T1F	Timer 1 interrupt request flag
13	Interrupt control register I3 (1 bit)	T2F	Timer 2 interrupt request flag
MR	Clock control register MR (4 bits)	T3F	Timer 3 interrupt request flag
PA	Timer control register PA (1 bit)	T4F	Timer 4 interrupt request flag
W1	Timer control register W1 (4 bits)	T5F	Timer 5 interrupt request flag
W2	Timer control register W2 (4 bits)	WDF1	Watchdog timer flag
W3	Timer control register W3 (4 bits)	WEF	Watchdog timer enable flag
W4	Timer control register W4 (4 bits)	INTE	Interrupt enable flag
W5	Timer control register W5 (4 bits)	EXF0	External 0 interrupt request flag
W6	Timer control register W6 (4 bits)	EXF1	External 1 interrupt request flag
J1	Serial I/O control register J1 (4 bits)	P	Power down flag
Q1	A/D control register Q1 (4 bits)	ADF	A/D conversion completion flag
Q2	A/D control register Q2 (4 bits)	SIOF	Serial I/O transmit/receive completion flag
Q3	A/D control register Q3 (4 bits)	3101	Genal i/O transmit/receive completion hag
L1	LCD control register L1 (4 bits)	D	Port D (10 bits)
L2	LCD control register L2 (4 bits)	P0	Port P0 (4 bits)
PU0	Pull-up control register PU0 (4 bits)	P1	Port P1 (4 bits)
PU1	Pull-up control register PU1 (4 bits)	P2	Port P2 (4 bits)
FR0	Port output format control register FR0 (4 bits)	P3	Port P3 (4 bits)
FR1	Port output format control register FR1 (4 bits)	P4	Port P4 (4 bits)
FR2	Port output format control register FR2 (4 bits)	C	Port C (1 bit)
FR3	Port output format control register FR3 (4 bits)		Torro (Torr)
K0	Key-on wakeup control register K0 (4 bits)	V	Hexadecimal variable
K1	Key-on wakeup control register K0 (4 bits)	X	Hexadecimal variable
K2	Key-on wakeup control register K1 (4 bits)	У	Hexadecimal variable
I		Z	
X Y	Register X (4 bits)	p	Hexadecimal variable Hexadecimal constant
Z	Register Y (4 bits) Register Z (2 bits)	n :	Hexadecimal constant
DP	, ,		Hexadecimal constant
	Data pointer (10 bits)	J 000000000000000000000000000000000000	
l _{BC}	(It consists of registers X, Y, and Z)	A3A2A1A0	Binary notation of hexadecimal variable A
PC PCH	Program counter (14 bits)		(same for others)
PCH PCL	High-order 7 bits of program counter Low-order 7 bits of program counter		Direction of data mayament
1	. 6	←	Direction of data movement
SK	Stack register (14 bits X 8)	$\stackrel{\longleftrightarrow}{\circ}$	Data exchange between a register and memory Decision of state shown before "?"
SP CY	Stack pointer (3 bits) Carry flag	?	Contents of registers and memories
RPS	Prescaler reload register (8 bits)	()	
RPS R1	, ,	M(DP)	Negate, Flag unchanged after executing instruction
	Timer 1 reload register (8 bits) Timer 2 reload register (8 bits)	, ,	RAM address pointed by the data pointer
R2	• , ,	a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R3	Timer 4 relead register (8 bits)	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R4L	Timer 4 relead register (8 bits)		in page p5 p4 p3 p2 p1 p0
R4H	Timer 4 reload register (8 bits)	C +	Hex. C + Hex. number x
RLC	Timer LC reload register (4 bits)	х	

Note: Some instructions of the 4524 Group has the skip function to unexecute the next described instruction. The 4524 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

4524 Group

INDEX LIST OF INSTRUCTION FUNCTION

$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ = 0 to 15 $(Y) \leftarrow (Y) + 1$ $(M(DP)) \leftarrow (A)$	131, 132 125, 132
$= 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$ $(M(DP)) \leftarrow (A)$	125, 132
$(M(DP)) \leftarrow (A)$	125, 132
	125, 132
$(X) \leftarrow (X)EXOR(j)$	
= 0 to 15	
(A) ← n n = 0 to 15	98, 134
(SP) ← (SP) + 1	113, 134
(SK(SP)) ← (PC) (PCH) ← p	
$(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$	
$(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$	
(SP) ← (SP) – 1	
$(A) \leftarrow (A) + (M(DP))$	92, 134
$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	92, 134
$(A) \leftarrow (A) + n$ n = 0 to 15	92, 134
$(A) \leftarrow (A) \text{ AND } (M(DP))$	93, 134
$(A) \leftarrow (A) \text{ OR } (M(DP))$	100, 134
	•
(CY) ← 1	104, 134
$(CY) \leftarrow 0$	102, 134
	109, 134
	95, 134
→ [CY] → [A3A2A1A0] —	101, 134
į	$CY) = 0?$ $A) \leftarrow (\overline{A})$ $CY \rightarrow A3A2A1A0$

Note: p is 0 to 63 for M34524M8, p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED.

INSTRUCTIONS 4524 Group

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3	103, 134		DI	(INTE) ← 0	96, 138
Bit operation	RB j	(Mj(DP)) ← 0 j = 0 to 3	101, 134		EI SNZ0	(INTE) ← 1 V10 = 0: (EXF0) = 1 ?	96, 138 105, 138
Bit o	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	109, 134			After skipping, (EXF0) ← 0 V10 = 1: NOP	
trison	SEAM	(A) = (M(DP)) ?	105, 134		SNZ1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: NOP	105, 138
Comparison operation	SEA n	(A) = n ? n = 0 to 15	105, 134		SNZI0	I12 = 1 : (INT0) = "H" ? I12 = 0 : (INT0) = "L" ?	106, 138
	B a BL p, a	(PCL) ← a6-a0 (PCH) ← p	93, 136 93, 136	ion	SNZI1		106, 138
Branch operation		(PCL) ← a6–a0		Interrupt operation	TAV1	(A) ← (V1)	118, 138
Bra	BLA p	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	93, 136	Interrup	TV1A	(V1) ← (A)	128, 138
	ВМ а	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	94, 136		TAV2	(A) ← (V2)	118, 138
	(PCH) ← 2 (PCL) ← a6-a0			TV2A	(V2) ← (A)	128, 138	
Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	94, 136		TAI1	$(A) \leftarrow (I1)$ $(I1) \leftarrow (A)$	114, 138 123, 138
routine		(PCH) ← p (PCL) ← a6-a0			TAI2	(A) ← (I2)	114, 138
Sub	BMLA p	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	94, 136		TI2A	(I2) ← (A)	123, 138
		(PCH) ← p (PCL) ← (DR2–DR0, A3–A0)			TAI3	$(A_0) \leftarrow (I_{30}), (A_{3}-A_{1}) \leftarrow 0$	114, 138
	RTI	$(PC) \leftarrow (SK(SP))$	103, 136		TI3A	(I30) ← (A0)	123, 138
		(SP) ← (SP) − 1			TPAA	(PA0) ← (A0)	126, 138
	RT	(PC) ← (SK(SP)) (SP) ← (SP) − 1	103, 136		TAW1	(A) ← (W1)	119, 138
Return operation	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	103, 136	Timer operation	TW1A	$(W1) \leftarrow (A)$ $(A) \leftarrow (W2)$	129, 138 119, 138
Returr				Timer	TW2A	(W2) ← (A)	129, 138
					TAW3	(A) ← (W3)	119, 138
		34524M8, p is 0 to 95 for M34524MC			TW3A	(W3) ← (A)	129, 138

Note: p is 0 to 63 for M34524M8, p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	TAW4	(A) ← (W4)	119, 138		T4HAB	(R4H7−R4H4) ← (B)	110, 140
						$(R4H3-R4H0) \leftarrow (A)$	
	TW4A	$(W4) \leftarrow (A)$	129, 138				
					TR1AB	(R17–R14) ← (B)	127, 140
	TAW5	(A) ← (W5)	120, 140			(R13–R10) ← (A)	
	TW5A	(W5) ← (A)	130, 140		TR3AB	(R37–R34) ← (B)	128, 140
	177071	(****) \ (**)	100, 140		INOAD	$(R33-R30) \leftarrow (A)$	120, 140
	TAW6	(A) ← (W6)	121, 140				
					T4R4L	(T47–T44) ← (R4L7–R4L4)	111, 140
	TW6A	(W6) ← (A)	130, 140			(T43–T40) ← (R4L3–R4L0)	
		(5) (750 750)					
	TABPS	$(B) \leftarrow (TPS7-TPS4)$	113, 140	atio	TLCA	(LC) ← (A)	125, 140
		$(A) \leftarrow (TPS3-TPS0)$		Timer operation	011774	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	407.440
	TDCAD	(DDC= DDC4) ((D)	126 140	0 70	SNZT1	V12 = 0: (T1F) = 1 ?	107, 142
	TPSAB	$(RPS7-RPS4) \leftarrow (B)$	126, 140	<u> </u>		After skipping, (T1F) ← 0	
		$(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$			SNZT2	V13 = 0: (T2F) = 1 ?	107, 142
		$(TPS3-TPS0) \leftarrow (A)$			SINZIZ	After skipping, $(T2F) \leftarrow 0$	107, 142
		(11 33-11 30) (- (A)				After skipping, $(121) \leftarrow 0$	
	TAB1	(B) ← (T17–T14)	111, 140		SNZT3	V20 = 0: (T3F) = 1 ?	107, 142
		$(A) \leftarrow (T13-T10)$			0.12.0	After skipping, (T3F) ← 0	101,11
		, , , , , , , , , , , , , , , , , , , ,				, cppg, (. c.)	
L C	T1AB	(R17–R14) ← (B)	109, 140		SNZT4	V23 = 0: (T4F) = 1 ?	108, 142
rati		(T17−T14) ← (B)				After skipping, (T4F) ← 0	
edc		$(R13-R10) \leftarrow (A)$					
Timer operation		$(T13-T10) \leftarrow (A)$			SNZT5	V21 = 0: (T5F) = 1 ?	108, 142
Ë						After skipping, (T5F) \leftarrow 0	
	TAB2	$(B) \leftarrow (T27\text{-}T24)$	111, 140				
		$(A) \leftarrow (T23-T20)$			IAP0	(A) ← (P0)	97, 142
	TOAD	(DO= DO+) - (D)	440 440		ODOA	(DO) (A)	00.440
	T2AB	$(R27-R24) \leftarrow (B)$	110, 140		OP0A	(P0) ← (A)	99, 142
		$(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$			IAP1	(A) ← (P1)	97, 142
		$(T23-T20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$			IAFI	(A) ← (F1)	37, 142
		(120 120) ((1)			OP1A	(P1) ← (A)	99, 142
	TAB3	(B) ← (T37–T34)	112, 140			()	
		$(A) \leftarrow (T33-T30)$		tion	IAP2	(A) ← (P2)	97, 142
				Input/Output operation			
	T3AB	$(R37-R34) \leftarrow (B)$	110, 140	t op	OP2A	(P2) ← (A)	100, 142
		(T37−T34) ← (B)		tpui			
		$(R33-R30) \leftarrow (A)$		Į Õ	IAP3	(A) ← (P3)	97, 142
		$(T33-T30) \leftarrow (A)$		 bnt			
		(5) (7, 7,)		=	OP3A	(P3) ← (A)	100, 142
	TAB4	$(B) \leftarrow (T47 - T44)$	112, 140				
		$(A) \leftarrow (T43 - T40)$			IAP4	(A) ← (P4)	98, 142
	T4AB	(R4L7–R4L4) ← (B)	110, 140		OP4A	(P4) ← (A)	100, 142
	17,10	$(T47 - T44) \leftarrow (B)$	110, 140		J. 47	(1 → 7) ← (~1)	100, 142
		$(R4L3-R4L0) \leftarrow (A)$					
		$(T43 - T40) \leftarrow (A)$ $(T43 - T40) \leftarrow (A)$					
		(173-170) (A)					

INSTRUCTIONS 4524 Group

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page		Group- ing	Mnemonic	Function	Page
	CLD	(D) ← 1	94, 142		noi	TAL1	(A) ← (L1)	116, 144
	RD	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 9$	102, 142		_CD operation	TL1A	(L1) ← (A)	124, 144
	0.0		404 440		CCD	TL2A	(L2) ← (A)	124, 144
	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 9$	104, 142			TABSI	$(B) \leftarrow (SI7-SI4) \ (A) \leftarrow (SI3-SI0)$	113, 144
	SZD	(D(Y)) = 0 ?	109, 142			TSIAB	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$	128, 144
		(Y) = 0 to 9			ion	SST	(SIOF) ← 0	108, 144
	RCP	(C) ← 0	102, 142		perati		Serial I/O starting	
	SCP	(C) ← 1	104, 142		Serial I/O operation	SNZSI	V23=0: (SIOF)=1? After skipping, (SIOF) ← 0	107, 144
	TAPU0	(A) ← (PU0)	117, 142			TA 14		445 444
c	TPU0A	(PU0) ← (A)	126, 142			TAJ1	$(A) \leftarrow (J1)$	115, 144
eratio	TAPU1	(A) ← (PU1)	117, 142			TJ1A	(J1) ← (A)	123, 144
Input/Output operation	TPU1A	(PU1) ← (A)	126, 142			TABAD	In A/D conversion mode , (B) \leftarrow (AD9–AD6) (A) \leftarrow (AD5–AD2)	112, 146
nput/O	TAK0	(A) ← (K0)	124, 144				In comparator mode,	
=	TK0A	(K0) ← (A)	115, 144				$(B) \leftarrow (AD7-AD4)$ $(A) \leftarrow (AD3-AD0)$	
	TAK1	(A) ← (K1)	124, 144			TALA	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$	116, 146
	TK1A	(K1) ← (A)	115, 144		A/D operation	TADAB		114 146
	TAK2	(A) ← (K2)	124, 144			TADAB	$(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$	114, 146
	TK2A	(K2) ← (A)	115, 144			ADST	(ADF) ← 0 A/D conversion starting	92, 146
	TFR0A	(FR0) ← (A)	122, 144			SNZAD	V22 = 0: (ADF) = 1 ?	106, 146
	TFR1A	(FR1) ← (A)	122, 144		AVD	SNZAD	After skipping, (ADF) $\leftarrow 0$	100, 140
	TFR2A	(FR2) ← (A)	122, 144			TAQ1	(A) ← (Q1)	117, 146
	TFR3A	(FR3) ← (A)	122, 144			TQ1A	(Q1) ← (A)	127, 146
	СМСК	Ceramic resonator selected	95, 144			TAQ2	(A) ← (Q2)	117, 146
ation	CRCK	RC oscillator selected	95, 144			TQ2A	(Q2) ← (A)	127, 146
Clock operation	TAMR	(A) ← (MR)	116, 144			TAQ3	(A) ← (Q3)	118, 146
Cloc	TMRA	(MR) ← (A)	125, 144			TQ3A	(Q3) ← (A)	127, 146

INDEX LIST OF INSTRUCTION FUNCTION (continued)

			1011 (00
Group- ing	Mnemonic	Function	Page
	NOP	(PC) ← (PC) + 1	99, 146
	POF	Transition to clock operating mode	101, 146
	POF2	Transition to RAM back-up mode	101, 146
	EPOF	POF, POF2 instructions valid	96, 146
	SNZP	(P) = 1 ?	106, 146
Other operation	DWDT	Stop of watchdog timer function enabled	96, 146
Other	WRST	(WDF1) = 1 ? After skipping, $(WDF1) \leftarrow 0$	130, 146
	RBK*	When TABP p instruction is executed, P6 \leftarrow 0	102, 146
	SBK* When TABP p instruction is executed, $P_6 \leftarrow 1$		104, 146
	SVDE	At power down mode, voltage drop detection circuit valid	108, 146

Note: *(RBK, SBK) cannot be used in the M34524M8.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

An (Add n	and accumulator)						
Instruction code	D9 D0 0 0 1 1 0 n n n n 0 0 6 n	w	mber of ords	Number of cycles	Flag CY	Skip condition	
		6	1	1	_	Overflow = 0	
Operation:	$(A) \leftarrow (A) + n$ n = 0 to 15		uping: cription	register A, The content Skips the overflow a Executes t	value n in and stores s of carry flanext instructions the resulting the next instructions.	the immediate field to a result in register A. g CY remains unchanged ction when there is not of operation. Struction when there is to f operation.	
ADST (A/D	conversion STart)						
Instruction code	D9 D0 1 0 0 1 1 1 1 1 2 9 F	w	mber of ords	Number of cycles	Flag CY	Skip condition	
		6	1	1	_	_	
Operation:	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting (Q13: bit 3 of A/D control register Q1)		Grouping: A/D conversion operation Description: Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the compara tor operation at the comparator mode (Q1: = 1) is started.				
	ccumulator and Memory)				FI 01/	OL: IV	
Instruction code	D9 D0	w	nber of ords	Number of cycles	Flag CY	Skip condition	
			1	1	_	_	
Operation:	$(A) \leftarrow (A) + (M(DP))$		Description: Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.				
AMC (Add	accumulator, Memory and Carry)						
Instruction	D9 D0 0 0 0 0 0 1 0 1 1 0 0 0 B	1	mber of ords	Number of cycles	Flag CY	Skip condition	
		6	1	1	0/1	-	
Operation:	n: $(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$			Grouping: Arithmetic operation Description: Adds the contents of M(DP) and carry fla CY to register A. Stores the result in register A and carry flag CY.			

4524 Group

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

AND (logic	al AND between accumulator and memory)					
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
	10	1	1	_	_	
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation		
		Description	tents of r	egister A	ation between the con- and the contents of e result in register A.	
B a (Branc	h to address a)					
Instruction code	D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	_	_	
Operation:	(PCL) ← a6 to a0	Grouping:	ng: Branch operation			
		Description: Branch within a page: Branches to address				
		Note:	a in the ide Specify the including th	e branch a	ddress within the page	
BL p, a (Bi	ranch Long to address a in page p) D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 E p p 16	words 2	cycles 2	_	_	
	1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 +p +a a 16	Grouping:	Branch op	eration		
Operation:	(PCH) ← p				: Branches to address	
-	(PCL) ← a6 to a0	a in page p.				
		Note:		24MC, ar	24M8, and p is 0 to 95 nd p is 0 to 127 for	
RI A n (Bra	anch Long to address (D) + (A) in page p)					
Instruction code	D9 D0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	Number of words	Number of cycles	Flag CY	Skip condition	
		2	2	_	-	
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 +p p p 16	Grouping:	Branch ope	eration		
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description Note:	(DR2 DR1 registers D	DRo A3 A and A in p	: Branches to address 2 A1 A0)2 specified by page p. 24M8, and p is 0 to 95	
			for M3452 M34524ED		nd p is 0 to 127 for	

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

	nch and Mark to address a in page 2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	words	cycles		
		1	1	_	_
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	ation
•	$(SK(SP)) \leftarrow (PC)$	Description	: Call the s	ubroutine	in page 2 : Calls th
	(PCH) ← 2		subroutine	at address	s a in page 2.
	(PCL) ← a6-a0	Note:	Subroutine	e extendir	ng from page 2 to ar
			other page	can also	be called with the BI
			instruction	when it sta	arts on page 2.
			Be careful	not to over	r the stack because th
			maximum l	evel of sub	routine nesting is 8.
BML p, a (Branch and Mark Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p	words	cycles		
	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 +p p 16	2	2	_	_
	1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 p +a a a6				
		Grouping: Subroutine call operation			
Operation:	$(SP) \leftarrow (SP) + 1$	Description: Call the subroutine : Calls the subroutine a			
	$(SK(SP)) \leftarrow (PC)$		address a		
	$(PCH) \leftarrow p$	Note:	•		24M8, and p is 0 to 9
	(PCL) ← a6-a0				nd p is 0 to 127 fo
			M34524ED		
					r the stack because the
			maximum i	evel of sub	routine nesting is 8.
'	Branch and Mark Long to address (D) + (A) in page	· · · · · · · · · · · · · · · · · · ·		E 01/	01: 1:::
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 2 0 3 0 16	2	2	_	
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 2 p p p p 16				_
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 1 p p p 16	Grouping:	Subroutine	call opera	ation
Operation:	$(SP) \leftarrow (SP) + 1$	Description	: Call the su	broutine :	Calls the subroutine a
	$(SK(SP)) \leftarrow (PC)$		`		Ro A3 A2 A1 A0)2 speci
	$(PCH) \leftarrow p$				nd A in page p.
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:	•		4M8, and p is 0 to 95 fo
					to 127 for M34524ED.
				not to over	r the stack because the
				evel of sub	routine nesting is 8.
•	• • •		maximum l		
Instruction	D9 D0	Number of words	maximum l	evel of sub	Skip condition
Instruction	• • •	words	Number of cycles		Skip condition
Instruction	D9 D0		maximum l		
Instruction code	D9 D0	words	Number of cycles	Flag CY	Skip condition
Instruction code	D9	words 1 Grouping:	Number of cycles	Flag CY - ut operation	Skip condition
Instruction code	D9	words 1 Grouping:	Number of cycles 1 Input/Outp	Flag CY - ut operation	Skip condition
Instruction code	D9	words 1 Grouping:	Number of cycles 1 Input/Outp	Flag CY - ut operation	Skip condition
CLD (CLea Instruction code Operation:	D9	words 1 Grouping:	Number of cycles 1 Input/Outp	Flag CY - ut operation	Skip condition
Instruction code	D9	words 1 Grouping:	Number of cycles 1 Input/Outp	Flag CY - ut operation	Skip condition
Instruction code	D9	words 1 Grouping:	Number of cycles 1 Input/Outp	Flag CY - ut operation	Skip condition

4524 Group **INSTRUCTIONS**

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

CMA (CoM	Iplement of Accumulator)	•	•		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 0 0 1 C	words	cycles		·
	0 0 0 0 1 1 1 0 0 2 0 1 0 16	1	1	_	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
				•	mplement for register
			A's conten	ts in regist	er A.
CMCK (Cld	ock select: ceraMic oscillation ClocK)				
Instruction	D9 D0 1 0 1 0 0 1 1 0 0 2 9 A	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	Ceramic oscillation circuit selected	Grouping: Other operation			
		Description	: Selects the stops the c		oscillation circuit and cillator.
CRCK (Clo	ock select: Rc oscillation ClocK) D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	RC oscillation circuit selected	Grouping: Other operation			
		Description	: Selects the the on-chip		ation circuit and stops
DEY (DEcr	rement register Y)				
Instruction code	D9 D0 0 0 0 1 0 1 1 1 2 0 1 7	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(Y) = 15
Operation:	(Y) ← (Y) − 1	Grouping: RAM addresses Description: Subtracts 1 from the contents of register As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of regist is not 15, the next instruction is executed.			action, when the con- 15, the next instruction contents of register Y

•	` `			
e Interrupt)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0 0 0 0 0 0 1 0 0 2 0 0 4 16	1	1	1	-
(INTE) ← 0	Grouping: Description Note:	: Clears (0) disables th Interrupt is	to interrupt ne interrupt disabled	t enable flag INTE, and the control of the black that the control of the control of the black that the control of the black that the control of the control
sable WatchDog Timer)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
1 0 1 0 0 1 1 1 1 0 0 ₂ 2 9 C ₁₆	1	1	-	-
Stop of watchdog timer function enabled	Grouping.	Other oper	ration	<u> </u>
		: Stops the WRST in	watchdog struction	timer function by the after executing the
Interrupt)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0 0 0 0 0 0 0 1 0 1 2 0 0 3 16	1	1	-	-
(INTE) ← 1	Grouping: Description Note:	: Sets (1) to enables the Interrupt is	interrupt e interrupt e enabled l	enable flag INTE, and by executing the EI in-
able POF instruction)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0 0 0 1 0 1 1 0 1 1 0 1 1 ₂ 0 5 B ₁₆	1	1	_	-
POF instruction, POF2 instruction valid	Grouping: Description	: Makes the	immedia	te after POF or POF2 executing the EPOF in-
	Sable WatchDog Timer) D9 D0 1 0 1 0 0 0 0 0 1 1 0 0 2 2 9 C 16 Stop of watchdog timer function enabled Binterrupt) D9 0 0 0 0 0 0 0 0 1 0 1 0 1 2 0 0 5 16 (INTE) ← 1	Number of words Number of words Number of words	Do	Do

IAPO (Inpu	t Accumulator from port P0)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 0 2 2 6 0 16	1	1	_	
Operation:	(A) ← (P0)	Grouping:	 Input/Outp	ut operatio	
Operation.	$(A) \leftarrow (F0)$				port P0 to register A
IAP1 (Inpu	t Accumulator from port P1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (P1)	Grouping:	Input/Outp	ut operatio	n
			: Transfers t	he input of	port P1 to register A
IAP2 (Inpu	D9 D0 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	
Operation:	$(A) \leftarrow (P2)$	Grouping:	Input/Outp		
					port P2 to register A.
	tt Accumulator from port P3)	I		EL 01/	
Instruction code	D9 D0 1 1 0 0 0 1 1 2 6 3 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(A) \leftarrow (P3)$	Grouping:	Input/Outp		
		Description	: Transfers t	he input of	port P3 to register A.

IAP4 (Innu	t Accumulator from port P4)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 1 0 0 2 2 6 4 16	words	cycles		
		1	1	_	
Operation:	$(A) \leftarrow (P4)$	Grouping:	Input/Outp		
		Description	. Hallsleis (ne input o	f port P4 to register A.
INY (INcre	ment register Y)	'			
Instruction code	D9 D0 0 0 0 1 0 0 1 1 0 0 1 3 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 0 1 1 0 1 1 1 2	1	1	-	(Y) = 0
Operation:	(Y) ← (Y) + 1	Grouping:	RAM addre		
		Description			s of register Y. As a re-
				-	hen the contents of e next instruction is
			-		ontents of register Y is
					ction is executed.
LA n (Load	d n in Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 1 1 1 n n n n 2 0 7 n 16	1	1	_	Continuous description
Operation:	(A) ← n	Grouping:	Arithmetic	operation	decomption
	n = 0 to 15	Description			the immediate field to
			register A.		
					tions are continuously
					d, only the first LA in- uted and other LA
					d continuously are
			skipped.		
LXY x, y (L	Load register X and Y with x and y)				
Instruction	D9 D0 1 1 X3 X2 X1 X0 Y3 Y2 Y1 Y0 3 X Y 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	Continuous description
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$	Grouping:	RAM addre	esses	
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$	Description			the immediate field to
			-		alue y in the immediate
				_	/hen the LXY instruc- y coded and executed,
					struction is executed
			-		ictions coded continu-
			ously are s	skipped.	

	· · · · · · · · · · · · · · · · · · ·				
LZ z (Load	I register Z with z)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 0 0 1 0 z1 z0 2 0 4 z ₁	1	1	_	-
Operation:	$(Z) \leftarrow z \ z = 0 \text{ to } 3$	Grouping:	RAM addre	esses	
					the immediate field to
NOP (No C	DPeration)				
Instruction code	D9 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 0 0 0 0 16	1	1	-	_
Operation:	(PC) ← (PC) + 1	Grouping:	Other oper	ration	
			: No operat	ion; Adds	1 to program counter nain unchanged.
	tput port P0 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 0 0 0 2 2 2 0 16	1	1	_	_
Operation:	(P0) ← (A)	Grauning	Innut/Outn	ut operatio	n
ореганоп.		Grouping: Description	Input/Outp : Outputs th P0.		s of register A to port
OP1A (Out	tput port P1 from Accumulator)				_
Instruction	D9 D0 1 0 0 1 0 0 0 1 2 2 1 1 ₄₆	Number of words	Number of cycles	Flag CY	Skip condition
oouo	1 0 0 0 1 0 0 0 1 2 2 2 1 16	1	1	-	-
Operation:	(P1) ← (A)	Grouping:	Input/Outp	ut operation	n
·					s of register A to port

ODOA (O	to the ent DO frame A construction				
	tput port P2 from Accumulator)	T		- ov	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 0 2 2 2 2 16	1	1	_	_
Operation:	(P2) ← (A)	Grouping:	Input/Outp	ut operatio	ın.
Operation.	$(12) \leftarrow (A)$				s of register A to port
			P2.		
OP3A (Ou	tput port P3 from Accumulator)				
Instruction code	D9 D0 1 0 0 1 1 2 2 3 45	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 0 0 1 1 2 2 2 3 16	1	1	_	-
Operation:	(P3) ← (A)	Grouping:	Input/Outp	ut operatio	n
					s of register A to port
OP4A (Our Instruction code	tput port P4 from Accumulator) D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(P4) ← (A)	Grouping: Description	Input/Outputs the P4.		n s of register A to port
OR (logica	I OR between accumulator and memory)	•			
Instruction	D9 D0 0 0 0 1 1 0 0 1 9 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 0 0 1 2 0 1 9 16	1	1	_	_
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic	operation	
·			tents of re	egister A	tion between the con- and the contents of e result in register A.

POF (Powe	er OFf1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 2 16	1	1	_	_
Operation:	Transition to clock operating mode	Grouping:	Other oper Puts the sy executing ing the EP If the EPOF executing	ration ystem in cl the POF ir OF instruc instruction this instruct to the NOF	lock operating state by astruction after execution. In is not executed before the cition, this instruction is print instruction.
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Code	0 0 0 0 0 0 1 0 0 1 0 0 0 2	1	1	_	-
Operation:	Transition to RAM back-up mode	Grouping:	Other oper	ration	
		Note:	executing ecuting the If the EPOF executing	the POF2 EPOF instruction this instruction	RAM back-up state by 2 instruction after ex- struction. In is not executed before ction, this instruction is the instruction.
	te Accumulator Right)	1			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 1 2 0 1 D 16	1	1	0/1	-
Operation:	→CY→A3A2A1A0	Grouping: Description		bit of the c	ontents of register A in of carry flag CY to the
RB j (Rese	et Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	[1	1	_	_
Operation:	$(Mj(DP)) \leftarrow 0$ j = 0 to 3	Grouping: Description		the conter	nts of bit j (bit specified e immediate field) of

DDI/ /D	- (D 1, fl)				
	et Bank flag)			FI O\/	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 0 0 0 0 0 2	1	1	_	_
0	When TARR a 'coloration's accounted Re-		0.1		
Operation:	When TABP p instruction is executed, P6 \leftarrow 0	Grouping:	Other oper		1 0. 1. 00
			when the T	ABP p inst	area to pages 0 to 63 ruction is executed. d in M34524M8.
RC (Reset	Carry flag)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1 0 2 0 0 6 16	1	1	0	_
Operation:	(CY) ← 0	Grouping:	Arithmetic	oneration	
Operation.	(01) (= 0		: Clears (0)		a CY.
PCD (Page	ot Dort C)				
RCP (Rese	,			EL 01/	01: 1:::
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 2 2 8 C 16	1	1	_	_
Operation:	(C) ← 0	Grouping:	Input/Outp	ut operatio	n
Operano			: Clears (0)		··
RD (Reset	port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 0 2 0 1 4	words	cycles		·
	0 0 0 0 1 0 1 0 0 2	1	1	_	_
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp	ut operatio	 n
	However, (Y) = 0 to 9				ort D specified by reg-

	from subroutine)								
Instruction	D9	Do)			Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0	1 0 0	2 0	4 4	1 16	words	cycles		
						1	2	_	-
Operation:	$(PC) \leftarrow (SK(SP))$					Grouping:	Return ope		
	(SP) ← (SP) – 1					Description			outine to the routine
							called the	subroutine	
	n from Interrupt)					1		1	
Instruction code	D9	Do				Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 0 1 0 0 0	1 1 0	0	4 6	16	1	1	_	_
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$					Grouping:	Return ope		upt service routine to
	(3F) ← (3F) − 1					Description	main routir		upt service routine to
									of data pointer (X, Y, Z),
									s, NOP mode status by
									ption of the LA/LXY in-
							struction, states just	-	and register B to the
DTC (DoT	rn from aubrouting and G	Nin)							
Instruction	rn from subroutine and S	Do Do)			Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0 0	1 0 1	, 0	4 5	5	words	cycles	i lag o i	OKIP CONGRIGHT
			」2 ∟		16	1	2	_	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$					Grouping:	Return ope	eration	
•	$(SP) \leftarrow (SP) - 1$					Description	: Returns f	rom subr	outine to the routine
									, and skips the next in-
							struction a	t unconditi	on.
SB j (Set E	it)								
Instruction	D9	Do		· · · · ·	~ _	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1	1 j j	0	5	C Fj. 16	1	1	_	_
						'	'		
Operation:	$(Mj(DP)) \leftarrow 1$					Grouping:	Bit operation		
	j = 0 to 3					Description			of bit j (bit specified by
							tne value j	in the imm	nediate field) of M(DP).

SBK (Set I	Bank flag)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 0 1 0 0 0 0 1 1 2	1	1	_	-
Operation:	When TABP p instruction is executed, P6 \leftarrow 1	Grouping:	Other oper	ation	
		Description Note: This in	: Sets referr when the T estruction can	ing data ar ABP p inst not be use	ea to pages 64 to 127 ruction is executed. d in M34524M8. area is pages 64 to 95.
SC (Set Ca	arry flag)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1 2 0 0 7 16	1	1	1	-
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
			: Sets (1) to		CY.
SCP (Set Finstruction code	Port C) D9 D0 1 0 1 0 0 0 1 1 0 1 2 2 8 D 16	Number of words	Number of cycles	Flag CY	Skip condition
Onenetien	(0) 4	0	1		
Operation:	(C) ← 1	Grouping: Description	Input/Outp		n
	ort D specified by register Y)				
Instruction code	D9 D0 0 0 0 1 0 1 0 1 0 1 5 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 1 0 1 2 0 1 3 16	1	1	_	_
Operation:	(D(Y)) ← 1	Grouping:	Input/Outp	ut operatio	n
	(Y) = 0 to 9				t D specified by regis-

SEA n (Ski	p Equal, Accumulator with immediate data n)				
Instruction code	D9 D0 0 0 0 1 0 0 1 0 1 0 2 5	Number of words	Number of cycles	Flag CY	Skip condition
		2	2	-	(A) = n
	0 0 0 1 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	n operatio	n
Operation:	(A) = n? n = 0 to 15		: Skips the tents of required the immedia	next instr gister A is ate field.	uction when the con- equal to the value n in
				jister A is r	not equal to the value n
SEAM (Ski	p Equal, Accumulator with Memory)				
Instruction code	D9 D0 0 0 1 0 0 1 1 0 0 2 6 to	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP))?	Grouping:	Compariso		
		Description	tents of reg M(DP).	jister A is e	uction when the con- equal to the contents of
				egister A	struction when the con- is not equal to the
SNZ0 (Skip	o if Non Zero condition of external 0 interrupt reques	st flag)			
SNZ0 (Skip	o if Non Zero condition of external 0 interrupt reques	Number of	Number of	Flag CY	Skip condition
		· · · ·	Number of cycles	Flag CY	Skip condition V10 = 0: (EXF0) = 1
Instruction	D9 D0 D0 0 1 1 1 1 0 0 0 0 3 8	Number of words	cycles	_	•
Instruction code	D9	Number of words 1 Grouping:	cycles 1 Interrupt o	- peration	•
Instruction code	D9 D0 $0 0 0 0 1 1 1 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP	Number of words 1 Grouping:	cycles 1 Interrupt of the When V10	peration = 0 : Skip	V10 = 0: (EXF0) = 1
Instruction code	D9 D0 $0 0 0 1 1 1 1 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1? After skipping, (EXF0) \leftarrow 0	Number of words 1 Grouping:	Interrupt on the control of the cont	peration = 0 : Skiprnal 0 inter	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0
Instruction code	D9 D0 $0 0 0 0 1 1 1 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP	Number of words 1 Grouping:	Interrupt of the control of the cont	peration = 0 : Skip rnal 0 inter r skipping, n the EXF	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0
Instruction code	D9 D0 $0 0 0 0 1 1 1 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP	Number of words 1 Grouping:	Interrupt of the control of the cont	peration = 0 : Skipral 0 inter r skipping, n the EXF struction.	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 0 flag is "0," executes
Instruction code	D9 D0 $0 0 0 0 1 1 1 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP	Number of words 1 Grouping:	Interrupt of the control of the cont	peration = 0 : Skipmal 0 interest skipping, the EXF struction. = 1 : This	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 0 flag is "0," executes instruction is equiva-
Instruction code Operation:	D9 D0 $0 0 0 0 1 1 1 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP	Number of words 1 Grouping: Description	Interrupt of the control of the cont	peration = 0 : Skipmal 0 interest skipping, the EXF struction. = 1 : This	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 of flag is "0," executes instruction is equiva-
Instruction code Operation:	D9 D0 D0 $1000000000000000000000000000000000000$	Number of words 1 Grouping: Description	Interrupt of the control of the cont	peration = 0 : Skipmal 0 interest skipping, the EXF struction. = 1 : This	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 of flag is "0," executes instruction is equiva-
Instruction code Operation: SNZ1 (Skip Instruction	D9 D0 D0 $0 0 0 0 1 1 1 1 0 0 0 0_2 0 3 8_{16}$ V10 = 0: (EXF0) = 1? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10: bit 0 of the interrupt control register V1)	Number of words 1 Grouping: Description st flag) Number of	Interrupt of the control of the cont	peration = 0 : Skipmal 0 interror skipping, in the EXF struction. = 1 : This NOP instruction.	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 0 flag is "0," executes instruction is equivaluction.
Instruction code Operation: SNZ1 (Skip Instruction	D9	Number of words 1 Grouping: Description st flag) Number of words	Interrupt of the next in the next in the next in the next to the Number of cycles	peration = 0 : Skipmal 0 inter r skipping, the EXF struction. = 1 : This NOP instru	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 flag is "0," executes instruction is equivalent.
Operation: SNZ1 (Skip Instruction code	D9 D0 D0 $\sqrt{160}$ \sqrt	Number of words 1 Grouping: Description st flag) Number of words 1 Grouping:	cycles 1 Interrupt op When V10 when exter is "1." After flag. When the next in: When V10 lent to the Number of cycles 1 Interrupt op When V11	peration = 0 : Skipmal 0 inter r skipping, n the EXF struction. = 1 : This NOP instru Flag CY - Deration = 0 : Skipmal 0 inter	V10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 flag is "0," executes instruction is equivalent.
Operation: SNZ1 (Skip Instruction code	D9 D0 D0 $1 1 1 1 0 0 0 0_2$ $0 3 8_{16}$ V10 = 0: (EXF0) = 1? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10: bit 0 of the interrupt control register V1) Dif Non Zero condition of external 1 interrupt request D9 D0 $0 0 0 1 1 1 1 0 0 1_2$ $0 3 9_{16}$ V11 = 0: (EXF1) = 1? After skipping, (EXF1) \leftarrow 0	Number of words 1 Grouping: Description st flag) Number of words 1 Grouping:	cycles 1 Interrupt op When V10 when exter is "1." After flag. Wher the next in: When V10 lent to the Number of cycles 1 Interrupt op When V11 when exter is "1." After	peration = 0 : Skipmal 0 interrestruction. = 1 : This NOP instruction. Flag CY peration = 0 : Skipmal 1 interrestriction.	v10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 flag is "0," executes instruction is equivalent on the condition in the condition v11 = 0: (EXF1) = 1 os the next instruction rupt request flag EXF1 clears (0) to the EXF1
Operation: SNZ1 (Skip Instruction code	D9 D0 D0 $\sqrt{16}$ V10 = 0: (EXF0) = 1? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10: bit 0 of the interrupt control register V1) Dif Non Zero condition of external 1 interrupt request D9 D0 $\sqrt{16}$ V11 = 0: (EXF1) = 1? After skipping, (EXF1) \leftarrow 0 V11 = 1: SNZ1 = NOP	Number of words 1 Grouping: Description st flag) Number of words 1 Grouping:	cycles 1 Interrupt op When V10 when exter is "1." After flag. Wher the next in: When V10 lent to the Number of cycles 1 Interrupt op When V11 when exter is "1." After	peration = 0 : Skipmal 0 interrestruction. = 1 : This NOP instruction Flag CY peration = 0 : Skipmal 1 interrestripping, in the EXF	v10 = 0: (EXF0) = 1 os the next instruction rupt request flag EXF0 clears (0) to the EXF0 flag is "0," executes instruction is equivaluction. Skip condition V11 = 0: (EXF1) = 1 os the next instruction rupt request flag EXF1

SNZAD (SI	kip if Non Zero condition of A/D conversion	on comp	leti	on flag)			
Instruction	D9 D0 1 0 1 0 0 0 0 1 1 1 2 2	8 7		Number of words	Number of cycles	Flag CY	Skip condition
		10 17	」 16	1	1	_	V22 = 0: (ADF) = 1
Operation:	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0			Grouping: Description	A/D conve		ation ps the next instruction
	V22 = 1: SNZAD = NOP (V22 : bit 2 of the interrupt control register V2)				is "1." Afte flag. When next instru	r skipping the ADF f ction. = 1 : This	n completion flag ADF, clears (0) to the ADF flag is "0," executes the sinstruction is equivaluction.
SNZIO (Ski	p if Non Zero condition of external 0 Inter	rupt inp	ut i	oin)			
Instruction	D9 D0		7	Number of words	Number of cycles	Flag CY	Skip condition
		3 A	_ 16	1	1	_	I12 = 0 : (INT0) = "L" I12 = 1 : (INT0) = "H"
Operation:	I12 = 0 : (INT0) = "L" ?			Grouping:	Interrupt o		
	I12 = 1 : (INT0) = "H" ?			Description			s the next instruction
	(I12: bit 2 of the interrupt control register I1)						T0 pin is "L." Executes when the level of INT0
							s the next instruction
							Γ0 pin is "H." Executes
					the next in pin is "L."	struction	when the level of INT(
SNZI1 (Ski	p if Non Zero condition of external 1 Inter	rupt inp	ut	oin)			
Instruction	D9 D0			Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 0 1 1 2	3 B	16	words 1	cycles 1	_	I22 = 0 : (INT1) = "L"
	10 0 (1)(74) (1) 10			Crauning	Intorrunt or	o aration	I22 = 1 : (INT1) = "H"
Operation:	I22 = 0 : (INT1) = "L" ? I22 = 1 : (INT1) = "H" ?			Grouping: Description	Interrupt of When 122		s the next instruction
	(I22 : bit 2 of the interrupt control register I2)				when the I	evel of IN	T1 pin is "L." Executes when the level of INT1
							s the next instruction
							T1 pin is "H." Executes
					the next in pin is "L."	struction	when the level of INT1
SNZP (Skip	if Non Zero condition of Power down fla	g)		'	p 10		
Instruction	D9 D0 0 0 0 0 0 1 1 0 0		1	Number of words	Number of cycles	Flag CY	Skip condition
		1010	」 16	1	1	_	(P) = 1
Operation:	(P) = 1 ?			Grouping:	Other oper	ation	
•	,						ction when the P flag is
					changed.		P flag remains un
				i .	Evacutos	tha navt i	nstruction when the F

SNZSI (Ski	p if Non Zero condition of Serial I/o interrupt reques	t flag)			
Instruction code	D9 D0 1 0 0 0 1 0 0 0 2 8 8 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	V23 = 0: (SIOF) = 1
Operation:	V23 = 0: (SIOF) = 1 ?	Grouping:	Serial I/O	peration	
	After skipping, (SIOF) \leftarrow 0	Description	: When V23	= 0 : Skip	s the next instruction
	V23 = 1: SNZSI = NOP		when seria	I I/O inter	rupt request flag SIOF
	(V23 = bit 3 of interrupt control register V2)		is "1." After	skipping,	clears (0) to the SIOF
			flag. Wher	the SIOF	flag is "0," executes
			the next in:	struction.	
			When V23	= 1 : This	instruction is equiva-
			lent to the	NOP instru	uction.
SNZT1 (Sk	ip if Non Zero condition of Timer 1 interrupt request	flag)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 0 0 0 2 2 8 0 16	words	cycles		\/4- 0 (T4E) 4
		1	1	_	V12 = 0: (T1F) = 1
Operation:	V12 = 0: (T1F) = 1 ?	Grouping:	Timer oper	ation	
	After skipping, (T1F) \leftarrow 0	Description	: When V12	= 0 : Skij	os the next instruction
	V12 = 1: SNZT1 = NOP		when time	r 1 interru	pt request flag T1F is
	(V12 = bit 2 of interrupt control register V1)		"1." After	skipping,	clears (0) to the T1F
			flag. When	the T1F f	lag is "0," executes the
			next instru	ction.	
			When V12	= 1 : This	instruction is equiva-
			lent to the	NOP instru	uction.
	ip if Non Zero condition of Timer 2 interrupt request	flag)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 0 1 2 2 8 1 16	words 1	cycles 1	_	V13 = 0: (T2F) = 1
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timor once	rotion	
Operation.	After skipping, $(72F) \leftarrow 0$		Timer oper		os the next instruction
	V13 = 1: SNZT2 = NOP	Description			pt request flag T2F is
	(V13 = bit 3 of interrupt control register V1)				clears (0) to the T2F
	(V13 = bit 3 of interrupt control register V1)				lag is "0," executes the
			next instru		lag lo o, oxocatoo tile
					instruction is equiva-
			lent to the		'
SNZT3 (Sk	ip if Non Zero condition of Timer 3 interrupt request	flag)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 0 1 0 2 8 2	words	cycles		-
	16	1	1	_	V20 = 0: (T3F) = 1
Operation:	V20 = 0: (T3F) = 1 ?	Grouping:	Timer oper	ation	
	After skipping, (T3F) \leftarrow 0	Description	: When V20	= 0 : Skip	os the next instruction
	V20 = 1: $SNZT3 = NOP$				pt request flag T3F is
	(V20 = bit 0 of interrupt control register V2)				clears (0) to the T3F
			flag. When	the T3F f	lag is "0," executes the
				ati an	
			next instru		
				= 1 : This	instruction is equiva-

Instruction		flag)				
	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 0 0 1 1 1 2 2 8 3	words 1	cycles 1	_	V23 = 0: (T4F) = 1	
Operation:	V23 = 0: (T4F) = 1 ?	Grouping: Timer operation				
	After skipping, (T4F) \leftarrow 0	Description			os the next instruction	
	V23 = 1: SNZT4 = NOP				pt request flag T4F is	
	(V23 = bit 3 of interrupt control register V2)				clears (0) to the T4F	
			flag. Wher	the T4F f	ag is "0," executes the	
			next instru	ction.		
			When V23	= 1 : This	instruction is equiva-	
			lent to the	NOP instru	uction.	
SNZT5 (Sk	ip if Non Zero condition of Timer 5 inerrupt request	flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 0 0 1 0 0 2 8 4	words	cycles		·	
	1 0 1 0 0 0 0 1 0 0 2	1	1	_	V21 = 0: (T5F) = 1	
Operation:	V21 = 0: (T5F) = 1 ?	Grouping:	Timer oper	ation		
-	After skipping, $(T5F) \leftarrow 0$	Description			s the next instruction	
	V21 = 1: SNZT5 = NOP				pt request flag T5F is	
	(V21 = bit 1 of interrupt control register V2)		clears (0) to the T5F			
	(ag is "0," executes the	
			next instru		ag io o, oxooatoo tiio	
			When $V21 = 1$: This instruction is equiva-			
		lent to the NOP instruction.				
Instruction	I i/o transmission/reception STart) D9 D0	Number of	Number of	Flag CY	Skip condition	
		words	cycles	l lag C1	OKIP CONTRIBUTION	
code	1 0 1 0 0 1 1 1 1 0 2 9 E		-			
	16	1	1	-	-	
Operation:				neration	_	
Operation:	$ (SIOF) \leftarrow 0 $ Serial I/O transmission/reception start	Grouping:	Serial I/O	<u> </u>	g and starts serial I/O.	
	(SIOF) ← 0 Serial I/O transmission/reception start	Grouping:	Serial I/O	<u> </u>	g and starts serial I/O.	
SVDE (Set	(SIOF) ← 0 Serial I/O transmission/reception start Voltage Detector Enable flag)	Grouping: Description	Serial I/O on the control of the con	to SIOF fla		
Operation: SVDE (Set Instruction code	(SIOF) ← 0 Serial I/O transmission/reception start Voltage Detector Enable flag) D9 D0 1 0 1 0 0 1 1 2 9 3	Grouping:	Serial I/O	<u> </u>	g and starts serial I/O.	
SVDE (Set	(SIOF) ← 0 Serial I/O transmission/reception start Voltage Detector Enable flag)	Grouping: Description	Serial I/O on the serial I/O o	to SIOF fla		
SVDE (Set Instruction code	(SIOF) ← 0 Serial I/O transmission/reception start Voltage Detector Enable flag) D9 D0 1 0 1 0 0 1 1 2 9 3	Grouping: Description Number of words	Serial I/O o : Clears (0) Number of cycles	Flag CY		
SVDE (Set Instruction	$(SIOF) \leftarrow 0$ Serial I/O transmission/reception start	Number of words	Serial I/O o : Clears (0) Number of cycles 1 Other oper of the company of the	Flag CY ration he voltage lown (cloc		
SVDE (Set Instruction code	$(SIOF) \leftarrow 0$ Serial I/O transmission/reception start	Number of words 1 Grouping:	Serial I/O o : Clears (0) Number of cycles 1 Other oper of the company of the	Flag CY ration he voltage lown (cloc	Skip condition - e drop detection circuit k operating mode and	

SZB j (Skip	7 11 2010, 1)IL)														
Instruction code	D9	0 0 1	0	0 (0 i		Do j	0	7) i		Number of words	Number of cycles	Flag CY	Skip condition	
		, 0	0	0 1	o)	ı	J 2			<u> </u>	16	1	1	-	(Mj(DP)) = 0 j = 0 to 3	
Operation:	(Mj(DP)) =	0 ?										Grouping: Bit operation				
	j = 0 to 3											Description	: Skips the	next instr	uction when the con	
													the immed	iate field) on the next ins	cified by the value j in of M(DP) is "0." struction when the con) is "1."	
SZC (Skip	if Zero, Ca	arry flag	g)													
Instruction code	D9 0 0	0 0 1	0	1	1		D ₀	0	2	2 F	16	Number of words	Number of cycles	Flag CY	Skip condition	
					'		2				10	1	1	_	(CY) = 0	
Operation:	(CY) = 0?											Grouping:	Arithmetic	operation		
												Description: Skips the next instruction whe tents of carry flag CY is "0." After skipping, the CY flag re changed. Executes the next instruction who tents of the CY flag is "1."				
SZD (Skip		rt D sp	ecifie	d by	reg									T		
Instruction code	D9 0 0	0 0 1	0	0	1 ($\frac{D_0}{0}$	0	2	2 4	16	Number of words	Number of cycles	Flag CY	Skip condition	
	0 0 0	0 0 1	0	1 (0 /	1	1 2	0	2	2 B	_	2	2	_	(D(Y)) = 0 (Y) = 0 to 7	
Operation:	(D(Y)) = 0	?										Grouping:	Input/Outp	ut operation	on	
•	(Y) = 0 to											Description	D specified	d by registe	ction when a bit of po er Y is "0." Executes th n the bit is "1."	
T1AB (Trai	nsfer data	to time	r 1 ar	nd re	gist	er I	R1 fi	om	A	ccur	nula					
Instruction code	D9	0 0 1	1	0	0 0		D ₀	2	T 3	3 0		Number of words	Number of cycles	Flag CY	Skip condition	
							2				_ 16	1	1	_	_	
Operation:	(T17–T14) (R17–R14) (T13–T10) (R13–R10)	← (B) ← (A)										Grouping: Description	high-order load regist	the conter 4 bits of ter R1. Trate to the low	nts of register B to the timer 1 and timer 1 re ansfers the contents o -order 4 bits of timer of gister R1.	

T2AB (Trai	nsfer data to timer 2 and register R2 from Accumula	tor and reg	ister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 1 1 0 0 0 1 2 2 3 1 16	words	cycles			
		1	1	_	_	
Operation:	(T27–T24) ← (B)	Grouping:	Timer oper	ation		
•	$(R27-R24) \leftarrow (B)$	Description	: Transfers t	the conten	ts of register B to the	
	$(T23-\mathsf{T20}) \leftarrow (A)$		high-order	4 bits of ti	imer 2 and timer 2 re-	
	$(R23-R20) \leftarrow (A)$		load regist	er R2. Tra	nsfers the contents of	
	(1.25)		-		order 4 bits of timer 2	
			and timer 2	2 reload re	gister R2.	
T3AB (Trai	nsfer data to timer 3 and register R3 from Accumula	tor and reg	ister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 1 1 0 0 1 0 2 2 3 2	words	cycles			
	1 0 0 0 1 1 0 0 1 0 2 2 3 2 16	1	1	_	_	
Operation:	(T37–T34) ← (B)	Grouping:	Timer oper	ation		
•	(R37–R34) ← (B)	Description	: Transfers	the conter	nts of register B to the	
	$(T33-T30) \leftarrow (A)$		high-order	4 bits of t	imer 3 and timer 3 re-	
	(R33–R30) ← (A)	load register R3. Transfers the contents of				
			register A	to the low-	order 4 bits of timer 3	
			and timer 3	3 reload re	gister R3.	
Instruction	nsfer data to timer 4 and register R4L from Accumulation	ator and re	gister B) Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 1 1 0 0 1 1 2 2 3 3 3	1	1	_	_	
Operation:	(T47–T44) ← (B)	Grouping:	Timer oper	ation		
ороганот.	$(R4L7-R4L4) \leftarrow (B)$				its of register B to the	
	$(T43-T40) \leftarrow (A)$		high-order	4 bits of t	imer 4 and timer 4 re-	
	$(R4L3-R4L0) \leftarrow (A)$		load regist	er R4L. Tra	ansfers the contents of	
			register A	to the low-	order 4 bits of timer 4	
			and timer 4	4 reload re	gister R4L.	
	ansfer data to register R4H from Accumulator and re	, · · · ·	T	I		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 1 1 0 1 1 1 2 2 3 7 16	words	cycles			
		1	1	_	_	
Operation:	(R4H7–R4H4) ← (B)	Grouping:	Timer oper	ation		
-	$(R4H3-R4H0) \leftarrow (A)$	Description: Transfers the contents of register B to the				
			high-order	4 bits of t	imer 4 and timer 4 re-	
			load regist	er R4H. Tr	ansfers the contents of	
			register A	to the low-	order 4 bits of timer 4	
			and timer 4	4 reload re	gister R4H.	

4524 Group

T4R4L (Tra	ansfer data to timer 4 from register R4L)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 0 1 1 1 1 2 2 9 7	words 1	cycles 1	_	
				<u> </u>	
Operation:	$(T47\text{-}T44) \leftarrow (R4L7\text{-}R4L4)$	Grouping:	Timer oper		
	(T43–T40) ← (R4L3–R4L0)	Description	: Transfers R4L to time		nts of reload registe
TAB (Trans	sfer data to Accumulator from register B)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 0 2 0 1 1 16	1	1	-	_
Operation:	(A) ← (B)	Grouping:	Register to	register tr	ansfer
Operation.	(A) ← (B)				ts of register B to reg
TAB1 (Trai	nsfer data to Accumulator and register B from timer	1) Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 0 0 2 2 7 0 16	words 1	cycles 1	_	<u> </u>
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper	ration	
	(A) ← (T13–T10)	Description	timer 1 to 1	register B. the low-ord	der 4 bits (T17–T14) c
TAB2 (Trai	nsfer data to Accumulator and register B from timer	2)			
Instruction code	D9 D0 1 1 1 0 0 0 1 2 7 1 4c	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(B) ← (T27–T24) (A) ← (T23–T20)	Grouping: Description	timer 2 to 1	the high-ord register B. the low-ord	der 4 bits (T27–T24) c

	nsfer data to Accumulator and register B from timer	T'	I	T		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	\[\begin{array}{c c c c c c c c c c c c c c c c c c c	1	1	_	-	
Operation:	(B) ← (T37–T34) (A) ← (T33–T30)	Grouping: Timer operation Description: Transfers the high-order 4 bits (T37–T34) of timer 3 to register B.				
				the low-ord	der 4 bits (T33–T30) of	
	nsfer data to Accumulator and register B from timer	1'				
Instruction code	D9 D0 1 1 1 0 0 1 1 2 7 3 46	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	_	
Operation:	(B) ← (T47–T44)	Grouping:	Timer oper	ation		
	$(A) \leftarrow (T43 – T40)$	Description	: Transfers t	he high-or	der 4 bits (T47-T44) of	
			timer 4 to r	•		
					der 4 bits (T43-T40) of	
			timer 4 to r	egister A.		
TABAD (Ti	ransfer data to Accumulator and register B from regi	ster AD)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 1 0 0 1 2 7 9	words	cycles	l lag 0 l	Chip Condition	
	16	1	1	-	-	
Operation:	In A/D conversion mode (Q13 = 0),	Grouping:	A/D conver	sion opera	ation	
-	$(B) \leftarrow (AD9-AD6)$	Description			mode (Q13 = 0), trans-	
	$(A) \leftarrow (AD5-AD2)$			•	4 bits (AD9-AD6) of	
	In comparator mode (Q13 = 1),		-	-	r B, and the middle-or-	
	$(B) \leftarrow (AD7\text{-}AD4)$				O2) of register AD to parator mode ($Q13 = 1$),	
	$(A) \leftarrow (AD3-AD0)$		-		order 4 bits (AD7–AD4)	
	(Q13: bit 3 of A/D control register Q1)		of register A	AD to regis	ter B, and the low-order egister AD to register A.	
TABE (Tra	nsfer data to Accumulator and register B from regist	er E)	, -	,	<u>. </u>	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	1	Chap containen	
	16	1	1	_	-	
Operation:	(B) ← (E7–E4)	Grouping:	Register to	register ti	ansfer	
•	(A) ← (E3–E0)	Description			order 4 bits (E7-E4) of	
			register E t	to register	B, and low-order 4 bits	
			of register			
				-		
		•				

TABP p (Ti				•							ram mem		n)	
Instruction	D9	Latu	.0 , 100	u10	u	1	D ₀				Number of	Number of	Flag CY	Skip condition
code	0 0	1	0 p5		0 20	5 4			8 _	\Box	words	cycles	l lag 0 i	Chip Containon
-	0 0		0 p5	p4 p	3 p2	p1	p0 2	0	+p F	16	1	3	_	-
Operation:	(SP) ←	(SP) .	L 1								Grouping:	Arithmetic	operation	
	$\begin{array}{c c} (PCH) \leftarrow p & \text{isters A and D} \\ (PCL) \leftarrow (DR2-DR0, A3-A0) & \text{The pages what feer the SBK} \\ (B) \leftarrow (ROM(PC))7-4 & \text{after the SBK} \\ (A) \leftarrow (ROM(PC))3-0 & \text{after system is} \\ (PC) \leftarrow (SK(SP)) & \text{Note: p is 0 to 63 for M34524} \\ (SP) \leftarrow (SP) - 1 & \text{when this instruction stack register is used} \\ \\ ansfer data to Accumulator and register B from F \\ D9 & D0 \\ \end{array}$						e ROM A and ages v he SB he RB system M3452 struction	I patte D in p which K inst K inst is rel 24M8, on is e	can be referred as follows; ctruction: 64 to 127 ctruction: 0 to 63 eleased from reset or returned from power down: 0 to 63. c, and p is 0 to 95 for M34524MC, and p is 0 to 127 for M34524Eleasecuted, be careful not to over the stack because 1 stage					
TABPS (Tr	ansfer d	lata t	o Acc	umula	tor a	nd re	egist	er B	from	PreS	Scaler)			
Instruction code	D9	0	1 1	1 0) 1	0	D ₀	2	7 5	5	Number of words	Number of cycles	Flag CY	Skip condition
							2			16	1	1	_	-
Operation:	(B) ← (T										Grouping:	Timer oper	ation	
	(A) ← (T	ГРS3-	-TPS0)								Description	TPS4) of	prescale he low-ord	-order 4 bits (TPS7- r to register B, and er 4 bits (TPS3-TPS0) er A.
TABSI (Tra	nsfer da	ata to	Accu	mulat	or an	d re	giste	r B f	rom ı	regis	ter SI)			
Instruction	D9						D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0	0	1 1	1 1	0	0	0 2	2	7 8	316	words 1	cycles 1	_	_
Operation:	(B) / (S	217 21	4)								Crounings	Sorial I/O	norotion	<u> </u>
орегиноп.	$(B) \leftarrow (SI7-SI4)$ $(A) \leftarrow (SI3-SI0)$						Grouping: Serial I/O operation Description: Transfers the high-order 4 bits (SI7–SI4) of serial I/O register SI to register B, and transfers the low-order 4 bits (SI3–SI0) of serial I/O register SI to register A.							
TAD (Trans	fer data	to A	ccum	ulator	from	reg	ister	D)			•			
Instruction	D9 0	0	1 0	1 0		0	D ₀	0	5 1	1	Number of words	Number of cycles	Flag CY	Skip condition
Jour		0	1 0	' '	,	0	2		3 1	16	1	1	_	-
Operation:	(A2-A0)	← (D	R2-DR	0)							Grouping:	Register to	register ti	ansfer
	(A ₃) ← 0					Description: Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A. Note: When this instruction is executed, "0" is stored to the bit 3 (A3) of register A.								

	ransfer data to register AD from Accumulator from re	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 0 0 1 2 3 9	words	cycles		·
	16	1	1	_	_
	(12, 12), (2)	Grouping:	A/D conve	rsion opera	ation
Operation:	$(AD7-AD4) \leftarrow (B)$	Description	: In the A/D o	conversion	mode (Q13 = 0), this in-
	$(AD3-AD0) \leftarrow (A)$			•	to the NOP instruction.
					ode (Q13 = 1), trans- of register B to the
					7-AD4) of comparator
					ntents of register A to
				,	AD3-AD0) of compara-
			tor register		entral register (11)
TAI1 (Trans	sfer data to Accumulator from register I1)		(Q13 = DIL	3 01 A/D CC	entrol register Q1)
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag 01	Skip condition
oouc	1 0 0 1 0 1 0 1 1 ₂ 2 5 3 ₁₆	1	1	_	_
		·	·		
Operation:	$(A) \leftarrow (I1)$	Grouping:	Interrupt of	peration	
		Description	: Transfers	the conter	its of interrupt control
			register I1	to register	A.
TAI2 (Trans	sfer data to Accumulator from register I2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 0 1 0 2 2 5 4 16	words	cycles		
	10	1	1	-	_
Operation:	(A) ← (I2)	Grouping:	Interrupt or	neration	
Operation.	$(R) \leftarrow (IZ)$				nts of interrupt control
		Description	register I2		•
			.09.0.02	to regiote.	
TAI3 (Trans	sfer data to Accumulator from register I3)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 0 1 2 5 5	words	cycles		
	16	1	1	_	-
Operation:	$(A_0) \leftarrow (I_{30})$	Grouping:	Interrupt of	peration	
	$(A3-A1) \leftarrow 0$	Description			its of interrupt control
			register 13 ter A.	to the lowe	ermost bit (A ₀) of regis-
					executed, "0" is stored
		to the	nign-order 3	DITS (A3–A	1) of register A.

nsfer data to Accumulator from register J1)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	_	-
$(A) \leftarrow (J1)$	Grouping:	Serial I/O	operation	
		: Transfers	the conten	
nsfer data to Accumulator from register K0)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	-	-
$(A) \leftarrow (K0)$	Grouping:	Input/Outp	ut operatio	n
-	Number	Number	Flor CV	Olin and diving
			Flag CY	Skip condition
1 0 0 1 0 1 1 0 1 1 2 2 5 9 16	1	1	_	_
(A) ← (K1)	Grouping:	Input/Outp	ut operatio	n
		: Transfers	the conte	nts of key-on wakeup
nsfer data to Accumulator from register K2)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
1 0 0 1 0 1 1 0 1 0 2 2 3 1 16	1	1	-	-
$(A) \leftarrow (K2)$	Grouping:	Input/Outp	ut operatio	n
	Description			
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Do	Do

TALA /Tros						
	nsfer data to Accumulator from register L1)		Ni wala a maɗ	FI 0)/	01: 1:::	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 0 0 1 0 ₂ 2 4 A ₁₆	1	1	_	_	
Operation:	(A) ← (L1)	Crauning	LCD contro	al an aratio	•	
Operation.	(A) ← (L1)	Grouping:			control register L1 to	
			register A.			
TALA (Trai	nsfer data to Accumulator from register LA)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 0 0 1 2 2 4 9	words	cycles			
		1	1	_	_	
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$	Grouping:	A/D conve	rsion opera	ation	
•	(A1, A0) ← 0		: Transfers t	he low-ord	ler 2 bits (AD1, AD0) of	
			-	_	h-order 2 bits (A3, A2)	
		Nata	of register			
		Note:	n is executed, "0" is			
		stored to the low-order 2 bits (A1, register A.				
			register A.			
TAM i /Tro	nofor data to Acquimulator from Mamoru)					
Instruction	nsfer data to Accumulator from Memory) D9 D0	Number of	Number of	Flog CV	Skip condition	
code		words	cycles	Flag CY	Skip condition	
code	1 0 1 1 0 0 j j j j ₂ 2 C _{j 16}	1	1	_	_	
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg	nister trans	.fer	
	$(X) \leftarrow (X) \in X$				contents of M(DP) to	
	j = 0 to 15			_	sive OR operation is	
					egister X and the value	
			•		eld, and stores the re-	
			sult in regis	ster X.		
TAMD /Tro	unefer data to Accumulator from register MD					
IAMR (1ra	ansfer data to Accumulator from register MR)	Number	Number of	Flor OV	Ckin aanditiss	
code	D9 D0	Number of words	cycles	Flag CY	Skip condition	
coue	1 0 0 1 0 0 1 0 2 2 5 2 16	1	1	_	_	
			·			
Operation:	$(A) \leftarrow (MR)$	Grouping:	Clock oper			
		Description: Transfers the contents of clock control reg-				
			ister MR to	register A		

	, , , , , , , , , , , , , , , , , , , ,				
	ansfer data to Accumulator from register PU0)	1	1		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 1 1 1 2 2 5 7	1	1	_	_
0	(A) . (DUO)				
Operation:	$(A) \leftarrow (PU0)$	Grouping:	Input/Outp		
		Description	: Transfers register PL		nts of pull-up control er A.
TAPU1 (Tra	ansfer data to Accumulator from register PU1)	,			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
oouo	1 0 0 1 0 1 1 1 1 0 ₂ 2 5 E ₁₆	1	1	-	-
Operation:	(A) ← (PU1)	Grouping:	Input/Outp	ut operatio	n
-					nts of pull-up control
			register PL		
	nsfer data to Accumulator from register Q1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 0 0 1 0 0 2 2 4 4 4 16	words 1	cycles 1	_	
Operation:	(A) ← (Q1)	Grouping:	A/D conve	reion opera	ation
oporumo	(1) (21)				s of A/D control regis-
		Description.	ter Q1 to re		S GITY D GOILLON TOGGIS
TAQ2 (Trai	nsfer data to Accumulator from register Q2)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 0 1 0 1 2 2 4 5 16	1	1	-	-
Operation:	(A) ← (Q2)	Grouping:	A/D conve	rsion opera	ntion
				he conten	s of A/D control regis-

TAQ3 (Tra	nsfer data to Accumulator from register Q3)				
Instruction code	D9 D0 1 0 0 1 1 0 0 2 4 6 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (Q3)	Grouping:	A/D conve	rsion opera	ation
				the conten	ts of A/D control regis-
TASP (Tra	nsfer data to Accumulator from Stack Pointer)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 0 0 2	1	1	_	
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
Sporution.	$(A2-A0) \leftarrow (312-310)$ $(A3) \leftarrow 0$				s of stack pointer (SP)
		-	to the low-	order 3 bits	s (A2-A0) of register A.
		Note:			n is executed, "0" is
			stored to the	ne bit 3 (Aa	s) of register A.
TAV1 (Tran	nsfer data to Accumulator from register V1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 0 0 5 4	words	cycles		
	16	1	1	_	-
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt o	peration	
		Description	: Transfers	the conter	nts of interrupt control
			register V1	to registe	r A.
TAV2 (Tran	nsfer data to Accumulator from register V2)				
Instruction	D9 D0 0 0 1 0 1 0 1 0 1 0 5 5 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 1 2 0 3 3 16	1	1	_	-
Operation:	$(A) \leftarrow (V2)$	Grouping:	Interrupt o	peration	
			: Transfers register V2		nts of interrupt control r A.

TAW1 (Tra	nsfer data to Accumulator from register W1)				
Instruction code	D9 D0 1 0 1 1 2 4 B	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (W1)	Grouping: Description	Timer oper Transfers ister W1 to	the conten	s of timer control reg-
TΔW2 (Tra	nsfer data to Accumulator from register W2)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (W2)	Grouping: Description	Timer oper Transfers to ister W2 to	the conten	s of timer control reg-
TAW3 (Trainstruction code	Insfer data to Accumulator from register W3) D9 D0 1 0 0 1 0 0 1 1 0 1 2 2 4 D 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	(A) ← (W3)	Grouping: Description	Timer oper Transfers to ister W3 to	the conten	s of timer control reg-
TAW4 (Tra	nsfer data to Accumulator from register W4)				
Instruction code	D9 D0 1 0 0 1 0 0 1 1 0 0 2 4 E	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (W4)	Grouping: Description	Timer oper Transfers ister W4 to	the conten	s of timer control reg-

LAME / LEO	noter data to Accumulator from register M/E)				
Instruction	nsfer data to Accumulator from register W5) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
code	1 0 0 1 0 0 1 1 1 1 1 1 ₂ 2 4 F ₁₆	1	1	_	_
Operation:	(A) ← (W5)	Grouping:	Timer ope	ration	
oporumo	(1) (110)				ts of timer control reg-
		·	ister W5 to		_
TAW6 (Tra	nsfer data to Accumulator from register W6)				
Instruction	D9 D0 1 0 1 0 1 0 0 0 0 2 5 0 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(A) ← (W6)	Grouping:	Timer oper	ation	
•					ts of timer control reg-
			ister W6 to	register A	
	efer data to Accumulator from register X)				
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 1 0 2	1	cycles 1	_	_
Operation:	(A) ((V)	Grouping:	Register to	register tr	anefer
Operation.	$(A) \leftarrow (X)$	Description			ts of register X to reg-
		-	ister A.		o o
TAY (Trans	sfer data to Accumulator from register Y)				
TAY (Transinstruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Instruction	· ·			Flag CY	Skip condition
Instruction	D9 D0	words 1 Grouping:	cycles 1 Register to	_	<u> </u>
Instruction code	D9 D0 0 0 0 0 1 1 1 1 1 1 2 0 1 F 16	words 1	cycles 1 Register to	- register tr	<u> </u>

TA7 (Trans	of ar data to Accumulator from register 7\	•			
Instruction	sfer data to Accumulator from register Z) Do Do	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 1 1 2 0 5 3	words	cycles	riag C1	Skip condition
	0 0 0 1 0 1 0 0 1 1 2	1	1	-	_
Operation:	$(A_1, A_0) \leftarrow (Z_1, Z_0)$	Grouping:	Register to	register ti	ransfer
	$(A3, A2) \leftarrow 0$				nts of register Z to the
					A ₀) of register A.
		Note:	After this	instructio	on is executed, "0" is
			stored to t	the high-o	rder 2 bits (A3, A2) of
			register A.		
	sfer data to register B from Accumulator)	Number	Ni. makan at	Flar CV	Chin condition
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 1 1 0 ₂ 0 0 E ₁₆	1	1	_	_
Operation:	$(B) \leftarrow (A)$	Grouping:	Register to	register ti	ransfer
		Description	: Transfers t	the content	ts of register A to regis-
			ter B.		
TDA (Trans	sfer data to register D from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 2 0 2 9	words	cycles		
		1	1	_	_
Operation:	(DR2−DR0) ← (A2−A0)	Grouping:	Register to	register t	ranefer
Operation.	(BIZ BIO) (- (AZ AO)				nts of the low-order 3
		Docompaion			er A to register D.
			2110 (112 111	o, oog.o.	or reto regional 21
TEAB (Tra	nsfer data to register E from Accumulator and regist	er B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 0 1 A	words	cycles		·
	16	1	1	_	_
Operation:	(E7–E4) ← (B)	Grouping:	Register to	register ti	l ransfer
- por acioni	$(E_3-E_0) \leftarrow (A)$				nts of register B to the
	V - 1-7 · V 7	2 2 2 2			–E4) of register E, and
			-	•	ter A to the low-order 4
			bits (E3–E	_	
				, 5	

							_					•	•		
TFR0A (Tr		ata to	o regi	ister	FR0 f	rom	Accı	ımu	late	or)				1	
Instruction code	D9 1 0	0	0 1	0	1 0	0	D ₀	2	,	2 8		Number of words	Number of cycles	Flag CY	Skip condition
	. 0		<u> </u>	1 "			1 .	2 🗀			_ 16	1	1	_	_
Operation:	(FR0) ←	- (A)										Grouping:	Input/Outp	ut operation	'n
	, ,	, ,										Description	: Transfers	the conter	nts of register A to the control register FR0.
TFR1A (Tr	ansfer d	ata to	o regi	ister	FR1 f	rom	Accı	ımu	late	or)					
Instruction code	D9	0	0 1	0	1 0	0	D ₀	2 2		2 9		Number of words	Number of cycles	Flag CY	Skip condition
				1				2 🗀			16	1	1	_	_
Operation:	(FR1) ←	(A)										Grouping:	Input/Outp	ut operation	n
													port output	t structure	control register FR1.
TFR2A (Tr		ata to	o regi	ister	FR2 f	rom		ımu	late	or)		1			
Instruction	D9			_			D ₀		_		_	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0	0	0 1	0	1 0	1	0	2 2		2 A	16	1	1	_	-
Operation:	(FR2) ←	- (A)										Grouping:	Input/Outp	ut operatio	n
												Description	: Transfers	the conter	its of register A to the control register FR2.
TFR3A (Tr	ansfer d	ata to	o regi	ister	FR3 f	rom	Accı	ımu	late	or)					
Instruction	D9 1 0		0 1	0	1 0		D ₀			2 B		Number of words	Number of cycles	Flag CY	Skip condition
0000	1 0	0	0 1	0	1 0		1 :	2 2	<u></u>	2 B	16	1	1	-	_
Operation:	(FR3) ←	- (A)										Grouping:	Input/Outp	ut operatio	n
												Description			its of register A to the control register FR3.

TIAA /T	of an interference design in the second second second				
	sfer data to register I1 from Accumulator)		I		
Instruction code	D9 D0 1 0 1 1 1 1 2 2 1 7 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	$(I1) \leftarrow (A)$	Grouping:	Interrupt of	peration	
		Description	: Transfers t rupt contro		s of register A to inter- 1.
TI2A (Tran	sfer data to register I2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
oouc	1 0 0 0 0 1 1 0 0 0 0 2 2 1 8 16	1	1	-	-
Operation:	(I2) ← (A)	Grouping:	Interrupt of	peration	
•					s of register A to inter-
			rupt contro	l register l	2.
	sfer data to register I3 from Accumulator)			[FI 0)	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 1 0 ₂ 2 1 A ₁₆	words 1	cycles 1	_	_
Operation:	(I30) ← (A0)	Grouping:	Interrupt or	peration	
•					s of the lowermost bit
			(Ao) of regi	ster A to in	terrupt control register
TJ1A (Tran	nsfer data to register J1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 0 0 0 0 1 0 2 2 0 2 16	1	1	-	-
Operation:	(J1) ← (A)	Grouping:	Serial I/O o	peration	
				he content	s of register A to serial

Code	TKOA /Tro	nafor data to register KO from Accumulator				
Code 1 0 0 0 0 1 1 0 1 1 2 2 1 B 1e T 1 1 0 0 0 0 1 1 0 1 1 2 2 1 B 1e T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Number of	Number of	Flag CV	Ckin condition
TK1A (Transfer data to register K2 from Accumulator)					riag CT	Skip condition
TK1A (Transfer data to register K1 from Accumulator) Instruction Code TK1 (Transfer data to register K1 from Accumulator) Instruction Code TK2A (Transfer data to register K2 from Accumulator) TK2A (Transfer data to register K2 from Accumulator) Instruction Description: TR3 (Transfer data to register K2 from Accumulator) Instruction Code TR4 (Transfer data to register K2 from Accumulator) Instruction Code TR5 (K2) (A) TR5 (Transfer data to register L1 from Accumulator) Instruction Description: TR5 (K2) (A) TR5 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR6 (K2) (A) TR6 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR6 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR6 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruction Doscription: TR8 (Transfer data to register L1 from Accumulator) Instruc	coue	1 0 0 0 0 1 1 0 1 1 2 2 1 B 16	1	1	-	-
TK1A (Transfer data to register K1 from Accumulator) Instruction Code Table Ta	Operation:	(K0) ← (A)	Grouping:	Input/Outp	ut operatio	ın
TK1A (Transfer data to register K1 from Accumulator) Instruction code Title Description Desc	oporanom.					
Docation: Docation: Docation: Code 1				on wakeup	control re	gister K0.
Code	TK1A (Tra	nsfer data to register K1 from Accumulator)	•			
Operation: $(K1) \leftarrow (A)$ TK2A (Transfer data to register K2 from Accumulator) Instruction code I 0 0 0 0 1 0 1 0 1 2 1 5 16 Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ Operation: $(K2) \leftarrow (A)$ TL1A (Transfer data to register L1 from Accumulator) Instruction D9 Operation: $(K2) \leftarrow (A)$ Operation: $(K2) \leftarrow (A)$ Operation: $(K2) \leftarrow (A)$ Operation: $(K2) \leftarrow (A)$ Operation: $(K3) \leftarrow (A)$ Operation: $(K3) \leftarrow (A)$ Operation: $(K3) \leftarrow (A)$ Operation: $(K4) \leftarrow (A)$ Ope	Instruction	D9 D0			Flag CY	Skip condition
TK2A (Transfer data to register K2 from Accumulator) Instruction code Description		1 0 0 0 0 1 0 1 0 0 2 2 1 4 16	1	1	-	-
TK2A (Transfer data to register K2 from Accumulator) Instruction code Description	Operation:	$(K1) \leftarrow \overline{(A)}$	Grouping:	Input/Outp	ut operation	n
	-					
				on wakeup	control re	gister K1.
TL1A (Transfer data to register L1 from Accumulator) Instruction code Description: Description: Number of words cycles Number of words Number of cycles Flag CY Skip condition words Operation: (L1) ← (A) Grouping: LCD operation	Instruction	D9 D0			Flag CY	Skip condition
	code	1 0 0 0 0 1 0 1 0 1 2 2 1 5 16	1	-	_	-
	Operation:	$(K2) \leftarrow (A)$	Grouping:	Input/Outp	ut operation	n
	•		Description	: Transfers	the conten	ts of register A to key-
Instruction code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				on wakeup	o control re	gister K2.
code 1 0 0 0 0 0 1 0 1 0 1 0 2 2 0 A 16 words cycles cycles 1 1 1 - Operation: (L1) ← (A) Grouping: LCD operation Description: Transfers the contents of register A to		nsfer data to register L1 from Accumulator)				
Operation: $(L1) \leftarrow (A)$					Flag CY	Skip condition
Description: Transfers the contents of register A to			1	1	-	-
Description: Transfers the contents of register A to	Operation:	(L1) ← (A)	Grouping:	LCD opera	ation	
	·		Description			ts of register A to LCD

TL2A (Tran	nsfer data to register L2 from Accumulator)				
Instruction	D9 Do	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 0 1 1 ₂ 2 0 B ₁₆	words	cycles		
	10	1	1	_	_
Operation:	(L2) ← (A)	Grouping:	LCD opera	ation	
орегинот:		Description			ts of register A to LCD
			control reg	ister L2.	
TLCA (Tra	nsfer data to timer LC and register RLC from Accum	ulator)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 0 1 ₂ 2 0 D ₁₆	words	cycles		
		1	1	_	_
Operation:	$(LC) \leftarrow (A)$	Grouping:	Timer oper	ation	
	$(RLC) \leftarrow (A)$	Description	: Transfers t	he content	s of register A to timer
	nsfer data to Memory from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 1 1 j j j ₂ 2 B ₁	1	1	_	_
Operation:	$(M(DP)) \leftarrow (A)$	Grouping:	RAM to reg	gister trans	fer
	$(X) \leftarrow (X)EXOR(j)$	Description			contents of register A
	j = 0 to 15		formed be	tween regi ediate field	e OR operation is per- ster X and the value j I, and stores the result
TMRA (Tra	ansfer data to register MR from Accumulator)				
Instruction	D9 D0 1 0 1 1 0 2 1 6 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ation	
·		Description	: Transfers t control reg		s of register A to clock

TPAA (Tra	nsfer da	ta to	reais	ter F	A fro	m Ad	ccum	nula	ator)					
Instruction	D9 1 0		0 1	0) 1	D0] [2			Number of words	Number of cycles	Flag CY	Skip condition
	1 0		0 1	0	1 (' '	0]2 [2	Α .	A16	1	1	-	-
Operation:	(PA0) ←	- (A0)										Grouping:	Timer oper	ration	
												Description			s of lowermost bit (A0) ntrol register PA.
TPSAB (Tr	ransfer	data 1	to Pre	-Sca	aler fr	om /	Accu	mu	ılato	or an	d reg	ister B)			
Instruction	D9 1 0		0 1	1		0	D ₀] [2		5	Number of words	Number of cycles	Flag CY	Skip condition
		1 1		1.			·	J2 L			16	1	1	_	-
Operation:	(RPS7-											Grouping:	Timer oper	ration	
	(TPS7- (RPS3- (TPS3-	RPS0	(A)									Description	high-order reload regi tents of re	4 bits of p ister RPS, gister A to	ats of register B to the rescaler and prescaler and transfers the conthe low-order 4 bits of caler reload register
TPU0A (Tr	ansfer o	data t	o regi	ster	PU0	fron	Acc Do	cum	nula	tor)		Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 1	0	1 .	0	1	1 [2	2	D	words	cycles	riag C1	Skip condition
	1 0	101	0 1	0	'	0	!]2 [2	16	1	1	-	-
Operation:	(PU0) é	– (A)										Grouping:	Input/Outp	ut operatio	n
												Description	: Transfers to up control		ts of register A to pull- J0.
TPU1A (Tr	ansfer o	lata t	o regi	ster	PU1	fron	ı Acc	cum	nula	tor)		•			
Instruction	D9	0	0 1	0	1 '	1	D ₀] [2	2	E]16	Number of words	Number of cycles	Flag CY	Skip condition
	[,] ,	1,1	<u> </u>		<u> </u>		1 ,]2 L		_	16	1	1	_	-
Operation:	(PU1) €	– (A)										Grouping:	Input/Outp	ut operatio	n
												Description	: Transfers to up control		ts of register A to pull- J1.

TO 4.4 /T	established a secretary Office of Assessment Later				
	nsfer data to register Q1 from Accumulator)	Ni i	Ni i	FI 0\	Older and differen
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 0 1 0 0 2 2 0 4 16	1	1	_	_
Operation:	(Q1) ← (A)	Grouping:	A/D conve	rsion oner	ation
o por anom					ts of register A to A/D
			control reg		· ·
			-		
	nsfer data to register Q2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 0 1 0 1 2 2 0 5	words	cycles		
		1	1	_	_
Operation:	(Q2) ← (A)	Grouping:	A/D conve	rsion opera	ation
					ts of register A to A/D
			control reg	ister Q2.	
TQ3A (Tra	nsfer data to register Q3 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 0 1 1 0 2 2 0 6 16	words	cycles		
		1	1	_	_
Operation:	(Q3) ← (A)	Grouping:	A/D conve	rsion opera	tion
орогинон				-	ts of register A to A/D
		•	control reg		· ·
TR1AB (Tr	ansfer data to register R1 from Accumulator and reg	gister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 1 1 1 ₂ 2 3 F ₁₆	words	cycles		
		1	1	_	_
Operation:	(R17–R14) ← (B)	Grouping:	Timer oper	ation	
oporation.	$(R13-R10) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	Description			ts of register B to the
	V	2000.1011			7–R14) of reload regis-
			-		nts of register A to the
					-R10) of reload regis-
			ter R1.		-
_					

		5)			
	ransfer data to register R3 from Accumulator and reg			T	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 0 1 1 1 0 1 1 ₂ 2 3 B ₁₆	1	1	_	_
Operation:	(R37–R34) ← (B)	Grouping:	Timer oper	ration	
орегиноп:	$(R33-R30) \leftarrow (A)$: Transfers high-order ter R3, and	the conter 4 bits (R3 d the conte	nts of register B to the 7–R34) of reload regis- ents of register A to the 3–R30) of reload regis-
TSIAB (Tra	ansfer data to register SI from Accumulator and regis	ster B)			_
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 0 1 1 1 0 0 0 0 2 2 3 8 16	1	1	_	_
Operation:	(SI7–SI4) ← (B)	Grouping:	Timer oper	ation	<u> </u>
operation.	$(SI3-SI0) \leftarrow (A)$: Transfers thigh-order ister SI, a	the conten 4 bits (SI7 and trans o the low-c	ets of register B to the —SI4) of serial I/O reg- fers the contents of order 4 bits (SI3–SI0) of
TV1A (Tra	nsfer data to register V1 from Accumulator)	I			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 ₂ 0 3 F ₁₆	words 1	cycles 1	_	_
Operation:	(V1) ← (A)	Grouping:	Interrupt o	peration	
·		Description	: Transfers t rupt contro		ts of register A to inter- /1.
TV2A (Trai	nsfer data to register V2 from Accumulator)	•			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 0 0 1 1 1 1 1 0 2 0 3 E 16	1	1	_	_
Operation:	(V2) ← (A)	Grouping: Description	Interrupt of Transfers trupt contro	the conten	ts of register A to inter- /2.

T\M1 A /Tro	unefor data to register W1 from Accumulator				
Instruction	nnsfer data to register W1 from Accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag O i	OKIP CONDITION
-	1 0 0 0 0 0 1 1 1 1 0 2 2 0 E 16	1	1	_	_
Operation:	(W1) ← (A)	Grouping:	Timer oper	ration	
	(***)				s of register A to timer
			control reg		•
	insfer data to register W2 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 1 1 1 1 1 2 2 0 F 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 0 1 1 1 1 1 2 2 0 1 16	1	1	_	_
Operation:	(W2) ← (A)	Grouping:	Timer oper	ration	
•		Description			s of register A to timer
			control reg	ister W2.	
TIMO A /T.	and the late to any interest MO from Any and Interest				
	nsfer data to register W3 from Accumulator)		I	T	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 0 0 0 2 2 1 0 16	1	1	_	
Operation:	$(W3) \leftarrow (A)$	Grouping:	Timer oper		
		Description			s of register A to timer
			control reg	ister ws.	
TW4A (Tra	insfer data to register W4 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag O1	OKIP CONDITION
	16	1	1	_	_
Operation:	(W4) ← (A)	Grouping:	Timer oper	ration	
- po. ationi	\···/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				s of register A to timer
			control reg		
			J		

	(
	nsfer data to register W5 from Accumulator)	I		[FL 0)/	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 0 1 0 2 2 1 2 1 2	1	1	_	
	AND (A)		_		
Operation:	$(W5) \leftarrow (A)$	Grouping:	Timer oper		
		Description			s of register A to timer
			control reg	ister ws.	
	nnsfer data to register W6 from Accumulator)	No. and a second	Normalisanisa	Flar OV	Olda and dition
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
oodc	1 0 0 0 1 0 0 1 1 1 2 2 1 3	1	1	_	_
	AND (A)		_		
Operation:	$(W6) \leftarrow (A)$	Grouping:	Timer oper		
		Description			s of register A to timer
			control reg	ister wo.	
TYA (Trans	sfer data to register Y from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 0 0 0 0 0 0	words	cycles		
	0 0 0 0 0 1 1 0 0 2	1	1	-	_
Operation:	$(Y) \leftarrow (A)$	Grouping:	Register to		·
		Description		he content	s of register A to regis-
			ter Y.		
WRST (Wa	atchdog timer ReSeT)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 0 0 0 0 0 2 A 0	words	cycles		,
	16	1	1	-	(WDF1) = 1
Operation:	(WDF1) = 1 ?	Grouping:	Other oper		
	After skipping, (WDF1) \leftarrow 0	Description			ction when watchdog
			_		." After skipping, clears
				_	. When the WDF1 flag
			is "0," exe	cutes the	next instruction. Also,
			stops the v	watchdog t	mer function when ex-
			ecuting the	e WRST ir	struction immediately
			after the D	WDT instru	uction.
		1			

	change Accumulator and Memory data)					
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer	
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	with the co OR operat ter X and t	ntents of r ion is perf he value j	ne contents of M(DP) egister A, an exclusive formed between regis- in the immediate field, in register X.	
XAMD j (e	Xchange Accumulator and Memory data and Decrer	nent regist	er Y and sk	ip)		
Instruction code	D9 D0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	(Y) = 15	
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \in X$ $(X) \in X$ $(X) \in X$ $(X) \in X$ $(Y) \in X$ $(Y$	Grouping: RAM to register transfer Description: After exchanging the contents of M with the contents of register A, an exc OR operation is performed between ter X and the value j in the immediate and stores the result in register X. Subtracts 1 from the contents of register As a result of subtraction, when the tents of register Y is 15, the next instruction is skipped. When the contents of register Y is 15, the next instruction is skipped.				
XAMI j (eX	Change Accumulator and Memory data and Increme	ent register	Y and skip)		
Instruction code	D9 D0 1 1 1 0 j j j j 2 E j 40	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	(Y) = 0	
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \to (X) \to (X) \to (X)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y) + 1$	Grouping: Description	with the co OR operat ter X and t and stores Adds 1 to t sult of ac register Y skipped. w	nanging the standard of relation is perfused the value justed the result he content dition, withing the content th	defer the contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. es of register Y. As a re- hen the contents of e next instruction is contents of register Y is otton is executed.	

MACHINE INSTRUCTIONS (INDEX BY TYPES)

MACH	IIIL IIIG	RUCTIONS (INDEX BY 11PES)															T
Parameter			Instruction code											umber of words	umber of cycles	Function	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀		ade otati	cimal on	Number words	Number of cycles	T dilonon
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	$(A) \leftarrow (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
transfe	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
er to 1	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$ \begin{array}{l} (A2\text{-}A0) \leftarrow (SP2\text{-}SP0) \\ (A3) \leftarrow 0 \end{array} $
	LXY x, y	1	1	х3	X2	X1	X 0	уз	у2	y1	у0	3	Х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
resses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
<u>~</u>	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAM to reç	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	j = 0 to 15 $(Y) \leftarrow (Y) + 1$ $(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of register B to register A.
_	_	Transfers the contents of register A to register B.
_	_	Transfers the contents of register Y to register A.
_	_	Transfers the contents of register A to register Y.
-	_	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
_	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
_	_	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
-	_	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
_	_	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
-	_	Transfers the contents of register X to register A.
-	_	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	_	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
_	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
_	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

INSTRUCTIONS 4524 Group

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Type of instructions LA n		D8 0		D6	D 5	_								umber	er les	Function
Instructions LA n	0			D6	D5						Hexa	ade	cimal	할	m %	FUNCTION
		0				D4	D 3	D2	D1	D ₀		otati		Number words	Number of cycles	
	0		0	1	1	1	n	n	n	n	0	7	n	1		(A) ← n n = 0 to 15
	0															
ТАВР р		0	1	0	p 5	p4	рз	p2	p1	p0	0	8 +p		1	3	$ \begin{aligned} & (SP) \leftarrow (SP) + 1 \\ & (SK(SP)) \leftarrow (PC) \\ & (PCH) \leftarrow p \; (Note) \\ & (PCL) \leftarrow (DR2 \text{-} DR0, A3 \text{-} A0) \\ & (B) \leftarrow (ROM(PC))7 \text{-} 4 \\ & (A) \leftarrow (ROM(PC))3 \text{-} 0 \\ & (PC) \leftarrow (SK(SP)) \\ & (SP) \leftarrow (SP) - 1 \end{aligned} $
AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
oration OMV	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation A D D D D D D D D D D D D D D D D D D	0	0	0	1	1	0	n	n	n	n	0	6	n	1		(A) ← (A) + n n = 0 to 15
AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit oberation SZB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $
SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1		(Mj(DP)) = 0 ? j = 0 to 3
SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP))?
Comparison operation V Y S S	0	0	0	0	1	0	0	1	0	1	0			2	2	(A) = n ? n = 0 to 15
	0	0	0	1	1	1	n	n	n	n	0	7	n			

Note: p is 0 to 63 for M34524M8, p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED. 4524 Group

		,
Skip condition	Carry flag CY	Datailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
_	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

MACHINE INSTRUCTIONS (continued)

1				_	_					<u> </u>							
Parameter						lr	nstru	ction	cod	le			er of	er of			
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexadecimal notation	Number o	Number of cycles	Function		
	Ва	0	1	1	a6	a 5	a 4	a 3	a2	a1	a 0	1 8 a +a	1	1	(PCL) ← a6–a0		
ration	BL p, a	0	0	1	1	1	p4	рз	p2	р1	po	0 E p +p	2		(PCH) ← p (Note) (PCL) ← a6–a0		
Branch operation		1	p6	p 5	a 6	a 5	a4	аз	a2	a1	a 0	2 p a +p+a					
Brar	BLA p	0	0	0	0	0	1	0	0	0	0	0 1 0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)		
		1	p6	p 5	p4	0	0	рз	p2	р1	po	2 p p +p			(FCL) ← (BN2=BN0, A3=A0)		
c	ВМ а	0	1	0	a 6	a 5	a4	a 3	a 2	a1	a 0	1 a a	1		(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6–a0		
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	po	0 C p +p	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$		
outine		1	p6	p5	a 6	a 5	a4	аз	a2	a1	a 0	2 p a +p+a			(PCL) ← a6–a0		
Subi	BMLA p	0	0	0	0	1	1	0	0	0	0	0 3 0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)		
		1	p6	p 5	p4	0	0	рз	p2	p 1	po	2 p p +p			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$		
c	RTI	0	0	0	1	0	0	0	1	1	0	0 4 6	1		$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0 4 4	1		(PC) ← (SK(SP)) (SP) ← (SP) − 1		
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0 4 5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1		

Note: p is 0 to 63 for M34524M8, p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED. 4524 Group

Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-	_	Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de-
_	_	scription of the LA/LXY instruction, register A and register B to the states just before interrupt. Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

4524 Group

Parameter						In	stru	ction	coc	le					as of	er of	Function
Type of structions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	Do		ade otati	cimal on	Number words	Number of cycles	
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: SNZ1 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	l12 = 1 : (INT0) = "H" ?
																	l12 = 0 : (INT0) = "L" ?
ration	SNZI1	0	0	0	0	1	1	1	0	1	1	0	3	В	1	1	I22 = 1 : (INT1) = "H" ?
Interrupt operation																	I22 = 0 : (INT1) = "L" ?
Interr	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	$(A) \leftarrow (V2)$
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(I1) \leftarrow (A)$
	TAI2	1	0	0	1	0	1	0	1	0	0	2	5	4	1	1	(A) ← (I2)
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	$(I2) \leftarrow (A)$
	TAI3	1	0	0	1	0	1	0	1	0	1	2	5	5	1	1	$(A_0) \leftarrow (I_{30}), (A_{3}-A_{1}) \leftarrow 0$
	TI3A	1	0	0	0	0	1	1	0	1	0	2	1	Α	1	1	(I30) ← (A0)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	(PA ₀) ← (A ₀)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	$(A) \leftarrow (W1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	E	1	1	(W1) ← (A)
ے ا	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
ratio	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
Timer operation	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
Time	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	(A) ← (W4)
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)

	_	
Skip condition	Carry flag CY	Datailed description
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
V11 = 0: (EXF1) = 1	_	When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1)
(INT0) = "H" However, I12 = 1	_	When I12 = 1 : Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control register I1)
(INT0) = "L" However, I12 = 0	_	When I12 = 0 : Skips the next instruction when the level of INT0 pin is "L."
(INT1) = "H" However, I22 = 1		When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)
(INT1) = "L" However, I22 = 0	_	When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L."
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
-	_	Transfers the contents of interrupt control register V2 to register A.
-	_	Transfers the contents of register A to interrupt control register V2.
-	_	Transfers the contents of interrupt control register I1 to register A.
-	_	Transfers the contents of register A to interrupt control register I1.
-	_	Transfers the contents of interrupt control register I2 to register A.
- 1	_	Transfers the contents of register A to interrupt control register I2.
	_	Transfers the contents of interrupt control register I3 to the lowermost bit (Ao) of register A.
- 1	-	Transfers the contents of the lowermost bit (A ₀) of register A to interrupt control register I3.
-	_	Transfers the contents of register A to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
- 1	_	Transfers the contents of register A to timer control register W1.
- 1	_	Transfers the contents of timer control register W2 to register A.
- 1	_	Transfers the contents of register A to timer control register W2.
- 1	_	Transfers the contents of timer control register W3 to register A.
- 1	_	Transfers the contents of register A to timer control register W3.
- 1	_	Transfers the contents of timer control register W4 to register A.
_	-	Transfers the contents of register A to timer control register W4.
	<u> </u>	

4524 Group INSTRUCTIONS

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter								ction							r of s	7	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex n	ade otat	cimal	Number words	Number of cycles	Function
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	(W5) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
eration	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
Timer operation	TAB3	1	0	0	1	1	1	0	0	1	0	2	7	2	1	1	(B) ← (T37–T34) (A) ← (T33–T30)
F	ТЗАВ	1	0	0	0	1	1	0	0	1	0	2	3	2	1	1	$(R37-R34) \leftarrow (B)$ $(T37-T34) \leftarrow (B)$ $(R33-R30) \leftarrow (A)$ $(T33-T30) \leftarrow (A)$
	TAB4	1	0	0	1	1	1	0	0	1	1	2	7	3	1	1	(B) ← (T47–T44) (A) ← (T43–T40)
	T4AB	1	0	0	0	1	1	0	0	1	1	2	3	3	1	1	$(R4L7-R4L4) \leftarrow (B)$ $(T47-T44) \leftarrow (B)$ $(R4L3-R4L0) \leftarrow (A)$ $(T43-T40) \leftarrow (A)$
	Т4НАВ	1	0	0	0	1	1	0	1	1	1	2	3	7	1	1	(R4H7–R4H4) ← (B) (R4H3–R4H0) ← (A)
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$
	TR3AB	1	0	0	0	1	1	1	0	1	1	2	3	В	1	1	(R37–R34) ← (B) (R33–R30) ← (A)
	T4R4L	1	0	1	0	0	1	0	1	1	1	2	9	7	1	1	(T47−T40) ← (R4L7−R4L0)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	(LC) ← (A) (RLC) ← (A)

	_	
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of timer control register W5 to register A.
-	_	Transfers the contents of register A to timer control register W5.
-	_	Transfers the contents of timer control register W6 to register A.
-	_	Transfers the contents of register A to timer control register W6.
_	_	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	_	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	_	Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.
-	_	Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.
-	_	Transfers the contents of timer 4 reload register R4L to timer 4.
-	_	Transfers the contents of register A to timer LC and timer LC reload register RLC.

4524 Group INSTRUCTIONS

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter	INL INS							ction							ъ	<u></u>	
Farameter	Mnemonic												_			Number of cycles	Function
Type of instructions		D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀			ecimal tion	Number words	Nun S	
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1		V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: NOP
tion	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1		V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0 V13 = 1: NOP
Timer operation	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1		V20 = 0: (T3F) = 1 ? After skipping, (T3F) ← 0 V20 = 1: NOP
Time	SNZT4	1	0	1	0	0	0	0	0	1	1	2	8	3	1		V23 = 0: (T4F) = 1 ? After skipping, (T4F) ← 0 V23 = 1: NOP
	SNZT5	1	0	1	0	0	0	0	1	0	0	2	8	4	1	1	V21 = 0: (T5F) = 1 ? After skipping, (T5F) ← 0 V21 = 1: NOP
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A) ← (P2)
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P2) ← (A)
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A) ← (P3)
	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P3) ← (A)
	IAP4	1	0	0	1	1	0	0	1	0	0	2	6	4	1	1	(A) ← (P4)
	OP4A	1	0	0	0	1	0	0	1	0	0	2	2	4	1	1	(P4) ← (A)
tion	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
Input/Output operation	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 9
ut/Outpı	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$ (D(Y)) \leftarrow 1 $ $ (Y) = 0 \text{ to } 9 $
du	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1	1	(D(Y)) = 0? (Y) = 0 to 7
		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(1) = 0 to 7
	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	(C) ← 0
	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	(C) ← 1
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)

	<u> </u>	
Skip condition	Carry flag CY	Datailed description
V12 = 0: (T1F) = 1	_	Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
V13 = 0: (T2F) =1	_	Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
V20 = 0: (T3F) = 1	_	Skips the next instruction when the contents of bit 0 (V2o) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag.
V23 = 0: (T4F) =1	_	Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and the contents of T4F flag is "1." After skipping, clears (0) to T4F flag.
V21 = 0: (T5F) =1	_	Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the contents of T5F flag is "1." After skipping, clears (0) to T5F flag.
_	-	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
_	_	Transfers the input of port P2 to register A.
_	_	Outputs the contents of register A to port P2.
_	_	Transfers the input of port P3 to register A.
_	_	Outputs the contents of register A to port P3.
_	_	Transfers the input of port P4 to register A.
_	_	Outputs the contents of register A to port P4.
_	_	Sets (1) to all port D.
-	_	Clears (0) to a bit of port D specified by register Y.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, (Y)=0 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
-	_	Clears (0) to port C.
_	_	Sets (1) to port C.
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of pull-up control register PU1 to register A.
_	_	Transfers the contents of register A to pull-up control register PU1.

4524 Group INSTRUCTIONS

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Paramete	HIL HIS	Instruction code			er of ds er of es												
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa	ade otati		Number of words	Number of cycles	Function
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	$(K0) \leftarrow (A)$
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
Input/Output operation	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
nt ope	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	$(A) \leftarrow (K2)$
Outpu	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
)/tndr	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	(FR0) ← (A)
<u> </u>	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	Α	1	1	(FR2) ← (A)
	TFR3A	1	0	0	0	1	0	1	0	1	1	2	2	В	1	1	(FR3) ← (A)
LCD operation	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	Α	1	1	(A) ← (L1)
oper	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	Α	1	1	(L1) ← (A)
ГСБ	TL2A	1	0	0	0	0	0	1	0	1	1	2	0	В	1	1	$(L2) \leftarrow (A)$
	TABSI	1	0	0	1	1	1	1	0	0	0	2	7	8	1	1	$(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$
ion	TSIAB	1	0	0	0	1	1	1	0	0	0	2	3	8	1	1	$(S17-S14) \leftarrow (B) (S13-S10) \leftarrow (A)$
Serial I/O operation	SST	1	0	1	0	0	1	1	1	1	0	2	9	Е	1	1	(SIOF) ← 0 Serial I/O starting
Serial I/C	SNZSI	1	0	1	0	0	0	1	0	0	0	2	8	8	1	1	V23=0: (SIOF)=1? After skipping, (SIOF) \leftarrow 0 V23 = 1: NOP
	TAJ1	1	0	0	1	0	0	0	0	1	0	2	4	2	1	1	(A) ← (J1)
	TJ1A	1	0	0	0	0	0	0	0	1	0	2	0	2	1	1	(J1) ← (A)
ion	СМСК	1	0	1	0	0	1	1	0	1	0	2	9	Α	1	1	Ceramic resonator selected
oerati	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
ြဲပိ	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$

		,
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transferts the contents of register A to port output format control register FR0.
_	_	Transferts the contents of register A to port output format control register FR1.
_	_	Transferts the contents of register A to port output format control register FR2.
_	_	Transferts the contents of register A to port output format control register FR3.
_	_	Transfers the contents of LCD control register L1 to register A.
_	_	Transfers the contents of register A to LCD control register L1.
_	_	Transfers the contents of register A to LCD control register L2.
_	_	Transfers the high-order 4 bits of serial I/O register SI to register B, and transfers the low-order 4 bits of serial I/O register SI to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of serial I/O register SI, and transfers the contents of register A to the low-order 4 bits of serial I/O register SI.
-	_	Clears (0) to SIOF flag and starts serial I/O.
V23 = 0: (SIOF) = 1	_	Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and contents of SIOF flag is "1." After skipping, clears (0) to SIOF flag.
_	_	Transfers the contents of serial I/O control register J1 to register A.
_	_	Transfers the contents of register A to serial I/O control register J1.
_	_	Selects the ceramic resonator for main clock, stops the on-chip oscillator (internal oscillator).
_	_	Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator).
_	_	Transfers the contents of clock control regiser MR to register A.
_	_	Transfers the contents of register A to clock control register MR.

INSTRUCTIONS 4524 Group

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter						In	stru	ction	tion code			r of s	r of s				
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			ecimal	Number of words	Number of cycles	Function
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	Q13 = 0: (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) Q13 = 1: (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A3, A2) \leftarrow (AD1, AD0) (A1, A0) \leftarrow 0$
ation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	$ \begin{array}{l} (AD7\text{-}AD4) \leftarrow (B) \\ (AD3\text{-}AD0) \leftarrow (A) \end{array} $
ion opera	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 A/D conversion starting
A/D conversion operation	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: NOP
À	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	$(A) \leftarrow (Q1)$
	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	(Q1) ← (A)
	TAQ2	1	0	0	1	0	0	0	1	0	1	2	4	5	1	1	(A) ← (Q2)
	TQ2A	1	0	0	0	0	0	0	1	0	1	2	0	5	1	1	(Q2) ← (A)
	TAQ3	1	0	0	1	0	0	0	1	1	0	2	4	6	1	1	(A) ← (Q3)
	TQ3A	1	0	0	0	0	0	0	1	1	0	2	0	6	1	1	(Q3) ← (A)
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to clock operating mode
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF, POF2 instructions valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1 ? After skipping, (WDF1) ← 0
Other	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
	RBK*	0	0	0	1	0	0	0	0	0	0	0	4	0	1	1	When TABP p instruction is executed, P6 \leftarrow 0
	SBK*	0	0	0	1	0	0	0	0	0	1	0	4	1	1	1	When TABP p instruction is executed, P6 \leftarrow 1
	SVDE	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	At power down mode, voltage drop detection circuit valid

Note: * (SBK, RBK) cannot be used in the M34524M8.

The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34524MC.

		,
Skip condition	Carry flag CY	Datailed description
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the middle-order 4 bits (AD7–AD4) of register AD to register B, and the low-order 4 bits (AD3–AD0) of register AD to register A. (Q13: bit 3 of A/D control register Q1)
-	_	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-	_	In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)
-	_	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	-	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. (V22: bit 2 of interrupt control register V2)
-	-	Transfers the contents of A/D control register Q1 to register A.
-	_	Transfers the contents of register A to A/D control register Q1.
-	-	Transfers the contents of A/D control register Q2 to register A.
-	-	Transfers the contents of register A to A/D control register Q2.
-	-	Transfers the contents of A/D control register Q3 to register A.
-	-	Transfers the contents of register A to A/D control register Q3.
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
-	_	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.
-	-	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	_	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
-	-	Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
-	-	Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
-	_	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode) when VDCE pin is "H".

INSTRUCTION CODE TABLE

1100	11014	COL	<u> </u>	OLL														
D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0	NOP	BLA	SZB 0	BMLA	RBK**	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48*	BML	BML	BL	BL	ВМ	В
1	-	CLD	SZB 1	_	SBK**	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49*	BML	BML	BL	BL	ВМ	В
2	POF	_	SZB 2	-	-	TAX	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50*	BML	BML	BL	BL	ВМ	В
3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51*	BML	BML	BL	BL	вм	В
4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52*	BML	BML	BL	BL	ВМ	В
5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53*	BML	BML	BL	BL	ВМ	В
6	RC	_	SEAM	_	RTI	_	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54*	BML	BML	BL	BL	ВМ	В
7	sc	DEY	-	-	_	_	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55*	BML	BML	BL	BL	ВМ	В
8	POF2	AND	_	SNZ0	LZ 0	-	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56*	BML	BML	BL	BL	вм	В
9	-	OR	TDA	SNZ1	LZ 1	_	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57*	BML	BML	BL	BL	ВМ	В
Α	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58*	BML	BML	BL	BL	ВМ	В
В	AMC	_	_	SNZI1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59*	BML	BML	BL	BL	ВМ	В
С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60*	BML	BML	BL	BL	ВМ	В
D	-	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61*	BML	BML	BL	BL	ВМ	В
Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62*	BML	BML	BL	BL	вм	В
F	-	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63*	BML	BML	BL	BL	ВМ	В
	D9-D4 Hex. notation 0 1 2 3 4 5 6 7 8 9 A B C D	D9-D4 000000 Hex.	D9-D4 000000 000001 Hex. O0	D9-D4 O00000 000001 000010 Hex. notation 00 01 02 0 NOP BLA O O O O O O O O O O O O O O O O O O O	Hex. O0 O1 O2 O3 O3 O	D9-D4 000000 000001 000010 000011 000100 000100 000100 000011 000100 000100 000100 000011 000100 000100 000100 000100 000100 000100 000100 000011 0001000 00010000 0001000 0001000 0001000 0001000 0001000 00010000 00010000 00010000 00010000 000100000 00010000 000100000 000100000 000100000 000100000 0001000000 000100000000	D9-D4 000000 000001 000011 000100 000101 000101 000100 000101 000100 000101 00	D9-D4 000000 000001 000011 000110 00	D9-D4 000000 00001 00001 000101 00011 00	Day	Day	Dep-Day 000000 000001 000010 000101 000110 000111 001000 001001 001010 001010 000110 000111 001010	Dep-D4 000000 000001 000010 000101 000101 000111 001010 001010 001011 0	Dep-D4 000000 000001 000011 000110 000111 001101 001010 001011 001101 0	Dept Dept	Dep-Diagram Dep-Diagram	Dept Dept	Dep-Day 000000 000010 000011 000101 000101 000111 001010 001011 001011 001111

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word	
BL	1р	paaa	aaaa	
BML	1p	paaa	aaaa	
BLA	1p	pp00	pppp	
BMLA	1p	pp00	pppp	
SEA	00	0111	nnnn	
SZD	00	0010	1011	

- ** (SBK and RBK instructions) cannot be used in the M34524M8.
- * cannot be used after the SBK instruction is executed in the M34524MC.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34524MC/ED.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34524MC.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 in the M34524ED.
 - (Ex. TABP $0 \rightarrow TABP 64$)
- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63.
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63.

4524 Group

INSTRUCTION CODE TABLE (continued)

1	09-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	TW3A	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	ı	TW4A	OP1A	T2AB	I	I	IAP1	TAB2	SNZT2	ı	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	TW5A	OP2A	ТЗАВ	TAJ1	TAMR	IAP2	TAB3	SNZT3	_	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	-	TW6A	ОРЗА	T4AB	ı	TAI1	IAP3	TAB4	SNZT4	SVDE	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	OP4A	ı	TAQ1	TAI2	IAP4	ı	SNZT5	ı	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	TQ2A	TK2A	_	TPSAB	TAQ2	TAI3		TABPS	_	_		TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	TQ3A	TMRA	_	-	TAQ3	TAK0	-	_	_	_	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	_	T4HAB	-	TAPU0	-	_	SNZAD	T4R4L	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	TI2A	TFR0A	TSIAB	_	-	_	TABSI	SNZSI	_	_	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	_	_	TFR1A	TADAB	TALA	TAK1	_	TABAD	_	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	TL1A	TI3A	TFR2A	_	TAL1	TAK2	_	_	_	СМСК	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	TL2A	TK0A	TFR3A	TR3AB	TAW1	_	-	_	_	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	_	_	_	TAW2	_	_	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	TLCA	_	TPU0A	_	TAW3	_	_	_	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	_	TPU1A	_	TAW4	TAPU1	_	_	_	SST	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	_	_	TR1AB	TAW5	_	_	_	_	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	The second word									
BL	1p	paaa	aaaa								
BML	1p	paaa	aaaa								
BLA	1p	pp00	pppp								
BMLA	1p	pp00	pppp								
SEA	00	0111	nnnn								
SZD	00	0010	1011								

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4524 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM

Table 25 shows the product of built-in PROM version. Figure 75 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 25 Product of built-in PROM version

Part number	PROM size	RAM size	Package	ROM type		
T dit Hamber	(X 10 bits)	(X 4 bits)	rackage	itom type		
M34524EDFP	16384 words	512 words	64P6N-A	One Time PROM [shipped in blank]		

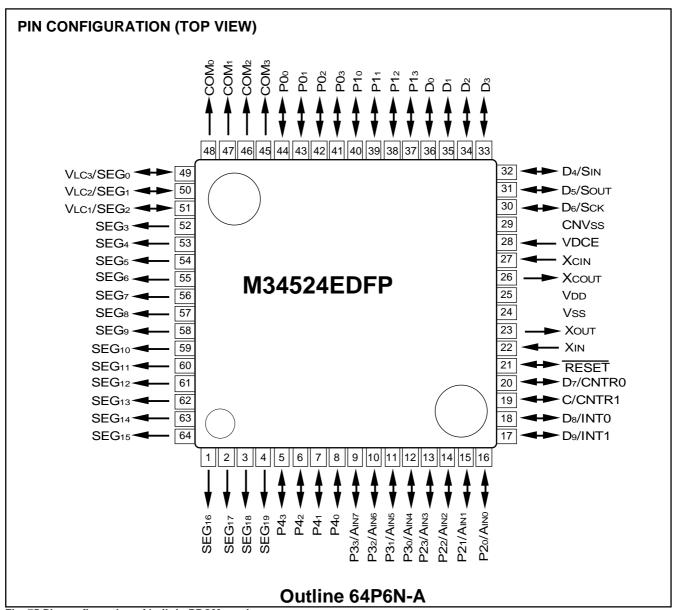


Fig. 75 Pin configuration of built-in PROM version

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.

Programming adapter is listed in Table 26. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

· Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 76.

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas Technology corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 77 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

Table 26 Programming adapter

Part number	Name of Programming Adapter
M34524EDFP	PCA7448

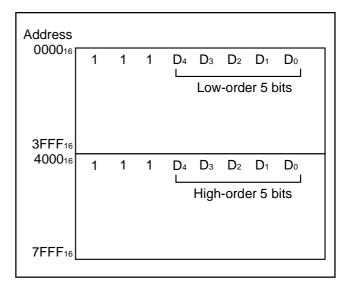


Fig. 76 PROM memory map

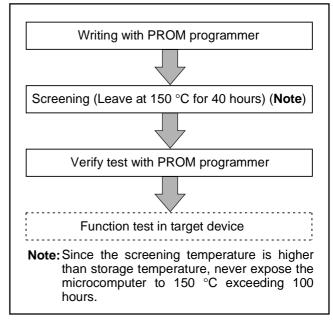


Fig. 77 Flow of writing and test of the product shipped in blank

CHAPTER 2

APPLICATION

- 2.1 I/O pins
- 2.2 Interrupts
- 2.3 Timers
- 2.4 A/D converter
- 2.5 Serial I/O
- 2.6 LCD function
- 2.7 Reset
- 2.8 Voltage drop detection circuit
- 2.9 Power down
- 2.10 Oscillation circuit

2.1 I/O pins

The 4524 Group has twenty-eight I/O pins and three output pins.

Port P2 is also used as analog input pins AIN0-AIN3.

Port P3 is also used as analog input pins AIN4-AIN7.

Ports D4-D6 are also used as Serial I/O pins SIN, SOUT, SCK.

Port D7 is also used as CNTR0 I/O pin.

Port D₈ is also used as INT0 input pin.

Port D9 is also used as INT1 input pin.

Port C is also used as CNTR1 I/O pin.

This section describes each port I/O function, related registers, application example using each port function and notes.

2.1.1 I/O ports

(1) Port P0

Port P0 is a 4-bit I/O port.

Port P0 has the key-on wakeup function which turns ON/OFF with register K0 and pull-up transistor which turns ON/OFF with register PU0.

Input

In the following conditions, the pin state of port P0 is transferred as input data to register A when the **IAP0** instruction is executed.

- Set bit FR00 or bit FR01 of register FR0 to "0" according to the port to be used.
- Set the output latch of specified port P0i (i=0, 1, 2 or 3) to "1" with the OP0A instruction.

If FR00 or FR01 is "0" and the output latch is "0", "0" is output to specified port P0.

If FR00 or FR01 is "1", the output latch value is output to specified port P0.

Output

The contents of register A is set to the output latch with the **OP0A** instruction, and is output to port P0.

N-channel open-drain or CMOS can be selected as the output structure of port P0 in 2 bits unit by setting FR00 or FR01.

(2) Port P1

Port P1 is a 4-bit I/O port.

Port P1 has the key-on wakeup function which turns ON/OFF with register K1 and pull-up transistor which turns ON/OFF with register PU1.

Input

In the following conditions, the pin state of port P1 is transferred as input data to register A when the IAP1 instruction is executed.

- Set bit FR02 or bit FR03 of register FR0 to "0" according to the port to be used.
- Set the output latch of specified port P1i (i=0, 1, 2 or 3) to "1" with the OP1A instruction.

If FR02 or FR03 is "0" and the output latch is "0", "0" is output to specified port P1.

If FR02 or FR03 is "1", the output latch value is output to specified port P1.

Output

The contents of register A is set to the output latch with the **OP1A** instruction, and is output to port P1.

N-channel open-drain or CMOS can be selected as the output structure of port P1 in 2 bits unit by setting FR02 or FR03.

(3) Port P2

Port P2 is a 4-bit I/O port.

P20-P23 are also used as analog input pins AIN0-AIN3.

Input

In the following condition, the pin state of port P2 is transferred as input data to register A when the IAP2 instruction is executed.

• Set the output latch of specified port P2i (i=0, 1, 2 or 3) to "1" with the **OP2A** instruction. If the output latch is "0", "0" is output to specified port P2.

Output

The contents of register A is set to the output latch with the **OP2A** instruction, and is output to port P2.

The output structure is an N-channel open-drain.

Note: Ports P20-P23 are used as input/output port P2, set the corresponding bit of register Q2 to "0".

(4) Port P3

Port P3 is a 4-bit I/O port.

P30-P33 are also used as analog input pins AIN4-AIN7.

Input

In the following condition, the pin state of port P3 is transferred as input data to register A when the IAP3 instruction is executed.

• Set the output latch of specified port P3i (i=0, 1, 2 or 3) to "1" with the **OP3A** instruction. If the output latch is "0", "0" is output to specified port P3.

Output

The contents of register A is set to the output latch with the **OP3A** instruction, and is output to port P3

The output structure is an N-channel open-drain.

Note: Ports P30-P33 are used as input/output port P3, set the corresponding bit of register Q3 to "0".

(5) Port P4

Port P4 is a 4-bit I/O port.

Input

In the following conditions, the pin state of port P4 is transferred as input data to register A when the IAP4 instruction is executed.

- Set bit i (i=0,1,2 or 3) of register FR3 to "0" according to the port to be used.
- Set the output latch of specified port P4i (i=0, 1, 2 or 3) to "1" with the OP4A instruction.

If FR3i is "0" and the output latch is "0", "0" is output to specified port P4.

If FR3i is "1", the output latch value is output to specified port P4.

Output

The contents of register A is set to the output latch with the **OP4A** instruction, and is output to port P4.

N-channel open-drain or CMOS can be selected as the output structure of port P4 in 1 bit unit by setting register FR3.

(6) Port D

Ports D0-D7 are eight independent I/O ports, and ports D8 and D9 are two independent output ports. Ports D4-D6 are also used as Serial I/O pins SIN, SOUT, SCK. Port D7 is also used as CNTR0 I/O pin. Port D8 is also used as INT0 input pin. Port D9 is also used as INT1 input pin. Also, as for INT0 and INT1, its key-on wakeup function is switched to ON/OFF by the register K20 and K22.

■ Input/output of port D

Each pin of port D has an independent 1-bit wide I/O function. For I/O of ports D0-D7 and output of D8 and D9, select one of port D with the register Y of the data pointer first.

Input

The pin state of port D can be obtained with the SZD instruction.

In the following conditions, if the pin state of port Dj (j=0, 1, 2, 3, 4, 5, 6 or 7) is "0" when the **SZD** instruction is executed, the next instruction is skipped. If it is "1" when the **SZD** instruction is executed, the next instruction is executed.

- Set bit i (i=0,1,2 or 3) of register FR1 or FR2 to "0" according to the port to be used.
- Set the output latch of specified port Dj to "1" with the SD instruction.

If FR1i or FR2i is "0" and the output latch is "0", "0" is output to specified port D.

If FR1i or FR2i is "1", the output latch value is output to specified port D.

Output

Set the output level to the output latch with the SD, CLD and RD instructions.

The state of pin enters the high-impedance state when the SD instruction is executed.

All port D enter the high-impedance state or "H" level state when the **CLD** instruction is executed. The state of pin becomes "L" level when the **RD** instruction is executed.

N-channel open-drain or CMOS can be selected as the output structure of ports D0–D7 in 1 bit unit by setting registers FR1, FR2.

The output structure of ports D8 and D9 is N-channel open-drain.

Notes 1: When the SD and RD instructions are used, do not set "10102" or more to register Y.

- 2: Port D4 is also used as serial I/O pin SIN. Accordingly, when using port D4, set bit 1 (J11) and bit 0 (J10) of register J1 to "002" or "012."
- 3: Port D5 is also used as serial I/O pin SOUT. Accordingly, when using port D5, set bit J11 and bit J10 to "002" or "102."
- 4: Port D6 is also used as serial I/O pin SCK. Accordingly, when using port D6, set bit J11 and bit J10 to "002." Also, set bit J13 and bit J12 to "002", "012" or "102."
- **5:** Port D7 is also used as CNTR0 pin. Accordingly, when using port D7, set bit 0 (W60) of register W6 to "0."

(7) Port C

Port C is a 1-bit output port. Port C is also used as CNTR0 pin.

■ Output

Data output from port C

Set the output level to the output latch with the SCP and RCP instructions.

The state of pin becomes "H" level when the SCP instruction is executed.

The state of pin becomes "L" level when the RCP instruction is executed.

The output structure is CMOS.

Note: Port C is also used as CNTR1.

Accordingly, when using port C, set bit W31 and bit W30 to "002", "012" or "102." Also, set bit W43 and bit W61 to "0."

2.1.2 Related registers

(1) Timer control register W3

Table 2.1.1 shows the timer control register W3.

Set the contents of this register through register A with the TW3A instruction.

The contents of register W3 is transferred to register A with the TAW3 instruction.

Table 2.1.1 Timer control register W3

7	Timer control register W3			et: 00002	at power down : state retained	R/W			
W33	Timer 3 count auto-stop circuit	()	Timer 3 count auto-stop circuit not selected					
VV 33	selection bit (Note 2)	,	1	Timer 3 count auto-stop circuit selected					
W32	Timer 3 control bit	()	Stop (state	Stop (state retained)				
VV32	Timer 3 control bit	1		Operating					
		W31	W30		Count source				
W31	Timer 3 count source selection	0	0	PWM signal (PWMOUT)					
	bits (Note 3)	0	1	Prescaler output (ORCLK)					
W30	DIES (NOTE 3)		0	Timer 2 und	derflow signal (T2UDF)				
		1	1	CNTR1 input					

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
- 3: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.
- 4: When setting the port, W33-W32 are not used.

(2) Timer control register W4

Table 2.1.2 shows the timer control register W4.

Set the contents of this register through register A with the TW4A instruction.

The contents of register W4 is transferred to register A with the TAW4 instruction.

Table 2.1.2 Timer control register W4

7	Timer control register W4	at res	et: 00002	at power down : state retained	R/W						
W43	CNTR1 output control bit	0	CNTR1 output invalid								
VV43	CNTR1 output control bit	1	CNTR1 out	CNTR1 output valid							
W42	PWM signal "H" interval	0	PWM signal "H" interval expansion function invalid								
VV42	expansion function control bit	1	PWM signa	I "H" interval expansion function	/alid						
W41	Timer 4 control bit	0	Stop (state	retained)							
VV41	Timer 4 control bit	1	Operating								
W40	Timer 4 count source selection bit	0	XIN input								
VV40	Timer 4 count source selection bit	1	Prescaler o	utput (ORCLK) divided by 2							

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When setting the port, W42-W40 are not used.

(3) Timer control register W6

Table 2.1.3 shows the timer control register W6.

Set the contents of this register through register A with the TW6A instruction.

The contents of register W6 is transferred to register A with the TAW6 instruction.

Table 2.1.3 Timer control register W6

Timer control register W6		at reset : 00002		at power down : state retained	R/W		
W63	WCa Timer I C control bit		Stop (state	retained)			
VV 03	Timer LC control bit	1	Operating				
W62	Timer LC count source	0	Bit 4 (T54) of timer 5				
VV 02	selection bit	1	Prescaler o	utput (ORCLK)			
W61	CNTR1 output auto-control circuit	0	CNTR1 out	put auto-control circuit not selecte	d		
VVOI	selection bit	1	CNTR1 output auto-control circuit selected				
W60	D7/CNTR0 pin function selection	0	D7(I/O)/CNTR0 input				
VV 00	bit (Note 2)	1	CNTR0 inpo	ut/output/D7 (input)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

3: When setting the port, W63-W62 are not used.

(4) Serial I/O control register J1

Table 2.1.4 shows the serial I/O control register J1.

Set the contents of this register through register A with the TJ1A instruction.

The contents of register J1 is transferred to register A with the TAJ1 instruction.

Table 2.1.4 Serial I/O control register J1

Se	rial I/O control register J1	at	res	t: 00002 at power down: state retained R/W		R/W			
		J1 3	J12		Synchronous clock				
J1 3	Social I/O aynahranaya alaak	0	0	Instruction	clock (INSTCK) divided by 8				
	Serial I/O synchronous clock	0	1	Instruction	clock (INSTCK) divided by 4				
J12	selection bits	1	0	Instruction	nstruction clock (INSTCK) divided by 2				
		1	1	External clock (Sck input)					
		J11	J1 0		Port function				
J11	Serial I/O port function selection	0	0	D6, D5, D4	selected/SCK, SOUT, SIN not sele	cted			
	bits	0	1	SCK, SOUT,	SCK, SOUT, D4 selected/D6, D5, SIN not selected				
J1 0		1 (SCK, D5, SIN selected/D6, SOUT, D4 not selected		cted			
		1	1	SCK, SOUT,	SIN selected/D6, D5, D4 not sele	cted			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When setting the port, J13-J12 are not used.

(5) A/D control register Q2

Table 2.1.5 shows the A/D control register Q2.

Set the contents of this register through register A with the TQ2A instruction.

The contents of register Q2 is transferred to register A with the TAQ2 instruction.

Table 2.1.5 A/D control register Q2

	AD control register Q2	at reset : 00002		at power down : state retained	R/W
Q23	OCC POC/Auto via function coloration bit	0	P23		
QZ3	P23/AIN3 pin function selection bit	1	AIN3		
Q22	00- 50 /Am 1 / / / / / / / / / /	0	P22		
QZ2	P22/AIN2 pin function selection bit	1	AIN2		
	D24/Albia nin function coloration hit	0	P21		
Q21	P21/AIN1 pin function selection bit	0 P 1 A 0 P 1 A 0 P 1 A 0 P	AIN1		
Q20	D2s/Auto nin function coloration hit	0	P20		
Q20 	P20/AIN0 pin function selection bit	1	AIN0		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: In order to select AIN3-AIN0, set register Q1 after setting register Q2.

(6) A/D control register Q3

Table 2.1.6 shows the A/D control register Q3.

Set the contents of this register through register A with the TQ3A instruction.

The contents of register Q3 is transferred to register A with the TAQ3 instruction.

Table 2.1.6 A/D control register Q3

	AD control register Q3	at reset : 00002		at power down : state retained	R/W
Q33	O20 D20/Aug nin function colortion bit	0	P33		
QJS	P33/AIN7 pin function selection bit	1	AIN7		
Q32	D23/AINS pin function coloration bit	0	P32		
Q32	P32/AIN6 pin function selection bit	1	AIN6		
Q31	P31/AIN5 pin function selection bit	0	P31		
QSI	P31/Ains pin function selection bit	1	AIN5		
Q30	P30/AIN4 pin function selection bit	0	P30		
<u></u>	-30/AIN4 pin function selection bit	1	AIN4		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: In order to select AIN7-AIN4, set register Q1 after setting regsiter Q3.

(7) Pull-up control register PU0

Table 2.1.7 shows the pull-up control register PU0.

Set the contents of this register through register A with the TPU0A instruction.

The contents of register PU0 is transferred to register A with the TAPU0 instruction.

Table 2.1.7 Pull-up control register PU0

P	ull-up control register PU0	at res	et: 00002	at power down : state retained	R/W		
DLIO	Port P03	0	Pull-up tran	sistor OFF			
PU03	pull-up transistor control bit	1 Pull-up trans		sistor ON			
PU02	Port P02	0	Pull-up tran	sistor OFF			
PU02	pull-up transistor control bit	1	Pull-up transistor ON				
PU01	Port P01	0	Pull-up tran	sistor OFF			
P001	pull-up transistor control bit	1	Pull-up transistor ON				
DLIO	Port P00	0	Pull-up tran	sistor OFF			
PU00	pull-up transistor control bit	1	Pull-up transistor ON				

Note: "R" represents read enabled, and "W" represents write enabled.

(8) Pull-up control register PU1

Table 2.1.8 shows the pull-up control register PU1.

Set the contents of this register through register A with the TPU1A instruction.

The contents of register PU1 is transferred to register A with the TAPU1 instruction.

Table 2.1.8 Pull-up control register PU1

Р	Pull-up control register PU1		et: 00002	at power down : state retained	R/W		
PU13	Port P13	0	Pull-up tran	sistor OFF			
PU13	pull-up transistor control bit	1	Pull-up transistor ON				
DUIA	Port P12	0	Pull-up tran	II-up transistor OFF			
PU12	pull-up transistor control bit	1	Pull-up transistor ON				
PU11	Port P11	0	Pull-up transistor OFF				
PUTT	pull-up transistor control bit	1	Pull-up transistor ON				
PU10	Port P10	0	Pull-up tran	sistor OFF			
F U 10	pull-up transistor control bit	1	Pull-up tran	sistor ON			

Note: "R" represents read enabled, and "W" represents write enabled.

(9) Port output structure control register FR0

Table 2.1.9 shows the port output structure control register FR0. Set the contents of this register through register A with the **TFR0A** instruction.

Table 2.1.9 Port output structure control register FR0

Port out	put structure control register FR0	gister FR0 at rese		at power down : state retained	W	
FR03	Ports P12, P13	0	N-channel	open-drain output		
FRU3	output structure selection bit	1	CMOS output			
FR02	Ports P10, P11	0	N-channel open-drain output			
FKU2	output structure selection bit	1	CMOS output			
FR01	Ports P02, P03	0	N-channel	open-drain output		
FRUI	output structure selection bit	1	CMOS output			
FR00	Ports P01, P00	0 N-channel open-drain o		open-drain output		
FR00	output structure selection bit	1	CMOS outp	out		

Note: "W" represents write enabled.

(10) Port output structure control register FR1

Table 2.1.10 shows the port output structure control register FR1. Set the contents of this register through register A with the **TFR1A** instruction.

Table 2.1.10 Port output structure control register FR1

Port output structure control register FR1		at reset : 00002		at power down : state retained	W	
FR13	Port D3	0	N-channel	open-drain output		
FK13	output structure selection bit	1 CMOS output		out		
FR12	Port D2	0	N-channel open-drain output			
FK12	output structure selection bit	1	CMOS output			
FR11	Port D1	0	N-channel open-drain output			
FK11	output structure selection bit	1	CMOS output			
FR10	Port Do 0 N-		N-channel open-drain output			
-K10	output structure selection bit	1	CMOS outp	out		

Note: "W" represents write enabled.

(11) Port output structure control register FR2

Table 2.1.11 shows the port output structure control register FR2. Set the contents of this register through register A with the **TFR2A** instruction.

Table 2.1.11 Port output structure control register FR2

Port output structure control register FR2		at reset : 00002		at power down : state retained	W	
FR23	Port D7/CNTR0	0	N-channel	open-drain output		
FR23	output structure selection bit	1				
FR22	Port D6/SCK	0	N-channel open-drain output			
FRZ2	output structure selection bit	1	CMOS output			
FR21	Port D5/Sout	0	N-channel	open-drain output		
FRZT	output structure selection bit	1	CMOS output			
FR20	Port D4/SIN 0		N-channel	open-drain output		
FR20	output structure selection bit	1	CMOS outp	out		

Note: "W" represents write enabled.

(12) Port output structure control register FR3

Table 2.1.12 shows the port output structure control register FR3. Set the contents of this register through register A with the **TFR3A** instruction.

Table 2.1.12 Port output structure control register FR3

Port output structure control register FR3		at reset: 00002		at power down : state retained	W		
FR33	Port P43	0	N-channel	open-drain output			
FN33	output structure selection bit	1 CMOS output		put			
FR32	Port P42	0	N-channel open-drain output				
FR32	output structure selection bit	1	CMOS output				
FR31	Port P41	0	N-channel	open-drain output			
FR31	output structure selection bit	1	CMOS output				
FR30	Port P40	0	N-channel	open-drain output			
	output structure selection bit	1	CMOS outp	out			

Note: "W" represents write enabled.

(13) Key-on wakeup control register K0

Table 2.1.13 shows the key-on wakeup control register K0. Set the contents of this register through register A with the **TK0A** instruction. The contents of register K0 is transferred to register A with the **TAK0** instruction.

Table 2.1.13 Key-on wakeup control register K0

Key-	Key-on wakeup control register K0		et: 00002	at power down : state retained	R/W	
K03	Port P03	0	Key-on wak	ceup not used		
KU3	key-on wakeup control bit	1	Key-on wakeup used			
K02	Port P02	0	Key-on wakeup not used			
KU2	key-on wakeup control bit	1	Key-on wakeup used			
K01	Port P01	0	Key-on wal	ceup not used		
KU1	key-on wakeup control bit	1	Key-on wal	ceup used		
K00	Port P00	0	Key-on wakeup not used			
N00	key-on wakeup control bit	1	Key-on wak	wakeup used		

Note: "R" represents read enabled, and "W" represents write enabled.

(14) Key-on wakeup control register K1

Table 2.1.14 shows the key-on wakeup control register K1.

Set the contents of this register through register A with the TK1A instruction.

The contents of register K1 is transferred to register A with the TAK1 instruction.

Table 2.1.14 Key-on wakeup control register K1

Key-	on wakeup control register K1	at res	et: 00002	at power down : state retained	R/W	
	Port P13	0	Key-on wak	keup not used		
K13	key-on wakeup control bit	1	1 Key-on wakeup used			
K12	Port P12	0	Key-on wakeup not used			
K 12	key-on wakeup control bit	1	Key-on wakeup used			
K11	Port P11	0	Key-on wak	ceup not used		
K11	key-on wakeup control bit	1	Key-on wak	ceup used		
K10	Port P10	0	Key-on wak	ceup not used		
K10	key-on wakeup control bit	1	Key-on wak	keup used		

Note: "R" represents read enabled, and "W" represents write enabled.

(15) Key-on wakeup control register K2

Table 2.1.15 shows the key-on wakeup control register K2.

Set the contents of this register through register A with the TK2A instruction.

The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.1.15 Key-on wakeup control register K2

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W
K23	INT1 pin return condition	0	Return by level		
	selection bit	1	Return by edge		
K22	INT1 pin key-on wakeup control	0	Key-on wakeup invalid		
	bit	1	Key-on wakeup valid		
K21	INTO pin return condition	0	Returned by level		
	selection bit	1	Returned by edge		
K20	INT0 pin key-on wakeup control	0	Key-on wak	ceup invalid	
	bit	1	Key-on wak	ceup valid	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When setting the port, K22 and K23 are not used.

2.1.3 Port application examples

(1) Key input by key scan

Key matrix can be set up by connecting keys externally because port D output structure is an N-channel open-drain and port P0 has the pull-up resistor.

Outline: The connecting required external part is just keys.

Specifications: Port D is used to output "L" level and port P0 is used to input 16 keys.

Figure 2.1.1 shows the key input and Figure 2.1.2 shows the key input timing.

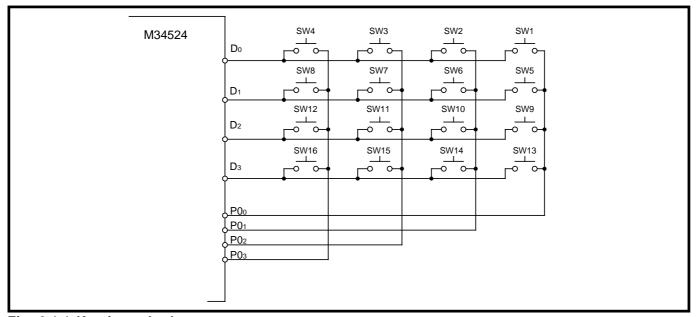


Fig. 2.1.1 Key input by key scan

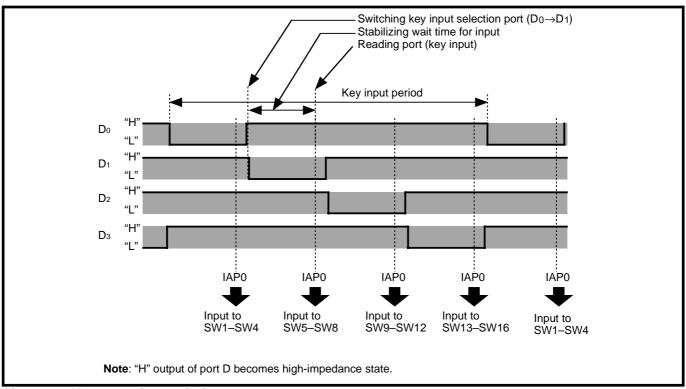


Fig. 2.1.2 Key scan input timing

2.1.4 Notes on use

(1) Note when ports P0, P1, P4 and D0-D7 are used as an input port

In the following conditions, the pin state of port P0, P1, P4 or D0–D7 is transferred as input data to register A when the corresponding input instruction is executed.

- Set bit i (i=0, 1, 2 or 3) of register FR0, FR1, FR2 or FR3 to "0" according to the port to be used.
- Set the output latch of the specified port to "1" with the corresponding output instruction.

If bit i of FR0, FR1, FR2 or FR3 is "0" and the output latch is set to "0," "0" is output to specified port.

If bit i of FR0, FR1, FR2 or FR3 is "1", the output latch value is output to specified port.

(2) Note when ports P2 and P3 are used as an input port

In the following condition, the pin state of port P2 or P3 is transferred as input data to register A when the IAP2 or IAP3 instruction is executed.

• Set the output latch of specified port P2i or P3i (i=0, 1, 2 or 3) to "1" with the **OP2A** or **OP3A** instruction.

If the output latch is "0", "0" is output to specified port P2 or P3.

(3) Noise and latch-up prevention

Connect an approximate 0.1 μ F bypass capacitor directly to the Vss line and the VDD line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.

The CNVss pin is also used as the VPP pin (programming voltage = 12.5 V) at the One Time PROM version.

Connect the CNVss/VPP pin to Vss through an approximate 5 $k\Omega$ resistor which is connected to the CNVss/VPP pin at the shortest distance.

(4) Multifunction

- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input of ports D4-D6 can be used even when SIN, SOUT and SCK pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin is selected.
- Be careful that the input of port D7 can be used even when output of CNTR0 pin is selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin is selected.

(5) Connection of unused pins

Table 2.1.16 shows the connections of unused pins.

(6) SD, RD, SZD instructions

When the **SD** and **RD** instructions are used, do not set "10102" or more to register Y. When the **SZD** instructions is used, do not set "10002" or more to register Y.

(7) Port D8/INT0 pin

When the power down mode is used by clearing the bit 3 of register I1 to "0" and setting the input of INT0 pin to be disabled, be careful about the following note.

• When the input of INT0 pin is disabled (register I13 = "0"), clear bit 0 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

(8) Port D9/INT1 pin

When the power down mode is used by clearing the bit 3 of register I2 to "0" and setting the input of INT1 pin to be disabled, be careful about the following note.

• When the input of INT1 pin is disabled (register I23 = "0"), clear bit 2 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

Table 2.1.16 Connections of unused pins

Pin	Connection	Usage condition		
XIN	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.)	.) (Note 1	
		Sub-clock input is selected for system clock (MR0=1).	(Note 2)	
Xout	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.)	(Note 1)	
		RC oscillator is selected (CRCK instruction is executed)		
		External clock input is selected for main clock (CMCK instruction is executed).	(Note 3)	
		Sub-clock input is selected for system clock (MR0=1).	(Note 2)	
XCIN	Connect to Vss.	Sub-clock is not used.		
Хсоит	Open.	Sub-clock is not used.		
D0-D3	Open.			
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)	
D4/SIN	Open.	SIN pin is not selected.		
	Connect to Vss.	N-channel open-drain is selected for the output structure.		
D5/SOUT	Open.			
	Connect to Vss.	N-channel open-drain is selected for the output structure.		
D6/SCK	Open.	SCK pin is not selected.		
	Connect to Vss.	N-channel open-drain is selected for the output structure.		
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.		
	Connect to Vss.	N-channel open-drain is selected for the output structure.		
D8/INT0	Open.	"0" is set to output latch.		
	Connect to Vss.			
D9/INT1	Open.	"0" is set to output latch.		
	Connect to Vss.	<u> </u>		
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.		
P00-P03	Open.	The key-on wakeup function is not selected.	(Note 4)	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)	
		The pull-up function is not selected.	(Note 4)	
		The key-on wakeup function is not selected.	(Note 4)	
P10-P13	Open.	The key-on wakeup function is not selected.	(Note 4)	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)	
		The pull-up function is not selected.	(Note 4)	
		The key-on wakeup function is not selected.	(Note 4)	
P20/AIN0-	Open.		,	
P23/AIN3	Connect to Vss.			
P30/AIN4-	Open.			
P33/AIN7	Connect to Vss.			
P40-P43	Open.			
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)	
СОМо-СОМз			,	
VLC3/SEG0	Open.	SEG ₀ pin is selected.		
VLC2/SEG1	Open.	SEG1 pin is selected.		
VLC1/SEG2	Open.	SEG2 pin is selected.		
SEG3-SEG19				

- **Notes 1:** When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.
 - 2: When sub-clock (XCIN) input is selected (MR0 = 1) for the system clock by setting "1" to bit 1 (MR1) of clock control register MR, main clock is stopped.
 - **3:** Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
 - **4:** Be sure to select the output structure of ports D0–D3 and P40–P43 and the pull-up function and key-on wakeup function of P00–P03 and P10–P13 with every one port. Set the corresponding bits of registers for each port.
 - **5:** Be sure to select the output structure of ports P00–P03 and P10–P13 with every two ports. If only one of the two pins is used, leave another one open.

(Note when connecting unused pins to Vss or VDD)

• Connect the unused pins to Vss or VDD using the thickest wire at the shortest distance against noise.

4524 Group 2.2 Interrupts

2.2 Interrupts

The 4524 Group has eight interrupt sources: external (INT0, INT1), timer 1, timer 2, timer 3, timer 5, A/D and timer 4 or serial I/O.

This section describes individual types of interrupts, related registers, application examples using interrupts and notes.

2.2.1 Interrupt functions

(1) External 0 interrupt (INT0)

The interrupt request occurs by the change of input level of INTO pin.

The interrupt valid waveform can be selected by the bits 1 and 2, and the INT0 pin input is controlled by the bit 3 of the interrupt control register I1.

■ External 0 interrupt INT0 processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 0 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the external 0 interrupt occurs, the interrupt processing is executed from address 0 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZ0** instruction is valid when the bit 0 of register V1 is set to "0."

(2) External 1 interrupt (INT1)

The interrupt request occurs by the change of input level of INT1 pin.

The interrupt valid waveform can be selected by the bits 1 and 2, and the INT1 pin input is controlled by the bit 3 of the interrupt control register I2.

■ External 1 interrupt INT1 processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 1 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the external 1 interrupt occurs, the interrupt processing is executed from address 2 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZ1** instruction is valid when the bit 1 of register V1 is set to "0."

(3) Timer 1 interrupt

The interrupt request occurs by the timer 1 underflow.

■ Timer 1 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 1 interrupt occurs, the interrupt processing is executed from address 4 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT1** instruction is valid when the bit 2 of register V1 is set to "0"

(4) Timer 2 interrupt

The interrupt request occurs by the timer 2 underflow.

■ Timer 2 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 2 interrupt occurs, the interrupt processing is executed from address 6 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT2** instruction is valid when the bit 3 of register V1 is set to "0."

(5) Timer 3 interrupt

The interrupt request occurs by the timer 3 underflow.

■ Timer 3 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 0 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the timer 3 interrupt occurs, the interrupt processing is executed from address 8 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT3** instruction is valid when the bit 0 of register V2 is set to "0."

(6) Timer 5 interrupt

The interrupt request occurs by the timer 5 underflow.

■ Timer 5 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 1 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the timer 5 interrupt occurs, the interrupt processing is executed from address A in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT5** instruction is valid when the bit 1 of register V2 is set to "0."

(7) A/D interrupt

The interrupt request occurs by the completion of A/D conversion.

■ A/D interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the A/D interrupt occurs, the interrupt processing is executed from address C in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZAD** instruction is valid when the bit 2 of register V2 is set to "0."

(8) Timer 4 interrupt

The interrupt request occurs by the timer 4 underflow.

■ Timer 4 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the timer 4 interrupt occurs, the interrupt processing is executed from address E in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT4** instruction is valid when the bit 3 of register V2 is set to "0."

(9) Serial I/O interrupt

The interrupt request occurs by the completion of serial I/O transmit/receive. However, set the timer 4, serial I/O interrupt source selection bit (I30) to "1."

■ Serial I/O interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the serial I/O interrupt occurs, the interrupt processing is executed from address E in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZSI** instruction is valid when the bit 3 of register V2 is set to "0."

2.2.2 Related registers

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable.

Interrupts are enabled when INTE flag is set to "1" with the **EI** instruction and disabled when INTE flag is cleared to "0" with the **DI** instruction.

When any interrupt occurs while the INTE flag is "1", the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the **EI** instruction is executed.

Note: The interrupt enabled with the **EI** instruction is performed after the **EI** instruction and one more instruction.

(2) Interrupt request flag

The activated condition for each interrupt is examined. Each interrupt request flag is set to "1" when the activated condition is satisfied, even if the interrupt is disabled by the INTE flag or its interrupt enable bit

Each interrupt request flag is cleared to "0" when either;

- •an interrupt occurs, or
- •the next instruction is skipped with a skip instruction.

(3) Interrupt control register V1

Table 2.2.1 shows the interrupt control register V1.

Set the contents of this register through register A with the TV1A instruction.

In addition, the TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 2.2.1 Interrupt control register V1

Interrupt control register V1		at reset: 00002		at power down : 00002 R/W
V13	Timer 2 interrupt anable bit	0	Interrupt dis	sabled (SNZT2 instruction is valid)
V 13	Timer 2 interrupt enable bit	1	Interrupt en	abled (SNZT2 instruction is invalid) (Note 2)
V12	Timer 1 interrupt enable bit	0	Interrupt dis	sabled (SNZT1 instruction is valid)
V 12		1	Interrupt en	abled (SNZT1 instruction is invalid) (Note 2)
V11	External 1 interrupt anable bit	0	Interrupt dis	sabled (SNZ1 instruction is valid)
V 11	External 1 interrupt enable bit	1	Interrupt er	abled (SNZ1 instruction is invalid) (Note 2)
V10	External 0 interrupt enable bit	0	Interrupt dis	sabled (SNZ0 instruction is valid)
V 10		1	Interrupt er	abled (SNZ0 instruction is invalid) (Note 2)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: These instructions are equivalent to the NOP instruction.

(4) Interrupt control register V2

Table 2.2.2 shows the interrupt control register V2.

Set the contents of this register through register A with the TV2A instruction.

In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 2.2.2 Interrupt control register V2

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W
V23	Timer 4, serial I/O interrupt	0	Interrupt dis	sabled (SNZT4, SNZSI instruction is	s valid)
V Z 3	enable bit (Note 2)	1	Interrupt ena	bled (SNZT4, SNZSI instruction is invalid	(Note 3)
V22	A/D interrupt enable bit	0	Interrupt dis	sabled (SNZAD instruction is valid)	
V Z Z		1	Interrupt en	abled (SNZAD instruction is invalid)	(Note 3)
V21	Timer E interrupt anable bit	0	Interrupt dis	sabled (SNZT5 instruction is valid)	
V Z 1	Timer 5 interrupt enable bit	1	Interrupt en	abled (SNZT5 instruction is invalid)	(Note 3)
1/20	Timer 2 interrupt anable bit	0	Interrupt dis	sabled (SNZT3 instruction is valid)	
V20	Timer 3 interrupt enable bit	1	Interrupt en	abled (SNZT3 instruction is invalid)	(Note 3)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (I30).
- 3: These instructions are equivalent to the NOP instruction.

(5) Interrupt control register I1

Table 2.2.3 shows the interrupt control register I1.

Set the contents of this register through register A with the TI1A instruction.

In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 2.2.3 Interrupt control register I1

- II	Interrupt control register I1		et: 00002	at power down : state retained	R/W
 I13	INITO pip input central bit (Note 2)	0	INT0 pin in	put disabled	'
113	INTO pin input control bit (Note 2)	1	INTO pin in	put enabled	
	Interrupt valid waveform for INITO	0	Falling wav	eform /"L" level ("L" level is recogn	ized with
I 12	Interrupt valid waveform for INT0 pin/return level selection bit (Note 2)		the SNZIO	instruction)	
112		1	Rising wave	eform /"H" level ("H" level is recogn	ized with
			the SNZIO	instruction)	
	INTO pin edge detection circuit	0	One-sided	edge detected	
111	control bit	1	Both edges	detected	
I10	INTO pin Timer 1 count start	0	Timer 1 co	unt start synchronous circuit not se	lected
110	synchronous circuit selection bit	1	Timer 1 co	unt start synchronous circuit select	ed

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the **SNZ0** instruction when the bit 0 (V10) of register V1 to "0". In this time, set the **NOP** instruction after the **SNZ0** instruction, for the case when a skip is performed with the **SNZ0** instruction.

(6) Interrupt control register I2

Table 2.2.4 shows the interrupt control register I2.

Set the contents of this register through register A with the TI2A instruction.

In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 2.2.4 Interrupt control register I2

ı	Interrupt control register I2		et: 00002	at power down : state retained	R/W	
123	INIT1 pip input central bit (Note 2)	0	INT1 pin in	INT1 pin input disabled		
123	INT1 pin input control bit (Note 2)	1	INT1 pin in	put enabled		
	Interrupt valid waveform for INIT1	0	Falling wav	eform /"L" level ("L" level is recogn	ized with	
12 2	Interrupt valid waveform for INT1 pin/return level selection bit (Note 2)	0	the SNZI1 instruction)			
122		1	Rising wave	eform /"H" level ("H" level is recogn	ized with	
			the SNZI1 i	instruction)		
I21	INT1 pin edge detection circuit	0	One-sided	edge detected		
121	control bit	1	Both edges	detected		
120	INT1 pin Timer 3 count start	0	Timer 3 co	unt start synchronous circuit not se	lected	
120	synchronous circuit selection bit	1	Timer 3 co	unt start synchronous circuit select	ed	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I22 and I23 are changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction when the bit 1 (V11) of register V1 to "0". In this time, set the NOP instruction after the SNZ1 instruction, for the case when a skip is performed with the SNZ1 instruction.

(7) Interrupt control register I3

Table 2.2.5 shows the interrupt control register I3.

Set the contents of this register through register A with the TI3A instruction.

In addition, the TAI3 instruction can be used to transfer the contents of register I3 to register A.

Table 2.2.5 Interrupt control register I3

Interrupt control register I3		at reset : 02		at power down : state retained	R/W
I30	Timer 4, serial I/O interrupt	0	Timer 4 into	errupt valid, serial I/O interrupt inva	lid
130	source selection bit	1	Serial I/O interrupt valid, timer 4 interrupt invalid		

Note: "R" represents read enabled, and "W" represents write enabled.

2.2.3 Interrupt application examples

(1) External 0 interrupt

The INT0 pin is used for external 0 interrupt, of which valid waveforms can be chosen, which can recognize the change of falling edge ("H" \rightarrow "L"), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H").

Outline: An external 0 interrupt can be used by dealing with the falling edge ("H" \rightarrow "L"), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H") as a trigger.

Specifications: An interrupt occurs by the change of an external signals edge ("H" \rightarrow "L" or "L" \rightarrow "H").

Figure 2.2.1 shows an operation example of an external 0 interrupt, and Figure 2.2.2 shows a setting example of an external 0 interrupt.

(2) External 1 interrupt

The INT1 pin is used for external 1 interrupt, of which valid waveforms can be chosen, which can recognize the change of falling edge ("H" \rightarrow "L"), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H").

Outline: An external 1 interrupt can be used by dealing with the falling edge ("H" \rightarrow "L"), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H") as a trigger.

Specifications: An interrupt occurs by the change of an external signals edge ("H" \rightarrow "L" or "L" \rightarrow "H").

Figure 2.2.3 shows an operation example of an external 1 interrupt, and Figure 2.2.4 shows a setting example of an external 1 interrupt.

(3) Timer 1 interrupt

Constant period interrupts by a setting value to timer 1 can be used.

Outline: The constant period interrupts by the timer 1 underflow signal can be used.

Specifications: Timer 1 divides the system clock frequency = 2.0 MHz, and the timer 1 interrupt occurs every 0.25 ms.

Figure 2.2.5 shows a setting example of the timer 1 constant period interrupt.

(4) Timer 2 interrupt

Constant period interrupts by a setting value to timer 2 can be used.

Outline: The constant period interrupts by the timer 2 underflow signal can be used.

Specifications: Timer 2 and prescaler divide the system clock frequency (= 4.0 MHz), and the timer 2 interrupt occurs every 1 ms.

Figure 2.2.6 shows a setting example of the timer 2 constant period interrupt.

(5) Timer 3 interrupt

Constant period interrupts by a setting value to timer 3 can be used.

Outline: The constant period interrupts by the timer 3 underflow signal can be used.

Specifications: Prescaler and timer 3 divide the system clock frequency = 4.0 MHz, and the timer 3 interrupt occurs every 1 ms.

Figure 2.2.7 shows a setting example of the timer 3 constant period interrupt.

(6) Timer 4 interrupt

Constant period interrupts by a setting value to timer 4 can be used.

Outline: The constant period interrupts by the timer 4 underflow signal can be used.

Specifications: Timer 4 and prescaler divide the system clock frequency (= 4.0 MHz), and the timer 4 interrupt occurs every 50 ms.

Figure 2.2.8 shows a setting example of the timer 4 constant period interrupt.

(7) Timer 5 interrupt

Timer 5 is a fixed dividing frequency timer. Constant period interrupts which count source is divided 2^{13} , 2^{14} , 2^{15} or 2^{16} can be used.

Outline: The constant period interrupts by the timer 5 underflow signal can be used.

Specifications: Timer 5 divides the sub-clock frequency ((f(XCIN) = 32.768 kHz), and the timer 5 interrupt occurs every 500 ms.

Figure 2.2.9 shows a setting example of the timer 5 constant period interrupt.

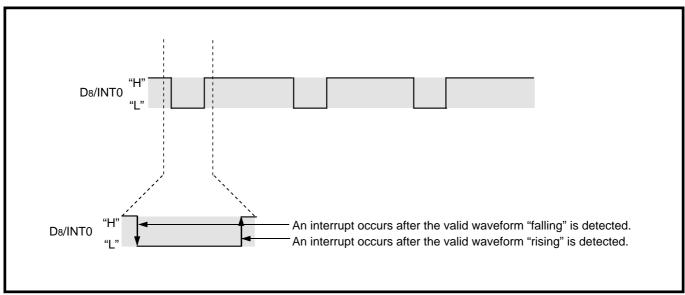


Fig. 2.2.1 External 0 interrupt operation example

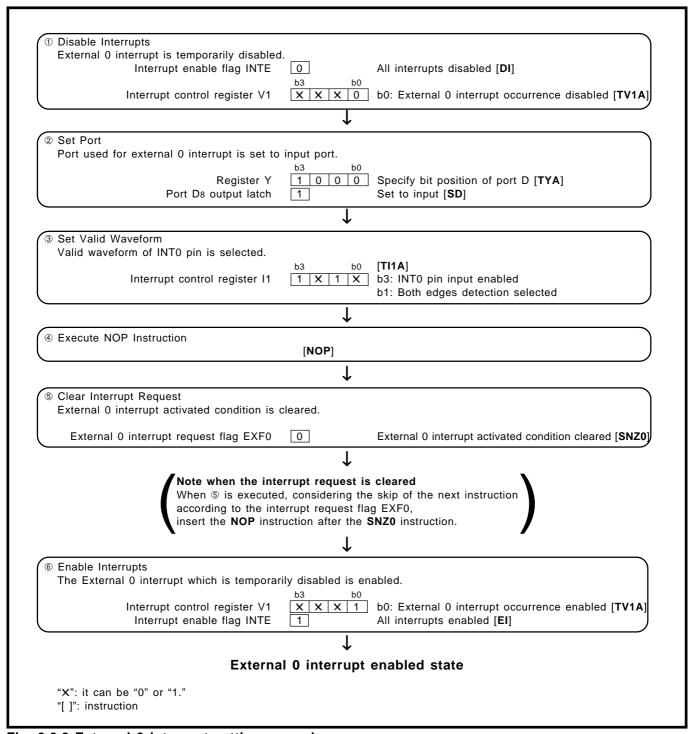


Fig. 2.2.2 External 0 interrupt setting example

Note: The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of system clock.

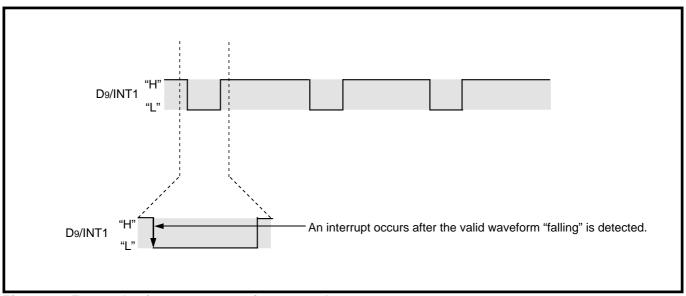


Fig. 2.2.3 External 1 interrupt operation example

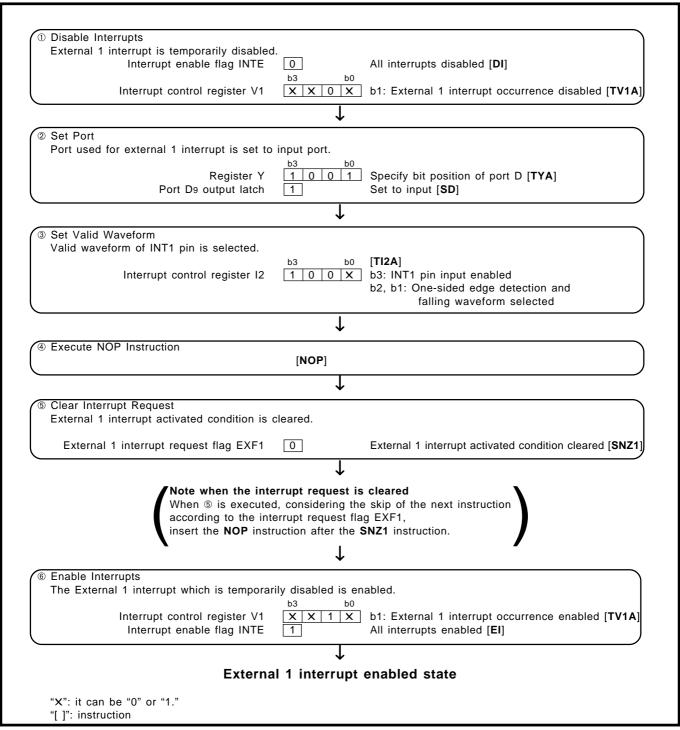


Fig. 2.2.4 External 1 interrupt setting example

Note: The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of system clock.

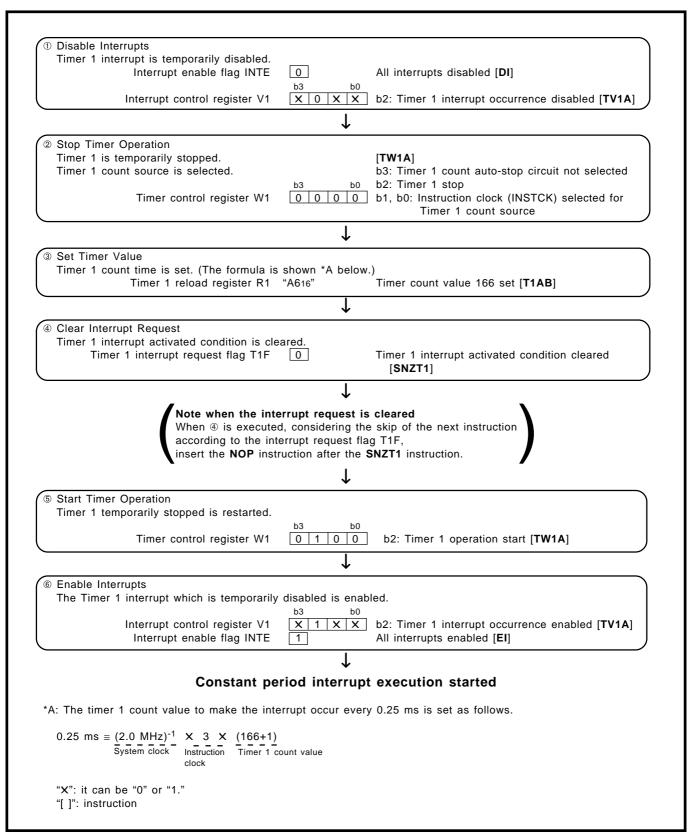


Fig. 2.2.5 Timer 1 constant period interrupt setting example

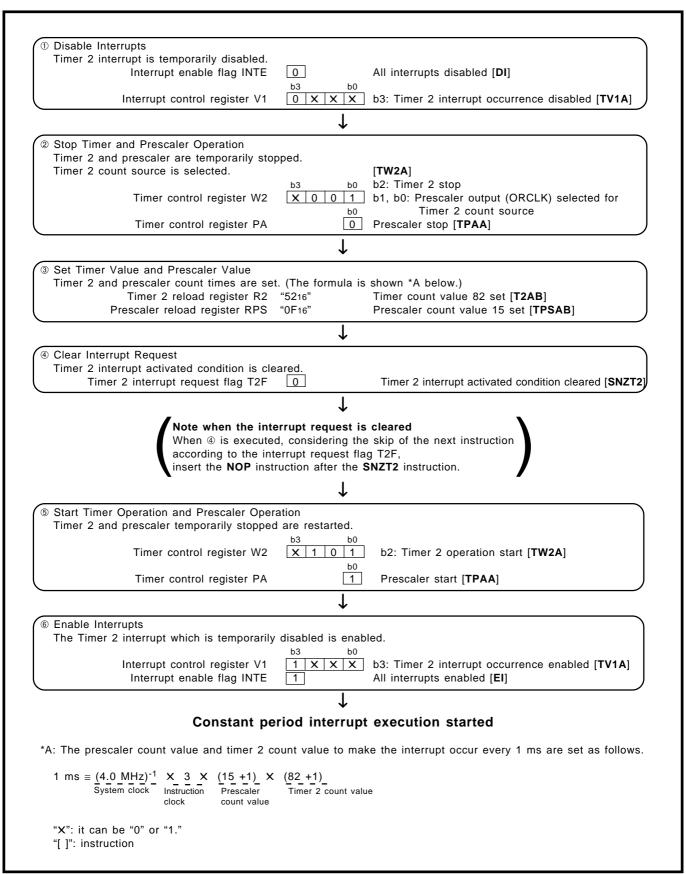


Fig. 2.2.6 Timer 2 constant period interrupt setting example

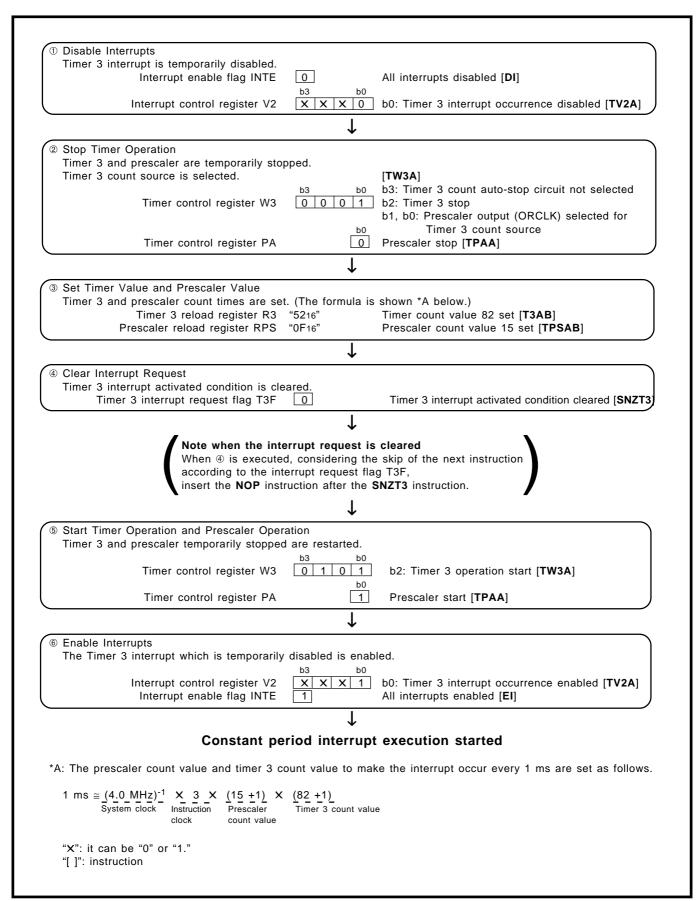


Fig. 2.2.7 Timer 3 constant period interrupt setting example

	Disable Interrupts Timer 4 and serial I/O interrupts are tempor Interrupt enable flag INTE	rarily disabled.	All interrupts disabled [DI]
	Interrupt control register V2	0 X X X	b3: Timer 4 and serial I/O interrupts occurrence disabled [TV2A]
		↓	
	Stop Timer and Prescaler Operation Timer 4 and prescaler are temporarily stopp Timer 4 count source is selected.	b3 b0	[TW4A] b3: CNTR1 output invalid b2: PWM signal "H" interval expansion function invalid b1: Timer 4 stop
	Timer control register W4	0 0 0 1 b0	b0: Prescaler output (ORCLK) divided by 2 selected for Timer 4 count source
	Timer control register PA	<u> </u>	Prescaler stop [TPAA]
<u>_</u>	Soloot Timor 4 Interrupt	→	
	Select Timer 4 Interrupt Timer 4 is selected for the interrupt source.		
	Interrupt control register I3	b0	Timer 4 interrupt valid [TI3A]
		1	
	3	(The formula is DD16" 9516"	shown *A below.) Timer count value 221 set [T4AB] Prescaler count value 149 set [TPSAB]
		<u>_</u>	
(5)	Clear Interrupt Request	•	
	Timer 4 interrupt activated condition is clear Timer 4 interrupt request flag T4F	red.	Timer 4 interrupt activated condition cleared [SNZT4
		\	
	Note when the internal When (s) is executed, according to the internal insert the NOP instruction.	considering the rupt request flag	skip of the next instruction g T4F,
	•	\downarrow	•
	Start Timer Operation and Prescaler Operat Timer 4 and prescaler temporarily stopped a		
	Timer control register W4	b3 b0 0 1 1 b0	b1: Timer 4 operation start [TW4A]
	Timer control register PA	1	Prescaler start [TPAA]
		\downarrow	
	Enable Interrupts The Timer 4 interrupt which is temporarily d	licabled ic enabl	bal
		b3 b0	
	Interrupt control register V2 Interrupt enable flag INTE	1 X X X X 1	b3: Timer 4 interrupt occurrence enabled [TV2A] All interrupts enabled [EI]
		\downarrow	
	Constant peri	od interrupt	execution started
*A:	: The prescaler count value and timer 4 cou	nt value to mak	e the interrupt occur every 50 ms are set as follows
,	System clock Instruction Prescaler clock count value		() count value

Fig. 2.2.8 Timer 4 constant period interrupt setting example

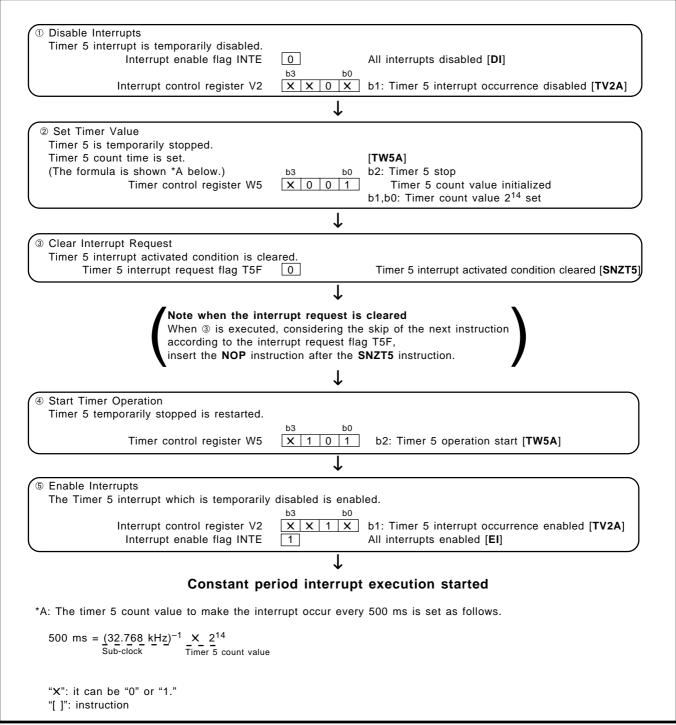


Fig. 2.2.9 Timer 5 constant period interrupt setting example

2.2.4 Notes on use

(1) Setting of INTO interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of D8/INT0 pin, the external interrupt request flag (EXF0) may be set to "1" when the bit 2 of register I1 is changed.

(2) Setting of INTO pin input control

Set a value to the bit 3 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of D8/INT0 pin, the external interrupt request flag (EXF0) may be set to "1" when the bit 3 of register I1 is changed.

(3) Setting of INT1 interrupt valid waveform

Set a value to the bit 2 of register I2, and execute the **SNZ1** instruction to clear the EXF1 flag to "0" after executing at least one instruction.

Depending on the input state of D9/INT1 pin, the external interrupt request flag (EXF1) may be set to "1" when the bit 2 of register I2 is changed.

(4) Setting of INT1 pin input control

Set a value to the bit 3 of register I2, and execute the **SNZ1** instruction to clear the EXF1 flag to "0" after executing at least one instruction.

Depending on the input state of D9/INT1 pin, the external interrupt request flag (EXF1) may be set to "1" when the bit 3 of register I2 is changed.

(5) Multiple interrupts

Multiple interrupts cannot be used in the 4524 Group.

(6) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write **EI** and **RTI** instructions continuously.

(7) D8/INT0 pin

When the external interrupt input pin INT0 is used, set the bit 3 of register I1 to "1".

Even in this case, port D8 output function is valid.

Also, the EXF0 flag is set to "1" when bit 3 of register I1 is set to "1" by input of a valid waveform (valid waveform causing external 0 interrupt) even if it is used as an output port D8.

(8) D9/INT1 pin

When the external interrupt input pin INT1 is used, set the bit 3 of register I2 to "1".

Even in this case, port D9 output function is valid.

Also, the EXF1 flag is set to "1" when bit 3 of register I2 is set to "1" by input of a valid waveform (valid waveform causing external 1 interrupt) even if it is used as an output port D9.

(9) POF instruction, POF2 instruction

When the **POF** or **POF2** instruction is executed continuously after the **EPOF** instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the **POF** or **POF2** instruction. Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF** or **POF2** instruction continuously.

2.3 Timers

The 4524 Group has four 8-bit timers (each has a reload register), a 4-bit timer and a 16-bit fixed dividing frequency timer which has the watchdog timer function.

This section describes individual types of timers, related registers, application examples using timers and notes.

2.3.1 Timer functions

- (1) Timer 1
 - **■** Timer operation

(Timer 1 has the timer 1 count start trigger function from Ds/INT0 pin input)

- (2) Timer 2
 - **■** Timer operation
- (3) Timer 3
 - **■** Timer operation

(Timer 3 has the timer 3 count start trigger function from D9/INT1 pin input)

- (4) Timer 4
 - **■** Timer operation

(Timer 4 has the PWM output function)

- (5) Timer 5 (16-bit timer)
 - **■** Timer operation

(Timer 5 has the function to return from the clock operating mode (POF instruction execution))

- (6) Timer LC
 - LCD clock generating
- (7) 16-bit timer

■ Watchdog function

Watchdog timer provides a method to reset the system when a program run-away occurs.

System operates after it is released from reset. When the timer count value underflows, the WDF1 flag is set to "1." Then, if the **WRST** instruction is never executed until timer WDT counts 65534, WDF2 flag is set to "1," and system reset occurs.

When the **DWDT** instruction and the **WRST** instruction are executed continuously, the watchdog timer function is invalid.

The **WRST** instruction has the skip function. When the **WRST** instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

2.3.2 Related registers

(1) Interrupt control register V1

Table 2.3.1 shows the interrupt control register V1.

Set the contents of this register through register A with the TV1A instruction.

In addition, the TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 2.3.1 Interrupt control register V1

In	Interrupt control register V1		et: 00002	at power down: 00002 R/W
V13	Timer 2 interrupt anable bit	0	Interrupt dis	sabled (SNZT2 instruction is valid)
V 13	Timer 2 interrupt enable bit	1	Interrupt en	abled (SNZT2 instruction is invalid) (Note 2)
V12	Timer 1 interrupt enable bit	0	Interrupt dis	sabled (SNZT1 instruction is valid)
V 12		1	Interrupt en	abled (SNZT1 instruction is invalid) (Note 2)
V11	External 1 interrupt enable bit	0	Interrupt dis	sabled (SNZ1 instruction is valid)
V 1 1		1	Interrupt en	abled (SNZ1 instruction is invalid) (Note 2)
V10	External 0 interrupt enable bit	0	Interrupt dis	sabled (SNZ0 instruction is valid)
V 10		1	Interrupt en	abled (SNZ0 instruction is invalid) (Note 2)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: These instructions are equivalent to the NOP instruction.
- 3: When timer is used, V11 and V10 are not used.

(2) Interrupt control register V2

Table 2.3.2 shows the interrupt control register V2.

Set the contents of this register through register A with the TV2A instruction.

In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 2.3.2 Interrupt control register V2

Interrupt control register V2		at reset : 00002		at power down: 00002 R/W
V23	Timer 4, serial I/O interrupt	0	Interrupt dis	sabled (SNZT4, SNZSI instruction is valid)
V Z 3	enable bit	1	Interrupt enal	oled (SNZT4, SNZSI instruction is invalid) (Note 3)
V22	A/D interrupt enable bit	0	Interrupt dis	sabled (SNZAD instruction is valid)
V Z Z		1	Interrupt ena	abled (SNZTAD instruction is invalid) (Note 3)
V21	Times E interrupt anable bit	0	Interrupt dis	sabled (SNZT5 instruction is valid)
V Z 1	Timer 5 interrupt enable bit	1	Interrupt en	abled (SNZT5 instruction is invalid) (Note 3)
V20	Timer 3 interrupt enable bit	0	Interrupt dis	sabled (SNZT3 instruction is valid)
V 20		1	Interrupt en	abled (SNZT3 instruction is invalid) (Note 3)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: These instructions are equivalent to the NOP instruction.
- 3: When timer is used, V21 is not used.

(3) Interrupt control register I3

Table 2.3.3 shows the interrupt control register I3.

Set the contents of this register through register A with the TI3A instruction.

In addition, the TAI3 instruction can be used to transfer the contents of register I3 to register A.

Table 2.3.3 Interrupt control register I3

Interrupt control register I3		at reset : 02		at power down : state retained	R/W
I30	Timer 4, serial I/O interrupt	0	Timer 4 interrupt valid, serial I/O interrupt invalid Serial I/O interrupt valid, timer 4 interrupt invalid		
130	source selection bit	1			

Note: "R" represents read enabled, and "W" represents write enabled.

(4) Timer control register PA

Table 2.3.4 shows the timer control register PA.

Set the contents of this register through register A with the TPAA instruction.

Table 2.3.4 Timer control register PA

Timer control register PA		at reset : 02		at power down : state retained	W
PA ₀	Prescaler control bit	0	Stop (state	initialized)	
		1	Operating		

Note: "W" represents write enabled.

(5) Timer control register W1

Table 2.3.5 shows the timer control register W1.

Set the contents of this register through register A with the TW1A instruction.

In addition, the TAW1 instruction can be used to transfer the contents of register W1 to register A.

Table 2.3.5 Timer control register W1

Timer control register W1		at reset : 0000		et: 00002	at power down : state retained	R/W	
W13	Timer 1 count auto-stop circuit		0	Timer 1 cou	unt auto-stop circuit not selected		
VV 13	control bit (Note 2)		1	Timer 1 cou	Timer 1 count auto-stop circuit selected		
W12	10/4 c =		0	Stop (state retained)			
VVIZ	Timer 1 control bit	,	1	Operating			
		W11	W10	Count source			
W11		0	0	Instruction of	clock (INSTCK)		
	Timer 1 count source selection bits	0	1	Prescaler o	Prescaler output (ORCLK)		
W10		1	0	Timer 5 und	derflow signal (T5UDF)		
VV 10		1	1	CNTR0 inpu	ut		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").

(6) Timer control register W2

Table 2.3.6 shows the timer control register W2.

Set the contents of this register through register A with the TW2A instruction.

In addition, the TAW2 instruction can be used to transfer the contents of register W2 to register A.

Table 2.3.6 Timer control register W2

Timer control register W2		at reset : 00002		et: 00002 at power down: state retained	R/W	
W23	ONTRO a to to allocation bit		0	Timer 1 underflow signal divided by 2 output		
VVZ3	CNTR0 output selection bit	1		Timer 2 underflow signal divided by 2 output		
W22	W0		0	Stop (state retained)		
VV Z 2	Timer 2 control bit	,	1	Operating		
	Timer 2 count source selection bits	W21	W20	Count source		
W21		0	0	System clock (STCK)		
		0	1	Prescaler output (ORCLK)		
W20		1	0	Timer 1 underflow signal (T1UDF)		
		1	1	PWM signal (PWMOUT)		

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Timer control register W3

Table 2.3.7 shows the timer control register W3.

Set the contents of this register through register A with the TW3A instruction.

In addition, the TAW3 instruction can be used to transfer the contents of register W3 to register A.

Table 2.3.7 Timer control register W3

Timer control register W3		at rese		et: 00002 at power down: state retained	R/W	
W33	Timer 3 count auto-stop circuit	(0	Timer 3 count auto-stop circuit not selected		
VV 3 3	control bit (Note 2)	·	1	Timer 3 count auto-stop circuit selected		
W32	Timer 3 control bit	0		Stop (state retained)		
VV 32		1		Operating		
			W30	Count source		
W31	Timer 3 count source selection bits (Note 3)	0	0	PWM signal (PWMOUT)		
		0	1	Prescaler output (ORCLK)		
W30	, ,		0	Timer 2 underflow signal (T2UDF)		
		1 1 C		CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").

3: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

(8) Timer control register W4

Table 2.3.8 shows the timer control register W4.

Set the contents of this register through register A with the TW4A instruction.

In addition, the TAW4 instruction can be used to transfer the contents of register W4 to register A.

Table 2.3.8 Timer control register W4

Timer control register W4		at reset : 00002		at power down: 00002	R/W			
WAS CNITED Systems assets hit		0	CNTR1 out	CNTR1 output invalid				
W43	CNTR1 output control bit	1	CNTR1 out	CNTR1 output valid				
W42	PWM signal "H" interval		PWM signal "H" interval expansion function invalid					
VV42	expansion function control bit	1	PWM signal "H" interval expansion function valid					
W41	Timer 4 control bit	0	Stop (state retained)					
VV41		1	Operating					
10/40	Timer 4 count source selection	0	XIN input					
W40 bit		1	Prescaler o	utput (ORCLK) divided by 2				

Note: "R" represents read enabled, and "W" represents write enabled.

(9) Timer control register W5

Table 2.3.9 shows the timer control register W5.

Set the contents of this register through register A with the TW5A instruction.

In addition, the TAW5 instruction can be used to transfer the contents of register W5 to register A.

Table 2.3.9 Timer control register W5

Timer control register W5		at rese		et: 00002	at power down : state retained	R/W	
W53	Not used	0		This bit has no function, but read/write is enabled.			
W52 Timer 5 control bit			0	Stop (state initialized)			
VV32	Timer 5 control bit	1		Operating			
	Timer 5 count value selection bits	W51	W50		Count value		
W51		0	0	Underflow of	occurs every 8192 counts		
		0	1	Underflow of	occurs every 16384 counts		
W50		1	0	Underflow of	occurs every 32768 counts		
		1	1	Underflow occurs every 65536 counts			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When timer is used, W53 is not used.

2-38

4524 Group 2.3 Timers

(10) Timer control register W6

Table 2.3.10 shows the timer control register W6.

Set the contents of this register through register A with the TW6A instruction.

In addition, the TAW6 instruction can be used to transfer the contents of register W6 to register A.

Table 2.3.10 Timer control register W6

Timer control register W6		at reset : 00002		at power down : state retained	R/W			
W63	Timer LC control bit	0	Stop (state	Stop (state retained)				
VV 63	Timer LC control bit	1	Operating	Operating State				
W62	Timer LC count source selection	0	Bit 4 (T54) of timer 5					
VVO2	bit	1	Prescaler output (ORCLK)					
W61	CNTR1 output auto-control circuit	0	CNTR1 output auto-control circuit not selected					
VVOT	selection bit	1	CNTR1 output auto-control circuit selected					
W60	D7/CNTR0 pin function selection	0	D7(I/O)/CNTR0 input					
VVO0	bit (Note 2)	1	CNTR0 input/output/D7 (input)					

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

2.3.3 Timer application examples

(1) Timer operation: measurement of constant period

The constant period by the setting timer count value can be measured.

Outline: The constant period by the timer 1 underflow signal can be measured.

Specifications: Timer 1 and prescaler divide the system clock frequency f(XIN) = 4.0 MHz, and the timer 1 interrupt request occurs every 3 ms.

Figure 2.3.4 shows the setting example of the constant period measurement.

(2) CNTR0 output operation: buzzer output

Outline: Square wave output from timer 2 can be used for buzzer output.

Specifications: 4 kHz square wave is output from the CNTR0 pin at system clock frequency f(XIN) = 4.0 MHz. Also, timer 2 interrupt occurs simultaneously.

Figure 2.3.1 shows the peripheral circuit example, and Figure 2.3.5 shows the setting example of CNTR0 output.

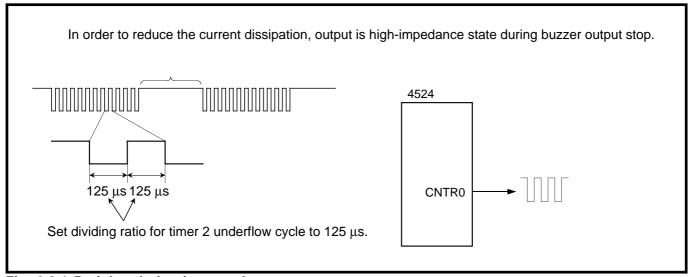


Fig. 2.3.1 Peripheral circuit example

(3) CNTR0 input operation: event count

Outline: Count operation can be performed by using the signal (rising waveform) input from CNTR0 pin as the event.

Specifications: The low-frequency pulse from external as the timer 1 count source is input to CNTR0 pin, and the timer 1 interrupt request occurs every 100 counts.

Figure 2.3.6 shows the setting example of CNTR0 input.

(4) Timer operation: timer start by external input

Outline: The constant period can be measured by external input.

Specifications: Timer 3 operates by INT1 input as a trigger and an interrupt occurs after 1 ms.

Figure 2.3.7 shows the setting example of timer start.

(5) CNTR1 output control: PWM output control

Outline: The PWM output from CNTR1 pin can be performed by timer 4.

Specifications: Timer 4 divides the main clock frequency f(XIN) = 4.0 MHz and the waveform, which "H" period is 0.875 μ s of the 1.875 μ s PWM periods, is output from CNTR1 pin.

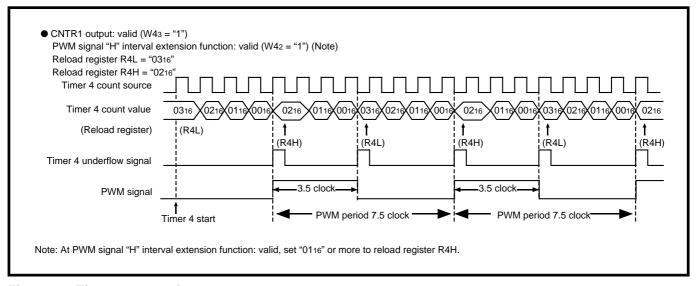
Figure 2.3.2 shows the timer 4 operation and Figure 2.3.8 shows the setting example of PWM output control.

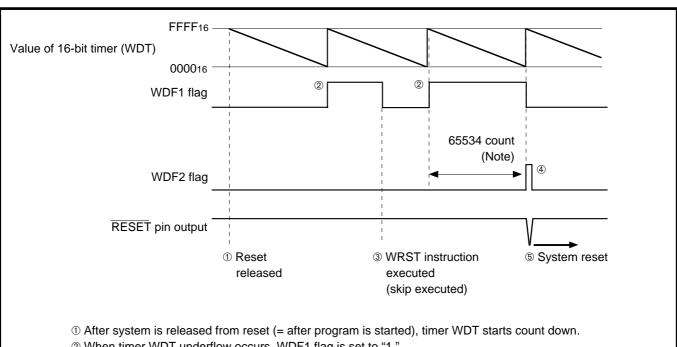
(6) Timer operation: constant period counter by timer 5

Constant period time by the timer count value can be measured.

Outline: A clock with high accuracy can be set up by using a 32.768 kHz quartz-crystal oscillator. Specifications: Timer 5 divides the sub-clock frequency f(XCIN) = 32.768 kHz and timer 5 interrupt occurs every 250 ms.

Figure 2.3.9 shows the setting example of constant period counter by timer 5.




Fig. 2.3.2 Timer 4 operation

(7) Watchdog timer

Watchdog timer provides a method to reset the system when a program run-away occurs. Accordingly, when the watchdog timer function is set to be valid, execute the **WRST** instruction at a certain period which consists of 16-bit timers' 65534 counts or less (execute **WRST** instruction at less than 65534 machine cycles).

Outline: Execute the WRST instruction in 16-bit timer's 65534 counts at the normal operation. If a program runs incorrectly, the WRST instruction is not executed and system reset occurs. Specifications: System clock frequency f(XIN) = 4.0 MHz is used, and program run-away is detected by executing the WRST instruction in 49 ms.

Figure 2.3.3 shows the watchdog timer function, and Figure 2.3.10 shows the example of watchdog timer.

- ② When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 2.3.3 Watchdog timer function

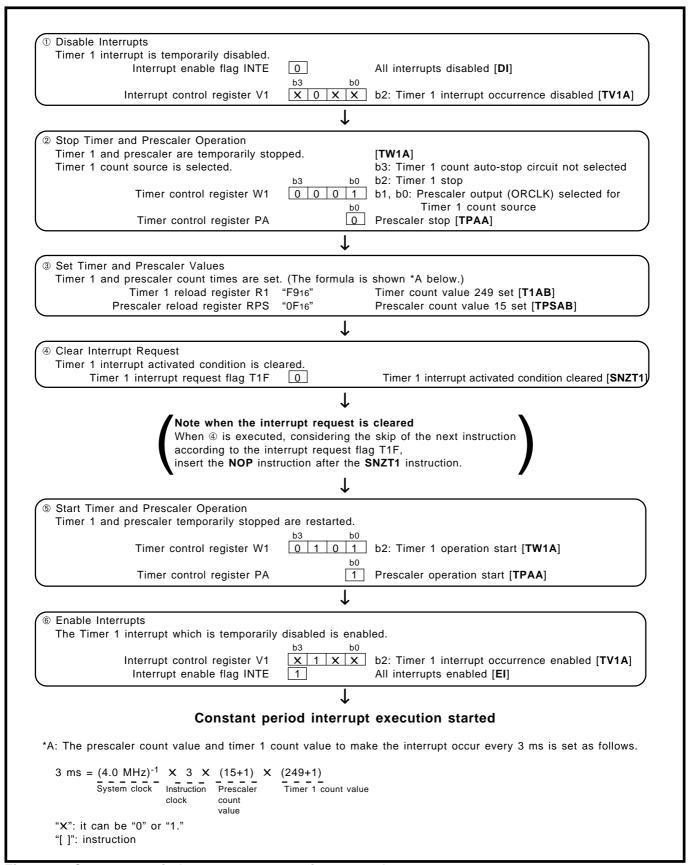


Fig. 2.3.4 Constant period measurement setting example

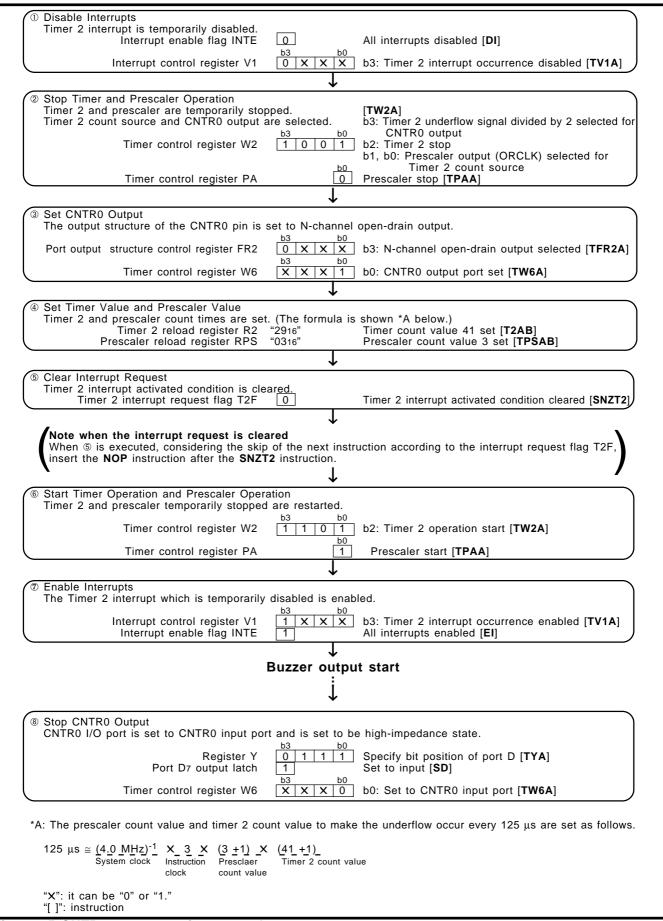


Fig. 2.3.5 CNTR0 output setting example

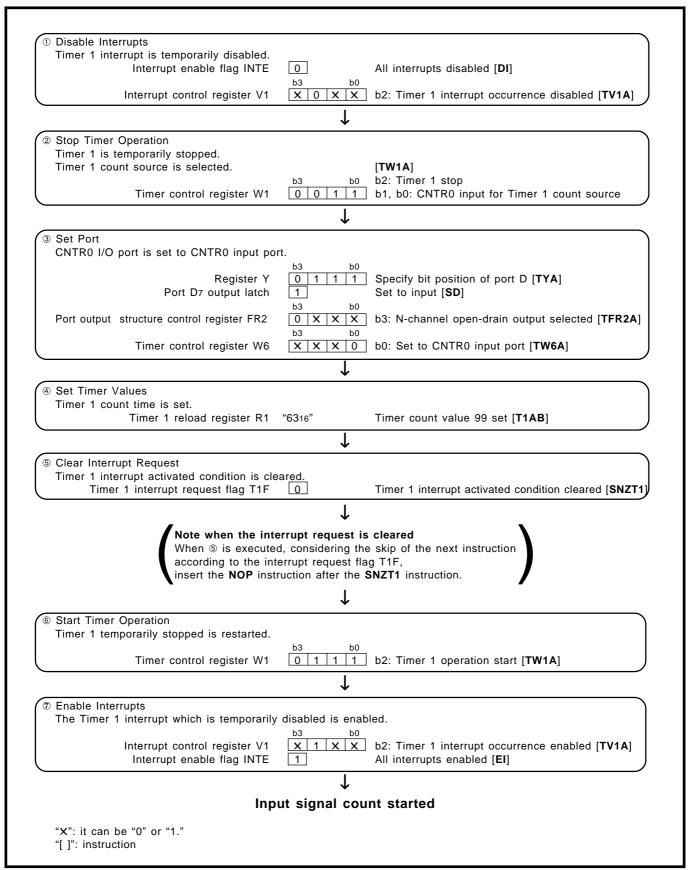


Fig. 2.3.6 CNTR0 input setting example

However, specify the pulse width input to CNTR0 pin, CNTR1 pin. Refer to section "3.1 Electrical characteristics" for the timer external input period condition.

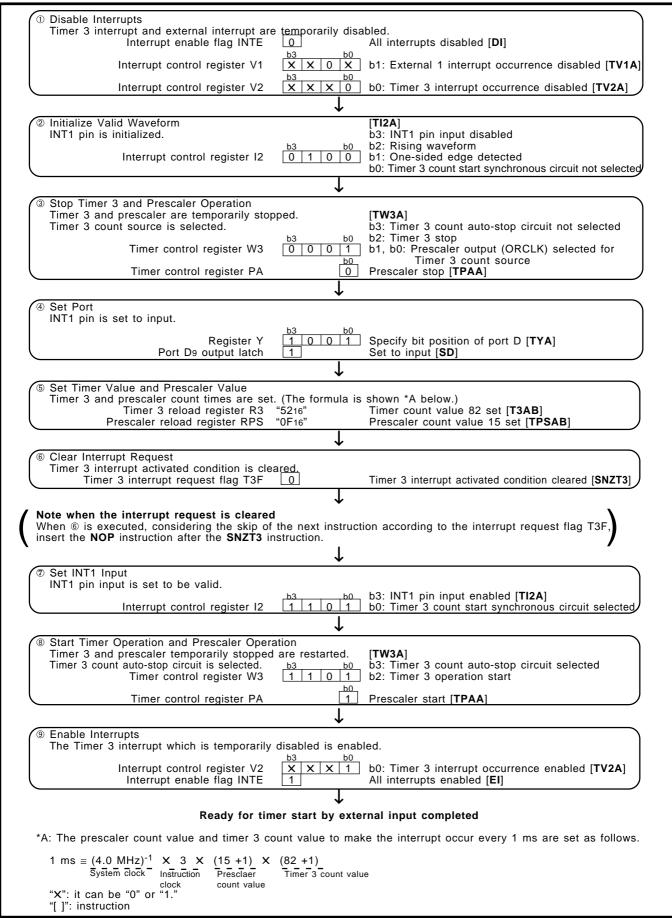


Fig. 2.3.7 Timer start by external input setting example

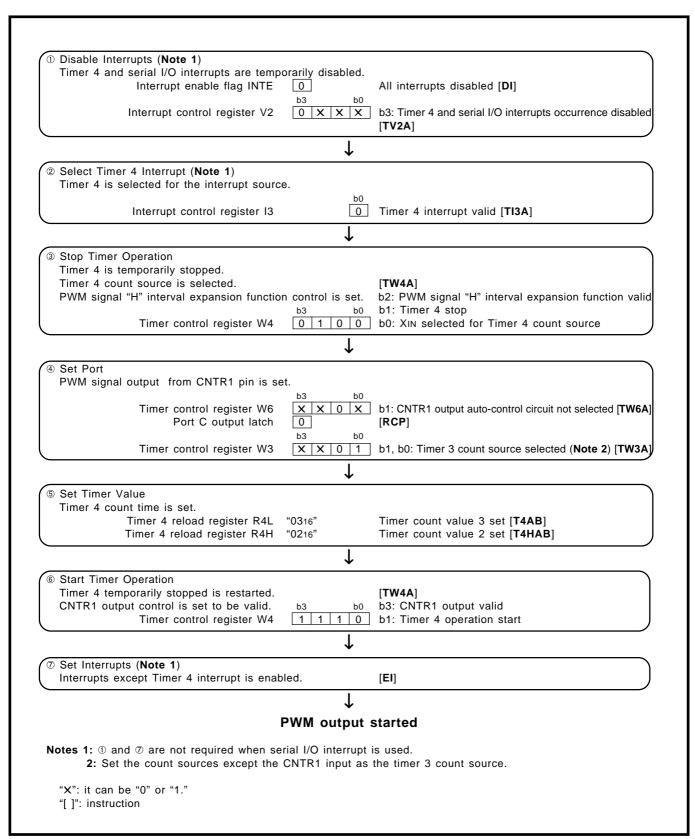


Fig. 2.3.8 PWM output control setting example

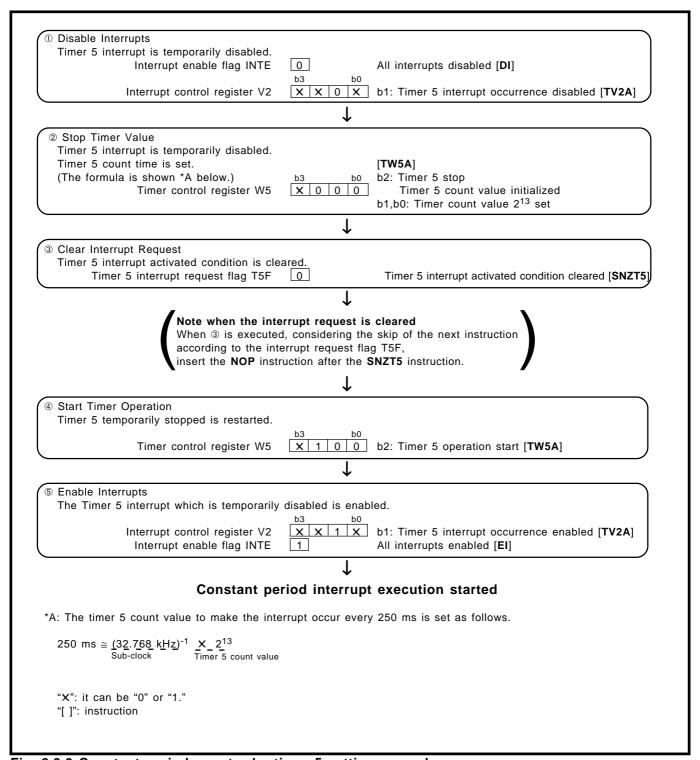


Fig. 2.3.9 Constant period counter by timer 5 setting example

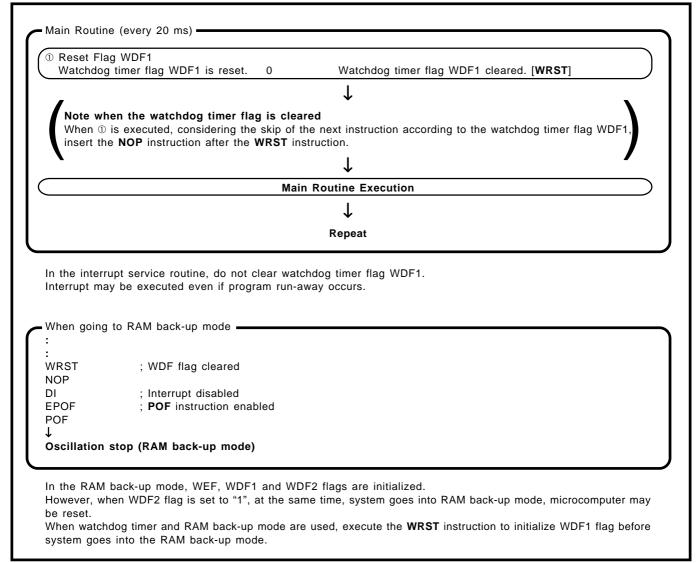


Fig. 2.3.10 Watchdog timer setting example

2.3.4 Notes on use

(1) Prescaler

Stop counting and then execute the **TABPS** instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

(2) Count source

Stop timer 1, 2, 3, 4 or LC counting to change its count source.

(3) Reading the count values

Stop timer 1, 2, 3 or 4 counting and then execute the **TAB1**, **TAB2**, **TAB3** or **TAB4** instruction to read its data.

(4) Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the T1AB, T2AB, T3AB, T4AB or TLCA instruction to write its data.

(5) Writing to reload register R1, reload register R3 and reload register R4H

When writing data to reload register R1 while timer 1 is operating respectively, avoid a timing when timer 1 underflows.

When writing data to reload register R3 while timer 3 is operating respectively, avoid a timing when timer 3 underflows.

When writing data to reload register R4H while timer 4 is operating respectively, avoid a timing when timer 4 underflows.

(6) Timer 4

- Avoid a timing when timer 4 underflows to stop timer 4.
- When "H" interval extension function of the PWM signal is set to be "valid", set "0116" or more to reload register R4H.

(7) Timer 5

Stop timer 5 counting to change its count source.

(8) Timer input/output pin

• Set the port C output latch to "0" to output the PWM signal from C/CNTR1 pin.

(9) Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the
 watchdog timer function, stop the watchdog timer function and execute the DWDT instruction, the
 WRST instruction continuously, and clear the WEF flag to "0".
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function and execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the power down state.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the **WRST** instruction before system enters into the power down state.

(10) Pulse width input to CNTR0 pin, CNTR1 pin

Refer to section "3.1 Electrical characteristics" for rating value of pulse width input to CNTR0 pin, CNTR1 pin.

4524 Group 2.4 A/D converter

2.4 A/D converter

The 4524 Group has an 8-channel A/D converter with the 10-bit successive comparison method.

This A/D converter can also be used as a comparator to compare analog voltages input from the analog input pin with preset values.

This section describes the related registers, application examples using the A/D converter and notes.

Figure 2.4.1 shows the A/D converter block diagram.

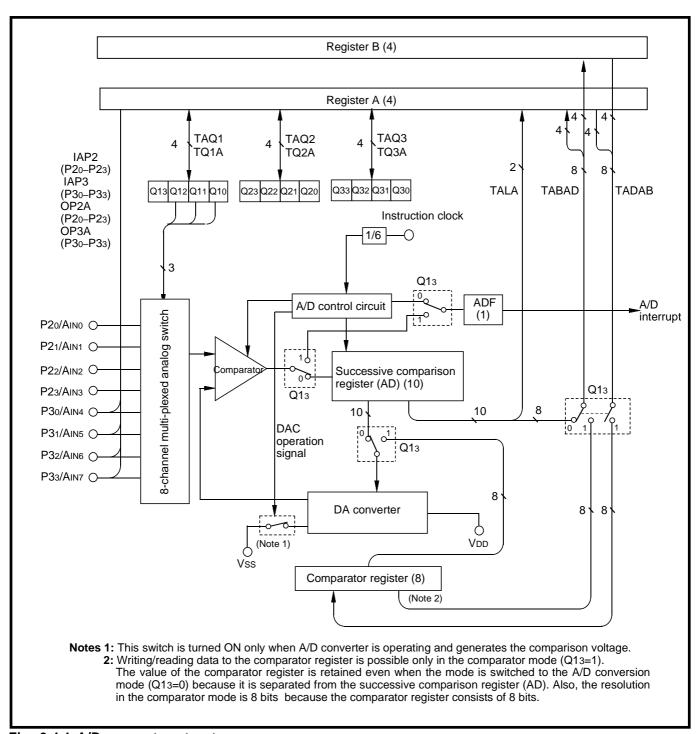


Fig. 2.4.1 A/D converter structure

4524 Group 2.4 A/D converter

2.4.1 Related registers

(1) Interrupt control register V2

Table 2.4.1 shows the interrupt control register V2.

Set the contents of this register through register A with the TV2A instruction.

In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 2.4.1 Interrupt control register V2

In	Interrupt control register V2		et: 00002	at power down: 00002	R/W
V2 ₃	Timer 4, serial I/O interrupt	0	Interrupt dis	sabled (SNZT4, SNZSI instruction	is valid)
V Z3	enable bit (Note 2)	1 Interrupt e		oled (SNZT4, SNZSI instruction is invali	d) (Note 3)
V2 ₂	A/D interrupt enable bit	0	Interrupt dis	sabled (SNZAD instruction is valid)	
V Z 2		1	Interrupt en	abled (SNZAD instruction is invalid) (Note 3)
V2 ₁	Timer E interrupt anable bit	0	Interrupt dis	sabled (SNZT5 instruction is valid)	
VZ1 Timer 5 in	Timer 5 interrupt enable bit	1	Interrupt en	abled (SNZT5 instruction is invalid	(Note 3)
V2 ₀	Timer 3 interrupt enable bit	0	Interrupt dis	sabled (SNZT3 instruction is valid)	
		1	Interrupt en	abled (SNZT3 instruction is invalid	(Note 3)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (I3₀).
- ${\bf 3:}$ These instructions are equivalent to the ${\bf NOP}$ instruction.
- 4: When setting the A/D converter, $V2_3$, $V2_1$ and $V2_0$ are not used.

(2) A/D control register Q1

Table 2.4.2 shows the A/D control register Q1.

Set the contents of this register through register A with the TQ1A instruction.

In addition, the TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

Table 2.4.2 A/D control register Q1

A/D control register Q1		at reset		et : (00002	at power down : state retained	R/W
Q13	A/D operation mode control bit	0			A/D conversion mode Comparator mode		
	Q12 Q11 Analog input pin selection bits Q10	Q12	Q11	Q10		Analog input pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
		0	1	0	AIN2		
Q11		0	1	1	Аімз		
		1	0	0	AIN4		
		1	0	1	AIN5		
Q10		1	1	0	AIN6		
		1	1	1	AIN7		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: In order to select Ain7-Ain0, set register Q1 after setting regsiter Q2, Q3.

4524 Group 2.4 A/D converter

(3) A/D control register Q2

Table 2.4.3 shows the A/D control register Q2.

Set the contents of this register through register A with the TQ2A instruction.

The contents of register Q2 is transferred to register A with the TAQ2 instruction.

Table 2.4.3 A/D control register Q2

	AD control register Q2	at res	et: 00002	at power down : state retained	R/W
	DO /A min formation polariton bit	0	P2 ₃		
Q2 ₃ P2 ₃ /A _{IN3} pi	P23/AIN3 pin function selection bit	1	Аімз		
Q2 ₂	P2 ₂ /A _{IN2} pin function selection bit	0	P2 ₂		
QZ2		1	A _{IN2}		
Q2 ₁	D2 /A nin function coloration bit	0	P2 ₁		
QZ1	P2 ₁ /A _{IN1} pin function selection bit	1	A _{IN1}		
Q2 ₀	P2 ₀ /A _{IN0} pin function selection bit	0	P2 ₀		
		1	Aino		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: In order to select Ain3-Ain0, set register Q1 after setting regsiter Q2.

(4) A/D control register Q3

Table 2.4.4 shows the A/D control register Q3.

Set the contents of this register through register A with the TQ3A instruction.

The contents of register Q3 is transferred to register A with the TAQ3 instruction.

Table 2.4.4 A/D control register Q3

	AD control register Q3	at res	et: 00002	at power down : state retained	R/W
Q3 ₃	P3 ₃ /A _{IN7} pin function selection bit	0	P3 ₃		
Q33		1	AIN7		
Q3 ₂	P3 ₂ /A _{IN6} pin function selection bit	0	P3 ₂		
Q3 ₂		1	A _{IN6}		
	P3 ₁ /A _{IN5} pin function selection bit	0	P3 ₁		
Q3 ₁		1	A _{IN5}		
	P3 ₀ /A _{IN4} pin function selection bit	0	P3 ₀		
Q3 ₀		1	A _{IN4}		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: In order to select AIN7-AIN4, set register Q1 after setting regsiter Q3.

2.4.2 A/D converter application examples

(1) A/D conversion mode

Outline: Analog input signal from a sensor can be converted into digital values.

Specifications: Analog voltage values from a sensor is converted into digital values by using a 10-bit successive comparison method. Use the AINO pin for this analog input.

Figure 2.4.2 shows the A/D conversion mode setting example.

4524 Group 2.4 A/D converter

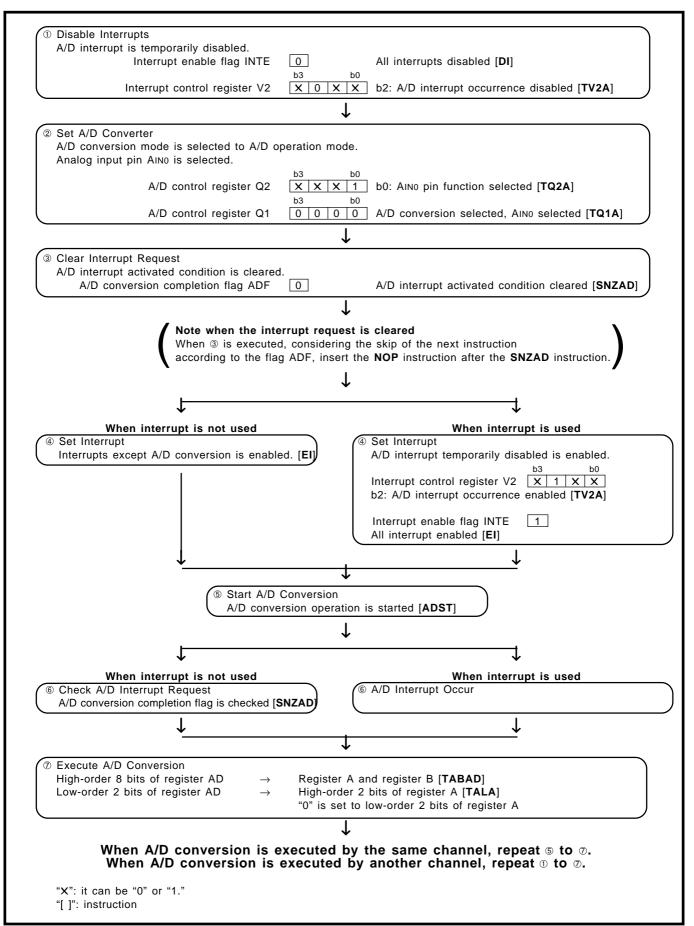
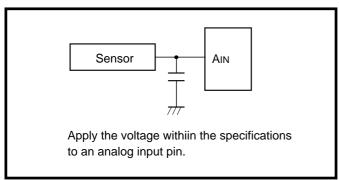


Fig. 2.4.2 A/D conversion mode setting example

4524 Group 2.4 A/D converter

2.4.3 Notes on use

(1) Note when the A/D conversion starts again


When the A/D conversion starts again with the **ADST** instruction during A/D conversion, the previous input data is invalidated and the A/D conversion starts again.

(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins.

Figure 2.4.3 shows the analog input external circuit example-1.

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 2.4.4. In addition, test the application products sufficiently.

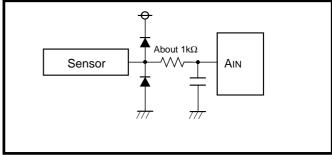


Fig. 2.4.4 Analog input external circuit example-2

Fig. 2.4.3 Analog input external circuit example-1

(3) Notes for the use of A/D conversion 2

Do not change the operating mode of the A/D converter by bit 3 of register Q1 during A/D conversion (A/D conversion mode and comparator mode).

(4) Notes for the use of A/D conversion 3

When the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode (refer to Figure 2.4.5①).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the **SNZAD** instruction to clear the ADF flag to "0".

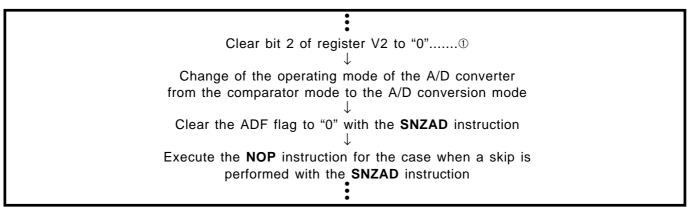


Fig. 2.4.5 A/D converter operating mode program example

4524 Group 2.4 A/D converter

(5) A/D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains "0," not set to "1."

In this case, the A/D interrupt does not occur even when the usage of the A/D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.

(6) Analog input pins

When P20/AIN0-P23/AIN3, P30/AIN4-P33/AIN7 are set to pins for analog input, they cannot be used as I/O ports P2 and P3.

(7) TALA instruction

When the **TALA** instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, and simultaneously, the low-order 2 bits of register A is "0."

(8) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/D converter are different from those when not using A/D converter.

Table 2.4.5 shows the recommended operating conditions when using A/D converter.

Table 2.4.5 Recommended operating conditions (when using A/D converter)

Parameter	Condition		Limits		Unit
raiametei	Condition	Min.	Тур.	Max.	Oille
System clock frequency	VDD = 4.0 to 5.5 V (through mode)	0.1		6.0	MHz
(at ceramic resonance)	VDD = 2.7 to 5.5 V (through mode)	0.1		4.4	
(Note 2)	VDD = 2.7 to 5.5 V (Frequency/2 mode)	0.1		3.0	
	VDD = 2.7 to 5.5 V (Frequency/4 mode)	0.1		1.5	
	VDD = 2.7 to 5.5 V (Frequency/8 mode)	0.1		0.7	
System clock frequency	VDD = 2.7 to 5.5 V (through mode)	0.1		4.4	MHz
(at RC oscillation)	VDD = 2.7 to 5.5 V (Frequency/2 mode)	0.1		2.2	
(Note 2)	VDD = 2.7 to 5.5 V (Frequency/4 mode)	0.1		1.1	
	VDD = 2.7 to 5.5 V (Frequency/8 mode)	0.1		0.5	
System clock frequency	VDD = 4.0 to 5.5 V (through mode)	0.1		4.8	MHz
(ceramic resonance	VDD = 2.7 to 5.5 V (through mode)	0.1		3.2	
selected, at external	VDD = 2.7 to 5.5 V (Frequency/2 mode)	0.1		2.4	
clock input)	VDD = 2.7 to 5.5 V (Frequency/4 mode)	0.1		1.2	1
	VDD = 2.7 to 5.5 V (Frequency/8 mode)	0.1		0.6	

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

2.5 Serial I/O

The 4524 Group has a clock-synchronous serial I/O which can be used to transmit and receive 8-bit data. This section describes serial I/O functions, related registers, application examples using serial I/O and notes.

2.5.1 Carrier functions

Serial I/O consists of the serial I/O register SI, serial I/O control register J1, serial I/O transmit/receive completion flag SIOF and serial I/O counter.

A clock-synchronous serial I/O uses the shift clock generated by the clock control circuit as a synchronous clock. Accordingly, the data transmit and receive operations are synchronized with this shift clock.

In transmit operation, data is transmitted bit by bit from the SOUT pin synchronously with the falling edges of the shift clock.

In receive operation, data is received bit by bit from the SIN pin synchronously with the rising edges of the shift clock.

Note: 4524 Group only supports LSB-first transmit and receive.

■ Shift clock

When using the internal clock of 4524 Group as a synchronous clock, eight shift clock pulses are output from the SCK pin when a transfer operation is started. Also, when using some external clock as a synchronous clock, the clock that is input from the SCK pin is used as the shift clock.

■ Data transfer rate (baudrate)

When using the internal clock, the data transfer rate can be determined by selecting the instruction clock divided by 2, 4 or 8.

When using an external clock, the clock frequency input to the SCK pin determines the data transfer rate.

Figure 2.5.1 shows the serial I/O block diagram.

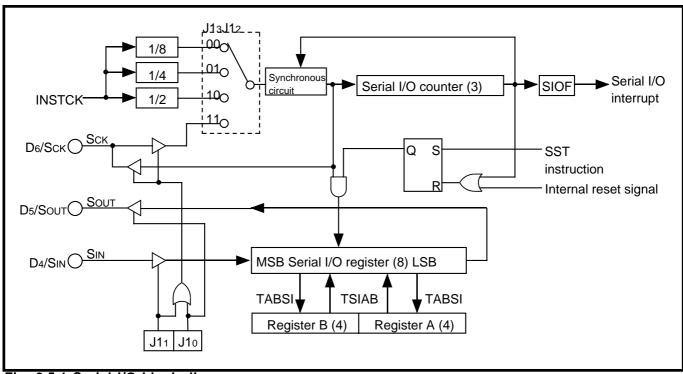


Fig. 2.5.1 Serial I/O block diagram

2.5.2 Related registers

(1) Serial I/O register SI

Serial I/O register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the **TSIAB** instruction.

Also, the low-order 4 bits of register SI is transferred to register A, and the high-order 4 bits of register SI is transferred to register B with the **TABSI** instruction.

(2) Serial I/O transmit/receive completion flag (SIOF)

Serial I/O transmit/receive completion flag (SIOF) is set to "1" when serial data transmit or receive operation completes. The state of SIOF flag can be examined with the skip instruction (SNZSI).

(3) Interrupt control register V2

Table 2.5.1 shows the interrupt control register V2.

Set the contents of this register through register A with the TV2A instruction.

In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 2.5.1 Interrupt control register V2

Ir	nterrupt control register V2	at res	et: 0000 ₂	at power	down: 0000 ₂	R/W
V2 ₃	Timer 4, serial I/O interrupt	0	Interrupt dis	sabled (SNZT4,	SNZSI instruction is	s valid)
V Z3	enable bit (Note 2)	1	Interrupt ena	bled (SNZT4, SN	ZSI instruction is invalid	(Note 3)
V2 ₂	A/D interrupt anable bit	0	Interrupt dis	sabled (SNZAD	instruction is valid)	
V Z 2	A/D interrupt enable bit	1	Interrupt en	abled (SNZAD	instruction is invalid)	(Note 3)
V2 ₁	Timer E interrupt anable bit	0	Interrupt dis	sabled (SNZT5	instruction is valid)	
V Z1	Timer 5 interrupt enable bit	1	Interrupt en	abled (SNZT5 i	nstruction is invalid)	(Note 3)
\/2°	Timer 2 interrupt anable bit	0	Interrupt dis	sabled (SNZT3	instruction is valid)	
V2 ₀	Timer 3 interrupt enable bit	1	Interrupt en	abled (SNZT3 i	nstruction is invalid)	(Note 3)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (I3₀).
- **3:** These instructions are equivalent to the **NOP** instruction.
- 4: When setting the Serial I/O, V23, V21 and V20 are not used.

(4) Interrupt control register I3

Table 2.5.2 shows the interrupt control register I3.

Set the contents of this register through register A with the TI3A instruction.

In addition, the TAI3 instruction can be used to transfer the contents of register I3 to register A.

Table 2.5.2 Interrupt control register I3

Ir	nterrupt control register I3	at re	eset: 02	at power down : state retained	R/W				
I3 ₀	Timer 4, serial I/O interrupt	0	Timer 4 into	Timer 4 interrupt valid, serial I/O interrupt invalid					
	source selection bit	1	Serial I/O interrupt valid, timer 4 interrupt invalid						

(5) Serial I/O mode register J1

Table 2.5.3 shows the serial I/O mode register J1.

Set the contents of this register through register A with the TJ1A instruction.

In addition, the TAJ1 instruction can be used to transfer the contents of register J1 to register A.

Table 2.5.3 Serial I/O mode register J1

Se	Serial I/O control register J1			et: 00002	at power down : state retained	R/W					
		J13	J12		Synchronous clock						
J1 3	Carial I/O averaheranava alaak	0	0	Instruction	Instruction clock (INSTCK) divided by 8						
	Serial I/O synchronous clock	0	1	Instruction	clock (INSTCK) divided by 4						
J1 ₂	selection bits	1	0	Instruction clock (INSTCK) divided by 2							
		1	1	External clo	ock (Sck input)						
		J1₁	J10		Port function						
J1₁	Serial I/O port function selection	0	0	D6, D5, D4 9	D ₆ , D ₅ , D ₄ selected/Scк, Sout, Sin not selected						
	bits	0	1	Sck, Sout, D	D_4 selected/ D_6 , D_5 , S_{IN} not selected	ł					
J1 ₀		1	0	Sck, D ₅ , S _{IN} selected/D ₆ , S _{OUT} , D ₄ not selected							
		1	1	Sck, Sout, S	S_{IN} selected/ D_6 , D_5 , D_4 not selected	ł					

2.5.3 Operation description

Figure 2.5.2 shows the serial I/O connection example, Figure 2.5.3 shows the serial I/O register state, and Figure 2.5.4 shows the serial I/O transfer timing.

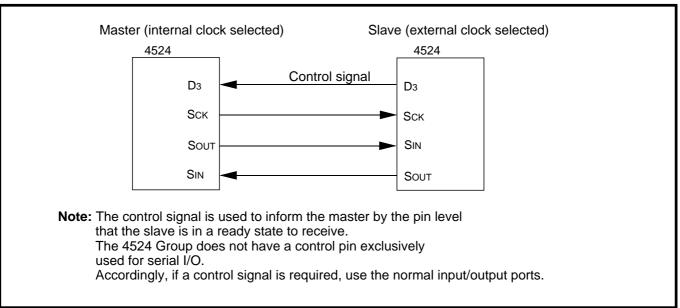


Fig. 2.5.2 Serial I/O connection example

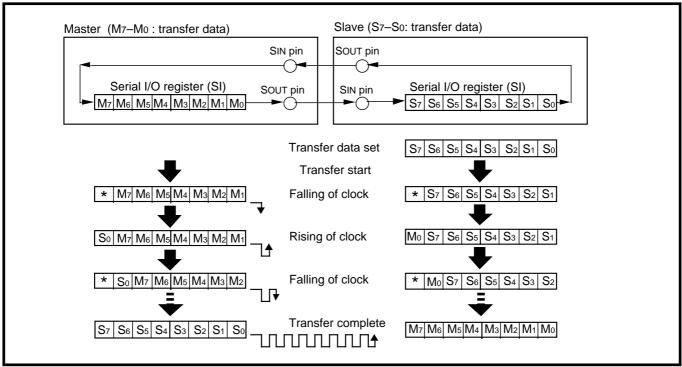


Fig. 2.5.3 Serial I/O register state when transfer

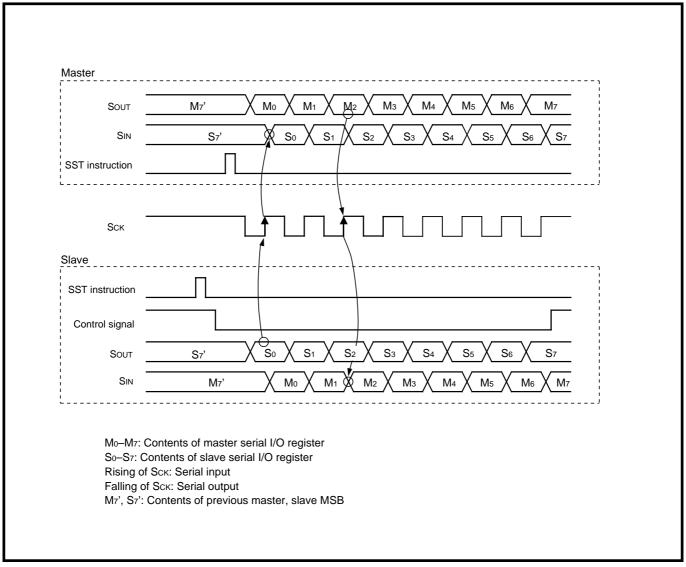


Fig. 2.5.4 Serial I/O transfer timing

The full duplex communication of master and slave is described using the connection example shown in Figure 2.5.2.

(1) Transmit/receive operation of master

- ① Set the transmit data to the serial I/O register SI with the **TSIAB** instruction. When the **TSIAB** instruction is executed, the contents of register A are transferred to the low-order 4 bits of register SI and the contents of register B are transferred to the high-order 4 bits of register SI.
- ② Check whether the microcomputer on the slave side is ready to transmit/receive or not. In the connection example in Figure 2.5.2, check that the input level of control signal is "L" level.
- ③ Start serial transmit/receive with the SST instruction. When the SST instruction is executed, the serial I/O transmit/receive completion flag (SIOF) is cleared to "0."
- ④ The transmit data is output from the SouT pin synchronously with the falling edges of the shift clock.
- ⑤ The transmit data is output bit by bit beginning with the LSB of register SI. Each time one bit is output, the contents of register SI is shifted one bit position toward the LSB.
- © Also, the receive data is input from the SIN pin synchronously with the rising edges of the shift clock.
- The receive data is input bit by bit to the MSB of register SI.
- ® A serial I/O interrupt request occurs when the transmit/receive data is completed, and the SIOF flag is set to "1."
- The receive data is taken in within the serial I/O interrupt service routine; or the data is taken in after examining the completion of the transmit/receive operation with the SNZSI instruction without using an interrupt.
 - Also, the SIOF flag is cleared to "0" when an interrupt occurs or the SNZSI instruction is executed.
- Notes 1: Repeat steps ① through ⑨ to transmit/receive multiple data in succession.
 - 2: For the program on the master side, start to transmit the next data at the next timing (control signal turns "L"). Do not start to transmit the next data during the previous data transfer (control signal = "L").

(2) Transmit/receive operation of slave

- ① Set the transmit data into the serial I/O register SI with the **TSIAB** instruction. When the **TSIAB** instruction is executed, the contents of register A are transferred to the low-order bits of register SI and the contents of register B are transferred to the high-order bits of register SI. At this time, the SCK pin must be at the "H" level.
- ② Start serial transmit/receive with the SST instruction. However, in Figure 2.5.2 where an external clock is selected, transmit/receive is not started until the clock is input. When the SST instruction is executed, the serial I/O transmit/receive completion flag (SIOF) is cleared to "0."
- 3 The microcomputer on the master side is informed that the receiving side is ready to receive. In the connection example in Figure 2.5.2, the control signal "L" level is output.
- ④ The transmit data is output from the SouT pin synchronously with the falling edges of the shift clock.
- ⑤ The transmit data is output bit by bit beginning with the LSB of register SI. Each time one bit is output, the contents of register SI are shifted to one bit position toward the LSB.
- © Also, the receive data is input from the SIN pin synchronously with the rising edges of the shift clock.
- The receive data is input bit by bit to the MSB of register SI.
- ® A serial I/O interrupt request occurs when the transmit/receive is completed, and the SIOF flag is set to "1."
- Read the receive data within the serial I/O interrupt service routine; or read the data after examining
 the completion of the transmit/receive operation with the SNZSI instruction without using an interrupt.
 Also, the SIOF flag is cleared to "0" when an interrupt occurs or the SNZSI instruction is executed.
- ® Set the control signal pin level to "H" after the receive operation is completed.

Note: Repeat steps ① through ⑩ to transmit/receive multiple data in succession.

2.5.4 Serial I/O application example

(1) Serial I/O

Outline: The 4524 Group can communicate with peripheral ICs. **Specifications:** Figure 2.5.2 Serial I/O connection example.

Figure 2.5.5 shows the setting example when a serial I/O interrupt of master side is not used, and Figure 2.5.6 shows the slave serial I/O setting example.

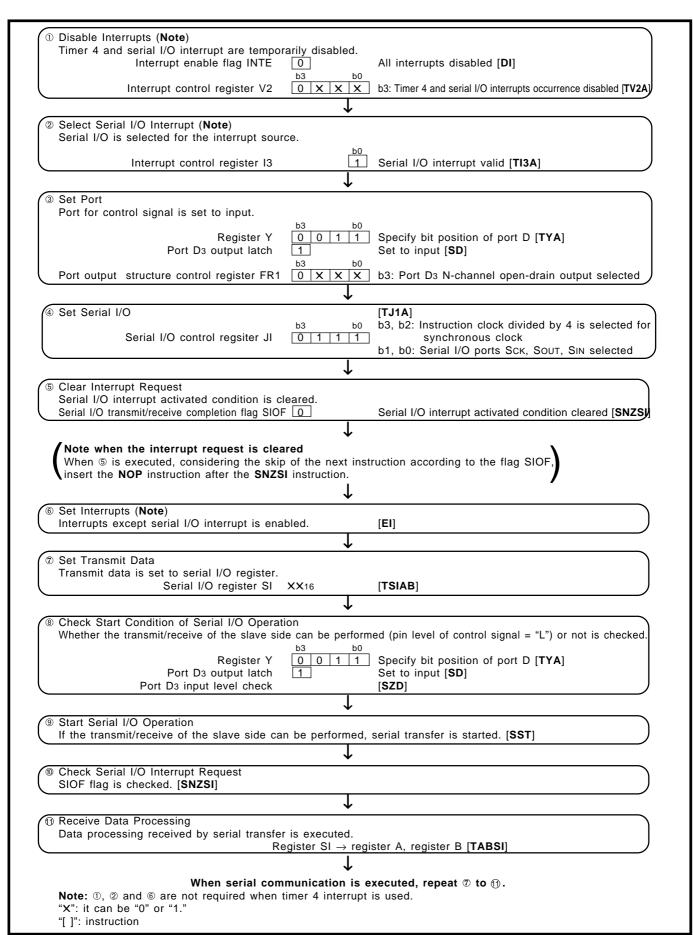


Fig. 2.5.5 Setting example when a serial I/O of master side is not used

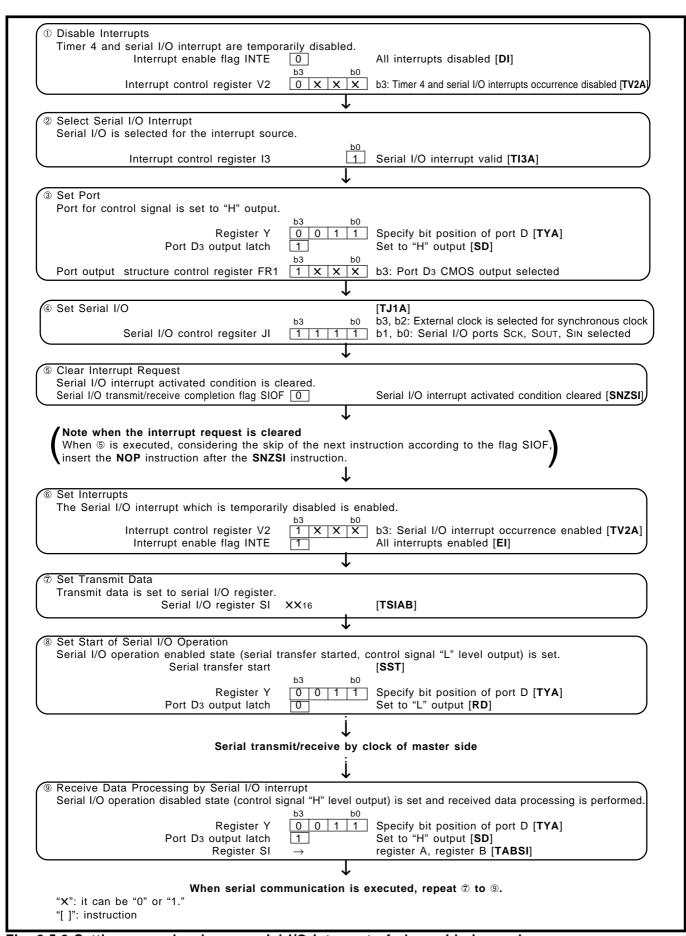


Fig. 2.5.6 Setting example when a serial I/O interrupt of slave side is used

2.5.5 Notes on use

(1) Note when an external clock is used as a synchronous clock:

- An external clock is selected as the synchronous clock, the clock is not controlled internally.
- Serial transmit/receive is continued as long as an external clock is input. If an external clock is input 9 times or more and serial transmit/receive is continued, the receive data is transferred directly as transmit data, so that be sure to control the clock externally.
 - Note also that the SIOF flag is set to "1" when a clock is counted 8 times.
- Be sure to set the initial input level on the external clock pin to "H" level.
- Refer to section "3.1 Electrical characteristics" when using serial I/O with an external clock.

2.6 LCD function

The 4524 Group has an LCD (Liquid Crystal Display) controller/driver.

4 common signal output pins and 20 segment signal output pins can be used to drive the LCD. By using these pins, up to 80 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. This section describes the LCD operation description, related registers, application examples using the LCD and notes.

2.6.1 Operation description

(1) LCD duty and bias control

is used for the LCD power.

Table 2.6.1 shows the duty and maximum number of displayed pixels. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used. The LCD power input pins (V_{LC1} – V_{LC3}) are also used as pins SEG₀–SEG₂. The internal power (V_{DD})

Table 2.6.1 Duty and maximum number of displayed pixels

Duty	Riac	Maximum number of displayed pixels	Used COM pins			
Duty	Dias	of displayed pixels	Used COM pills			
1/2	1/2	40 segments	COMo, COM1 (Note)			
1/3	1/3	60 segments	COM0-COM2 (Note)			
1/4	1/3	80 segments	COM0-COM3			

Note: Leave unused COM pins open.

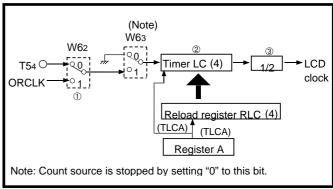


Fig. 2.6.1 LCD clock control circuit structure

(2) LCD drive timing

The LCD clock frequency (F) and frame frequency generating the LCD drive timing are shown below. Figure 2.6.1 shows the structure of the LCD clock circuit.

When the prescaler output (ORCLK) is used for the timer LC count source (W62 = "1")

● When bit 4 (T54) of timer 5 is used for the timer LC count source (W62 = "0")

$$F = T5_4 \times \frac{1}{LC + 1} \times \frac{1}{2}$$

The frame frequency for each display method can be obtained by the following formula.

Frame frequency =
$$\frac{F}{n}$$
 (Hz)

Frame period =
$$\frac{n}{F}$$
 (s)

[F: Frame frequency, 1/n: Duty]

(3) LCD display method

The 4524 Group has the LCD RAM area for the LCD display.

When "1" is written to a bit in the LCD RAM data, the display pixel which correspond to the bit automatically turns on.

Figure 2.6.2 shows the LCD RAM map.

Z		1											
X	12					13				14			
Y Bits	3	2	1	0	3	2	1	0	3	2	1	0	
8	SEG ₀	SEG ₀	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16	
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18	
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12					
13	SEG5	SEG ₅	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13					
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14					
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15					
COM	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	

Note: The area marked " ____ " is not the LCD display RAM.

Fig. 2.6.2 LCD RAM map

2.6.2 Related registers

(1) LCD control register L1

Table 2.6.2 shows the LCD control register L1.

Set the contents of this register through register A with the **TL1A** instruction. The **TAL1** instruction can be used to transfer the contents of register L1 to register A.

Table 2.6.2 LCD control register L1

LCD control register L1			res	et: 00002	at power dow	n : state retained	R/W
	Internal dividing resistor for LCD	(0	2r X 3, 2r	X 2		
LI3	power supply selection bit (Note 2)	,	1	r X 3, r X 2	2		
L12	LCD on/off bit		0	Off			
L 12			1	On			
		L11	L10		Duty	Bias	
L11			0		Not av	/ailable	
	LCD duty and bias selection bits	0	1		1/2	1/2	
L10		1	0		1/3	1/3	
			1		1/4	1/3	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.

(2) LCD control register L2

Table 2.6.3 shows the LCD control register L2.

Set the contents of this register through register A with the TL2A instruction.

Table 2.6.3 LCD control register L2

LCD control register L2			et: 11112	at power down : state retained	W						
	VLC3/SEG0 function switch bit	0	SEG ₀								
LZ3	(Note 2)	1	VLC3								
1.22	L22 VLC2/SEG1 function switch bit		SEG1								
	(Note 3)	1	VLC2								
L21	VLC1/SEG2 function switch bit	0	SEG ₂								
LZ1	(Note 3)	1	VLC1								
L20	Internal dividing resistor for LCD	0	Internal div	iding resistor valid							
	power supply control bit	1	1 Internal dividing resistor invalid								

Notes 1: "W" represents write enabled.

- 2: VLC3 is connected to VDD internally when SEG0 pin is selected.
- 3: Use internal dividing resistor when SEG₁ and SEG₂ pins are selected.

(3) Timer control register W6

Table 2.6.4 shows the timer control register W6.

Set the contents of this register through register A with the TW6A instruction.

In addition, the TAW6 instruction can be used to transfer the contents of register W6 to register A.

Table 2.6.4 Timer control register W6

7	Fimer control register W6	at res	et: 00002	at power down : state retained	R/W					
W63	Timer LC control bit	0	Stop (state retained)							
VV O3	Timer LC control bit	1	Operating							
W6 ₂	Timer LC count source selection	0	Bit 4 (T5 ₄) of timer 5							
VV O2	bit	1	1 Prescaler output (ORCLK)							
W6 ₁	CNTR1 output auto-control circuit	0	CNTR1 output auto-control circuit not selected							
VV O1	selection bit	1	CNTR1 output auto-control circuit selected							
W6 ₀	D ₇ /CNTR0 pin function selection	0	D ₇ (I/O)/CNTR0 input							
VVO 0	bit (Note 2)	1	CNTR0 input/output/D ₇ (input)							

- Notes 1: "R" represents read enabled, and "W" represents write enabled.
 - 2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.
 - 3: When setting the LCD, W6₁, W6₀ are not used.

2.6.3 LCD application examples

(1) LCD display

LCD display function can be used to display 80 pixels (maximum 4 common X 20 segment).

Outline: LCD can be displayed easily by using the LCD display function.

Specifications: 1/4 duty and 1/3 bias LCD is displayed by using LCD display panel example. Bit 4 of timer 5 is used for the LCD clock source, the sub-clock f(XCIN) = 32.768 kHz is used for the timer 5 clock source, and the frame frequency is set to 85.3 Hz.

Figure 2.6.3 shows the LCD display panel example, Figure 2.6.4 shows the segment assignment example, Figure 2.6.5 shows the LCD RAM assignment example, and Table 2.6.6 shows the initial setting example.

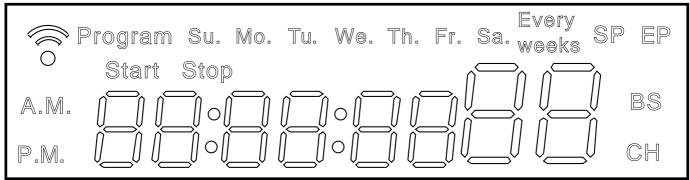


Fig. 2.6.3 LCD display panel example

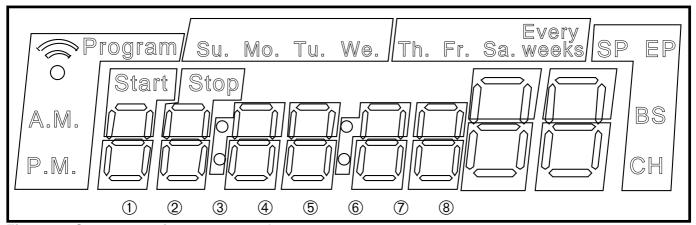


Fig. 2.6.4 Segment assignment example

X		(<u> </u>		1					7	······		
Y Bit	3	2	1	0	3	2	1	0	3	2	1	0	f []
8	①-g	①-e	①-d	①-c	Start	①-f	①-b	①-a	We.	Tu.	Mo.	Su.	U_g
9	②-g	②-е	②-d	②-c	Stop	②-f	2-b	②-a	Every weeks	Sa.	Fr.	Tu.	e ∫
10	③-g	③-f	③-d	3-c	•	3-f	3-b	③-a	BS	CH	EP	SP	
11	4 -g	Ф-е	4 -d	4-c	Unused	4-f	4-b	4 -a	•	P.M.	A.M.	Program	
12	⑤-g	⑤-е	⑤-d	⑤-c		⑤-f	⑤-b	⑤-a					
13	6 -g	®-е	6-d	®-с	Unused	6-f	6-b	6-а]				
14	⑦-g	Ø-е	⑦-d	⑦-c	Unused	⑦-f	⑦-b	⑦-а					
15	®-g	®-е	®-d	®-c	Unused	®-f	®-b	®-a					
COM	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM1	COM ₀	СОМз	COM2	COM1	COM ₀	

Fig. 2.6.5 LCD RAM assignment example

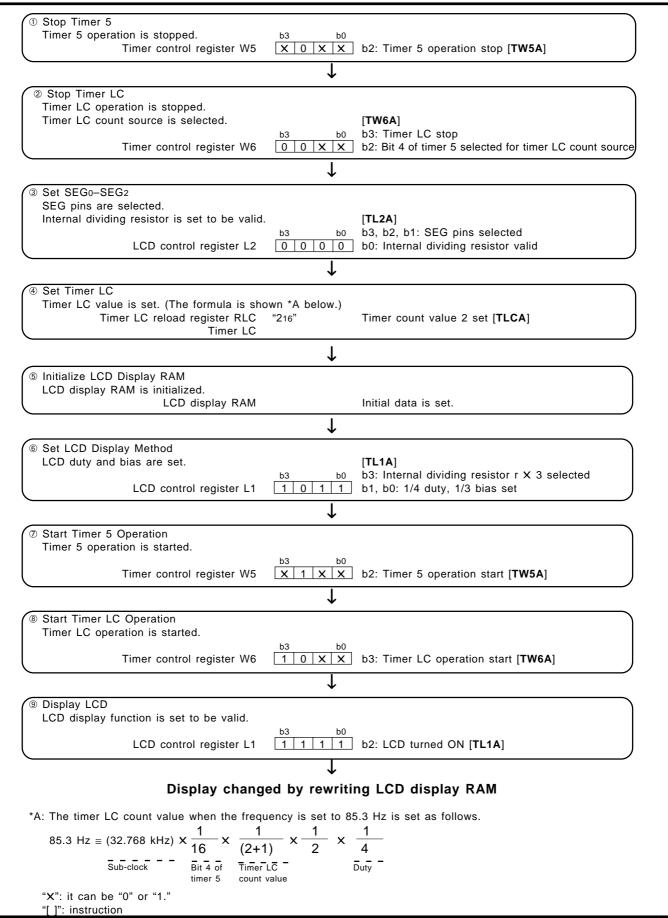


Fig. 2.6.6 Initial setting example

2.6.4 Notes on use

(1) Timer LC count source

Stop timer LC counting to change timer LC count source.

(2) Writing to timer LC

Stop timer LC counting and then execute the data write instruction (TLCA).

(3) VLC3/SEGo pin

When the V_{LC3} pin function is selected, apply voltage of $V_{LC3} < V_{DD}$ to the pin externally.

(4) VLC2/SEG1 pin, VLC1/SEG2 pin

- When the V_{LC2} pin and V_{LC1} pin functions are selected and the internal dividing resistor is not used; Apply voltage of 0<V_{LC1}<V_{LC2}<V_{LC3} to these pins. Short the V_{LC2} pin and V_{LC1} pin at 1/2 bias.
- When SEG₁ and SEG₂ pin function is selected;
 Use the internal dividing resistor.

(5) LCD power circuit

Select the LCD power circuit suitable for LCD panel and evaluate the display state on the actual system.

4524 Group 2.7 Reset

2.7 Reset

System reset is performed by applying "L" level to the RESET pin for 1 machine cycle or more when the following conditions are satisfied:

• the value of supply voltage is the minimum value or more of the recommended operating conditions. Then when "H" level is applied to RESET pin, the program starts from address 0 in page 0 after elapsing of the internal oscillation stabilizing time (On-chip oscillator (internal oscillator) clock is counted for 5400 to 5424 times). Figure 2.7.2 shows the oscillation stabilizing time.

2.7.1 Reset circuit

The 4524 Group has the voltage drop detection circuit.

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the minimum rating value of the recommended operating conditions must be set to 100 μ s or less. If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum rating value of the recommended operating conditions.

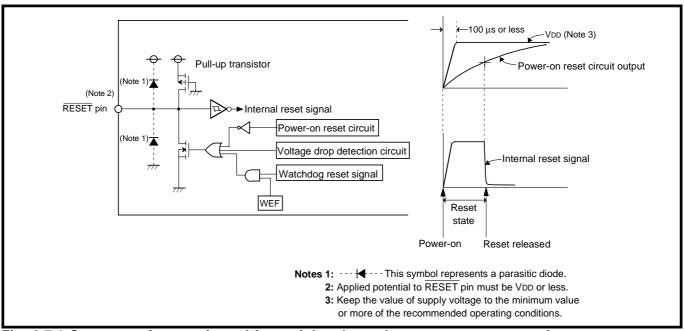


Fig. 2.7.1 Structure of reset pin and its peripherals, and power-on reset operation

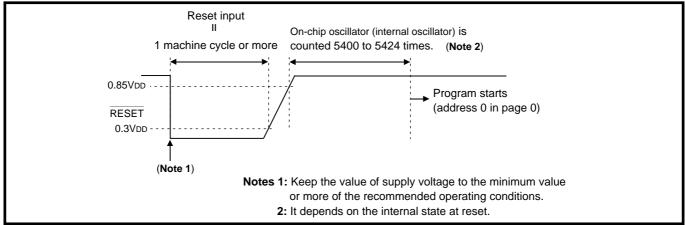


Fig. 2.7.2 Oscillation stabilizing time after system is released from reset

4524 Group 2.7 Reset

2.7.2 Internal state at reset

Figure 2.7.3 shows the internal state at reset. The contents of timers, registers, flags and RAM other than shown in Figure 2.7.3 are undefined, so that set them to initial values.

Program counter (PC)	[0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	0
External 0 interrupt request flag (EXF0)	
External 1 interrupt request flag (EXF1)	
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register I1	
Interrupt control register I2	
Interrupt control register I3	
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Timer 3 interrupt request flag (T3F)	
Timer 4 interrupt request flag (T4F)	
Timer 5 interrupt request flag (T5F)	
Watchdog timer flags (WDF1, WDF2)	
Watchdog timer enable flag (WEF)	
Timer control register PA	
Timer control register W1	
Timer control register W2	
Timer control register W3	
Timer control register W4	
Timer control register W5	
Timer control register W6	
Clock control register MR	
Serial I/O transmit/receive completion flag (SIOF)	<u> </u>
• Serial I/O mode register J1	
Condition induction of	serial I/O port not selected)
Serial I/O register SIX	•
A/D conversion completion flag (ADF)	
A/D control register Q1	
A/D control register Q2	
A/D control register Q3	
• Successive approximation register AD X X X	
Comparator registerX	
LCD control register L1	
LCD control register L2	
LOD CONTROL TOGISTER LZ	
	"X" represents undefined.

Fig. 2.7.3 Internal state at reset

4524 Group 2.7 Reset

• Koy on wakeup central register KO	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	
Port output structure control register FR0	
Port output structure control register FR1	
Port output structure control register FR2	
Port output structure control register FR3	
Carry flag (CY)	
• Register A	
• Register B0 0 0 0	
Register Dxxx	
Register EXXXXXXX	
• Register X0 0 0 0	
• Register Y0 0 0 0	
• Register ZXX	
Stack pointer (SP)	
Operation source clock On-chip oscillator (operating)	
Ceramic resonator circuit Operating	
RC oscillation circuitStop	
Quartz-crystal oscillatorOperating	
	"X" represents undefined.

Fig. 2.7.4 Internal state at reset

2.7.3 Notes on use

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the minimum rating value of the recommended operating conditions must be set to 100 μ s or less. If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum rating value of the recommended operating conditions.

Refer to section "3.1 Electrical characteristics" for the reset voltage of the recommended operating conditions.

2.8 Voltage drop detection circuit

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

Figure 2.8.1 shows the voltage drop detection circuit, and Figure 2.8.2 shows the operation waveform example of the voltage drop detection circuit. Table 2.8.1 shows the voltage drop detection circuit operation state. Refer to section "3.1 Electrical characteristics" for the reset voltage of the voltage drop detection circuit.

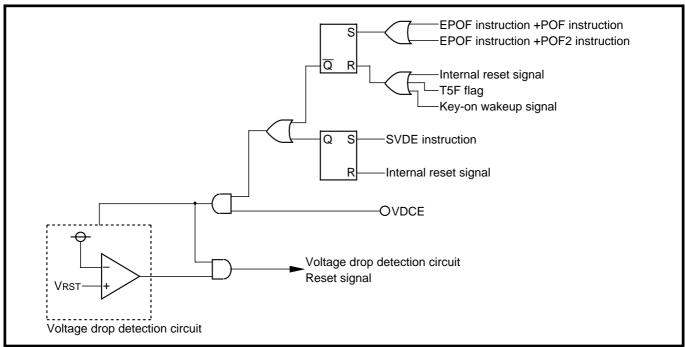


Fig. 2.8.1 Voltage drop detection circuit

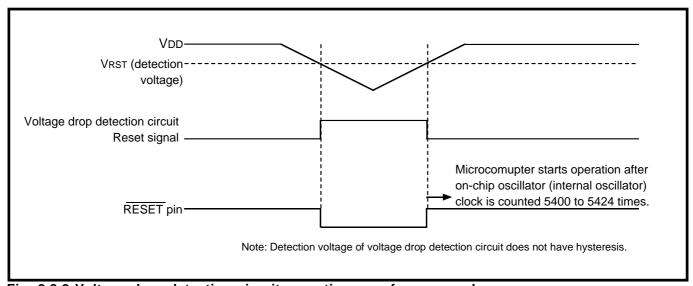


Fig. 2.8.2 Voltage drop detection circuit operation waveform example

Table 2.8.1 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At power down	At power down
		(SVDE instruction is not executed)	(SVDE instruction is executed)
"L"	Invalid	Invalid	Invalid
"H"	Valid	Invalid	Valid

2.8.1 Note on use

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and re-goes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 2.8.3);

- · supply voltage does not fall below to VRST, and
- its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

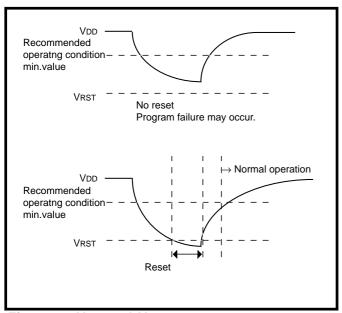


Fig. 2.8.3 VDD and VRST

2.9 Power down

The 4524 Group has the clock operating mode and RAM back-up mode for the power down function. In this section, the state transition, each power down function related register and application example for the power down function are described.

Figure 2.9.1 shows the state transition.

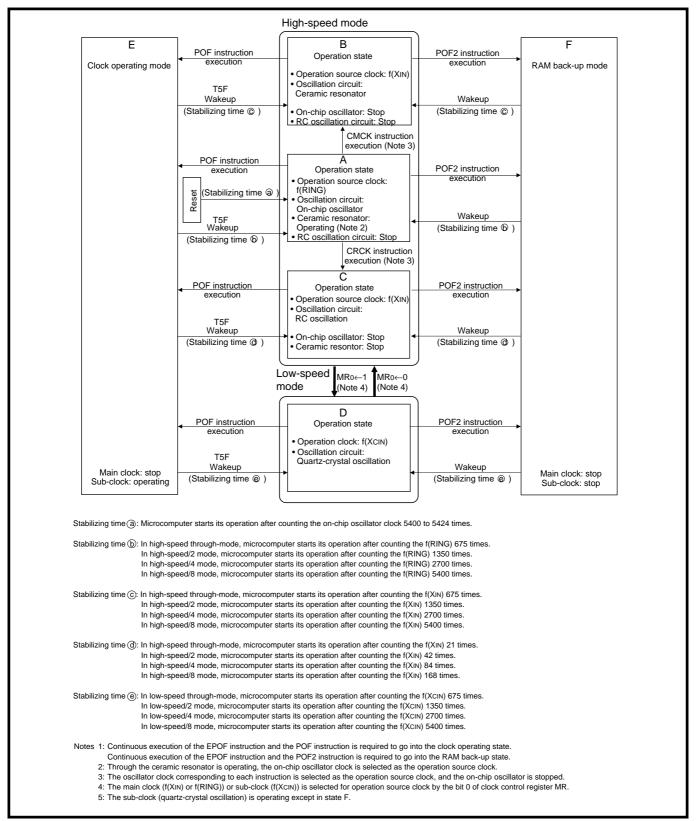


Fig. 2.9.1 State transition

2.9.1 Power down mode

The system goes into power down mode when the **POF** or **POF2** instruction is executed immediately after the **EPOF** instruction is executed. Table 2.9.1 shows the function and state retained at power down mode. Also, Table 2.9.2 shows the return source from this state.

(1) Clock operating mode

The system goes into clock operating mode when the **POF** instruction is executed immediately after the **EPOF** instruction is executed.

As main clock oscillation (XIN-XOUT) and system clock stop with RAM, the state of reset circuit, sub-clock oscillation circuit (XCIN-XCOUT), LCD display and timer 5 retained, current dissipation can be reduced.

(2) RAM back-up mode

The system goes into RAM back-up mode when the **POF2** instruction is executed immediately after the **EPOF** instruction is executed.

As oscillation stops with RAM and the state of reset circuit retained, current dissipation can be reduced without losing the contents of RAM.

Table 2.9.1 Functions and states retained at power down mode

Function	Power do	wn mode
Function	Clock operating	RAM back-up
Program counter (PC), registers A, B,	X	×
carry flag (CY), stack pointer (SP) (Note 2)		
Contents of RAM	0	0
Interrupt control registers V1, V2	X	×
Interrupt control registers I1 to I3	0	0
Selected oscillation circuit	0	0
Clock control register MR	0	0
Timer 1 to timer 4 functions	(Note 3)	(Note 3)
Timer 5 function	0	0
Timer LC function	0	(Note 3)
Watchdog timer function	X (Note 4)	× (Note 4)
Timer control registers PA, W4	X	×
Timer control registers W1 to W3, W5, W6	0	0
Serial I/O function	X	X
Serial I/O control register J1	0	0
A/D function	X	×
A/D control registers Q1 to Q3	0	0
LCD display function	0	(Note 5)
LCD control registers L1, L2	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers FR0 to FR3	0	0
External interrupt request flags (EXF0, EXF1)	X	×
Timer interrupt request flags (T1F to T4F)	(Note 3)	(Note 3)
Timer interrupt request flag (T5F)	0	0
A/D conversion completion flag (ADF)	X	X
Serial I/O transmit/receive completion flag SIOF	X	X
Interrupt enable flag (INTE)	X	×
Watchdog timer flags (WDF1, WDF2)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)	X (Note 4)

- **Notes 1:** "O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at power down, and set an initial value after returning.
 - 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at power down.
 - 3: The state of the timer is undefined.
 - 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then go into the power down state.
 - 5: LCD is turned off.
 - **6:** When the **SVDE** instruction is executed and the "H" level is applied to the VDCE pin, this function is valid at power down.
 - 7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

Table 2.9.2 Return source and return condition

R	Return	source	Return condition	Remarks
	Ports	P00-P03	Return by an external "L" level	The key-on wakeup function can be selected by one
<u>a</u>	Ports	P10-P13	input.	port unit. Set the port using the key-on wakeup function
signal				to "H" level before going into the power down state.
	INT0 p	oin	Return by an external "H" level	Select the return level ("L" level or "H" level) with register
wakeup	INT1 p	oin	or "L" level input, or rising edge	I1 (I2) and return condition (return by level or edge)
۸a			("L" \rightarrow "H") or falling edge	with register K2 according to the external state before
lal			("H"→"L").	going into the power down state.
External			When the return signal is input,	
Ιŭ			the interrupt request flag (EXF0,	
			EXF1) is not set to "1".	
Tim	er 5 in	terrupt	Return by timer 5 underflow or	Clear T5F to "0" with the SNZT5 instruction before
requ	uest fla	ig (T5F)	by setting T5F to "1".	system goes into the power down state.
			It can be used in the clock	When system goes into the power down state while
			operating mode.	T5F is "1", system returns from the state immediately
				because it is recognized as return condition.

(3) Start condition identification

When system returns from both power down mode and reset, program is started from address 0 in page 0.

The start condition (warm start or cold start) can be identified by examining the state of the power down flag (P) with the **SNZP** instruction.

The warm start condition (Timer 5 or external wakeup signal) can be identified by examining the state of T5F flag with the **SNZT5** instruction.

Table 2.9.3 Start condition identification

	Start condition	P flag	Timer 5 interrupt request flag
Warm start	External wakeup signal input	1	0
	Timer 5 underflow	1	1
Cold start	Reset pulse input to RESET pin	0	0
(Reset)	Reset by watchdog timer		
	Reset by voltage drop detection circuit		

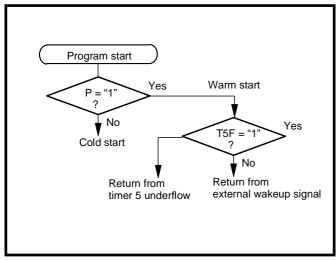


Fig. 2.9.2 Start condition identified example

2.9.2 Related registers

(1) Interrupt control register I1

Table 2.9.4 shows the interrupt control register I1.

Set the contents of this register through register A with the TI1A instruction.

In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 2.9.4 Interrupt control register I1

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W	
Ida INITO	INITO pin input central bit (Note 2)	0	INT0 pin in	INTO pin input disabled		
l13	INT0 pin input control bit (Note 2)	1	INT0 pin in	put enabled		
Intown	Interrupt valid waveform for INITO	0	Falling waveform/"L" level ("L" level is recognized with			
I1 2	Interrupt valid waveform for INT0 pin/return level selection bit (Note 2)	0	the SNZIO instruction)			
112		1	Rising wav	eform/"H" level ("H" level is recogni	zed with	
			the SNZIO	instruction)		
l1 ₁	INT0 pin edge detection circuit	0	One-sided	edge detected		
111	control bit	1	Both edges	detected		
I1 0	INTO pin Timer 1 count start	0	Timer 1 co	unt start synchronous circuit not se	lected	
110	synchronous circuit selection bit	1	Timer 1 co	unt start synchronous circuit selecte	ed	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.
- 3: When setting the power down, I11-I10 are not used.

(2) Interrupt control register I2

Table 2.9.5 shows the interrupt control register I2.

Set the contents of this register through register A with the TI2A instruction.

In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 2.9.5 Interrupt control register I2

ı	Interrupt control register I2		et: 00002	at power down : state retained	R/W	
 I23	IOS INITA distinct and the little O		INT1 pin in	put disabled		
123	INT1 pin input control bit (Note 2)	1	INT1 pin in	INT1 pin input enabled		
	Interrupt valid waveform for INT1	0	Falling wav	eform/"L" level ("L" level is recogni	zed with	
l2 2	pin/return level selection bit (Note 2)	0	the SNZI1 instruction)			
122		1	Rising wave	eform/"H" level ("H" level is recogni	zed with	
			the SNZI1	instruction)		
l2 ₁	INT1 pin edge detection circuit	0	One-sided	edge detected		
121	control bit	1	Both edges	detected		
120	INT1 pin Timer 3 count start	0	Timer 3 co	unt start synchronous circuit not se	lected	
120	synchronous circuit selection bit	1	Timer 3 co	unt start synchronous circuit selecte	ed	

- 2: When the contents of I22 and I23 are changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction when the bit 1 (V11) of register V1 to "0". In this time, set the NOP instruction after the SNZ1 instruction, for the case when a skip is performed with the SNZ1 instruction.
- 3: When setting the power down, I21-I20 are not used.

(3) Clock control register MR

Table 2.9.6 shows the clock control register MR.

Set the contents of this register through register A with the TMRA instruction.

The contents of register MR is transferred to register A with the TAMR instruction.

Table 2.9.6 Clock control register MR

	Clock control register MR	at	rese	et: 11002	at power down : state retained R/W
		MRз	MR2		Operation mode
MRз		0	0	Through-mo	ode (frequency not divided)
	Operation mode selection bits	0	1	Frequency	divided by 2 mode
MR2		1	0	Frequency	divided by 4 mode
		1	1	Frequency	divided by 8 mode
	Main clock oscillation circuit	()	Main clock	oscillation enabled
MR1	control bit		1	Main clock	oscillation stop
MD.	System clock selection bit	()	Main clock	(f(XIN) or f(RING))
MR ₀	Cystem stock selection bit		1	Sub-clock (f(Xcin))

Note: "R" represents read enabled, and "W" represents write enabled.

(4) Pull-up control register PU0

Table 2.9.7 shows the pull-up control register PU0.

Set the contents of this register through register A with the TPU0A instruction.

The contents of register PU0 is transferred to register A with the TAPU0 instruction.

Table 2.9.7 Pull-up control register PU0

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W		
PU03	Port P03	0	0 Pull-up transistor OFF				
PU03	pull-up transistor control bit	1	Pull-up transistor ON				
DLIO	Pulos Port P02		Pull-up transistor OFF				
PU02	pull-up transistor control bit	1	Pull-up transistor ON				
PU01	Port P01	0	Pull-up tran	sistor OFF			
P001	pull-up transistor control bit	1	Pull-up transistor ON				
PU00	Port P00	0	Pull-up transistor OFF				
	pull-up transistor control bit	1	Pull-up tran	sistor ON			

(5) Pull-up control register PU1

Table 2.9.8 shows the pull-up control register PU1.

Set the contents of this register through register A with the TPU1A instruction.

The contents of register PU1 is transferred to register A with the TAPU1 instruction.

Table 2.9.8 Pull-up control register PU1

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W		
DLI4e	Port P13	0	0 Pull-up transistor OFF				
PU13	pull-up transistor control bit	1	Pull-up transistor ON				
DLIA	Port P12	0 Pull-up transistor OFF		nsistor OFF			
PU12	pull-up transistor control bit	1	Pull-up transistor ON				
PU11	Port P11	0	Pull-up tran	nsistor OFF			
PUTT	pull-up transistor control bit	1	Pull-up transistor ON				
PU10	Port P10	0	Pull-up transistor OFF				
	pull-up transistor control bit	1	Pull-up transistor ON				

Note: "R" represents read enabled, and "W" represents write enabled.

(6) Key-on wakeup control register K0

Table 2.9.9 shows the key-on wakeup control register K0.

Set the contents of this register through register A with the TK0A instruction.

The contents of register K0 is transferred to register A with the TAK0 instruction.

Table 2.9.9 Key-on wakeup control register K0

Key-on wakeup control register K0		at res	et: 00002	at power down : state retained	R/W	
K02	Port P03	0 Key-on wakeup not used		eup not used		
K03	key-on wakeup control bit	1	Key-on wakeup used			
K02	Port P02	0	Key-on wakeup not used			
NU2	key-on wakeup control bit	1	Key-on wakeup used			
K01	Port P01	0	Key-on wak	eup not used		
KUT	key-on wakeup control bit	1	Key-on wakeup used			
K00	Port P00	0	Key-on wak	eup not used		
	key-on wakeup control bit	1	Key-on wak	eup used		

(7) Key-on wakeup control register K1

Table 2.9.10 shows the key-on wakeup control register K1.

Set the contents of this register through register A with the **TK1A** instruction.

The contents of register K1 is transferred to register A with the **TAK1** instruction.

Table 2.9.10 Key-on wakeup control register K1

Key-on wakeup control register K1		at reset: 00002		at power down : state retained	R/W	
K13	Port P13	0	0 Key-on wakeup not used			
K13	key-on wakeup control bit	1	Key-on wakeup used			
K12	Port P12	0	Key-on wakeup not used			
K12	key-on wakeup control bit	1	Key-on wakeup used			
K11	Port P11	0	Key-on wak	ceup not used		
KII	key-on wakeup control bit	1	Key-on wakeup used			
K10	Port P10	0	Key-on wak	ceup not used		
K10	key-on wakeup control bit	1	Key-on wakeup used			

Note: "R" represents read enabled, and "W" represents write enabled.

(8) Key-on wakeup control register K2

Table 2.9.11 shows the key-on wakeup control register K2.

Set the contents of this register through register A with the TK2A instruction.

The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.9.11 Key-on wakeup control register K2

Key-c	on wakeup control register K2	at res	at reset : 00002 at power down : state		R/W
K23	INT1 pin return condition	0	0 Return by level		
NZ3	selection bit	1	Return by 6	edge	
K22	INT1 pin key-on wakeup control	0	Key-on wakeup invalid		
K22	bit	1	Key-on wakeup valid		
K21	INTO pin return condition	0	Returned by level		
NZ1	selection bit	1	Returned by edge		
K20	INT0 pin key-on wakeup control	0	Key-on wakeup invalid		
N20	bit	1	Key-on wakeup valid		

2.9.3 Power down function application example

(1) Clock display

A clock which is high-accuracy and low-power dissipation can be set up by using a 32.768 kHz quartz-crystal oscillator as a sub-clock and executing the **POF** instruction.

Outline: The power dissipation can be reduced by using the POF instruction.

Specifications: Time is displayed by the LCD and a 32.768 kHz quartz-crystal oscillator. The main routine is executed by key input.

Figure 2.9.3 shows the software setting example.

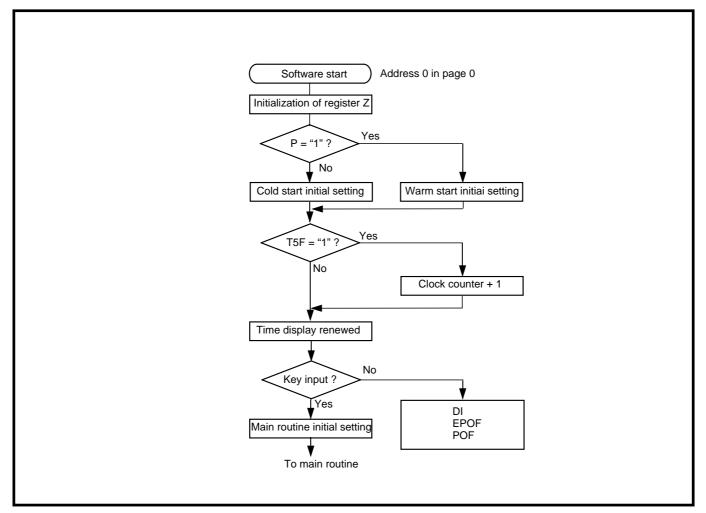


Fig. 2.9.3 Software setting example

2.9.4 Notes on use

(1) POF instruction, POF2 instruction

Execute the **POF** or **POF2** instruction immediately after executing the **EPOF** instruction to enter the power down state.

Note that system cannot enter the power down state when executing only the **POF** or **POF2** instruction. Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF** or **POF2** instruction.

(2) Key-on wakeup function

After checking none of the return condition for ports (P0, P1, INT0 and INT1 specified with register K0–K2) with valid key-on wakeup function is satisfied, execute the **POF** or **POF2** instruction. If at least one of return condition for ports with valid key-on wakeup function is satisfied, system returns from the power downn state immediately after the **POF** or **POF2** instruction is executed.

(3) Timer 5 interrupt request flag

When POF or POF2 instruction is executed while T5F is "1", system returns from the power down state immediately.

(4) Return from power down mode

After system returns from power down mode, set the undefined registers and flags.

The initial value of the following registers are undefined at power down. After system is returned from power down mode, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(5) Watchdog timer

- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function with the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the power down.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the **WRST** instruction before system goes into the power down state.

(6) Port D8/INT0 pin

When the power down mode is used by clearing the bit 3 of register I1 to "0" and setting the input of INTO pin to be disabled, be careful about the following note.

• When the input of INT0 pin is disabled (register I13 = "0"), clear bit 0 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

(7) Port D9/INT1 pin

When the power down mode is used by clearing the bit 3 of register I2 to "0" and setting the input of INT1 pin to be disabled, be careful about the following note.

• When the input of INT1 pin is disabled (register I23 = "0"), clear bit 2 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

(8) External clock

When the external clock signal is used as the main clock (f(XIN)), note that the power down mode (POF or POF2 instruction) cannot be used.

4524 Group 2.10 Oscillation circuit

2.10 Oscillation circuit

The 4524 Group has an internal oscillation circuit to produce the clock required for microcomputer operation. The ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)).

After system is released from reset, the 4524 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

2.10.1 Oscillation circuit

(1) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock (f(XIN)).

After system is released from reset, the 4524 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the **CMCK** instruction. When the RC oscillation is used, execute the **CRCK** instruction. The selection of oscillation circuit by the **CMCK** or **CRCK** instruction is valid only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Another oscillation circuit and the on-chip oscillator stop.

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the **CMCK** or the **CRCK** instruction is not executed in program, the 4524 Group operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator or the RC oscillation, connect XIN pin to Vss and leave XOUT pin open (Figure 2.10.2).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that margin of frequencies when designing application products.

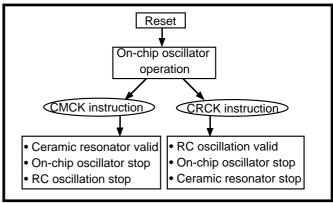


Fig. 2.10.1 Switch to ceramic oscillation/RC oscillation

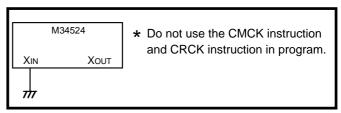


Fig. 2.10.2 Handling of XIN and XOUT when operating on-chip oscillator

4524 Group 2.10 Oscillation circuit

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the **CMCK** instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 2.10.3).

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the **CRCK** instruction (Figure 2.10.4).

The frequency is affected by a capacitor, a resistor and a microcomputer.

So, set the constants within the range of the frequency limits.

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the **CMCK** instruction (Figure 2.10.5). Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to section "3.1 Electrical characteristics").

Also, note that the power down function (**POF** or **POF2** instruction) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(XCIN)

The quartz-crystal oscillator can be used for the sub-clock f(XCIN). Connect a quartz-crystal oscillator and this external circuit to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 2.10.6).

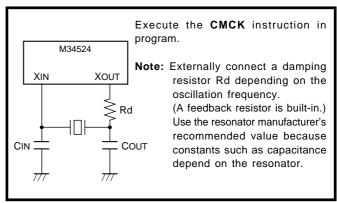


Fig. 2.10.3 Ceramic resonator external circuit

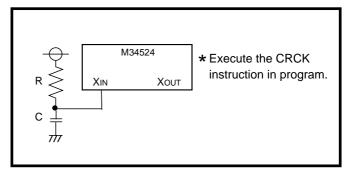


Fig. 2.10.4 External RC oscillation circuit

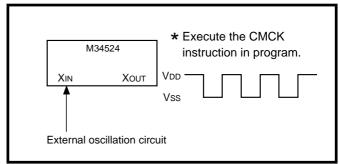


Fig. 2.10.5 External clock input circuit

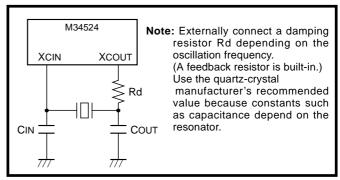


Fig. 2.10.6 External quartz-crystal circuit

4524 Group 2.10 Oscillation circuit

2.10.2 Oscillation operation

System clock is supplied to CPU and peripheral device as the base clock for the microcomputer operation. For the 4524 Group, the clock supplied is selected from the following:

- on-chip oscillator (internal oscillator),
- the ceramic oscillation circuit, and
- divided clock supplied from RC oscillation circuit. Its division ratio is selected from the following with the register MR;
 - through mode (f(XIN)) (not divided),
 - frequency divided by 2 mode (f(XIN)/2),
 - frequency divided by 4 mode (f(XIN)/4) or
 - frequency divided by 8 mode (f(XIN)/8).

Figure 2.10.7 shows the structure of the clock control circuit.

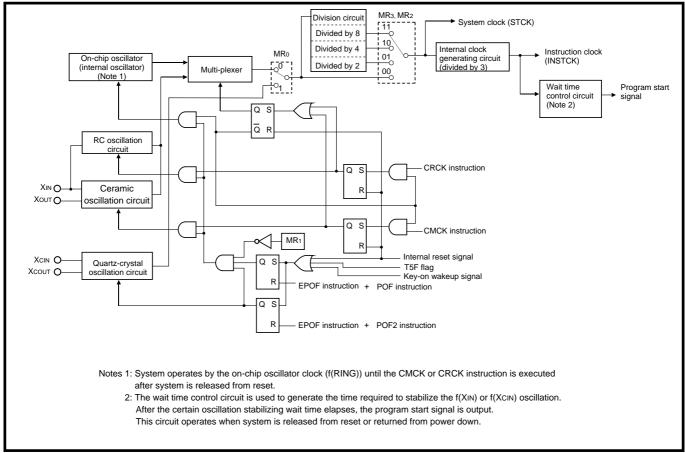


Fig. 2.10.7 Structure of clock control circuit

4524 Group 2.10 Oscillation circuit

2.10.3 Related register

(1) Clock control register MR

Table 2.10.1 shows the clock control register MR.

Set the contents of this register through register A with the TMRA instruction.

The contents of register MR is transferred to register A with the TAMR instruction.

Table 2.10.1 Clock control register MR

Clock control register MR			rese	et: 11002	at power down : state retained	R/W
		MRз	MR2		Operation mode	
MRз		0	0	Through-mo	ode (frequency not divided)	
	Operation mode selection bits		1	Frequency divided by 2 mode		
MR2		1	0	Frequency	divided by 4 mode	
		1	1	Frequency	divided by 8 mode	
	Main clock oscillation circuit	(0	Main clock	oscillation enabled	
MR1	control bit		1	Main clock	oscillation stop	
MD-	System clock selection bit	0		Main clock (f(XIN) or f(RING))		
MR ₀	System clock selection bit		1 Sub-clock (f(XCIN))		f(XCIN))	

Note: "R" represents read enabled, and "W" represents write enabled.

2.10.4 Notes on use

(1) Clock control

Execute the **CMCK** or the **CRCK** instruction to select the main clock (f(XIN)) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Another oscillation circuits and the on-chip oscillator stop.

(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that margin of frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the margin of frequencies of the on-chip oscillator clock.

(3) External clock

When the external clock signal is used as the main clock (f(XIN)), note that the power down mode (POF or POF2 instruction) cannot be used.

(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

CHAPTER 3

APPENDIX

- 3.1 Electrical characteristics
- 3.2 Typical characteristics
- 3.3 List of precautions
- 3.4 Notes on noise
- 3.5 Package outline

3.1 Electrical characteristics

3.1.1 Absolute maximum ratings

Table 3.1.1 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
	P0, P1, P2, P3, P4, D0-D7, RESET, XIN, XCIN, VDCE			
Vı	Input voltage Sck, Sin, CNTR0, CNTR1, INT0, INT1		-0.3 to VDD+0.3	V
Vı	Input voltage AIN0-AIN7		-0.3 to VDD+0.3	V
Vo	Output voltage	Output transistors in cut-off state	-0.3 to VDD+0.3	V
	P0, P1, P2, P3, P4, D0-D9, RESET, SCK, SOUT, CNTR0, CNTR1			
Vo	Output voltage C, Xout, Xcout		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG19, COM0-COM3		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

3.1.2 Recommended operating conditions

Table 3.1.2 Recommended operating conditions 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Cymbal	Parameter	Condition	Conditions			Limits			
Symbol	Parameter	Condition) IIS	Min.	Тур.	Max.	Unit		
VDD	Supply voltage	Mask ROM version	f(STCK) ≤ 6 MHz	4		5.5	V		
	(when ceramic resonator is used)		f(STCK) ≤ 4.4 MHz	2.7		5.5	1		
			f(STCK) ≤ 2.2 MHz	2		5.5	1		
		One Time PROM version	f(STCK) ≤ 6 MHz	4		5.5]		
			f(STCK) ≤ 4.4 MHz	2.7		5.5			
			f(STCK) ≤ 2.2 MHz	2.5		5.5			
VDD	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		5.5	V		
	(when RC oscillation is used)								
VRAM	RAM back-up voltage	at RAM back-up mode		1.8			V		
Vss	Supply voltage				0		V		
VLC3	LCD power supply (Note 1)	Mask ROM version		2		VDD	V		
		One Time PROM version		2.5		VDD			
VIH	"H" level input voltage	P0, P1, P2, P3, P4, D0-D	7, VDCE	0.8VDD		VDD	V		
VIH	"H" level input voltage	XIN, XCIN		0.7Vdd		VDD	V		
VIH	"H" level input voltage	RESET		0.85Vpd		VDD	V		
VIH	"H" level input voltage	SCK, SIN, CNTR0, CNTR1	, INT0, INT1	0.8VDD		VDD	V		
VIL	"L" level input voltage	P0, P1, P2, P3, P4, D0-D	7, VDCE	0		0.2VDD	V		
VIL	"L" level input voltage	XIN, XCIN		0		0.3VDD	V		
VIL	"L" level input voltage	RESET		0		0.3VDD	V		
VIL	"L" level input voltage	SCK, SIN, CNTR0, CNTR1, INT0, INT1		0		0.15VDD	V		
Іон(peak)	"H" level peak output current	P0, P1, P4, D0–D6				-20	mA		
		SCK, SOUT	VDD = 3 V			-10	1		
Iон(peak)	"H" level peak output current	D7, C	VDD = 5 V			-30	mA		
		CNTR0, CNTR1	VDD = 3 V			-15]		
Iон(avg)	"H" level average output current	P0, P1, P4, D0-D6	VDD = 5 V			-10	mA		
	(Note 2)	SCK, SOUT	VDD = 3 V			-5	1		
Iон(avg)	"H" level average output current	D7, C	VDD = 5 V			-20	mA		
	(Note 2)	CNTR0, CNTR1	VDD = 3 V			-10			
loL(peak)	"L" level peak output current	P0, P1, P4	VDD = 5 V			24	mA		
			VDD = 3 V			12			
loL(peak)	"L" level peak output current	D0-D9, C, SCK, SOUT,	VDD = 5 V			24	mA		
		CNTR0, CNTR1	VDD = 3 V			12			
IoL(peak)	"L" level peak output current	P2, P3, RESET	VDD = 5 V			10	mA		
			VDD = 3 V			4	<u> </u>		
IoL(avg)	"L" level average output current	P0, P1, P4	VDD = 5 V			12	mA		
	(Note 2)		VDD = 3 V			6			
IoL(avg)	"L" level average output current	D0-D9, C, SCK, SOUT,	VDD = 5 V			15	mA		
	(Note 2)	CNTR0, CNTR1	VDD = 3 V			7	1		
IoL(avg)	"L" level average output current	P2, P3, RESET	VDD = 5 V			5	mA		
	(Note 2)		VDD = 3 V			2	L		
ΣΙΟΗ(avg)	"H" level total average current	P0, P1, D0-D6, SCK, SOUT	Γ			-60	mA		
		P4, D7, C, CNTR0, CNTR	1			-60	1		
ΣIOL(avg)	"L" level total average current	P0, P1, D0-D6, SCK, SOUT	Γ			80	mA		
		P2, P3, P4, D7–D9, C, RES	SET, CNTR0. CNTR1			80	1		

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3 At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

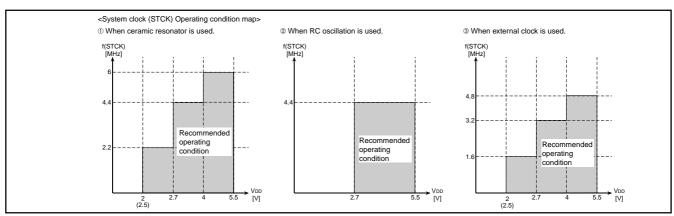

^{2:} The average output current is the average value during 100 ms.

Table 3.1.3 Recommended operating conditions 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions			Limits			Unit
-					Min.	Тур.	Max.	
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4 to 5.5 V			6	MH:
	(with a ceramic resonator)	version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2 to 5.5 V			2.2	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6	
				VDD = 2 to 5.5 V			4.4	
			Frequency/4, 8 mode				6	
		One Time PROM	Through mode	VDD = 4 to 5.5 V			6	
		version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2.5 to 5.5 V			2.2	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6	
				VDD = 2.5 to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			6	
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 \	/				4.4	MHz
, ,	(at RC oscillation) (Note)							
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4 to 5.5 V			4.8	MHz
,	(with a ceramic resonator selected,	version		VDD = 2.7 to 5.5 V			3.2	1
	external clock input)			VDD = 2 to 5.5 V			1.6	
	, ,		Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	1
				VDD = 2 to 5.5 V			3.2	1
			Frequency/4, 8 mode	VDD = 2 to 5.5 V			4.8	1
		One Time PROM	Through mode	VDD = 4 to 5.5 V			4.8	
		version	-	VDD = 2.7 to 5.5 V			3.2	1
				VDD = 2.5 to 5.5 V			1.6	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	1
				VDD = 2.5 to 5.5 V			3.2	1
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			4.8	1
f(XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal osc	cillator				50	kHz
f(CNTR)		CNTR0, CNTR1					f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR0, CNTR1			3/f(STCK)		,	s
	("H" and "L" pulse width)				`			
f(Sck)	Serial I/O external input frequency	Sck					f(STCK)/6	Hz
tw(Sck)	Serial I/O external input frequency	Sck			3/f(STCK)		,	s
. /	("H" and "L" pulse width)				`			
TPON	Power-on reset circuit	Mask ROM version	on	$VDD = 0 \rightarrow 2 V$			100	μs
	valid supply voltage rising time	One Time PROM		$VDD = 0 \rightarrow 2.5 V$			100	1

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.1.3 Electrical characteristics

Table 3.1.4 Electrical characteristics 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Cumbal	Parameter		Test conditions			Limits			
Symbol	Faiametei	IE	Min.	Тур.	Max.	Unit			
Vон	"H" level output voltage	VDD = 5 V	IOH = -10 mA	3			V		
	P0, P1, P4, D0-D6, SCK, SOUT		IOH = -3 mA	4.1					
		VDD = 3 V	IOH = -5 mA	2.1					
			IOH = -1 mA	2.4					
Vон	"H" level output voltage	VDD = 5 V	Iон = -20 mA	3			V		
	D7, C, CNTR0, CNTR1		Iон = -6 mA	4.1					
		VDD = 3 V	IOH = -10 mA	2.1					
			Iон = −3 mA	2.4					
VoL	"L" level output voltage	VDD = 5 V	IOL = 12 mA			2	V		
	P0, P1, P4		IOL = 4 mA			0.9			
		VDD = 3 V	IOL = 6 mA			0.9			
			IOL = 2 mA			0.6			
VoL	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V		
	Do-D9, C, Sck, Sout, CNTR0, CNTR1		IOL = 5 mA			0.9			
		VDD = 3 V	IOL = 9 mA			1.4			
			IOL = 3 mA			0.9			
VoL	"L" level output voltage	VDD = 5 V	IOL = 5 mA			2	V		
	P2, P3, RESET		IOL = 1 mA			0.6			
		VDD = 3 V	IOL = 2 mA			0.9			
lін	"H" level input current	VI = VDD				1	μΑ		
	P0, P1, P2, P3, P4, D0-D7, VDCE,								
	RESET, CNTR0, CNTR1, INT0, INT1								
lı∟	"L" level input current	VI = 0 V P0, P1 No	pull-up			-1	μΑ		
	P0, P1, P2, P3, P4, D0-D7, VDCE,								
	SCK, SIN, CNTR0, CNTR1, INT0, INT1								

Table 3.1.5 Electrical characteristics 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Test	conditions		Limits	1	Unit
		T			Min.	Тур.	Max.	
ldd	Supply current	at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		1.4	2.8	mA
		(with a ceramic resonator)	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.6	3.2	
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		2	4	
				f(STCK) = f(XIN)		2.8	5.6	
			VDD = 5 V	f(STCK) = f(XIN)/8		1.1	2.2	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1.2	2.4	
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		1.5	3	
				f(STCK) = f(XIN)		2	4	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.4	0.8	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.5	1	
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		0.6	1.2	
				f(STCK) = f(XIN)		0.8	1.6	
		at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		55	110	μΑ
		(with a quartz-crystal	f(XIN) = stop	f(STCK) = f(XIN)/4		60	120	
		oscillator)	f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		65	130	
				f(STCK) = f(XIN)		70	140	1
			VDD = 3 V	f(STCK) = f(XIN)/8		12	24	μΑ
			f(XIN) = stop	f(STCK) = f(XIN)/4		13	26	
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		14	28	
			,	f(STCK) = f(XIN)		15	30	
		at clock operation mode	f(Xcin) = 32 kHz	VDD = 5 V		20	60	μА
		(POF instruction execution)	.(,	VDD = 3 V		5	15	,
		at RAM back-up mode	Ta = 25 °C	-		0.1	1	μА
		(POF2 instruction execution)	VDD = 5 V				10	1
		(C 2 mondonom oxecunom)	VDD = 3 V				6	•
Rpu	Pull-up resistor	value	VI = 0 V	VDD = 5 V	30	60	125	kΩ
	P0, P1, RESET		-	VDD = 3 V	50	120	250	1
VT+ - VT-	Hysteresis		VDD = 5 V			0.2		V
• • • • • • • • • • • • • • • • • • • •	1 *	RO, CNTR1, INTO, INT1	VDD = 3 V		0.2		1	
VT+ - VT-	Hysteresis RES		VDD = 5 V		1		V	
	Tryotoroolo REO		VDD = 3 V		0.4		•	
f(RING)	On-chin oscillat	tor clock frequency	VDD = 5 V		1	2	3	MHz
.(On one comme	ior oldon frequency	VDD = 3 V		0.5	1	1.8	
Δf(XIN)	Frequency erro		$VDD = 5 V \pm 10 \%, Ta$	0.5		±17	%	
	1	(with RC oscillation, error of external R, C not included)		VDD = 5 V ± 10 %, Ta = 25 °C			±17	
Rcoм	COM output im	pedance	VDD = 5 V			1.5	7.5	kΩ
			VDD = 3 V			2	10	1
Rseg	SEG output imp	pedance	VDD = 5 V			1.5	7.5	kΩ
			VDD = 3 V		2	10		
Rvlc	Internal resistor	r for LCD power supply	When dividing resisto	300	480	960	kΩ	
			When dividing resisto		200	320	640	1
			When dividing resisto		150	240	480	1
			When dividing resisto		100	160	320	1

Note: When RC oscillation is used, use the external 33 pF capacitor (C).

3.1.4 A/D converter recommended operating conditions

Table 3.1.6 A/D converter recommended operating conditions

(Comparator mode selected, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol Parameter		С		Unit			
Syllibol	Falametei		Min.	Тур.	Max.	Offic	
VDD	Supply voltage	Ta = 25 °C	Ta = 25 °C			5.5	V
	Ta = -20 to 85 °C			3		5.5	
VIA	Analog input voltage			0		VDD	V
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 V	f(STCK) = f(XIN)/8	0.8			MHz
			f(STCK) = f(XIN)/4	0.4			
			f(STCK) = f(XIN)/2	0.2			
			f(STCK) = f(XIN)	0.1			

Table 3.1.7 A/D converter characteristics

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol Parameter		Test conditions			Unit		
			rest conditions	Min.	Тур.	Max.	Orine
_	Resolution					10	bits
_	Linearity error	Ta = 25 °C, VD) = 2.7 V to 5.5 V			±2	LSB
		Ta = −20 °C to 8	35 ° C, VDD = 3 V to 5.5 V				
_	Differential non-linearity error	Ta = 25 °C, VD) = 2.7 V to 5.5 V			±0.9	LSB
		Ta = -20 °C to 8	35 ° C, VDD = 3 V to 5.5 V				
Vот	Zero transition voltage	VDD = 5.12 V		0	10	20	mV
		VDD = 3.072 V		0	6	12	7
VFST	Full-scale transition voltage	VDD = 5.12 V		5110	5120	5130	mV
		VDD = 3.072 V		3063	3069	3075	7
IAdd	A/D operating current	VDD = 5 V			0.3	0.9	mA
	(Note 1)	VDD = 3 V			0.1	0.3	
TCONV	A/D conversion time	f(XIN) = 6 MHz	f(STCK) = f(XIN)/8			248	μs
			f(STCK) = f(XIN)/4			124	
			f(STCK) = f(XIN)/2			62	
			f(STCK) = f(XIN)			31	
_	Comparator resolution					8	bits
_	Comparator error (Note 2)	VDD = 5.12 V				±20	mV
		VDD = 3.072 V				±15	
-	Comparator comparison time	f(XIN) = 6 MHz	f(STCK) = f(XIN)/8			32	μs
			f(STCK) = f(XIN)/4			16	
			f(STCK) = f(XIN)/2			8	
			f(STCK) = f(XIN)			4	7

Notes 1: When the A/D converter is used, IADD is added to IDD (supply current).

- Logic value of comparison voltage Vref-

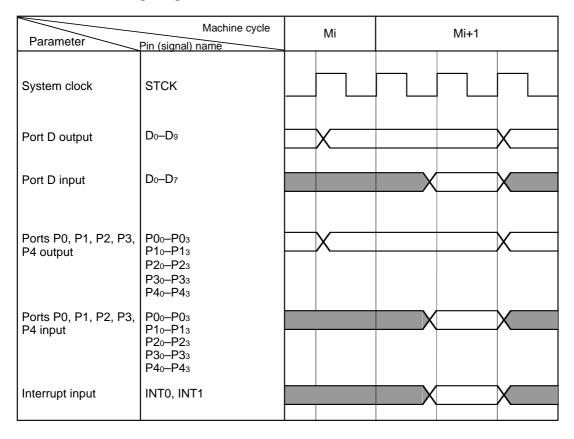
$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

^{2:} As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

3.1.5 Voltage drop detection circuit characteristics

Table 3.1.8 Voltage drop detection circuit characteristics


(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits			
Symbol	Farameter	rest conditions		Min.	Тур.	Max.	Unit	
VRST	Detection voltage (Note 1)	Ta = 25 °C		3.3	3.5	3.7	V	
				2.7		4.2		
IRST	Operation current	at power down	VDD = 5 V		50	100	μΑ	
		(Note 2)	VDD = 3 V		30	60		
TRST	Detection time	VDD → (VRST-0.1 V) (Note 3)			0.2	1.2	ms	

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

- 2: After the SVDE instruction is executed, the voltage drop detection circuit is valid at power down mode.
- 3: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST-0.1 V].

3.1.6 Basic timing diagram

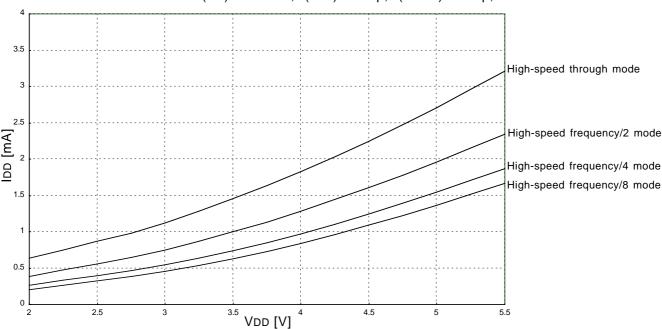
3.2 Typical characteristics

The data described below are characteristic examples for the 4524 Group.

Unless otherwise noted, the characteristics for Mask ROM version are shown here.

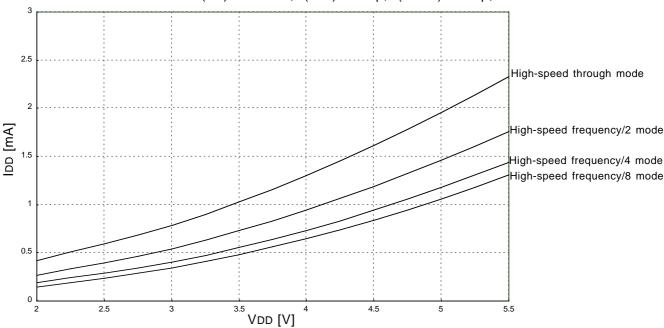
The data shown here are just characteristics examples and are not guaranteed.

For rated values, refer to "3.1 Electrical characteristics".

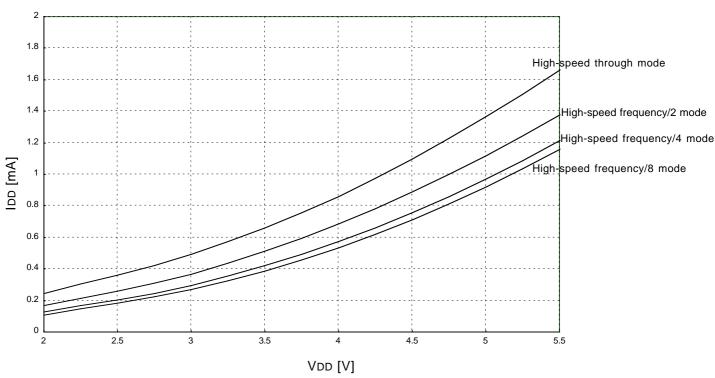

Standard characteristics are different between Mask ROM version and One Time PROM version, due to the difference in the manufacturing processes.

Even in the MCUs which have the same memory type, standard characteristics are different in each sample, too.

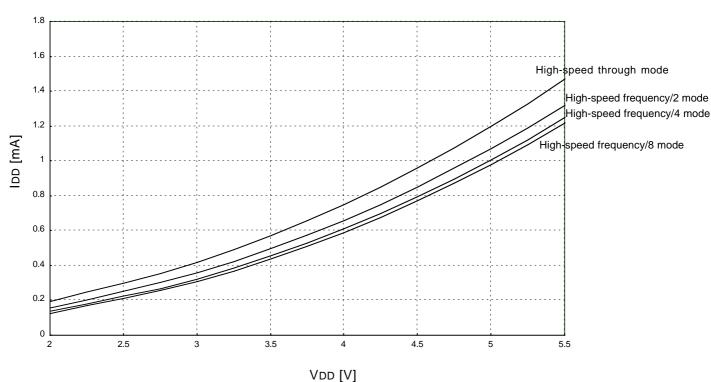
3.2.1 VDD-IDD characteristics


(1) High-speed mode (ceramic resonance): VDD-IDD

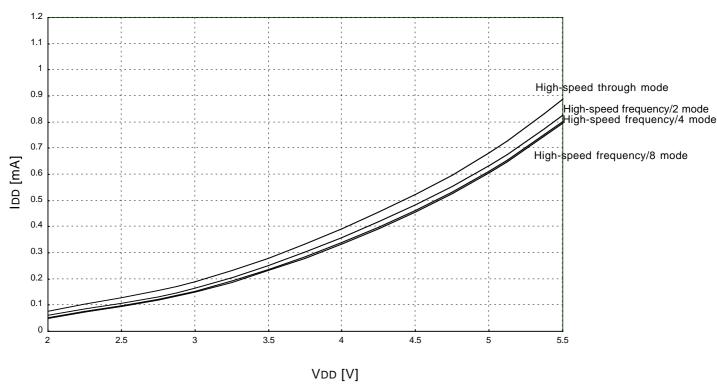
Measurement condition: $f(X_{IN}) = 6$ MHz, $f(X_{CIN}) = \text{stop}$, f(RING) = stop, Ta = 25 °C


(2) High-speed mode (ceramic resonance): VDD-IDD

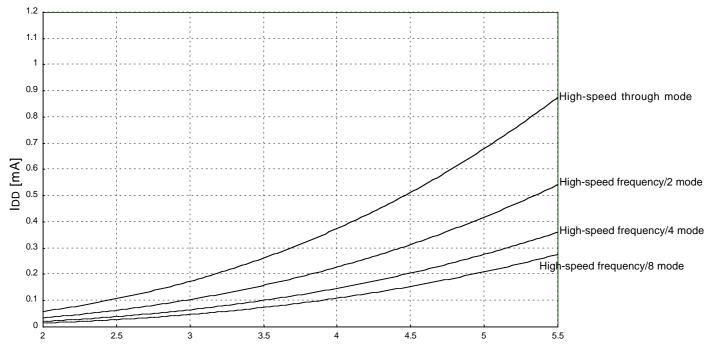
Measurement condition: $f(X_{IN}) = 4$ MHz, $f(X_{CIN}) = \text{stop}$, f(RING) = stop, Ta = 25 °C


(3) High-speed mode (ceramic resonance): VDD-IDD

Measurement condition: $f(X_{IN}) = 2$ MHz, $f(X_{CIN}) = \text{stop}$, f(RING) = stop, Ta = 25 °C

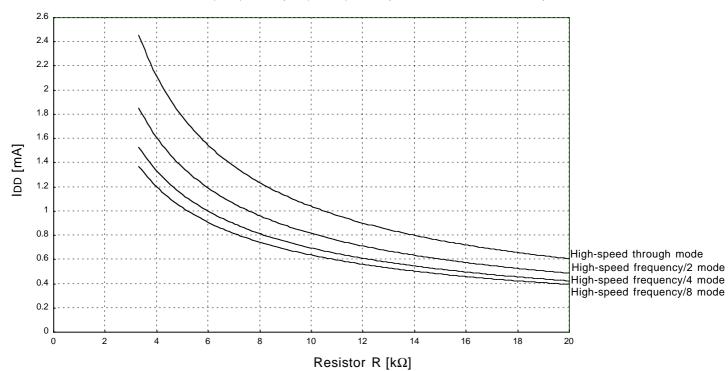

(4) High-speed mode (ceramic resonance): VDD-IDD

Measurement condition: $f(X_{IN}) = 1$ MHz, $f(X_{CIN}) = \text{stop}$, f(RING) = stop, Ta = 25 °C

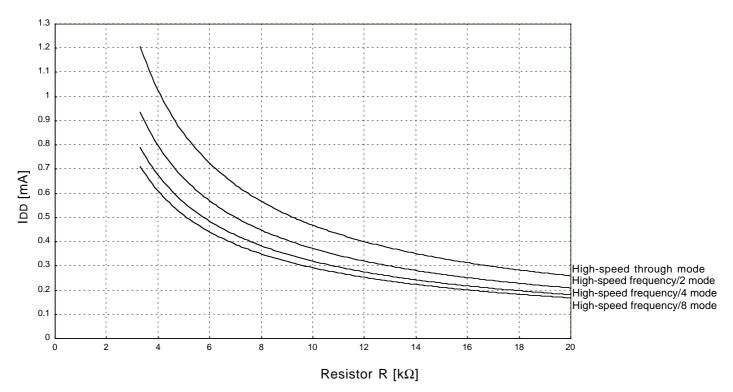

(5) High-speed mode (ceramic resonance): VDD-IDD

Measurement condition: $f(X_{IN}) = 400 \text{ kHz}$, $f(X_{CIN}) = \text{stop}$, f(RING) = stop, $Ta = 25 ^{\circ}C$

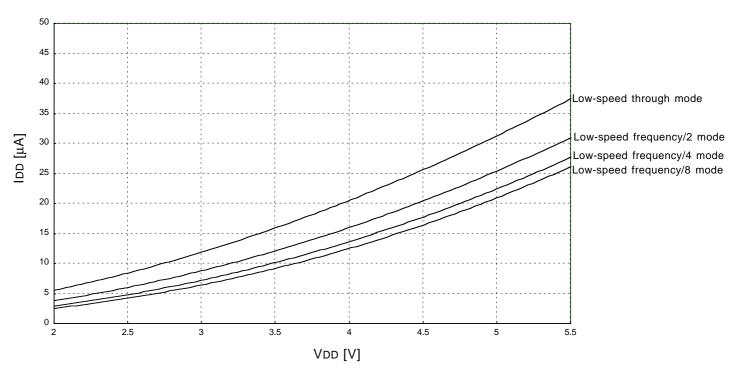
(6) High-speed mode (on-chip oscillator): VDD-IDD


Measurement condition: $f(X_{IN}) = \text{stop } f(X_{CIN}) = \text{stop}$, Ta = 25 °C

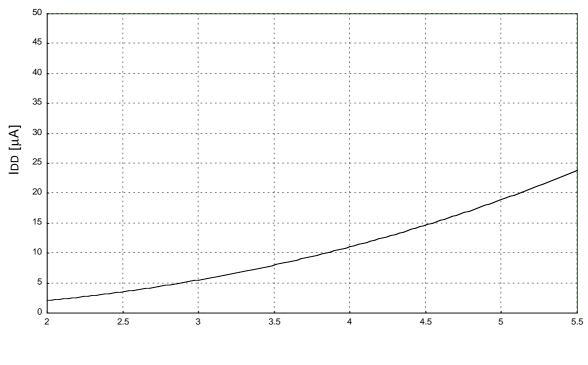
VDD [V]


(7) High-speed mode (RC oscillation): R-IDD

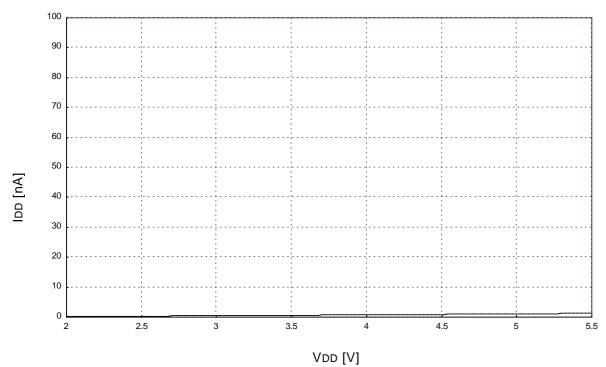
Measurement condition: $f(X_{CIN}) = \text{stop}$, f(RING) = stop, $V_{DD} = 5.0 \text{ V}$, C = 33 pF, $Ta = 25 ^{\circ}C$


(8) High-speed mode (RC oscillation): R-IDD

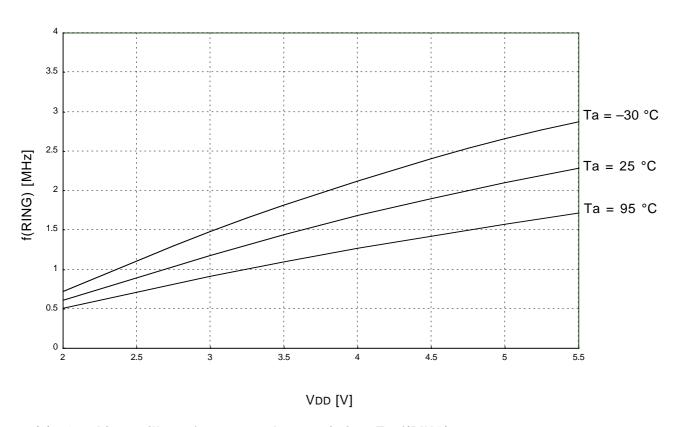
Measurement condition: $f(X_{CIN}) = stop$, f(RING) = stop, $V_{DD} = 3.0 \text{ V}$, C = 33 pF, Ta = 25 °C


(9) Low-speed mode (quartz-crystal oscillation): VDD-IDD

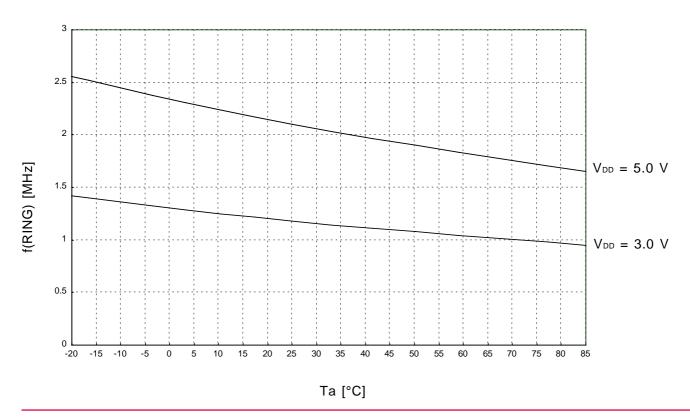
Measurement condition: $f(X_{IN}) = \text{stop}$, $f(X_{CIN}) = 32 \text{ kHz}$, f(RING) = stop, $Ta = 25 ^{\circ}C$


(10) Clock operating mode (POF instruction execution): VDD-IDD

Measurement condition: $f(X_{IN}) = \text{stop}$, $f(X_{CIN}) = 32 \text{ kHz}$, f(RING) = stop, $Ta = 25 ^{\circ}C$

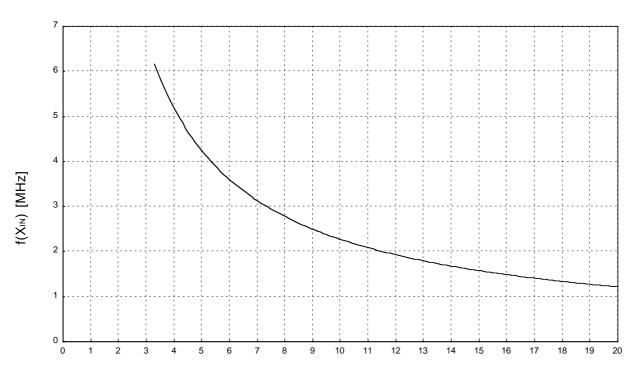

(11) RAM back-up mode (POF2 instruction execution): VDD-IDD

Measurement condition: $f(X_{IN}) = \text{stop}$, $f(X_{CIN}) = \text{stop}$, f(RING) = stop, $Ta = 25 \, ^{\circ}C$



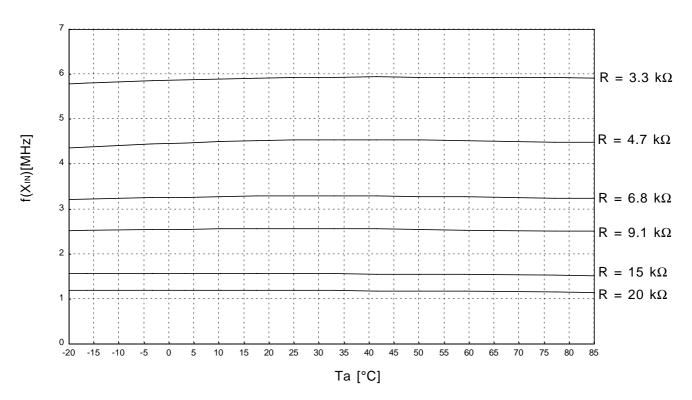
3.2.2 Frequency characteristics

(1) On-chip oscillator frequency characteristics: VDD-f(RING)

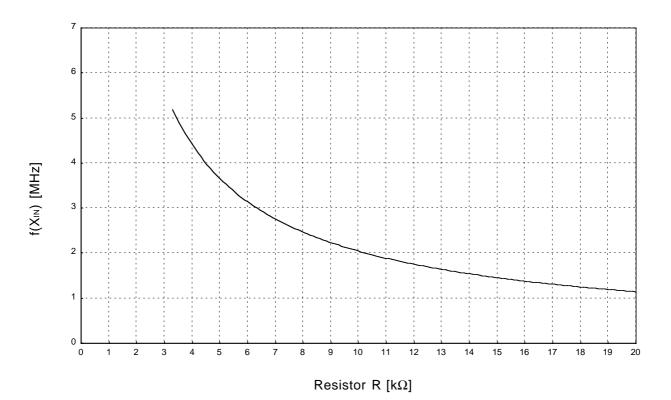


(2) On-chip oscillator frequency characteristics: Ta-f(RING)

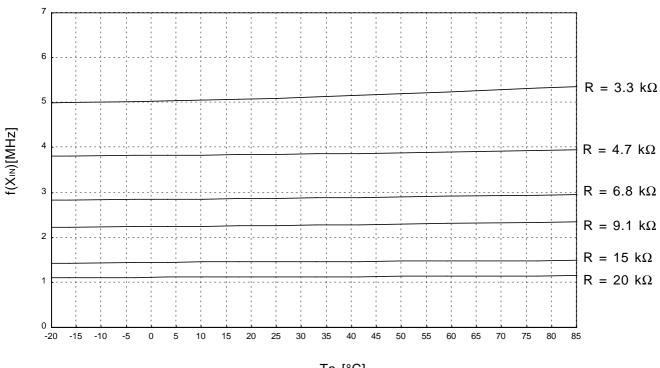
(3) RC oscillation frequency characteristics: R-f(X_{IN})


Measurement condition: VDD = 5.0 V, C = 33pF, Ta = 25 °C

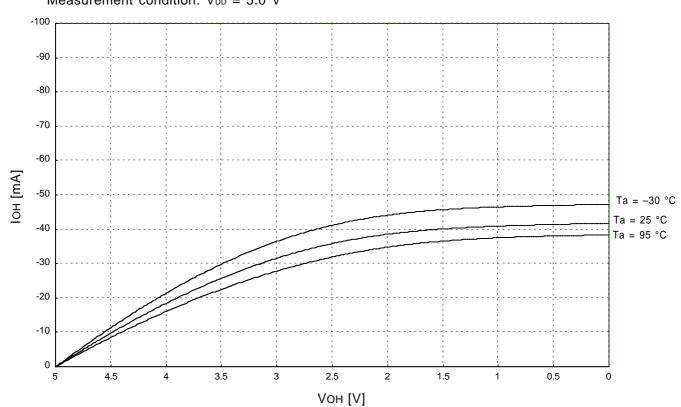
Resistor R [$k\Omega$]


(4) RC oscillation frequency characteristics (Ta-f(X_{IN}))

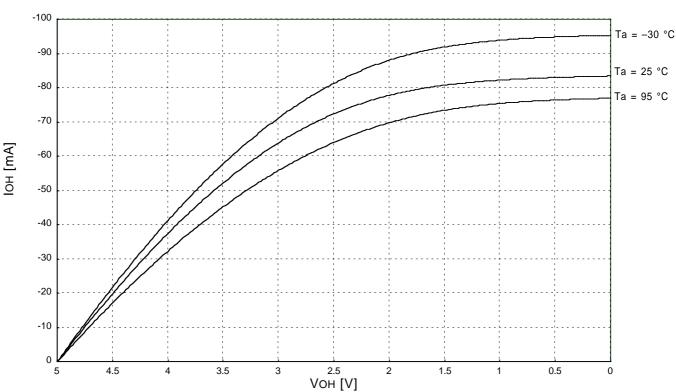
Measurement condition: $V_{DD} = 5.0 \text{ V}$, C = 33pF


(5) RC oscillation frequency characteristics: R-f(X_{IN})

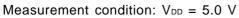
Measurement condition: VDD = 3.0 V, C = 33pF, Ta = 25 °C

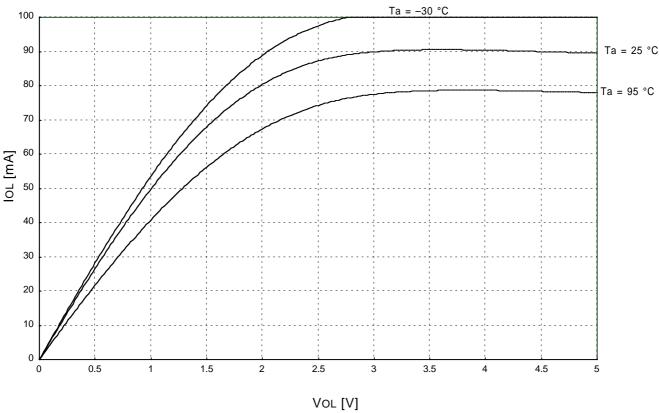

(6) RC oscillation frequency characteristics (Ta-f(X_{IN}))

Measurement condition: $V_{DD} = 3.0 \text{ V}$, C = 33pF

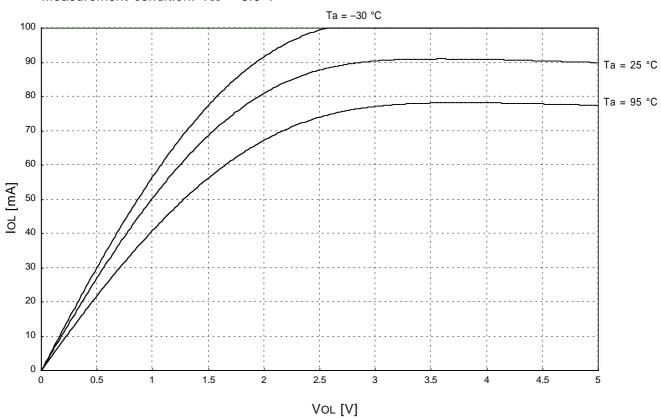

3.2.3 Port typical characteristics (VDD = 5.0 V)

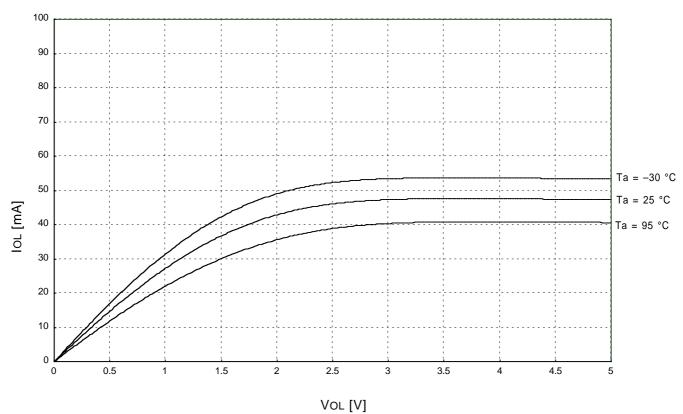
(1) Ports P0, P1, P4, D₀-D₆: V_{он}-I_{он} Measurement condition: V_{DD} = 5.0 V




(2) Ports D7, C: VoH-IOH

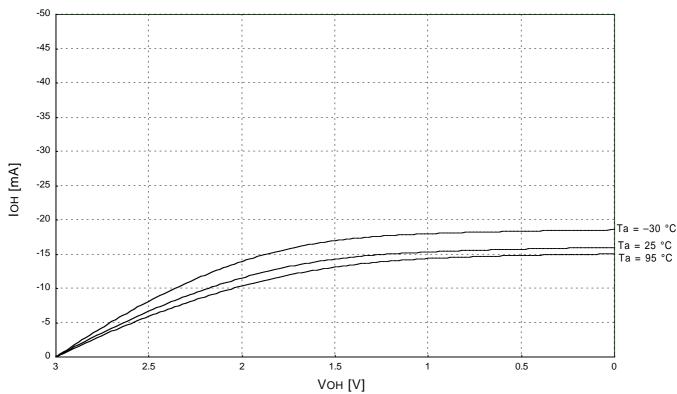
Measurement condition: V_{DD} = 5.0 V


(3) Ports P0, P1, P4: Vol-lol

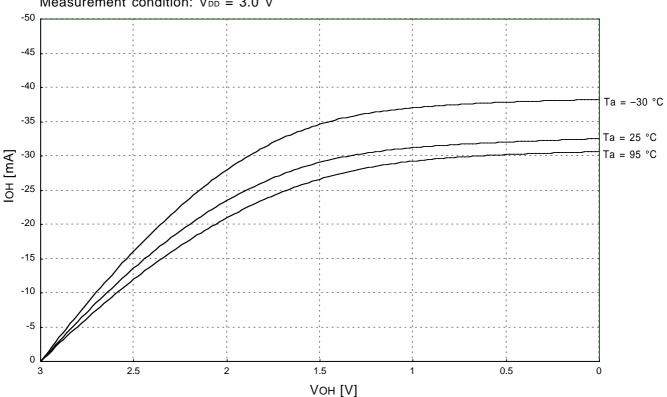

(4) Ports D0-D9, C: VoL-IoL

Measurement condition: VDD = 5.0 V

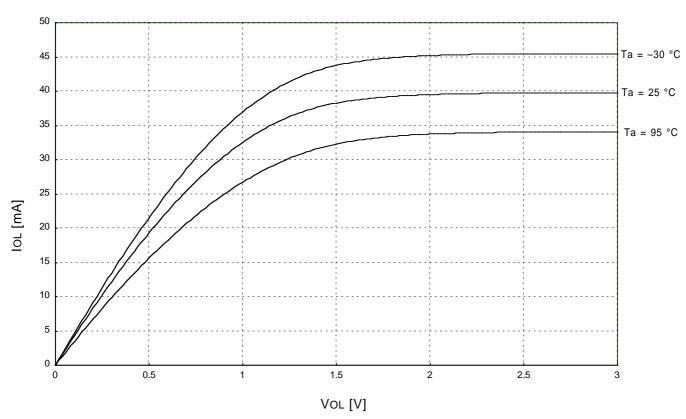
(5) Ports P2, P3, RESET: Vol-lol


Measurement condition: VDD = 5.0 V

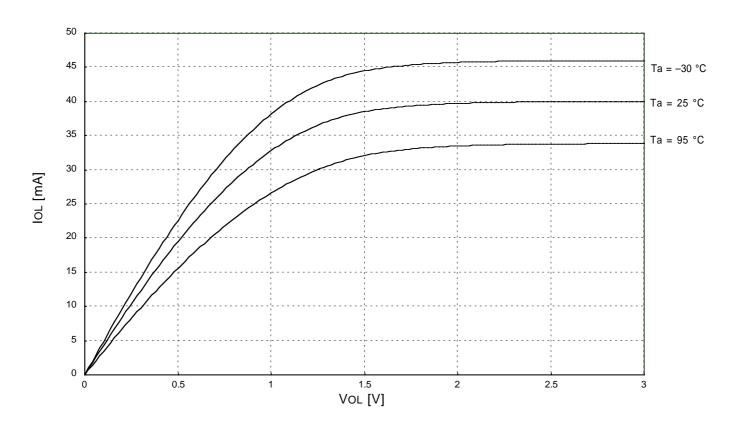
3.2.4 Port typical characteristics (VDD = 3.0 V)


(1) Ports P0, P1, P4, D0-D6: Vон-Iон

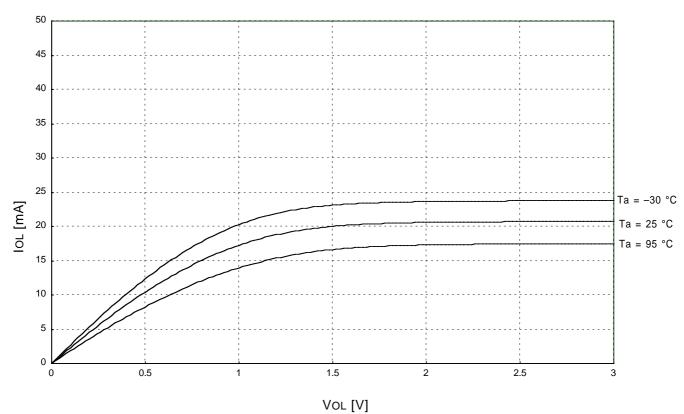
Measurement condition: $V_{DD} = 3.0 \text{ V}$


(2) Ports D7, C: VoH-IOH

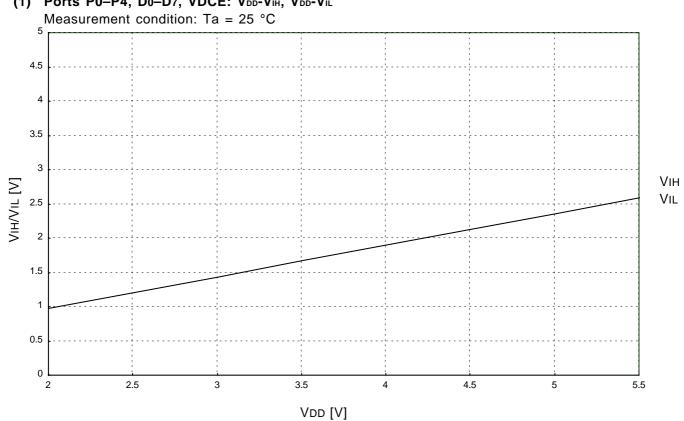
Measurement condition: $V_{DD} = 3.0 \text{ V}$


(3) Ports P0, P1, P4: Vol-lol

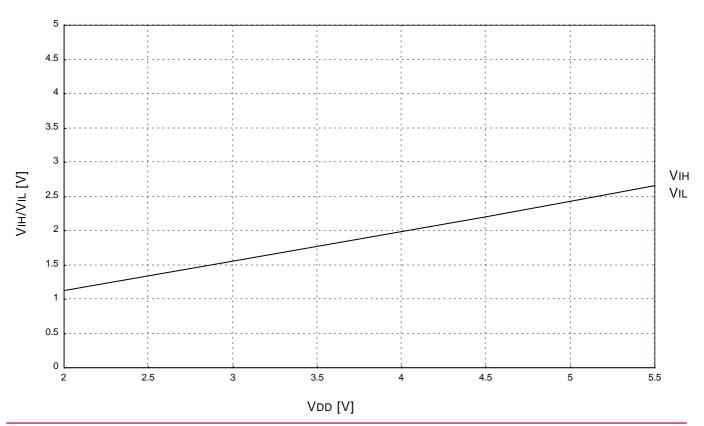
Measurement condition: VDD = 3.0 V


(4) Ports D0-D9, C: Vol-lol

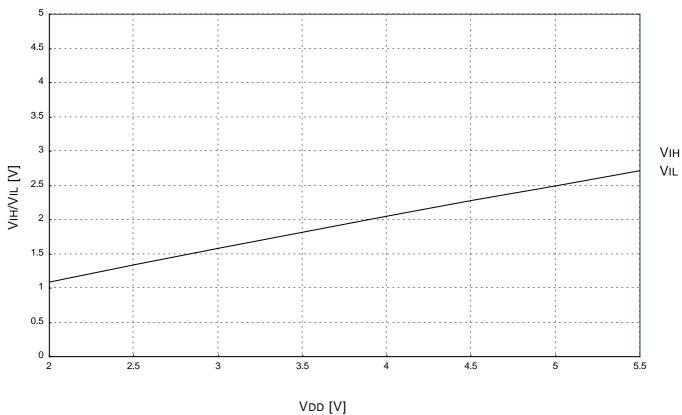
Measurement condition: VDD = 3.0 V


(5) Ports P2, P3, RESET: Vol-lol

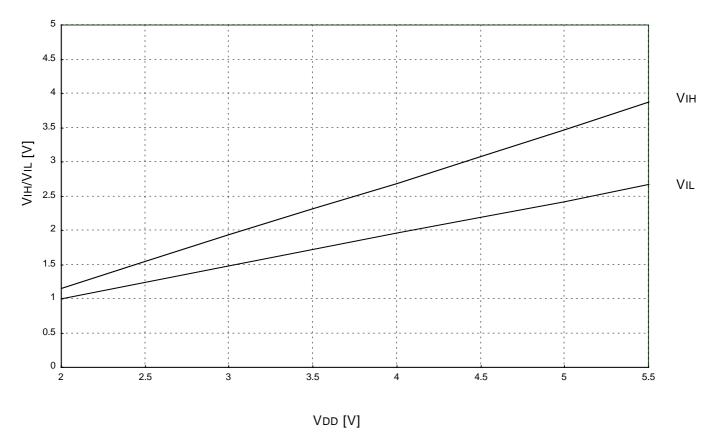
Measurement condition: $V_{DD} = 3.0 \text{ V}$


3.2.5 Input threshold characteristics

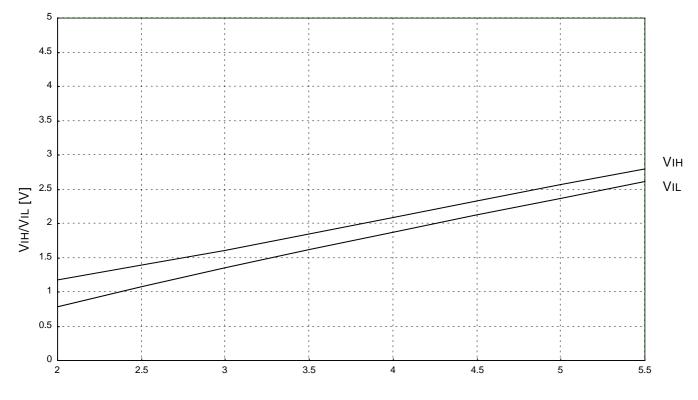
(1) Ports P0-P4, D0-D7, VDCE: VDD-VIH, VDD-VIL


(2) XIN: V_{DD} - V_{IH} , V_{DD} - V_{IL}

Measurement condition: Ta = 25 °C

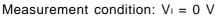

(3) XCIN: VDD-VIH, VDD-VIL

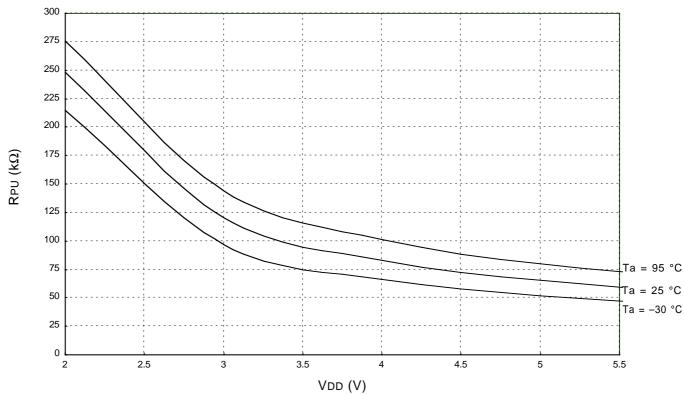
Measurement condition: Ta = 25 °C


(4) RESET: VDD-VIH, VDD-VIL

Measurement condition: Ta = 25 °C

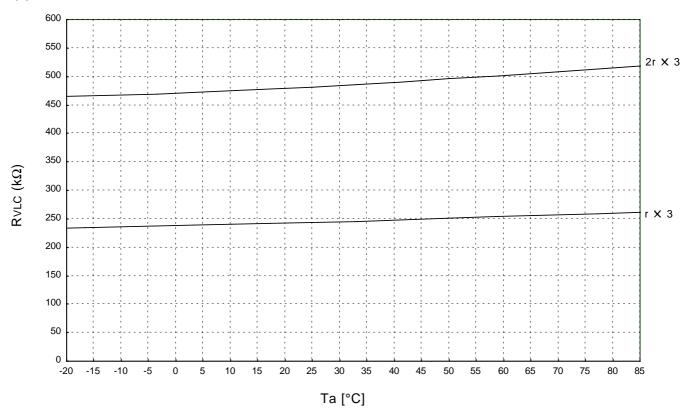
(5) SCK, SIN, CNTR0, CNTR1, INT0, INT1: V_{DD} - V_{IH} , V_{DD} - V_{IL}

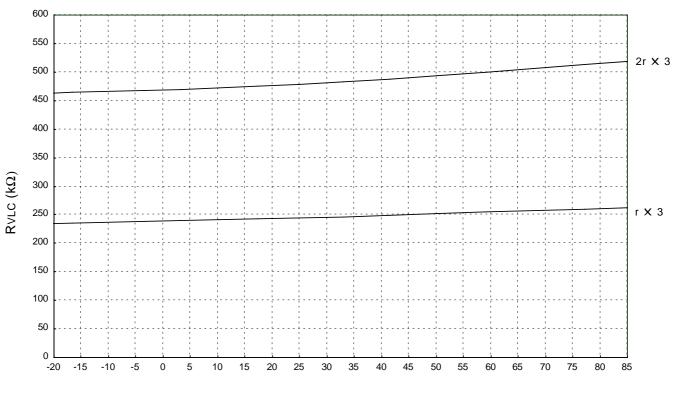

Measurement condition: Ta = 25 °C



VDD [V]

3.2.6 Pull-up resistor: VDD-RPU characteristics example


(1) Ports P0, P1, RESET: VDD-RPU



3.2.7 Internal resistor for LCD power: Ta-Rvlc

(1) $V_{DD} = 5.0 \text{ V: } Ta-R_{VLC}$

(2) $V_{DD} = 3.0 \text{ V: } Ta-R_{VLC}$

3.2.8 A/D converter typical characteristics

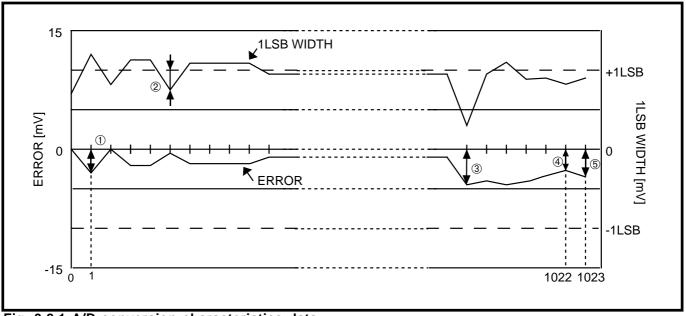
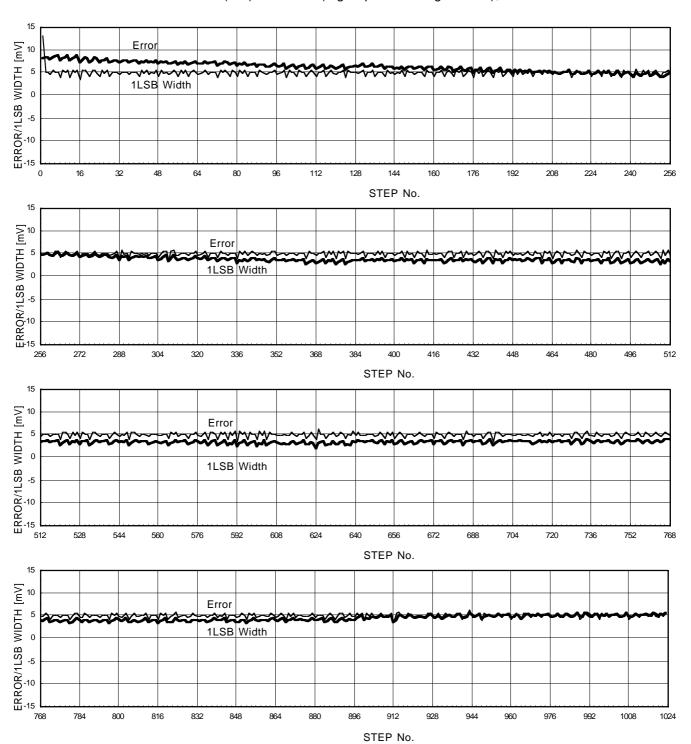
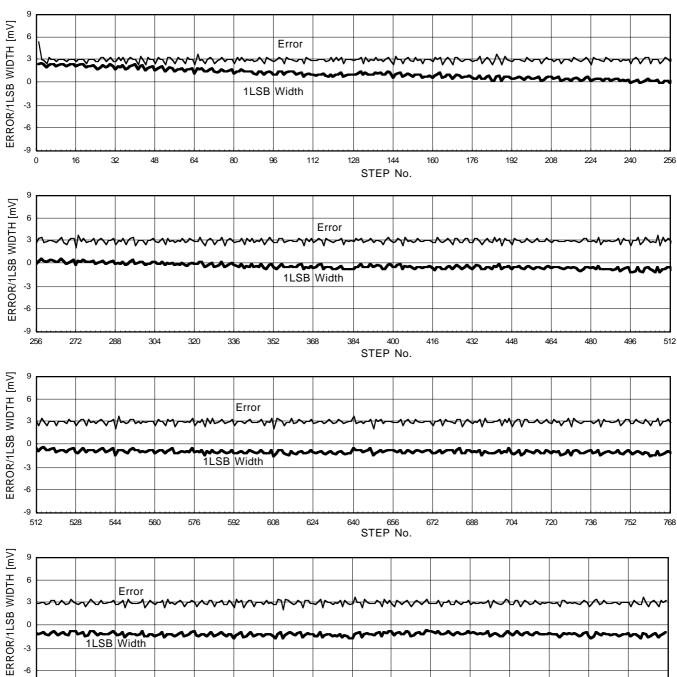


Fig. 3.2.1 A/D conversion characteristics data

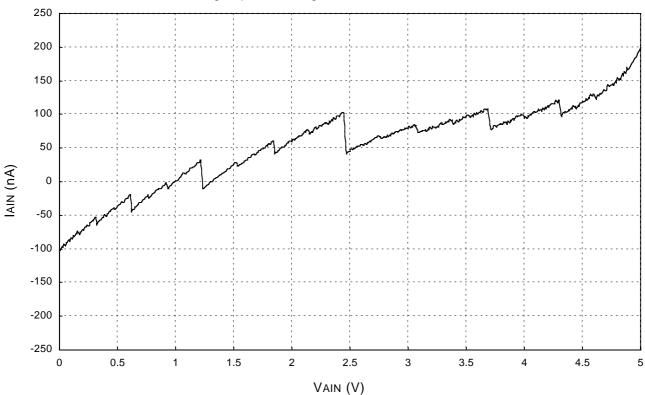

Figure 3.2.1 shows the A/D accuracy measurement data.

(1) Non-linearity error	This means a deviation from the ideal characteristics between V0 to V1022 of actual A/D conversion characteristics. In Figure 3.2.1, it is $(\text{@}-\text{①})/1\text{LSB}$.
(2) Differential non-linearity error	This means a deviation from the ideal characteristics between the input voltages V ₀ to V ₁₀₂₂ necessary to change the output data to "1." In Figure 3.2.1, this is 2/1LSB.
(3) Zero transition error	This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "0" to "1." In Figure 3.2.1, this is the value of \oplus .
(4) Full-scale transition error	This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "1022" to "1023." In Figure 3.2.1, this is the value of ⑤.
(5) Absolute accuracy	This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics. In Figure 3.2.1, this is the value of ERROR in each of $\textcircled{1}$, $\textcircled{3}$, $\textcircled{4}$ and $\textcircled{5}$.

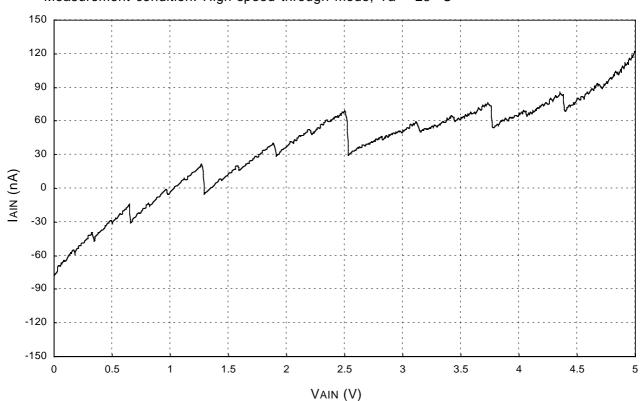

For the A/D converter characteristics, refer to the section 3.1 Electrical characteristics.

(1) VDD = 5.12 V

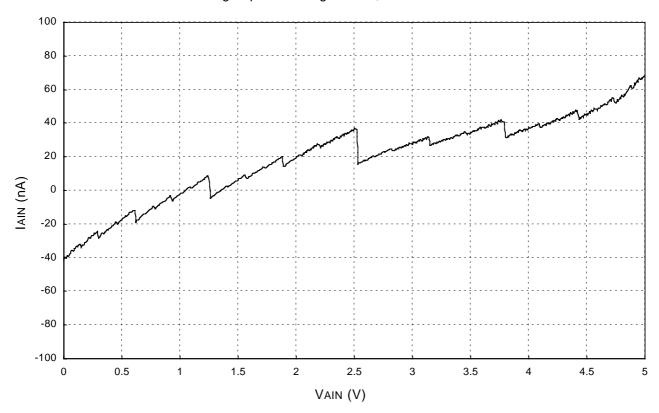
Measurement condition: f(XIN) = 4 MHz (high-speed through mode), Ta = 25 °C


(2) VDD = 3.072 VMeasurement condition: f(XIN) = 2 MHz (high-speed through mode), Ta = 25 °C

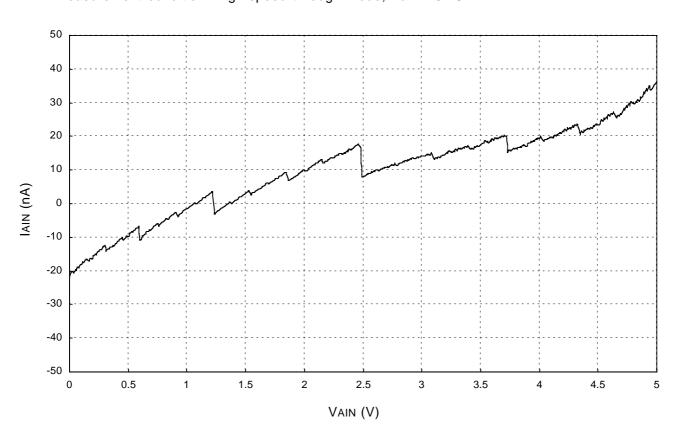
3.2.9 Analog input current characteristics example

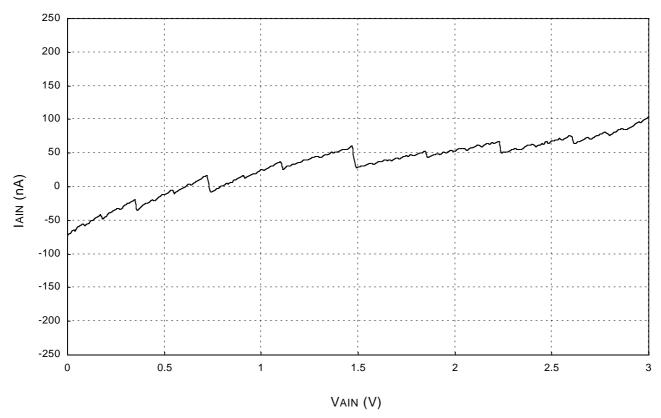

(1) $f(X_{IN}) = 6 \text{ MHz}, V_{DD} = 5.0 \text{ V}: V_{AIN}-I_{AIN}$

Measurement condition: High-speed through mode, Ta = 25 °C



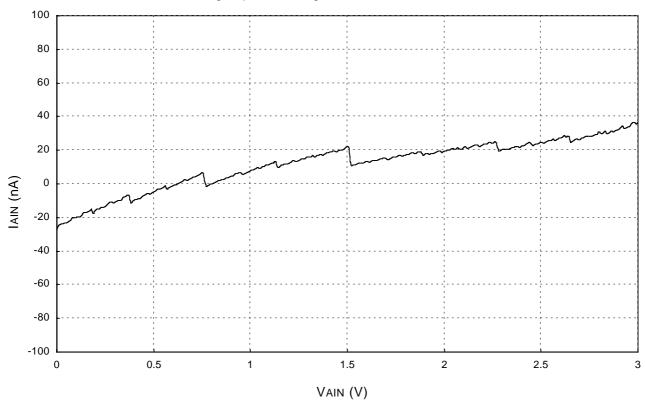
(2) f(XIN) = 4 MHz, $V_{DD} = 5.0 V$: $V_{AIN}-I_{AIN}$


Measurement condition: High-speed through mode, Ta = 25 °C


(3) $f(XIN) = 2 \text{ MHz}, V_{DD} = 5.0 \text{ V: } V_{AIN} - I_{AIN}$ Measurement condition: High-speed through mode, Ta = 25 °C

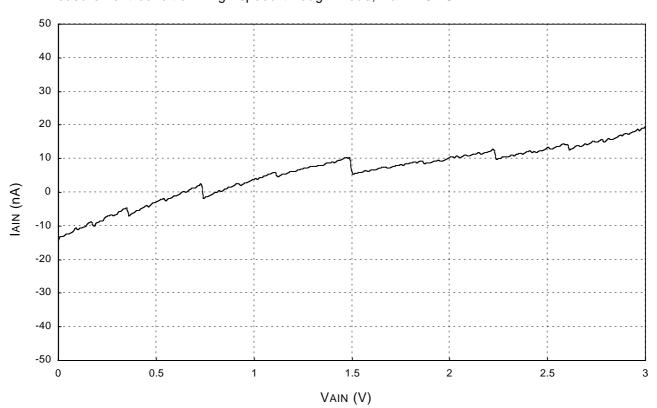
(4) f(Xin) = 1 MHz, Vdd = 5.0 V: Vain-lain Measurement condition: High-speed through mode, Ta = 25 °C

(5) f(XIN) = 6 MHz, V_{DD} = 3.0 V: V_{AIN}-I_{AIN} Measurement condition: High-speed through mode, Ta = 25 °C

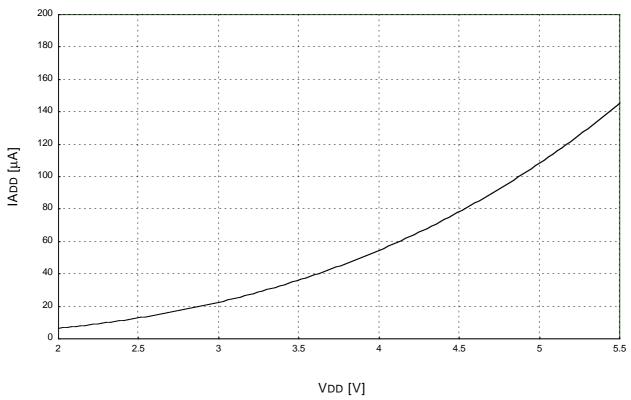


(6) $f(X_{IN}) = 4 \text{ MHz}, V_{DD} = 3.0 \text{ V}: V_{AIN}-I_{AIN}$

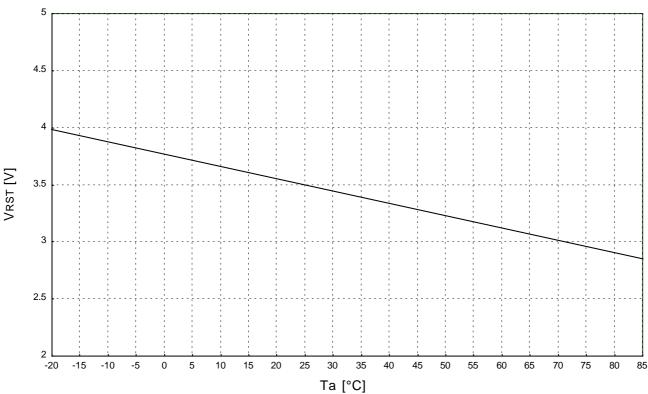
Measurement condition: High-speed through mode, Ta = 25 °C 150 120 90 60 30 0 IAIN (nA) -30 -60 -90 -120 -150 0.5 1.5 2.5 3 0 VAIN (V)


(7) f(XIN) = 2 MHz, $V_{DD} = 3.0 V$: $V_{AIN}-I_{AIN}$

Measurement condition: High-speed through mode, Ta = 25 °C


(8) $f(X_{IN}) = 1 MHz$, $V_{DD} = 3.0 V$: $V_{AIN}-I_{AIN}$

Measurement condition: High-speed through mode, Ta = 25 °C

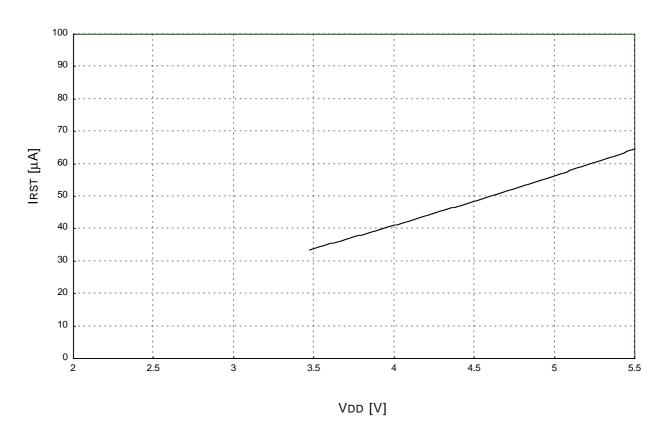

3.2.10 A/D converter operation current (VDD-IADD) characteristics

Measurement condition: Ta = 25 °C



3.2.11 Voltage drop detection circuit characteristics

(1) Detection voltage (Mask ROM version): Ta-VRST



Ta [°C]

(3) Operation current: V_{DD}-I_{RST}

Measurement condition: Ta = 25 °C

3.3 List of precautions

3.3.1 Program counter

Make sure that the PC_H does not specify after the last page of the built-in ROM.

3.3.2 Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

3.3.3 Notes on I/O port

(1) Note when ports P0, P1, P4 and D₀-D₇ are used as an input port

In the following conditions, the pin state of port P0, P1, P4 or D_0 – D_7 is transferred as input data to register A when the corresponding input instruction is executed.

- Set bit i (i=0, 1, 2 or 3) of register FR0, FR1, FR2 or FR3 to "0" according to the port to be used.
- Set the output latch of the specified port to "1" with the corresponding output instruction.

If bit i of FR0, FR1, FR2 or FR3 is "0" and the output latch is set to "0," "0" is output to specified port.

If bit i of FR0, FR1, FR2 or FR3 is "1", the output latch value is output to specified port.

(2) Note when ports P2 and P3 are used as an input port

In the following condition, the pin state of port P2 or P3 is transferred as input data to register A when the IAP2 or IAP3 instruction is executed.

• Set the output latch of specified port P2i or P3i (i=0, 1, 2 or 3) to "1" with the **OP2A** or **OP3A** instruction.

If the output latch is "0", "0" is output to specified port P2 or P3.

(3) Noise and latch-up prevention

Connect an approximate 0.1 μ F bypass capacitor directly to the V_{SS} line and the V_{DD} line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.

The CNVss pin is also used as the V_{PP} pin (programming voltage = 12.5 V) at the One Time PROM version.

Connect the CNVss/VPP pin to Vss through an approximate 5 k Ω resistor which is connected to the CNVss/VPP pin at the shortest distance.

(4) Multifunction

- Be careful that the output of ports D₈ and D₉ can be used even when INT0 and INT1 pins are selected.
- Be careful that the input of ports D₄-D6 can be used even when SIN, SOUT and SCK pins are selected.
- Be careful that the input/output of port D₇ can be used even when input of CNTR0 pin is selected.
- Be careful that the input of port D₇ can be used even when output of CNTR0 pin is selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin is selected.

(5) Connection of unused pins

Table 3.3.1 shows the connections of unused pins.

(6) SD, RD, SZD instructions

When the **SD** and **RD** instructions are used, do not set "1010₂" or more to register Y. When the **SZD** instructions is used, do not set "1000₂" or more to register Y.

(7) Port D₈/INT0 pin

When the power down mode is used by clearing the bit 3 of register I1 to "0" and setting the input of INTO pin to be disabled, be careful about the following note.

• When the input of INTO pin is disabled (register I1₃ = "0"), clear bit 0 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

(8) Port D₉/INT1 pin

When the power down mode is used by clearing the bit 3 of register I2 to "0" and setting the input of INT1 pin to be disabled, be careful about the following note.

• When the input of INT1 pin is disabled (register $I2_3 = "0"$), clear bit 2 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

Table 3.3.1 Connections of unused pins

Pin	Connection	Usage condition	
Xin	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.)	(Note 1)
		Sub-clock input is selected for system clock (MR ₀ =1).	(Note 2)
Хоит	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.)	(Note 1)
		RC oscillator is selected (CRCK instruction is executed)	
		External clock input is selected for main clock (CMCK instruction is executed).	(Note 3)
		Sub-clock input is selected for system clock (MR ₀ =1).	(Note 2)
Xcin	Connect to Vss.	Sub-clock is not used.	
Хсоит	Open.	Sub-clock is not used.	
D ₀ –D ₃	Open.		
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)
D4/SIN	Open.	S _{IN} pin is not selected.	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	
D ₅ /S _О UТ	Open.		
	Connect to Vss.	N-channel open-drain is selected for the output structure.	
D 6/ S ск	Open.	Sck pin is not selected.	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	
D ₇ /CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	
D ₈ /INT0	Open.	"0" is set to output latch.	
	Connect to Vss.		
D ₉ /INT1	Open.	"0" is set to output latch.	
	Connect to Vss.		
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.	
P0 ₀ –P0 ₃	Open.	The key-on wakeup function is not selected.	(Note 4)
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)
		The pull-up function is not selected.	(Note 4)
		The key-on wakeup function is not selected.	(Note 4)
P1 ₀ –P1 ₃	Open.	The key-on wakeup function is not selected.	(Note 4)
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)
		The pull-up function is not selected.	(Note 4)
		The key-on wakeup function is not selected.	(Note 4)
P2 ₀ /A _{IN0} -	Open.		,
P2 ₃ /A _{IN3}	Connect to Vss.		
P3 ₀ /A _{IN4} -	Open.		
P3 ₃ /A _{IN7}	Connect to Vss.		
P40-P43	Open.		
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)
COM ₀ –COM ₃	Open.		/
VLC3/SEG0	Open.	SEG ₀ pin is selected.	
V _{LC2} /SEG ₁	Open.	SEG ₁ pin is selected.	
V _{LC1} /SEG ₂	Open.	SEG ₂ pin is selected.	
SEG3-SEG19	Open.	· ·	

- **Notes 1:** When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.
 - 2: When sub-clock (X_{CIN}) input is selected (MR₀ = 1) for the system clock by setting "1" to bit 1 (MR₁) of clock control register MR, main clock is stopped.
 - **3:** Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
 - **4:** Be sure to select the output structure of ports D_0-D_3 and $P4_0-P4_3$ and the pull-up function and keyon wakeup function of $P0_0-P0_3$ and $P1_0-P1_3$ with every one port. Set the corresponding bits of registers for each port.
 - **5:** Be sure to select the output structure of ports $P0_0-P0_3$ and $P1_0-P1_3$ with every two ports. If only one of the two pins is used, leave another one open.

(Note when connecting unused pins to Vss or VDD)

• Connect the unused pins to Vss or VDD using the thickest wire at the shortest distance against noise.

3.3.4 Notes on interrupt

(1) Setting of INT0 interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of D₈/INT0 pin, the external interrupt request flag (EXF0) may be set to "1" when the bit 2 of register I1 is changed.

(2) Setting of INTO pin input control

Set a value to the bit 3 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of D₈/INT0 pin, the external interrupt request flag (EXF0) may be set to "1" when the bit 3 of register I1 is changed.

(3) Setting of INT1 interrupt valid waveform

Set a value to the bit 2 of register I2, and execute the **SNZ1** instruction to clear the EXF1 flag to "0" after executing at least one instruction.

Depending on the input state of D₉/INT1 pin, the external interrupt request flag (EXF1) may be set to "1" when the bit 2 of register I2 is changed.

(4) Setting of INT1 pin input control

Set a value to the bit 3 of register I2, and execute the **SNZ1** instruction to clear the EXF1 flag to "0" after executing at least one instruction.

Depending on the input state of $D_9/INT1$ pin, the external interrupt request flag (EXF1) may be set to "1" when the bit 3 of register I2 is changed.

(5) Multiple interrupts

Multiple interrupts cannot be used in the 4524 Group.

(6) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write **EI** and **RTI** instructions continuously.

(7) D₈/INT0 pin

When the external interrupt input pin INT0 is used, set the bit 3 of register I1 to "1".

Even in this case, port D₈ output function is valid.

Also, the EXF0 flag is set to "1" when bit 3 of register I1 is set to "1" by input of a valid waveform (valid waveform causing external 0 interrupt) even if it is used as an output port D_8 .

(8) D₉/INT1 pin

When the external interrupt input pin INT1 is used, set the bit 3 of register I2 to "1".

Even in this case, port D₉ output function is valid.

Also, the EXF1 flag is set to "1" when bit 3 of register I2 is set to "1" by input of a valid waveform (valid waveform causing external 1 interrupt) even if it is used as an output port D_9 .

(9) POF instruction, POF2 instruction

When the **POF** or **POF2** instruction is executed continuously after the **EPOF** instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the **POF** or **POF2** instruction. Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF** or **POF2** instruction continuously.

3.3.5 Notes on timer

(1) Prescaler

Stop counting and then execute the **TABPS** instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

(2) Count source

Stop timer 1, 2, 3, 4 or LC counting to change its count source.

(3) Reading the count values

Stop timer 1, 2, 3 or 4 counting and then execute the **TAB1**, **TAB2**, **TAB3** or **TAB4** instruction to read its data.

(4) Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the T1AB, T2AB, T3AB, T4AB or TLCA instruction to write its data.

(5) Writing to reload register R1, reload register R3 and reload register R4H

When writing data to reload register R1 while timer 1 is operating respectively, avoid a timing when timer 1 underflows.

When writing data to reload register R3 while timer 3 is operating respectively, avoid a timing when timer 3 underflows.

When writing data to reload register R4H while timer 4 is operating respectively, avoid a timing when timer 4 underflows.

(6) Timer 4

- Avoid a timing when timer 4 underflows to stop timer 4.
- When "H" interval extension function of the PWM signal is set to be "valid", set "01₁₆" or more to reload register R4H.

(7) Timer 5

Stop timer 5 counting to change its count source.

(8) Timer input/output pin

• Set the port C output latch to "0" to output the PWM signal from C/CNTR1 pin.

(9) Watchdog timer

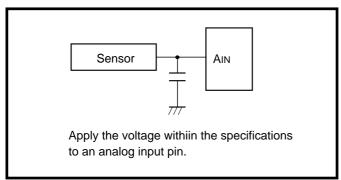
- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, stop the watchdog timer function and execute the **DWDT** instruction, the **WRST** instruction continuously, and clear the WEF flag to "0".
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function and execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the power down state.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the **WRST** instruction before system enters into the power down state.

(10) Pulse width input to CNTR0 pin, CNTR1 pin

Refer to section "3.1 Electrical characteristics" for rating value of pulse width input to CNTR0 pin, CNTR1 pin.

3.3.6 Notes on A/D conversion

(1) Note when the A/D conversion starts again


When the A/D conversion starts again with the ADST instruction during A/D conversion, the previous input data is invalidated and the A/D conversion starts again.

(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins.

Figure 3.3.1 shows the analog input external circuit example-1.

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 3.3.2. In addition, test the application products sufficiently.

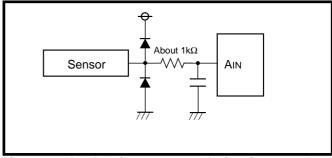


Fig. 3.3.2 Analog input external circuit example-2

Fig. 3.3.1 Analog input external circuit example-1

(3) Notes for the use of A/D conversion 2

Do not change the operating mode of the A/D converter by bit 3 of register Q1 during A/D conversion (A/D conversion mode and comparator mode).

(4) Notes for the use of A/D conversion 3

When the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode (refer to Figure 3.3.3①).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag to "0".

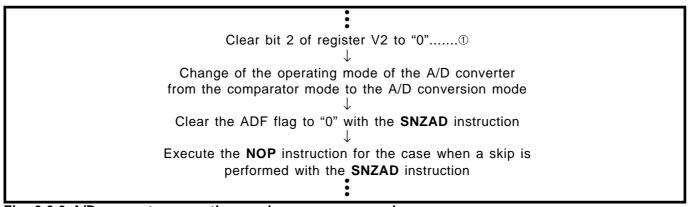


Fig. 3.3.3 A/D converter operating mode program example

(5) A/D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains "0," not set to "1."

In this case, the A/D interrupt does not occur even when the usage of the A/D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.

(6) Analog input pins

When P20/AIN0-P23/AIN3, P30/AIN4-P33/AIN7 are set to pins for analog input, they cannot be used as I/O ports P2 and P3.

(7) TALA instruction

When the **TALA** instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, and simultaneously, the low-order 2 bits of register A is "0."

(8) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/D converter are different from those when not using A/D converter.

Table 3.3.2 shows the recommended operating conditions when using A/D converter.

Table 3.3.2 Recommended operating conditions (when using A/D converter)

Parameter	Condition	Limits			Unit
raiailletei		Min.	Тур.	Max.	Ullil
System clock frequency	VDD = 4.0 to 5.5 V (through mode)	0.1		6.0	MHz
(at ceramic resonance)	VDD = 2.7 to 5.5 V (through mode)	0.1		4.4	
(Note 2)	VDD = 2.7 to 5.5 V (Frequency/2 mode)	0.1		3.0	
	VDD = 2.7 to 5.5 V (Frequency/4 mode)	0.1		1.5	
	VDD = 2.7 to 5.5 V (Frequency/8 mode)	0.1		0.7	
System clock frequency	VDD = 2.7 to 5.5 V (through mode)	0.1		4.4	MHz
(at RC oscillation)	VDD = 2.7 to 5.5 V (Frequency/2 mode)	0.1		2.2	
(Note 2)	VDD = 2.7 to 5.5 V (Frequency/4 mode)	0.1		1.1	
	VDD = 2.7 to 5.5 V (Frequency/8 mode)	0.1		0.5	
System clock frequency	VDD = 4.0 to 5.5 V (through mode)	0.1		4.8	MHz
(ceramic resonance	VDD = 2.7 to 5.5 V (through mode)	0.1		3.2	
selected, at external	VDD = 2.7 to 5.5 V (Frequency/2 mode)	0.1		2.4	
clock input)	VDD = 2.7 to 5.5 V (Frequency/4 mode)	0.1		1.2]
	VDD = 2.7 to 5.5 V (Frequency/8 mode)	0.1		0.6	

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.3.7 Notes on serial I/O

(1) Note when an external clock is used as a synchronous clock:

- An external clock is selected as the synchronous clock, the clock is not controlled internally.
- Serial transmit/receive is continued as long as an external clock is input. If an external clock is input 9 times or more and serial transmit/receive is continued, the receive data is transferred directly as transmit data, so that be sure to control the clock externally.

Note also that the SIOF flag is set to "1" when a clock is counted 8 times.

- Be sure to set the initial input level on the external clock pin to "H" level.
- Refer to section "3.1 Electrical characteristics" when using serial I/O with an external clock.

3.3.8 Notes on LCD function

(1) Timer LC count source

Stop timer LC counting to change timer LC count source.

(2) Writing to timer LC

Stop timer LC counting and then execute the data write instruction (TLCA).

(3) V_{LC3}/SEG₀ pin

When the V_{LC3} pin function is selected, apply voltage of $V_{LC3} < V_{DD}$ to the pin externally.

(4) VLC2/SEG1 pin, VLC1/SEG2 pin

• When the V_{LC2} pin and V_{LC1} pin functions are selected and the internal dividing resistor is not used; Apply voltage of 0<V_{LC1}<V_{LC2}<V_{LC3} to these pins.

Short the V_{LC2} pin and V_{LC1} pin at 1/2 bias.

• When SEG₁ and SEG₂ pin function is selected; Use the internal dividing resistor.

(5) LCD power circuit

Select the LCD power circuit suitable for LCD panel and evaluate the display state on the actual system.

3.3.9 Notes on reset

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the minimum rating value of the recommended operating conditions must be set to 100 μ s or less. If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum rating value of the recommended operating conditions.

3.3.10 Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and re-goes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 3.3.4);

- \bullet supply voltage does not fall below to $V_{\mbox{\scriptsize RST}},$ and
- its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to V_{RST} and re-goes up after that.

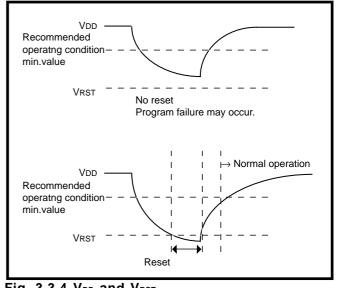


Fig. 3.3.4 VDD and VRST

3.3.11 Notes on power down

(1) POF instruction, POF2 instruction

Execute the **POF** or **POF2** instruction immediately after executing the **EPOF** instruction to enter the power down state.

Note that system cannot enter the power down state when executing only the **POF** or **POF2** instruction. Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF** or **POF2** instruction.

(2) Key-on wakeup function

After checking none of the return condition for ports (P0, P1, INT0 and INT1 specified with register K0–K2) with valid key-on wakeup function is satisfied, execute the **POF** or **POF2** instruction. If at least one of return condition for ports with valid key-on wakeup function is satisfied, system returns from the power downn state immediately after the **POF** or **POF2** instruction is executed.

(3) Timer 5 interrupt request flag

When POF or POF2 instruction is executed while T5F is "1", system returns from the power down state immediately.

(4) Return from power down mode

After system returns from power down mode, set the undefined registers and flags.

The initial value of the following registers are undefined at power down. After system is returned from power down mode, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(5) Watchdog timer

- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function with the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the power down.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the **WRST** instruction before system goes into the power down state.

(6) Port D₈/INT0 pin

When the power down mode is used by clearing the bit 3 of register I1 to "0" and setting the input of INTO pin to be disabled, be careful about the following note.

• When the input of INTO pin is disabled (register I1₃ = "0"), clear bit 0 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

(7) Port D₉/INT1 pin

When the power down mode is used by clearing the bit 3 of register I2 to "0" and setting the input of INT1 pin to be disabled, be careful about the following note.

• When the input of INT1 pin is disabled (register $I2_3 = "0"$), clear bit 2 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.

(8) External clock

When the external clock signal is used as the main clock $(f(X_{IN}))$, note that the power down mode (**POF** or **POF2** instruction) cannot be used.

3.3.12 Notes on oscillation circuit

(1) Clock control

Execute the **CMCK** or the **CRCK** instruction to select the main clock $(f(X_{IN}))$ in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Another oscillation circuits and the on-chip oscillator stop.

(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that margin of frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the margin of frequencies of the on-chip oscillator clock.

(3) External clock

When the external clock signal is used as the main clock $(f(X_{IN}))$, note that the power down mode (**POF** or **POF2** instructions) cannot be used.

(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

3.3.13 Electric characteristic differences between Mask ROM and One Time PROM version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

3.3.14 Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

3.4 Notes on noise 4524 Group

3.4 Notes on noise

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

3.4.1 Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer.

The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

(1) Package

Select the smallest possible package to make the total wiring length short.

Reason

The wiring length depends on a microcomputer package. Use of a small package, for example QFP and not DIP, makes the total wiring length short to reduce influence of noise.

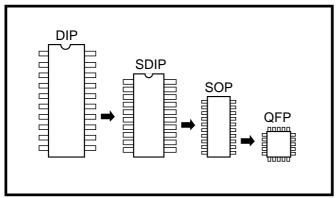


Fig. 3.4.1 Selection of packages

(2) Wiring for RESET input pin

Make the length of wiring which is connected to the RESET input pin as short as possible. Especially, connect a capacitor across the RESET input pin and the Vss pin with the shortest possible wiring.

Reason

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the RESET pin is required. If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.

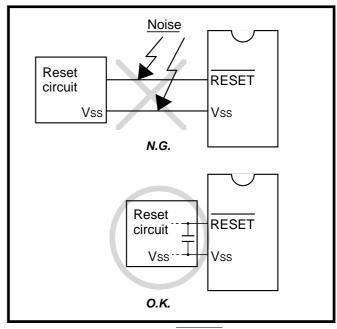


Fig. 3.4.2 Wiring for the RESET input pin

(3) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

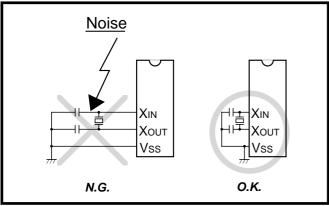


Fig. 3.4.3 Wiring for clock I/O pins

Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

(4) Wiring to CNVss pin

Connect the CNVss pin to the Vss pin with the shortest possible wiring.

Reason

The operation mode of a microcomputer is influenced by a potential at the CNVss pin. If a potential difference is caused by the noise between pins CNVss and Vss, the operation mode may become unstable. This may cause a microcomputer malfunction or a program runaway.

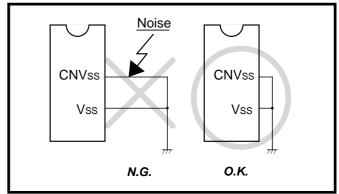


Fig. 3.4.4 Wiring for CNVss pin

RENESAS

3.4 Notes on noise 4524 Group

(5) Wiring to VPP pin of built-in PROM version In the built-in PROM version of the 4524 Group, the CNVss pin is also used as the built-in PROM power supply input pin VPP.

When the VPP pin is also used as the **CNVss pin**

Connect an approximately 5 k Ω resistor to the VPP pin the shortest possible in series and also to the Vss pin. When not connecting the resistor, make the length of wiring between the VPP pin and the VSS pin the shortest possible (refer to Figure 3.4.5)

Note: Even when a circuit which included an approximately 5 k Ω resistor is used in the Mask ROM version, the microcomputer operates correctly.

Reason

The VPP pin of the built-in PROM version is the power source input pin for the builtin PROM. When programming in the builtin PROM, the impedance of the VPP pin is low to allow the electric current for writing flow into the PROM. Because of this, noise can enter easily. If noise enters the VPP pin, abnormal instruction codes or data are read from the built-in PROM, which may cause a program runaway.

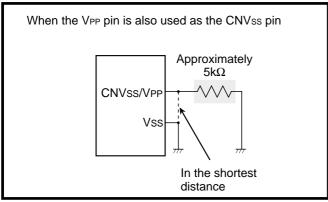


Fig. 3.4.5 Wiring for the VPP pin of the built-in **PROM** version

3.4.2 Connection of bypass capacitor across Vss line and VDD line

Connect an approximately 0.1 μ F bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

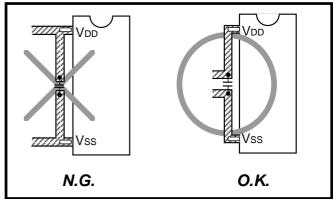


Fig. 3.4.6 Bypass capacitor across the Vss line and the VDD line

3.4.3 Wiring to analog input pins

- Connect an approximately 100 Ω to 1 k Ω resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

Reason

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

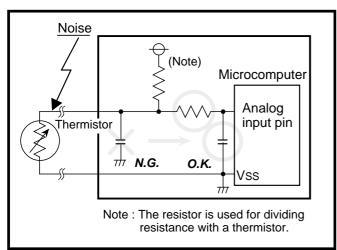


Fig. 3.4.7 Analog signal line and a resistor and a capacitor

3.4.4 Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines

Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

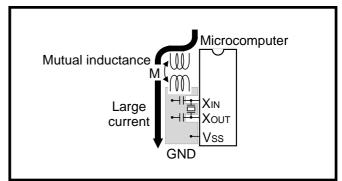


Fig. 3.4.8 Wiring for a large current signal line

(2) Installing oscillator away from signal lines where potential levels change frequently Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

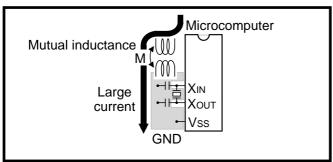


Fig. 3.4.9 Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

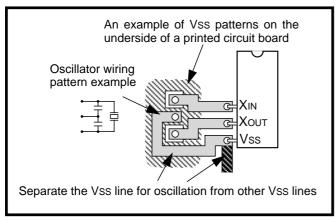


Fig. 3.4.10 Vss pattern on the underside of an oscillator

3.4.5 Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its output latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

3.4.6 Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine. This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

- <The main routine>
- Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

N+1≥ (Counts of interrupt processing executed in each main routine)

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

- <The interrupt processing routine>
- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

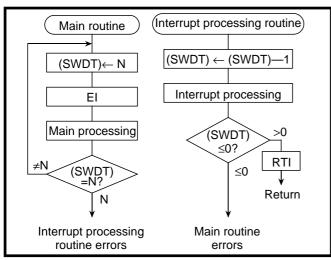
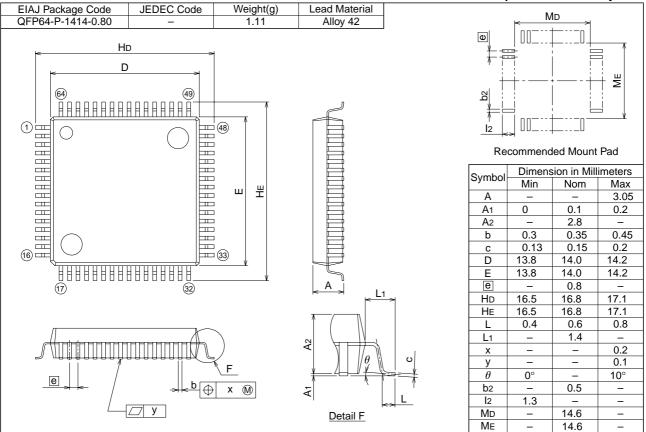



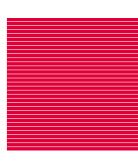
Fig. 3.4.11 Watchdog timer by software

3.5 Package outline

64P6N-A

Plastic 64pin 14X14mm body QFP

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER USER'S MANUAL 4524 Group


Publication Data: Rev.1.00 Dec 19, 2003

Rev.2.00 Aug 06, 2004

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

4524 Group User's Manual

