4524 Group
User's Manual

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER 720 FAMILY / 4500 SERIES

Before using this material, please visit our website to confirm that this is the most current document available.

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http:// www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

REVISION HISTORY				4524 Group User's Manual
Rev.	Date	Description		
		Page		Summary
1.00	Dec 19, 2003	-	First edition issued	
2.00	Aug 06, 2004	 All pages $1-5$ $1-6$ $1-35$ $1-45$ $1-46$ $1-47$ $1-61$ $1-65$ $1-69$ $1-78$ $2-57$ $2-74$ $2-77$ 	Words standardized: On-chip oscillator, A/D converter Power dissipation revised. Description of RESET pin revised. Fig. 26 : Note 9 added. Some description revised. Fig.31: "DI" instruction added. Table 11:Revised. (5) LCD power supply circuit revised. Fig.51: State of quartz-crystal oscillator added. Fig.55: - Note 5 added, - "T5F" added to the transitions between from state E to states B, A, C and D - "Key-on wakeup" \rightarrow "Wakeup" Note on Power source Voltage added. Table 2.5.1 : Notes 4 revised. Fig.2.7.4: State of quartz-crystal oscillator added. Fig.2.9.1: - Note 5 added, - "T5F" added to the transitions between from state E to states B, A, C and D - "Key-on wakeup" \rightarrow "Wakeup" Note on Power source Voltage added.	

BEFORE USING THIS USER'S MANUAL

This user's manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such as hardware design or software development.

1. Organization

- CHAPTER 1 HARDWARE

This chapter describes features of the microcomputer and operation of each peripheral function.

- CHAPTER 2 APPLICATION

This chapter describes usage and application examples of peripheral functions, based mainly on setting examples of related registers.

- CHAPTER 3 APPENDIX

This chapter includes necessary information for systems development using the microcomputer, such as the electrical characteristics, the list of registers.

As for the Mask ROM confirmation form, the ROM programming confirmation form, and the Mark specification form which are to be submitted when ordering, refer to the "Renesas Technology Corp." Hompage (http:/ /www.renesas.com/en/rom).

As for the Development tools and related documents, refer to the Product Info - 4524 Group (http:// www.renesas.com/eng/products/mpumcu/specific/lcd_mcu/expand/e4524.htm) of "Renesas Technology Corp." Homepage.

Table of contents

CHAPTER 1 HARDWARE

DESCRIPTION 2
FEATURES 2
APPLICATION 2
PIN CONFIGURATION 3
BLOCK DIAGRAM 4
PERFORMANCE OVERVIEW 5
PIN DESCRIPTION 6
MULTIFUNCTION 7
DEFINITION OF CLOCK AND CYCLE 7
PORT FUNCTION 8
CONNECTIONS OF UNUSED PINS 9
PORT BLOCK DIAGRAMS 10
FUNCTION BLOCK OPERATIONS 18
CPU 18
PROGRAM MEMORY (ROM) 21
DATA MEMORY (RAM) 22
INTERRUPT FUNCTION 23
EXTERNAL INTERRUPTS 27
TIMERS 32
WATCHDOG TIMER 45
A/D CONVERTER (COMPARATOR) 47
SERIAL I/O 53
LCD FUNCTION 57
RESET FUNCTION 62
VOLTAGE DROP DETECTION CIRCUIT 66
POWER DOWN FUNCTION 67
CLOCK CONTROL 72
ROM ORDERING METHOD 74
LIST OF PRECAUTIONS 75
CONTROL REGISTERS 79
INSTRUCTIONS 86
SYMBOL 86
INDEX LIST OF INSTRUCTION FUNCTION 87
MACHINE INSTRUCTIONS (INDEX BY ALPHABET) 92
MACHINE INSTRUCTIONS (INDEX BY TYPES) (CONTINUED) 132
INSTRUCTION CODE TABLE 148
BUILT-IN PROM VERSION 150

CHAPTER 2 APPLICATION

2.1 I/O pins 2
2.1.1 I/O ports 2
2.1.2 Related registers 5
2.1.3 Port application examples 13
2.1.4 Notes on use 14
2.2 Interrupts 16
2.2.1 Interrupt functions 16
2.2.2 Related registers 19
2.2.3 Interrupt application examples 22
2.2.4 Notes on use 32
2.3 Timers 33
2.3.1 Timer functions 33
2.3.2 Related registers 34
2.3.3 Timer application examples 39
2.3.4 Notes on use 49
2.4 A/D converter 50
2.4.1 Related registers 51
2.4.2 A/D converter application examples 52
2.4.3 Notes on use 54
2.5 Serial I/O 56
2.5.1 Carrier functions 56
2.5.2 Related registers 57
2.5.3 Operation description 59
2.5.4 Serial I/O application example 62
2.5.5 Notes on use 65
2.6 LCD function 66
2.6.1 Operation description 66
2.6.2 Related registers 67
2.6.3 LCD application examples 69
2.6.4 Notes on use 71
2.7 Reset 72
2.7.1 Reset circuit 72
2.7.2 Internal state at reset 73
2.7.3 Notes on use 74
2.8 Voltage drop detection circuit 75
2.8.1 Note on use 76
2.9 Power down 77
2.9.1 Power down mode 78
2.9.2 Related registers 81
2.9.3 Power down function application example 85
2.9.4 Notes on use 86
2.10 Oscillation circuit 87
2.10.1 Oscillation circuit 87
2.10.2 Oscillation operation 89
2.10.3 Related register 90
2.10.4 Notes on use 90

CHAPTER 3 APPENDIX

3.1 Electrical characteristics 2
3.1.1 Absolute maximum ratings 2
3.1.2 Recommended operating conditions 3
3.1.3 Electrical characteristics 5
3.1.4 A/D converter recommended operating conditions 7
3.1.5 Voltage drop detection circuit characteristics 8
3.1.6 Basic timing diagram 8
3.2 Typical characteristics 9
3.2.1 VDD-ldd characteristics 9
3.2.2 Frequency characteristics 15
3.2.3 Port typical characteristics ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$) 18
3.2.4 Port typical characteristics ($\mathrm{V} D \mathrm{=}=3.0 \mathrm{~V}$) 21
3.2.5 Input threshold characteristics 24
3.2.6 Pull-up resistor: VDD-RPU characteristics example 27
3.2.7 Internal resistor for LCD power: Ta-RVLC 28
3.2.8 A/D converter typical characteristics 29
3.2.9 Analog input current characteristics example 32
3.2.10 A/D converter operation current (VDD-ladD) characteristics 36
3.2.11 Voltage drop detection circuit characteristics 36
3.3 List of precautions 38
3.3.1 Program counter 38
3.3.2 Stack registers (SKs) 38
3.3.3 Notes on I/O port 38
3.3.4 Notes on interrupt 41
3.3.5 Notes on timer 42
3.3.6 Notes on A/D conversion 43
3.3.7 Notes on serial I/O 44
3.3.8 Notes on LCD function 45
3.3.9 Notes on reset 45
3.3.10 Notes on voltage drop detection circuit 45
3.3.11 Notes on power down 46
3.3.12 Notes on oscillation circuit 47
3.3.13 Electric characteristic differences between Mask ROM and One Time PROM version MCU 47
3.3.14 Notes on Power Source Voltage 47
3.4 Notes on noise 48
3.4.1 Shortest wiring length 48
3.4.2 Connection of bypass capacitor across $\mathrm{V}_{\text {ss }}$ line and Vdd line 50
3.4.3 wiring to analog input pins 51
3.4.4 Oscillator concerns 51
3.4 .5 setup for I/O ports 52
3.4.6 providing of watchdog timer function by software 52
3.5 Package outline 54

List of figures

CHAPTER 1 HARDWARE

Pin configuration (top view) (4524 Group) ... 3
Block diagram (4524 Group) .. 4
Port block diagram (1)... 10
Port block diagram (2) .. 11
Port block diagram (3) ... 12
Port block diagram (4)... 13
Port block diagram (5).. 14
Port block diagram (6)... 15
Port block diagram (7) ... 16
Port block diagram (8).. 17
Fig. 1 AMC instruction execution example .. 18
Fig. 2 RAR instruction execution example .. 18
Fig. 3 Registers A, B and register E .. 18
Fig. 4 TABP p instruction execution example.. 18
Fig. 5 Stack registers (SKs) structure .. 19
Fig. 6 Example of operation at subroutine call ... 19
Fig. 7 Program counter (PC) structure ... 20
Fig. 8 Data pointer (DP) structure ... 20
Fig. 9 SD instruction execution example .. 20
Fig. 10 ROM map of M34524ED ... 21
Fig. 11 Page 1 (addresses 008016 to 00FF 16) structure ... 21
Fig. 12 RAM map... 22
Fig. 13 Program example of interrupt processing ... 24
Fig. 14 Internal state when interrupt occurs .. 24
Fig. 15 Interrupt system diagram .. 24
Fig. 16 Interrupt sequence... 26
Fig. 17 External interrupt circuit structure .. 27
Fig. 18 External 0 interrupt program example-1... 30
Fig. 19 External 0 interrupt program example-2... 30
Fig. 20 External 0 interrupt program example-3.. 30
Fig. 21 External 1 interrupt program example-1... 31
Fig. 22 External 1 interrupt program example-2... 31
Fig. 23 External 1 interrupt program example-3... 31
Fig. 24 Auto-reload function .. 32
Fig. 25 Timer structure (1) ... 34
Fig. 26 Timer structure (2) ... 35
Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216") 42
Fig. 28 CNTR1 output auto-control function by timer 3 .. 43
Fig. 29 Timer 4 count start/stop timing ... 44
Fig. 30 Watchdog timer function... 45
Fig. 31 Program example to start/stop watchdog timer ... 46
Fig. 32 Program example to enter the mode when using the watchdog timer 46
Fig. 33 A/D conversion circuit structure .. 47
Fig. 34 A/D conversion timing chart.. 50
Fig. 35 Setting registers ... 50
Fig. 36 Comparator operation timing chart.. 51
Fig. 37 Definition of A/D conversion accuracy .. 52
Fig. 38 Serial I/O structure 53
Fig. 39 Serial I/O register state when transfer 54
Fig. 40 Serial I/O connection example 55
Fig. 41 Timing of serial I/O data transfer 55
Fig. 42 LCD clock control circuit structure 57
Fig. 43 LCD controller/driver 58
Fig. 44 LCD RAM map 59
Fig. 45 LCD controller/driver structure 60
Fig. 46 LCD power source circuit example ($1 / 3$ bias condition selected) 61
Fig. 47 Reset release timing 62
Fig. 48 RESET pin input waveform and reset operation 62
Fig. 49 Structure of reset pin and its peripherals, and power-on reset operation 63
Fig. 50 Internal state at reset 64
Fig. 51 Internal state at reset 65
Fig. 52 Voltage drop detection reset circuit 66
Fig. 53 Voltage drop detection circuit operation waveform 66
Fig. 54 Vdo and Vrst 66
Fig. 55 State transition 69
Fig. 56 Set source and clear source of the P flag 69
Fig. 57 Start condition identified example using the SNZP instruction 69
Fig. 58 Clock control circuit structure 72
Fig. 59 Switch to ceramic oscillation/RC oscillation 73
Fig. 60 Handling of Xin and Xоut when operating on-chip oscillator 73
Fig. 61 Ceramic resonator external circuit 73
Fig. 62 External RC oscillation circuit 73
Fig. 63 External clock input circuit 74
Fig. 64 External quartz-crystal circuit 74
Fig. 65 External 0 interrupt program example-1 76
Fig. 66 External 0 interrupt program example-2 76
Fig. 67 External 0 interrupt program example-3 76
Fig. 69 External 1 interrupt program example-2 77
Fig. 70 External 1 interrupt program example-3 77
Fig. 71 A/D converter program example-3 77
Fig. 72 Analog input external circuit example-1 78
Fig. 73 Analog input external circuit example-2 78
Fig. $74 \mathrm{~V}_{\mathrm{dD}}$ and $\mathrm{V}_{\text {rst }}$ 78
Fig. 75 Pin configuration of built-in PROM version 150
Fig. 76 PROM memory map 151
Fig. 77 Flow of writing and test of the product shipped in blank 151
CHAPTER 2 APPLICATION
Fig. 2.1.1 Key input by key scan 13
Fig. 2.1.2 Key scan input timing 13
Fig. 2.2.1 External 0 interrupt operation example 23
Fig. 2.2.2 External 0 interrupt setting example 24
Fig. 2.2.3 External 1 interrupt operation example 25
Fig. 2.2.4 External 1 interrupt setting example 26
Fig. 2.2.5 Timer 1 constant period interrupt setting example 27
Fig. 2.2.6 Timer 2 constant period interrupt setting example 28
Fig. 2.2.7 Timer 3 constant period interrupt setting example 29
Fig. 2.2.8 Timer 4 constant period interrupt setting example 30
Fig. 2.2.9 Timer 5 constant period interrupt setting example 31
Fig. 2.3.1 Peripheral circuit example 39
Fig. 2.3.2 Timer 4 operation 40
Fig. 2.3.3 Watchdog timer function 41
Fig. 2.3.4 Constant period measurement setting example 42
Fig. 2.3.5 CNTRo output setting example 43
Fig. 2.3.6 CNTRo input setting example 44
Fig. 2.3.7 Timer start by external input setting example 45
Fig. 2.3.8 PWM output control setting example 46
Fig. 2.3.9 Constant period counter by timer 5 setting example 47
Fig. 2.3.10 Watchdog timer setting example 48
Fig. 2.4.1 A/D converter structure 50
Fig. 2.4.2 A/D conversion mode setting example 53
Fig. 2.4.3 Analog input external circuit example-1 54
Fig. 2.4.4 Analog input external circuit example-2 54
Fig. 2.4.5 A/D converter operating mode program example 54
Fig. 2.5.1 Serial I/O block diagram 56
Fig. 2.5.2 Serial I/O connection example 59
Fig. 2.5.3 Serial I/O register state when transfer. 59
Fig. 2.5.4 Serial I/O transfer timing 60
Fig. 2.5.5 Setting example when a serial I/O of master side is not used 63
Fig. 2.5.6 Setting example when a serial I/O interrupt of slave side is used 64
Fig. 2.6.1 LCD clock control circuit structure. 66
Fig. 2.6.2 LCD RAM map 67
Fig. 2.6.3 LCD display panel example 69
Fig. 2.6.4 Segment assignment example 69
Fig. 2.6.5 LCD RAM assignment example 69
Fig. 2.6.6 Initial setting example 70
Fig. 2.7.1 Structure of reset pin and its peripherals,, and power-on reset operation 72
Fig. 2.7.2 Oscillation stabilizing time after system is released from reset 72
Fig. 2.7.3 Internal state at reset 73
Fig. 2.7.4 Internal state at reset 74
Fig. 2.8.1 Voltage drop detection circuit 75
Fig. 2.8.2 Voltage drop detection circuit operation waveform example 75
Fig. 2.8.3 Vdo and Vrst 76
Fig. 2.9.1 State transition 77
Fig. 2.9.2 Start condition identified example 80
Fig. 2.9.3 Software setting example 85
Fig. 2.10.1 Switch to ceramic oscillation/RC oscillation 87
Fig. 2.10.2 Handling of Xin and Xout when operating on-chip oscillator 87
Fig. 2.10.3 Ceramic resonator external circuit 88
Fig. 2.10.4 External RC oscillation circuit 88
Fig. 2.10.5 External clock input circuit 88
Fig. 2.10.6 External quartz-crystal circuit 88
Fig. 2.10.7 Structure of clock control circuit 89

CHAPTER 3 APPENDIX

Fig. 3.2.1 A/D conversion characteristics data .. 29
Fig. 3.3.1 Analog input external circuit example-1 .. 43
Fig. 3.3.2 Analog input external circuit example-2 .. 43
Fig. 3.3.3 A/D converter operating mode program example... 43

Fig. 3.4.1 Selection of packages ... 48
Fig. 3.4.2 Wiring for the RESET input pin .. 48
Fig. 3.4.3 Wiring for clock I/O pins ... 49
Fig. 3.4.4 Wiring for CNVss pin... 49
Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version... 50
Fig. 3.4.6 Bypass capacitor across the $V_{s s}$ line and the $V_{D D}$ line ... 50
Fig. 3.4.7 Analog signal line and a resistor and a capacitor .. 51
Fig. 3.4.8 Wiring for a large current signal line .. 51
Fig. 3.4.9 Wiring to a signal line where potential levels change frequently 52
Fig. 3.4.10 V ss pattern on the underside of an oscillator .. 52
Fig. 3.4.11 Watchdog timer by software ... 53

List of tables

CHAPTER 1 HARDWARE

Table Selection of system clock 7
Table 1 ROM size and pages 21
Table 2 RAM size 22
Table 3 Interrupt sources 23
Table 4 Interrupt request flag, interrupt enable bit and skip instruction 23
Table 5 Interrupt enable bit function 23
Table 6 Interrupt control registers 25
Table 7 External interrupt activated conditions 27
Table 8 External interrupt control register 29
Table 9 Function related timers 33
Table 10 Timer related registers 36
Table 11 A/D converter characteristics 47
Table 12 A/D control registers 48
Table 13 Change of successive comparison register AD during A/D conversion 49
Table 14 Serial I/O pins 53
Table 15 Serial I/O control register 53
Table 16 Processing sequence of data transfer from master to slave 56
Table 17 Duty and maximum number of displayed pixels 57
Table 18 LCD control registers 59
Table 19 Port state at reset 63
Table 20 Voltage drop detection circuit operation state 66
Table 21 Functions and states retained at power down 67
Table 22 Return source and return condition 68
Table 23 Key-on wakeup control register, pull-up control register and interrupt control register 70
Table 24 Clock control register MR 74
Table 25 Product of built-in PROM version 150
CHAPTER 2 APPLICATION
Table 2.1.1 Timer control register W3 5
Table 2.1.2 Timer control register W4 5
Table 2.1.3 Timer control register W6 6
Table 2.1.4 Serial I/O control register J1 6
Table 2.1.5 A/D control register Q2 7
Table 2.1.6 A/D control register Q3 7
Table 2.1.7 Pull-up control register PU0 8
Table 2.1.8 Pull-up control register PU1 8
Table 2.1.9 Port output structure control register FR0 9
Table 2.1.10 Port output structure control register FR1 9
Table 2.1.11 Port output structure control register FR2 10
Table 2.1.12 Port output structure control register FR3 10
Table 2.1.13 Key-on wakeup control register K0 11
Table 2.1.14 Key-on wakeup control register K1 11
Table 2.1.15 Key-on wakeup control register K2 12
Table 2.1.16 Connections of unused pins 15
Table 2.2.1 Interrupt control register V1 19
Table 2.2.2 Interrupt control register V2 20
Table 2.2.3 Interrupt control register I1 20
Table 2.2.4 Interrupt control register I2 21
Table 2.2.5 Interrupt control register I3 21
Table 2.3.1 Interrupt control register V1 34
Table 2.3.2 Interrupt control register V2 34
Table 2.3.3 Interrupt control register I3 35
Table 2.3.4 Timer control register PA 35
Table 2.3.5 Timer control register W1 35
Table 2.3.6 Timer control register W2 36
Table 2.3.7 Timer control register W3 36
Table 2.3.8 Timer control register W4 37
Table 2.3.9 Timer control register W5 37
Table 2.3.10 Timer control register W6 38
Table 2.4.1 Interrupt control register V2 51
Table 2.4.2 A/D control register Q1 51
Table 2.4.3 A/D control register Q2 52
Table 2.4.4 A/D control register Q3 52
Table 2.4.5 Recommended operating conditions (when using A/D converter) 55
Table 2.5.1 Interrupt control register V2 57
Table 2.5.2 Interrupt control register I3 57
Table 2.5.3 Serial I/O mode register J1 58
Table 2.6.1 Duty and maximum number of displayed pixels 66
Table 2.6.2 LCD control register L1 67
Table 2.6.3 LCD control register L2 68
Table 2.6.4 Timer control register W6 68
Table 2.8.1 Voltage drop detection circuit operation state 75
Table 2.9.1 Functions and states retained at power down mode 79
Table 2.9.2 Return source and return condition 80
Table 2.9.3 Start condition identification 80
Table 2.9.4 Interrupt control register I1 81
Table 2.9.5 Interrupt control register I2 81
Table 2.9.6 Clock control register MR 82
Table 2.9.7 Pull-up control register PU0 82
Table 2.9.8 Pull-up control register PU1 83
Table 2.9.9 Key-on wakeup control register K0 83
Table 2.9.10 Key-on wakeup control register K1 84
Table 2.9.11 Key-on wakeup control register K2 84
Table 2.10.1 Clock control register MR 90
CHAPTER 3 APPENDIX
Table 3.1.1 Absolute maximum ratings 2
Table 3.1.2 Recommended operating conditions 1 3
Table 3.1.3 Recommended operating conditions 2 4
Table 3.1.4 Electrical characteristics 1 5
Table 3.1.5 Electrical characteristics 2 6
Table 3.1.6 A/D converter recommended operating conditions 7
Table 3.1.7 A/D converter characteristics 7
Table 3.1.8 Voltage drop detection circuit characteristics 8
Table 3.3.1 Connections of unused pins 40
Table 3.3.2 Recommended operating conditions (when using A/D converter) 44

CHAPTER 1

HARDWARE

DESCRIPTION FEATURES
APPLICATION
PIN CONFIGURATION
BLOCK DIAGRAM PERFORMANCE OVERVIEW PIN DESCRIPTION
FUNCTION BLOCK OPERATIONS
ROM ORDERING METHOD
LIST OF PRECAUTIONS
CONTROL REGISTERS
INSTRUCTIONS
BUILT-IN PROM VERSION

DESCRIPTION

The 4524 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with main clock selection function, serial I/O, four 8-bit timers (each timer has one or two reload registers), 10-bit A/D converter, interrupts, and LCD control circuit.

The various microcomputers in the 4524 Group include variations of the built-in memory size as shown in the table below.

FEATURES

- Minimum instruction execution time \qquad $0.5 \mu \mathrm{~s}$
(at 6 MHz oscillation frequency, in high-speed through-mode)
- Supply voltage

Mask ROM version 2.0 to 5.5 V

One Time PROM version 2.5 to 5.5 V
(It depends on oscillation frequency and operation mode)

- Timers

Timer 1 \qquad 8-bit timer with a reload register
Timer 2 8-bit timer with a reload register
Timer 3 8-bit timer with a reload register
Timer 4 \qquad 8-bit timer with two reload registers
Timer 5 16-bit timer (fixed dividing frequency)

- Interrupt 9 sources
- Key-on wakeup function pins
- LCD control circuit

Segment output20
Common output 4

- Serial I/O 8 -bit $\times 1$
- A/D converter \qquad 10-bit successive approximation method
- Voltage drop detection circuit (Reset) Typ. 3.5 V
- Watchdog timer
- Clock generating circuit Main clock (ceramic resonator/RC oscillation/on-chip oscillator) Sub-clock (quartz-crystal oscillation)
LED drive directly enabled (port D)

APPLICATION

Household appliance, consumer electronics, office automation equipment

Part number	ROM (PROM) size $(\times 10$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34524M8-XXXFP	8192 words	512 words	$64 \mathrm{P} 6 \mathrm{~N}-\mathrm{A}$	Mask ROM
M34524MC-XXXFP	12288 words	512 words	$64 \mathrm{P} 6 \mathrm{~N}-\mathrm{A}$	Mask ROM
M34524EDFP (Note)	16384 words	512 words	$64 \mathrm{P} 6 \mathrm{~N}-\mathrm{A}$	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

\square
OUTLINE 64P6N-A
Pin configuration (top view) (4524 Group)

PERFORMANCE OVERVIEW

Parameter			Function
Number of basic instructions			159
Minimum instruction execution time			$0.5 \mu \mathrm{~s}$ (at 6 MHz oscillation frequency, in high-speed through mode)
Memory sizes	ROM	M34524M8	8192 words $\times 10$ bits
		M34524MC	12288 words $\times 10$ bits
		M34524ED	16384 words $\times 10$ bits
	RAM		512 words $\times 4$ bits (including LCD display RAM 20 words $\times 4$ bits)
Input/Output ports	D0-D7	I/O	Eight independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Ports D4, D5, D6 and D7 are also used as Sin, Sout, Sck and CNTR0 pin.
	D8, D9	Output	Two independent output ports. Ports D8 and D9 are also used as INT0 and INT1, respectively.
	P00-P03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.
	P10-P13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.
	P20-P23	I/O	4-bit I/O port; Ports P20-P23 are also used as AIN0-AIN3, respectively.
	P30-P33	I/O	4-bit I/O port; Ports P30-P33 are also used as AIN4-AIN7, respectively.
	P40-P43	I/O	4-bit I/O port; The output structure can be switched by software.
	C	Output	1-bit output; Port C is also used as CNTR1 pin.
Timers	Timer 1		8-bit programmable timer with a reload register and has an event counter.
	Timer 2		8-bit programmable timer with a reload register.
	Timer 3		8-bit programmable timer with a reload register and has an event counter.
	Timer 4		8-bit programmable timer with two reload registers.
	Timer 5		16 -bit timer, fixed dividing frequency
A/D converter			10 -bit $\times 1$, 8-bit comparator is equipped.
Serial I/O			8 -bit $\times 1$
LCD control circuit	Selective bias value		1/2, 1/3 bias
	Selective duty value		2, 3, 4 duty
	Common output		4
	Segment output		20
	Internal resistor for power supply		$2 r \times 3,2 r \times 2, r \times 3, r \times 2$ (they can be switched by software.)
Interrupt	Sources		9 (two for external, five for timer, A / D, serial I/O)
	Nesting		1 level
Subroutine nesting			8 levels
Device structure			CMOS silicon gate
Package			64-pin plastic molded QFP (64P6N)
Operating temperature range			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply voltage	Mask ROM version		2 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)
	One Time PROM version		2.5 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)
Power dissipation	Active mode		$2.8 \mathrm{~mA}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VdD}=5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}, \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}, \mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})\right.$)
	Clock operating mode		$20 \mu \mathrm{~A}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}, \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}\right)$
	At RAM back-up		$0.1 \mu \mathrm{~A}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}\right)$

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	-	Connected to a plus power supply.
Vss	Ground	-	Connected to a 0 V power supply.
CNVss	CNVss	-	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer, the built-in power-on reset, or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs " L " level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and Xout. A feedback resistor is built-in between them.
Xout	Main clock output	Output	When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave Xout pin open.
XCIN	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32 kHz quartz-crystal oscillator
XCOUT	Sub-clock output	Output	between pins XCIN and Xcout. A feedback resistor is built-in between them.
D0-D7	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports D4-D7 is also used as SIN, SOUT, ScK and CNTR0 pin.
D8, D9	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D8 and D9 are also used as INT0 pin and INT1 pin, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure is N -channel open-drain. For input use, set the latch of the specified bit to " 1 ". Ports P20-P23 are also used as AIN0-AIN3, respectively.
P30-P33	I/O port P3	I/O	Port P3 serves as a 4-bit I/O port. The output structure is N -channel open-drain. For input use, set the latch of the specified bit to " 1 ". Ports P30-P33 are also used as AIN4-AIN7, respectively.
P40-P43	I/O port P4	I/O	Port P4 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain.
Port C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR1 pin.
$\begin{aligned} & \text { COM0- } \\ & \text { COM3 } \end{aligned}$	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at $1 / 2$ duty, pins COM0COM2 are used at $1 / 3$ duty and pins $\mathrm{COM} 0-\mathrm{COM}_{3}$ are used at $1 / 4$ duty.
SEG0-SEG19	Segment output	Output	LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively.
VLC3-VLC1	LCD power supply	-	LCD power supply pins. When the internal resistor is used, VDD pin is connected to VLC3 pin (if luminance adjustment is required, VDD pin is connected to VLC3 pin through a resistor). When the external power supply is used, apply the voltage $0 \leq$ VLC1 \leq VLC2 \leq VLC3 \leq VDD. VLC3-VLC1 pins are used as SEG0-SEG2 pins, respectively.
CNTRO, CNTR1	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D7 and C, respectively.
INT0, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports D8 and D9, respectively.
AIN0-AIN7	Analog input	Input	A/D converter analog input pins. Aino-AIN7 are also used as ports P20-P23 and P30P33, respectively.
Sck	Serial I/O data I/O	I/O	Serial I/O data transfer synchronous clock I/O pin. Sck pin is also used as port D6.
Sout	Serial I/O data output	Output	Serial I/O data output pin. Sout pin is also used as port D5.
SIN	Serial I/O clock input	Input	Serial I/O data input pin. SIN pin is also used as port D4.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D4	SIN	SIN	D4	C	CNTR1	CNTR1	C
D5	SouT	SouT	D5	P20	AIN0	AIN0	P20
D6	SCK	SCK	D6	P21	AIN1	AIN1	P21
D7	CNTR0	CNTR0	D7	P22	AIN2	AIN2	P22
D8	INT0	INT0	D8	P23	AIN3	AIN3	P23
D9	INT1	INT1	D9	P30	AIN4	AIN4	P30
VLC3	SEG0	SEG0	VLC3	P31	AIN5	AIN5	P31
VLC2	SEG1	SEG1	VLC2	P32	AIN6	AIN6	P32
VLC1	SEG2	SEG2	VLC1	P33	AIN7	AIN7	P33

Notes 1: Pins except above have just single function
2: The output of D8 and D9 can be used even when INT0 and INT1 are selected.
3: The input of ports D4-D6 can be used even when Sin, Sout and Sck are selected.
4: The input/output of D7 can be used even when CNTR0 (input) is selected.
5: The input of D7 can be used even when CNTR0 (output) is selected.
6: The port C "H" output function can be used even when CNTR1 (output) is selected.

DEFINITION OF CLOCK AND CYCLE

- Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XCIN)) by the external quartz-crystal oscillation

System clock (STCK)
The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

- Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3 . The one instruction clock cycle generates the one machine cycle.

- Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

Register MR				System clock	Operation mode
MR3	MR2	MR1	MRo		
0	0	0	0	$f($ STCK $)=f($ XIN $)$ or $f($ RING $)$	High-speed through mode
		\times	1	$f($ STCK $)=f($ XCIN $)$	Low-speed through mode
0	1	0	0	$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$ or $f($ RING $) / 2$	High-speed frequency divided by 2 mode
		\times	1	$f($ STCK $)=f($ XCIN $) / 2$	Low-speed frequency divided by 2 mode
1	0	0	0	$f($ STCK $)=f($ XIN $) / 4$ or $f($ RING $) / 4$	High-speed frequency divided by 4 mode
		\times	1	$f($ STCK $)=f($ XCIN $) / 4$	Low-speed frequency divided by 4 mode
1	1	0	0	$f($ STCK $)=f($ XIN $) / 8$ or $f($ RING $) / 8$	High-speed frequency divided by 8 mode
		\times	1	$f($ STCK $)=f($ XCIN $) / 8$	Low-speed frequency divided by 8 mode

X : 0 or 1
Note: The $f($ RING $) / 8$ is selected after system is released from reset.

PORT FUNCTION

Port	Pin	$\begin{aligned} & \text { Input } \\ & \text { Output } \end{aligned}$	Output structure	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \text { unit } \end{aligned}$	Control instructions	Control registers	Remark
Port D	D0-D3, D4/SIN, D5/Sout, D6/Sck, D7/CNTR0	I / O (8)	N-channel open-drain/ CMOS	1	$\begin{aligned} & \text { SD, RD } \\ & \text { SZD } \\ & \text { CLD } \end{aligned}$	$\begin{aligned} & \text { FR1, FR2 } \\ & \text { J1 } \\ & \text { W6 } \end{aligned}$	Output structure selection function (programmable)
	D8/INT0, D9/INT1	Output (2)	N-channel open-drain			$\begin{aligned} & 11, \mathrm{I} 2 \\ & \mathrm{~K} 2 \end{aligned}$	Key-on wakeup function (programmable)
Port P0	P00-P03	I / O (4)	N-channel open-drain/ CMOS	4	$\begin{aligned} & \text { OPOA } \\ & \text { IAPO } \end{aligned}$	$\begin{aligned} & \text { FRO } \\ & \text { PU0 } \\ & \text { K0 } \\ & \hline \end{aligned}$	Built-in programmable pull-up functions and key-on wakeup functions (programmable)
Port P1	P10-P13	I / O (4)	N-channel open-drain/ CMOS	4	OP1A IAP1	$\begin{aligned} & \text { FR0 } \\ & \text { PU1 } \\ & \text { K1 } \end{aligned}$	Built-in programmable pull-up functions and key-on wakeup functions (programmable)
Port P2	P20/AIN0-P23/AIN3	I / O (4)	N-channel open-drain	4	OP2A IAP2	Q2	
Port P3	P30/AIN4-P33/AIN7	I/O (4)	N-channel open-drain	4	$\begin{aligned} & \text { OP3A } \\ & \text { IAP3 } \end{aligned}$	Q3	
Port P4	P40-P43	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & (4) \\ & \hline \end{aligned}$	N-channel open-drain/ CMOS	4	$\begin{aligned} & \text { OP4A } \\ & \text { IAP4 } \end{aligned}$	FR3	Output structure selection function (programmable)
Port C	C/CNTR1	Output (1)	CMOS	1	$\begin{aligned} & \text { RCP } \\ & \text { SCP } \\ & \hline \end{aligned}$	W4	

CONNECTIONS OF UNUSED PINS

Pin	Connection	Usage condition
XIN	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) (Note 1) Sub-clock input is selected for system clock (MR0=1). (Note 2)
XOUT	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) (Note 1) RC oscillator is selected (CRCK instruction is executed) External clock input is selected for main clock (CMCK instruction is executed). (Note 3) Sub-clock input is selected for system clock (MR0=1). (Note 2)
XCIN	Connect to Vss.	Sub-clock is not used.
Xcout	Open.	Sub-clock is not used.
D0-D3	Open.	
	Connect to Vss.	N -channel open-drain is selected for the output structure. (Note 4)
D4/SIN	Open.	SIN pin is not selected.
	Connect to Vss.	N -channel open-drain is selected for the output structure.
D5/SOUT	Open.	-
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D6/ScK	Open.	Sck pin is not selected.
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.
	Connect to Vss.	N -channel open-drain is selected for the output structure.
D8/INT0	Open.	" 0 " is set to output latch.
	Connect to Vss.	-
D9/INT1	Open.	" 0 " is set to output latch.
	Connect to Vss.	
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.
P00-P03	Open.	The key-on wakeup function is not selected. (Note 4)
	Connect to Vss.	N -channel open-drain is selected for the output structure. (Note 5) The pull-up function is not selected. (Note 4) The key-on wakeup function is not selected. (Note 4)
P10-P13	Open.	The key-on wakeup function is not selected. (Note 4)
	Connect to Vss.	N -channel open-drain is selected for the output structure. (Note 5) The pull-up function is not selected. (Note 4) The key-on wakeup function is not selected. (Note 4)
$\begin{aligned} & \hline \text { P20/AIN0- } \\ & \text { P23/AIN3 } \end{aligned}$	Open.	-
	Connect to Vss.	-
P3o/AIN4P33/AIn7	Open.	-
	Connect to Vss.	
P40-P43	Open.	-
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5)
COM0-COM3	Open.	-
VLC3/SEG0	Open.	SEG0 pin is selected.
VLC2/SEG1	Open.	SEG1 pin is selected.
VLC1/SEG2	Open.	SEG2 pin is selected.
SEG3-SEG19	Open.	——_

Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.
2: When sub-clock (XCIN) input is selected $(M R 0=1$) for the system clock by setting " 1 " to bit 1 ($M R 1$) of clock control register MR, main clock is stopped.
3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
4: Be sure to select the output structure of ports D0-D3 and P40-P43 and the pull-up function and key-on wakeup function of P00-P03 and P10-P13 with every one port. Set the corresponding bits of registers for each port.
5: Be sure to select the output structure of ports $\mathrm{P} 00-\mathrm{P} 03$ and $\mathrm{P} 10-\mathrm{P} 13$ with every two ports. If only one of the two pins is used, leave another one open.
(Note when connecting to VsS and VDD)

- Connect the unused pins to VSS and VDD using the thickest wire at the shortest distance against noise.

PORT BLOCK DIAGRAMS

Notes 1: ----†---- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.
3: When CNTR1 input is selected, output transistor is turned OFF.

Port block diagram (1)

Notes 1:---- 4 ---- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.

Port block diagram (2)

Timer 1 count start synchronous circuit input

Timer 3 count start synchronous circuit input

Notes 1: ---14---This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.
3: As for details, refer to the description of external interrupt circuit.

Port block diagram (3)

Notes 1: --- \mid--- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.
Port block diagram (4)

Notes 1: ----14--- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.

Port block diagram (5)

Notes 1:---- \dagger---- This symbol represents a parasitic diode on the port.
2: Applied potential to these ports must be VDD or less.
3: i represents bits 0 to 3.

Port block diagram (6)

Port block diagram (7)

Port block diagram (8)

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
Carry flag CY is a 1-bit flag that is set to " 1 " when there is a carry with the AMC instruction (Figure 1).
It is unchanged with both $A n$ instruction and $A M$ instruction. The value of $A 0$ is stored in carry flag $C Y$ with the RAR instruction (Figure 2).
Carry flag CY can be set to "1" with the SC instruction and cleared to " 0 " with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.
Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).
Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.
It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).
Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.
The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.
Figure 5 shows the stack registers (SKs) structure.
Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1 -stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points " 0 " by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after eight stack registers are used $((S P)=7),(S P)=0$ and the contents of SK0 is destroyed.

Fig. 5 Stack registers (SKs) structure

Note : Returning to the BM instruction execution address with the RT instruction, and the BM instruction becomes the NOP instruction.

Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.
Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).
Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.
When using port D , set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34524ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size $(\times 10$ bits $)$	Pages
M34524M8	8192 words	$64(0$ to 63$)$
M34524MC	12288 words	$96(0$ to 95$)$
M34524ED	16384 words	$128(0$ to 127$)$

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed
Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.
Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1 -word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.
ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

Fig. 10 ROM map of M34524ED

Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the $S B \mathrm{j}, \mathrm{RB} \mathrm{j}$, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up).
RAM includes the area for LCD.
When writing " 1 " to a bit corresponding to displayed segment, the segment is turned on.
Table 2 shows the RAM size. Figure 12 shows the RAM map.

- Note

Register Z of data pointer is undefined after system is released from reset.
Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34524M8	512 words $\times 4$ bits $(2048$ bits $)$
M34524MC	512 words $\times 4$ bits $(2048$ bits $)$
M34524ED	512 words $\times 4$ bits $(2048$ bits $)$

RAM 512 words $\times 4$ bits (2048 bits)

	Register Z	0										1								
-	Register X	0	1	2	3	\cdots	12	13	14		15	0	1	2	...	11	12	13	14	15
	0																			
	1																			
	2																			
	3																			
	4																			
	5																			
	6																			
	7																			
	8																0	8	16	
	9																1	9	17	
	10																2	10	18	
	11																3	11	19	
	12																4	12		
	13																5	13		
	14																6	14		
	15																7	15		

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag $=$ " 1 ")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the El instruction and disabled when INTE flag is cleared to " 0 " with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to " 0 ," so that other interrupts are disabled until the El instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.
Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.
Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to " 0 " when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set to " 1 " when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until it is cleared to "0" by the interrupt occurrence or the skip instruction.
Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.
If more than one interrupt request flag is set to " 1 " when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 5 interrupt	Timer 5 underflow	Address A in page 1
8	Timer 4 interrupt or interrupt Serial I/O interrupt (Note)	Completion of A/D conversion	Timer 4 underflow or completion of in page 1 inial I/O transmit/ receive
Address E in page 1			

Note: Timer 4 interrupt or serial I/O interrupt can be selected by the timer 4, serial I/O interrupt source selection bit (I30).

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt nable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 5 interrupt	T5F	SNZT5	V21
A/D interrupt	ADF	SNZAD	V22
Timer 4 interrupt	T4F	SNZT4	V23
Serial I/O interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)

INTE flag is cleared to " 0 " so that interrupts are disabled.

- Interrupt request flag

Only the request flag for the current interrupt source is cleared to "0."

- Data pointer, carry flag, skip flag, registers A and B

The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.
Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the El instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the El instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

Fig. 13 Program example of interrupt processing

- Program counter (PC)	
	Each interrupt address
- Stack register (SK)	
	The address of main routine to be executed when returning
- Interrupt enable flag (INTE)	
	0 (Interrupt disabled)
- Interrupt request flag (only the flag for the current interrupt source) $\qquad$$\square$	
- Data pointer, carry flag, registers A and B, skip flag	
\ldots. Stored in the interrupt stack register (SDP) automatically	

Fig. 14 Internal state when interrupt occurs

Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1

Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V 1 to register A .

- Interrupt control register V2

The timer 3 , timer $5, A / D$, Timer 4 and serial I/O interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V 2 to register A .

- Interrupt control register I3

The timer 4, serial I/O interrupt source selection bit is assigned to register I 3 . Set the contents of this register through register A with the TI3A instruction. The TAI3 instruction can be used to transfer the contents of register I 3 to register A .

Table 6 Interrupt control registers

Interrupt control register V1		at reset : 00002		at power down : 00002	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
		1	Interrupt enabled (SNZT2 instruction is invalid) (Note 2)		
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
		1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)		
V11	External 1 interrupt enable bit	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	Interrupt enabled (SNZ1 instruction is invalid) (Note 2)		
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZO instruction is valid)		
		1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)		

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W TAV2/TV2A
V23	Timer 4, serial I/O interrupt enable bit (Note 3)	0	Interrupt disabled (SNZT4, SNZSI instruction is valid)		
		1	Interrupt enabled (SNZT4, SNZSI instruction is invalid) (Note 2)		
V22	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
		1	Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
V21	Timer 5 interrupt enable bit	0	Interrupt disabled (SNZT5 instruction is valid)		
		1	Interrupt enabled (SNZT5 instruction is invalid) (Note 2)		
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid) (Note 2)		

| Interrupt control register I3 | | | at reset : 02 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}R/W

TAI3/TI3A\end{array}\right]\)

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: These instructions are equivalent to the NOP instruction.
3: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (I30).

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10-V13, V20-V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the machine cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles when the interrupt conditions are satisfied on execution of two-cycle instructions or three-cycle instructions. (Refer to Figure 16).

Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4524 Group has the external 0 interrupt and external 1 interrupt.
An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).
The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D8/INT0	When the next waveform is input to D8/INT0 pin • Falling waveform ("H" \rightarrow " L ") - Rising waveform (" L " \rightarrow "H") - Both rising and falling waveforms	111 $I 12$
External 1 interrupt	D9/INT1	When the next waveform is input to D9/INT1 pin - Falling waveform (" H " \rightarrow " L ") - Rising waveform (" L " \rightarrow "H") - Both rising and falling waveforms	121

Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to " 1 " when a valid waveform is input to D8/INT0 pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXFO flag can be examined with the skip instruction (SNZO). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXFO flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D8/INT0 pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
(1) Set the bit 3 of register I1 to " 1 " for the INT0 pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register I1.
(3) Clear the EXFO flag to " 0 " with the SNZO instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZO instruction.
(5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D8/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to " 1 " when a valid waveform is input to D9/INT1 pin.
The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition

External 1 interrupt activated condition is satisfied when a valid waveform is input to D9/INT1 pin.
The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
(1) Set the bit 3 of register 12 to " 1 " for the INT1 pin to be in the input enabled state.
(2) Select the valid waveform with the bits 1 and 2 of register $I 2$.
(3) Clear the EXF1 flag to "0" with the SNZ1 instruction.
(4) Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction.
(5) Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the D9/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

- Interrupt control register I1

Register 11 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAl1 instruction can be used to transfer the contents of register I 1 to register A .

- Interrupt control register I2

Register 12 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I 2 to register A .

Table 8 External interrupt control register

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction)		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT0 pin Timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Interrupt control register I2		at reset : 00002		at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disabled		
		1	INT1 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZI1 instruction)		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous circuit selection bit	0	Timer 3 count start synchronous circuit not selected		
		1	Timer 3 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of these bits ($\mathrm{I} 12, \mathrm{I} 13, \mathrm{I} 22$ and I 23) are changed, the external interrupt request flag (EXFO, EXF1) may be set.

(4) Notes on External 0 interrupts

(1) Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18(1) and then, change the bit 3 of register 11 .
In addition, execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction (refer to Figure 18(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 183).

${ }_{\text {LA }}{ }^{\vdots}$; (XXX02)
TV1A	; The SNZ0 instruction is valid (1)
LA 8	; (1×X×2)
TI1A	; Control of INT0 pin input is changed
NOP	.. (2)
SNZO	; The SNZ0 instruction is executed (EXF0 flag cleared)
NOP	.. (3)
¢	
X : these bits are not used here.	

Fig. 18 External 0 interrupt program example-1
(2) Note [2] on bit 3 of register I1

When the bit 3 of register 11 is cleared, the power down function is selected and the input of INTO pin is disabled, be careful about the following notes.

- When the input of INTO pin is disabled, invalidate the key-on wakeup function of INT0 pin (register K20 = " 0 ") before system goes into the power down mode. (refer to Figure 19(1).

```
:
LA \(0 \quad ;(\times \times \times 02)\)
TK2A ; INT0 key-on wakeup invalid
```

\qquad

```
DI
EPOF
POF2 ; RAM back-up
    !
    \(X\) : these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2
(3) Note on bit 2 of register 11

When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXFO) may be set when the bit 2 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 201) and then, change the bit 2 of register 11.
In addition, execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction (refer to Figure 20(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 203).

Fig. 20 External 0 interrupt program example-3

(5) Notes on External 1 interrupts

(1) Note [1] on bit 3 of register 12

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to " 0 " (refer to Figure 21(1) and then, change the bit 3 of register I 2.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to Figure 21(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 213).

:	
LA 4	; (XX0×2)
TV1A	; The SNZ1 instruction is valid1
LA 8	; (1×××2)
TI2A	; Control of INT1 pin input is changed
NOP	... (2)
SNZ1	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	... (3)
:	
X : these bits are not used here.	

Fig. 21 External 1 interrupt program example-1

(2) Note [2] on bit 3 of register I2

When the bit 3 of register $I 2$ is cleared, the power down function is selected and the input of INT1 pin is disabled, be careful about the following notes.

- When the input of INT1 pin is disabled, invalidate the key-on wakeup function of INT1 pin (register K22 = "0") before system goes into the power down mode. (refer to Figure 22(1).

\vdots	
LA	0

Fig. 22 External 1 interrupt program example-2
(3) Note on bit 2 of register I2

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register 12 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23(1) and then, change the bit 2 of register I 2.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to Figure 23(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23(3).

Fig. 23 External 1 interrupt program example-3

TIMERS

The 4524 Group has the following timers.

- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to $n+1$), a timer interrupt request flag is set to " 1 ," new data is loaded from the reload register, and count continues (auto-reload function).

- Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to " 1 " after every n count of a count pulse.

Fig. 24 Auto-reload function

The 4524 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1:8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3:8-bit programmable timer
- Timer 4 : 8-bit programmable timer
- Timer 5 : 16-bit fixed dividing frequency timer
- Timer LC : 4-bit programmable timer
- Watchdog timer : 16-bit fixed dividing frequency timer (Timers 1, 2, 3, 4 and 5 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, 4, 5 and LC can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register.
Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	- Instruction clock (INSTCK)	1 to 256	- Timer 1, 2, 3, 4 and LC count sources	PA
Timer 1	8-bit programmable binary down counter (link to INTO input)	- Instruction clock (INSTCK) - Prescaler output (ORCLK) - Timer 5 underflow (T5UDF) - CNTR0 input	1 to 256	- Timer 2 count source - CNTRO output - Timer 1 interrupt	$\begin{aligned} & \hline \text { W1 } \\ & \text { W2 } \end{aligned}$
Timer 2	8-bit programmable binary down counter	- System clock (STCK) - Prescaler output (ORCLK) - Timer 1 underflow (T1UDF) - PWM output (PWMOUT)	1 to 256	- Timer 3 count source - CNTRO output - Timer 2 interrupt	W2
Timer 3	8-bit programmable binary down counter (link to INT1 input)	- PWM output (PWMOUT) - Prescaler output (ORCLK) - Timer 2 underflow (T2UDF) - CNTR1 input	1 to 256	- CNTR1 output control - Timer 3 interrupt	W3
Timer 4	8-bit programmable binary down counter (PWM output function)	- XIN input - Prescaler output (ORCLK)	1 to 256	- Timer 2, 3 count source - CNTR1 output - Timer 4 interrupt	W4
Timer 5	16 -bit fixed dividing frequency	- XCIN input	$\begin{aligned} & 8192 \\ & 16384 \\ & 32768 \\ & 65536 \end{aligned}$	- Timer 1, LC count source - Timer 5 interrupt	W5
Timer LC	4-bit programmable binary down counter	- Bit 4 of timer 5 - Prescaler output (ORCLK)	1 to 16	- LCD clock	W6
Watchdog timer	16-bit fixed dividing frequency	- Instruction clock (INSTCK)	65534	- System reset (count twice) - WDF flag decision	

Fig. 25 Timer structure (1)

NSTCK : Instruction clock (system clock divided by 3)
ORCLK : Prescaler output (instruction clock divided by 1 to 256)

Data is set automatically from each reload
register when timer underflows
(auto-reload function).

Notes 4: Count source is stopped by clearing to " 0 .
5: XIN cannot be used as count source when bit 1 (MR1) of register MR is set to " 1 " and $f(\mathrm{XIN})$ oscillation is stopped.
6: This timer is initialized (initial value $=$ FFFF16) by stop of count source (W52 = "0").
7 : Flag WDF1 is cleared to " 0 " and the next instruction is skipped when the WRST instruction is executed while flag WDF1 = " 1 "
The next instruction is not skipped even when the WRST instruction The next instruction is not skipped
8: Flag WEF is cleared to " 0 " and watchdog timer reset does not occur when the DWDT instruction and WRST instruction are executed continuously.
9: The WEF flag is set to " 1 " at system reset or RAM back-up mode.

Fig. 26 Timer structure (2)

Table 10 Timer related registers

Timer control register PA		at reset :02		at power down :02	W
PA0	Prescaler control bit	0	Stop (state initialized)		

Timer control register W1		at reset : 00002			at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection bit (Note 2)	0		Timer 1 count auto-stop circuit not selected		
		1		Timer 1 count auto-stop circuit selected		
W12	Timer 1 control bit	0		Stop (state retained)		
		1		Operating		
W11	Timer 1 count source selection bits	W11	W10		Count source	
		0	0	Instruction c	STCK)	
		0	1	Prescaler out	RCLK)	
W10		1	0	Timer 5 unde	gnal (T5UDF)	
		1	1	CNTR0 inpu		

Timer control register W2		at reset : 00002			at power down : state retained	R/W TAW2/TW2A
W23	CNTR0 output control bit	0		Timer 1 underflow signal divided by 2 output		
		1		Timer 2 underflow signal divided by 2 output		
W22	Timer 2 control bit	0		Stop (state retained)		
		1		Operating		
W21	Timer 2 count source selection bits	W21			Count source	
		0	0	System clo		
		0	1	Prescaler out	RCLK)	
W20		1	0	Timer 1 und	gnal (T1UDF)	
		1	1	PWM signal	UT)	

Timer control register W3		at reset : 00002			at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection bit (Note 3)	0		Timer 3 count auto-stop circuit not selected		
		1		Timer 3 count auto-stop circuit selected		
W32	Timer 3 control bit	0		Stop (state retained)		
				Operating		
W31	Timer 3 count source selection bits (Note 4)	W31	N30		Count source	
		0	0	PWM signa	UT)	
W30		0	1	Prescaler output (ORCLK)		
		1	0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 1 count start synchronous circuit is selected ($110=$ " 1 ").
3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20=" 1 ").
4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

Timer control register W4		at reset : 00002		at power down : 00002	R/W TAW4/TW4A
W43	CNTR1 output control bit	0	CNTR1 output invalid		
		1	CNTR1 output valid		
W42	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
		1	PWM signal "H" interval expansion function valid		
W41	Timer 4 control bit	0	Stop (state retained)		
		1	Operating		
W40	Timer 4 count source selection bit	0	XIN input		
		1	Prescaler output (ORCLK) divided by 2		

Timer control register W5		at reset : 00002			at power down : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no function, but read/write is enabled.		
		1				
W52	Timer 5 control bit	0		Stop (state initialized)		
		1		Operating		
W51	Timer 5 count value selection bits	W51 W50		Count value		
		0	0	Underflow o	ery 8192 counts	
		0	1	Underflow o	ery 16384 counts	
W50		1	0	Underflow o	ery 32768 counts	
		1	1	Underflow o	ery 65536 counts	

Timer control register W6		at reset : 00002		at power down : state retained	R/W TAW6/TW6A
W63	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W62	Timer LC count source selection bit	0	Bit 4 (T54) of timer 5		
		1	Prescaler output (ORCLK)		
W61	CNTR1 output auto-control circuit selection bit	0	CNTR1 output auto-control circuit not selected		
		1	CNTR1 output auto-control circuit selected		
W60	D7/CNTR0 pin function selection bit (Note 2)	0	D7(I/O)/CNTR0 input		
		1	CNTR0 input/output/D7 (input)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTRO input is valid only when CNTRO input is selected for the timer 1 count source.

(1) Timer control registers

- Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

- Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1 . Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

- Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2 . Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

- Timer control register W3

Register W3 controls the selection of timer 3 count auto-stop circuit, and the count operation and count source of timer 3 . Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

- Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

- Timer control register W5

Register W5 controls the count operation and count source of timer 5. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

- Timer control register W6

Register W6 controls the operation and count source of timer LC, the selection of CNTR1 output auto-control circuit and the D7/ CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.
Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.
Prescaler starts counting after the following process;
(1) set data in prescaler, and
(2) set the bit 0 of register PA to " 1 ."

When a value set in reload register RPS is n, prescaler divides the count source signal by $n+1$ ($n=0$ to 255).
Count source for prescaler is the instruction clock (INSTCK).
Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes " 0 "), new data is loaded from reload register RPS, and count continues (auto-reload function).
The output signal (ORCLK) of prescaler can be used for timer 1,2 , 3,4 and LC count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.
Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.
When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
Timer 1 starts counting after the following process;
(1) set data in timer 1
(2) set count source by bits 0 and 1 of register W1, and
(3) set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes " 0 "), the timer 1 interrupt request flag (T1F) is set to " 1 ," new data is loaded from reload register R1, and count continues (auto-reload function).
INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register 11 to "1."
Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."
Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to " 0 " and setting bit 0 of register W6 to "1".

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.
Timer 2 starts counting after the following process;
(1) set data in timer 2,
(2) select the count source with the bits 0 and 1 of register W2, and
(3) set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes " 0 "), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).
Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to " 1 " and setting bit 0 of register W6 to " 1 ".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.
Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.
When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.
Timer 3 starts counting after the following process;
(1) set data in timer 3
(2) set count source by bits 0 and 1 of register W3, and
(3) set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes " 0 "), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function). INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I 2 to " 1 ."
Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

(6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R 4 H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.
Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.
When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows.
Timer 4 starts counting after the following process;
(1) set data in timer 4
(2) set count source by bit 0 of register W4, and
(3) set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by $n+1$ ($n=0$ to 255).
Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes " 0 "), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).
When bit 3 of register W4 is set to " 1 ", timer 4 reloads data from reload register R4L and R4H alternately each underflow.
Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the " H " interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin.
When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.
In this case, when a value set in reload register R4H is n , timer 4 divides the count source signal by $n+1.5(n=1$ to 255$)$.
When this function is used, set " 1 " or more to reload register R4H. When bit 1 of register W6 is set to " 1 ", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to " 0 "), this function is canceled.
Even when bit 1 of a register W4 is cleared to " 0 " in the " H " interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to " 0 " to stop timer 4 , avoid a timing when timer 4 underflows.

(7) Timer 5 (interrupt function)

Timer 5 is a 16 -bit binary down counter.
Timer 5 starts counting after the following process;
(1) set count value by bits 0 and 1 of register W5, and
(2) set the bit 2 of register W5 to "1."

Count source for timer 5 is the sub-clock input (XCIN).
Once count is started, when timer 5 underflows (the set count value is counted), the timer 5 interrupt request flag (T5F) is set to " 1 ," and count continues.
Bit 4 of timer 5 can be used as the timer LC count source for the LCD clock generating.
When bit 2 of register W5 is cleared to " 0 ", timer 5 is initialized to "FFFF16" and count is stopped.
Timer 5 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 5 underflow occurs at clock operating mode, system returns from the power down state.

(8) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.
Timer LC starts counting after the following process;
(1) set data in timer LC,
(2) select the count source with the bit 2 of register W6, and
(3) set the bit 3 of register W6 to "1."

When a value set in reload register RLC is n , timer LC divides the count source signal by $n+1$ ($n=0$ to 15).
Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes " 0 "), new data is loaded from reload register RLC, and count continues (auto-reload function).
Timer LC underflow signal divided by 2 can be used for the LCD clock.

(9) Timer input/output pin (D7/CNTRO pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.
CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4. When the PWM signal is output from C/CNTR1 pin, set "0" to the output latch of port C.
The D7/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.
When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising waveform of CNTRO input.
When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising waveform of CNTR1 input. Also, when the CNTR1 input is selected, the output of port C is invalid (high-impedance state).

(10) Timer interrupt request flags (T1F, T2F, T3F, T4F, T5F)

Each timer interrupt request flag is set to " 1 " when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4, SNZT5).
Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.
An interrupt request flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(11) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INTO pin and INT1 pin, and can start the timer count operation.
Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to " 1 " and the control by INTO pin input can be performed.
Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I 2 to " 1 " and the control by INT1 pin input can be performed.
When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INTO pin or INT1 pin.
The valid waveform of INTO pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.
Once set, the count start synchronous circuit is cleared by clearing the bit I10 or 120 to " 0 " or reset.
However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

(12) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.
The count auto-stop cicuit is valid by setting the bit 3 of register W1 to " 1 ". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.
This function is valid only when the timer 1 count start synchronous circuit is selected.
Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.
The count auto-stop cicuit is valid by setting the bit 3 of register W3 to " 1 ". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.
This function is valid only when the timer 3 count start synchronous circuit is selected.

(13) Precautions

Note the following for the use of timers.

- Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.
Stop counting and then execute the TPSAB instruction to set prescaler data.

- Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

- Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.
-Writing to the timer
Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.

- Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1 , timer 3 or timer 4 is operating, avoid a timing when timer 1 , timer 3 or timer 4 underflows.

- Timer 4

Avoid a timing when timer 4 underflows to stop timer 4. When " H " interval extension function of the PWM signal is set to be "valid", set " 1 " or more to reload register R4H.

- Timer 5

Stop timer 5 counting to change its count source.

- Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

- CNTR1 output: invalid (W43 = "0")

- CNTR1 output: valid (W43 = "1")

PWM signal " H " interval extension function: invalid (W42 = " 0 ")

- CNTR1 output: valid (W43 = "1")

PWM signal "H" interval extension function: valid (W42 = "1") (Note)

Note: At PWM signal "H" interval extension function: valid, set "0116" or more to reload register R4H.

Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

CNTR1 output auto-control circuit by timer 3 is selected.

- CNTR1 output: valid (W43 = " 1 ")

CNTR1 output auto-control circuit selected (W61 = "1")

- CNTR1 output auto-control function

(1) When the CNTR1 output auto-control function is set to be invalid while the CNTR1 output is invalid, the CNTR1 output invalid state is retained.
(2) When the CNTR1 output auto-control function is set to be invalid while the CNTR1 output is valid, the CNTR1 output valid state is retained.
(3) When timer 3 is stopped, the CNTR1 output auto-control function becomes invalid.

Note: When the PWM signal is output from C/CNTR1 pin, set the output latch of port C to " 0 ".

Fig. 28 CNTR1 output auto-control function by timer 3
-Waveform extension function of CNTR1 output " H " interval: Invalid (W42 = "0"),
CNTR1 output: valid (W43 = "1"),
Count source: XIN input selected (W40 = " 0 "),
Reload register R4L: "0316"
Reload register R4H: "0216"

Notes 1: In order to stop timer 4 at CNTR1 output valid (W43 = "1"), avoid a timing when timer 4 underflows.
If these timings overlap, a hazard may occur in a CNTR1 output waveform.
2: At CNTR1 output valid, timer 4 stops after "H" interval of PWM signal set by reload register R4H is output.
Fig. 29 Timer 4 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to " 1 ."
If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to " 1 ," and the $\overline{\text { RESET }}$ pin outputs " L " level to reset the microcomputer.
Execute the WRST instruction at each period of less than 65534 machine cycle by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to " 1 " after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to " 0 " and the watchdog timer function is invalid.
The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is " 1 ", the WDF1 flag is cleared to " 0 " and the next instruction is skipped.
When the WRST instruction is executed while the WDF1 flag is " 0 ", the next instruction is not skipped.
The skip function of the WRST instruction can be used even when the watchdog timer function is invalid

Value of 16-bit timer (WDT)

Reset released

WRST instruction executed (skip executed)
(1) After system is released from reset (= after program is started), timer WDT starts count down.
(2) When timer WDT underflow occurs, WDF1 flag is set to "1."
(3) When the WRST instruction is executed, WDF1 flag is cleared to " 0 ," the next instruction is skipped.
(4) When timer WDT underflow occurs while WDF1 flag is " 1 ," WDF2 flag is set to " 1 " and the watchdog reset signal is output.
(5) The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 30 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at a cycle of less than 65534 machine cycles with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 31)
The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.
When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the system enters the power down state (refer to Figure 32).
The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, stop the watchdog timer function with the DWDT instruction and the WRST instruction continuously every system is returned from the power down.

\vdots	
WRST	;WDF1 flag cleared
\vdots	
DI	
DWDT	; Watchdog timer function enabled/disabled
WRST	;WEF and WDF1 flags cleared
\vdots	

Fig. 31 Program example to start/stop watchdog timer
!
WRST ; WDF1 flag cleared

NOP
DI ; Interrupt disabled

EPOF ; POF instruction enabled
POF
\downarrow
Oscillation stop :

Fig. 32 Program example to enter the mode when using the watchdog timer

A/D CONVERTER (Comparator)

The 4524 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: $\pm 2 \mathrm{LSB}$
	Differential non-linearity error: $\pm 0.9 \mathrm{LSB}$
Conversion speed	$31 \mu \mathrm{~s}$ (High-speed through-mode at 6.0 MHz oscillation frequency)
Analog input pin	8

Fig. 33 A/D conversion circuit structure

Table 12 A/D control registers

A/D control register Q1		at reset : 00002				at power down : state retained	R/W TAQ1/TQ1A
Q13	A/D operation mode selection bit	A/D conversion mode					
		Comparator mode					
Q12	Analog input pin selection bits	Q12	Q11	Q10		Analog input pins	
		0	0	0	Aino		
		0	0	1	AIN1		
Q11		0	1	0	AIN2		
		0	1	1	AIN3		
		1	0	0	AIN4		
Q10		1	0	1	AIN5		
		1	1	0	AIn6		
		1	1	1	AIN7		

A/D control register Q2		at reset : 00002		at power down : state retained	R/W
Q23	P23/AIN3 pin function selection bit	0	P23		
		1	AIN3		
Q22	P22/AIN2 pin function selection bit	0	P22		
		1	AIN2		
Q21	P21/AIN1 pin function selection bit	0	P21		
		1	AIN1		
Q20	P20/AIN0 pin function selection bit	0	P20		
		1	AINo		

\left.| A/D control register Q3 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :--- | :--- | :--- |
| R TAQ3/TQ3A | | | | |$\right]$

Note: "R" represents read enabled, and "W" represents write enabled.

(1) A/D control register

- A/D control register Q1

Register Q1 controls the selection of A/D operation mode and the selection of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

- A/D control register Q2

Register Q2 controls the selection of P2o/AIN0-P23/AIN3. Set the contents of this register through register A with the TQ2A instruction. The TAQ2 instruction can be used to transfer the contents of register Q2 to register A.

- A/D control register Q3

Register Q3 controls the selection of P3o/AIN4-P33/AIN7. Set the contents of this register through register A with the TQ3A instruction. The TAQ3 instruction can be used to transfer the contents of register Q3 to register A.

(2) Operating at A/D conversion mode

The A / D conversion mode is set by setting the bit 3 of register Q1 to " 0 ."

(3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A / D conversion.
When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

(4) A / D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to " 1 " when A / D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.
The ADF flag is cleared to " 0 " when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:
(1) When the A / D conversion starts, the register $A D$ is cleared to "00016."
(2) Next, the topmost bit of the register AD is set to "1," and the comparison voltage V ref is compared with the analog input voltage Vin.
(3) When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref $>$ VIN, it is cleared to " 0 ."
The 4524 Group repeats this operation to the lowermost bit of the register $A D$ to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (31μ s when $f($ (XIN $)=6.0$ MHz in high-speed through mode) from the start, and the conversion result is stored in the register $A D$. An A/D interrupt activated condition is satisfied and the ADF flag is set to " 1 " as soon as A/D conversion completes (Figure 34).

Table 13 Change of successive comparison register AD during A/D conversion

*1: 1st comparison result
*3: 3rd comparison result
*9: 9th comparison result
*2: 2nd comparison result
*8: 8th comparison result
*A: 10th comparison result

(7) A/D conversion timing chart

Figure 34 shows the A / D conversion timing chart.

Fig. 34 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P3o/AIN4 pin is A/D converted, and the highorder 4 bits of the converted data are stored in address $M(Z, X, Y)$ $=(0,0,0)$, the middle-order 4 bits in address $M(Z, X, Y)=(0,0,1)$, and the low-order 2 bits in address $M(Z, X, Y)=(0,0,2)$ of RAM. The A / D interrupt is not used in this example.
(1) Select the AIN4 pin function with the bit 0 of the register Q3. Select the AIN4 pin function and A/D conversion mode with the register Q1 (refer to Figure 35).
(2) Execute the ADST instruction and start A/D conversion.
(3) Examine the state of ADF flag with the SNZAD instruction to determine the end of A / D conversion.
(4) Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
(5) Transfer the contents of register A to $M(Z, X, Y)=(0,0,2)$.
(6) Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
(7) Transfer the contents of register A to $\mathrm{M}(Z, \mathrm{X}, \mathrm{Y})=(0,0,1)$.
(8) Transfer the contents of register B to register A, and then, store into $\mathrm{M}(\mathrm{Z}, \mathrm{X}, \mathrm{Y})=(0,0,0)$.

Fig. 35 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."
Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.
When changing from A / D conversion mode to comparator mode, the result of A / D conversion (register $A D$) is undefined.
However, because the comparator register is separated from register $A D$, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.
If the value in the comparator register is n, the logic value of comparison voltage Vref generated by the built-in DA converter can be determined from the following formula:

$$
\left[\begin{array}{l}
\text { Logic value of comparison voltage Vref —— } \\
\text { Vref }=\frac{\text { VDD }}{256} \times n \\
\mathrm{n}: \text { The value of register AD }(\mathrm{n}=0 \text { to } 255)
\end{array}\right.
$$

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.
The ADF flag is cleared to " 0 " when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.
The comparator stops 8 machine cycles after it has started ($4 \mu \mathrm{~s}$ at $f(X I N)=6.0 \mathrm{MHz}$ in high-speed through mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A / D conversion

- TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register $A D$ is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is " 0 ."

- Operation mode of A / D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A / D converter with the bit 3 of register Q1 while the A/D converter is operating.
Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A / D conversion mode.
The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

Fig. 36 Comparator operation timing chart

(14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 37).

- Relative accuracy
(1) Zero transition voltage (VOT)

This means an analog input voltage when the actual A/D conversion output data changes from " 0 " to "1."
(2) Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A / D conversion output data changes from "1023" to "1022."
(3) Linearity error

This means a deviation from the line between Vot and VFST of a converted value between Vot and VFST.
(4) Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VOT and VFST by 1 LSB at the relative accuracy.

Vn: Analog input voltage when the output data changes from " n " to " $n+1 "$ ($n=0$ to 1022)
-1LSB at relative accuracy $\rightarrow \frac{\text { VFST-V0T }}{1022}(\mathrm{~V})$
-1LSB at absolute accuracy $\rightarrow \frac{\text { VDD }}{1024}(\mathrm{~V})$

- Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Fig. 37 Definition of A/D conversion accuracy

SERIAL I/O

The 4524 Group has a built-in clock synchronous serial I/O which can serially transmit or receive 8-bit data.
Serial I/O consists of;

- serial I/O register SI
- serial I/O control register J1
- serial I/O transmit/receive completion flag (SIOF)
- serial I/O counter

Registers A and B are used to perform data transfer with internal CPU, and the serial I/O pins are used for external data transfer. The pin functions of the serial I/O pins can be set with the register J1.

Table 14 Serial I/O pins

Pin	Pin function when selecting serial I/O
D6/ScK	Clock I/O (SCK)
D5/Sout	Serial data output (Sout)
D4/SIN	Serial data input (SIN)

Note: Even when the Sck, Sout, Sin pin functions are used, the input of D6, D5, D4 are valid

Fig. 38 Serial I/O structure
Table 15 Serial I/O control register

Serial I/O control register J1		at reset : 00002			at power down : state retained	R/W TAJ1/TJ1A
	Serial I/O synchronous clock selection bits	J13	J12		Synchronous clock	
J13		0	0	Instruction	TCK) divided by 8	
J12		0	1	Instruction c	STCK) divided by 4	
		1	0	Instruction c	STCK) divided by 2	
		1	1	External clock	nput)	
J11	Serial I/O port function selection bits	J11	J10	Port function		
		0	0	D6, D5, D4 s	Sck, Sout, Sin not selected	
		0	1	Sck, Sout,	ed/D6, D5, Sin not selected	
J10		1	0	Sck, D5, Sin selected/D6, Sout, D4 not selected		
		1	1	SCK, Sout, Sin selected/D6, D5, D4 not selected		

Note: "R" represents read enabled, and "W" represents write enabled.

Fig. 39 Serial I/O register state when transfer

(1) Serial I/O register SI

Serial I/O register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI , and the contents of register B is transmitted to the high-order 4 bits of register SI . During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI , and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).
When register SI is used as a work register without using serial I/O, do not select the Sck pin.

(2) Serial I/O transmit/receive completion flag

 (SIOF)Serial I/O transmit/receive completion flag (SIOF) is set to " 1 " when serial data transmit or receive operation completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.
The SIOF flag is cleared to " 0 " when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(3) Serial I/O start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to " 0 " and then serial I/O transmission/reception is started.

(4) Serial I/O control register J1

Register J1 controls the synchronous clock, D6/Scк, D5/Sout and D4/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.
(5) How to use serial I/O

Figure 40 shows the serial I/O connection example. Serial I/O interrupt is not used in this example. In the actual wiring, pull up the
wiring between each pin with a resistor. Figure 40 shows the data transfer timing and Table 16 shows the data transfer sequence.

Fig. 40 Serial I/O connection example

Mo-M7: Contents of master serial I/O register
$\mathrm{S}_{0}-\mathrm{S}_{7}$: Contents of slave serial I/O register
Rising of Scк: Serial input
Falling of Sск: Serial output
Fig. 41 Timing of serial I/O data transfer

Table 16 Processing sequence of data transfer from master to slave

Master (transmission)	Slave (reception)
[Initial setting] - Setting the serial I/O mode register J1 and interrupt control register V2 shown in Figure 40.	[Initial setting] - Setting serial I/O mode register J1, and interrupt control register V2 shown in Figure 40.
T $\overline{\mathrm{J1}} \overline{\mathrm{an}} \overline{\mathrm{d}} \mathrm{T} \overline{2 \mathrm{~A}}$ instructions	$\overline{\mathrm{T}} \overline{11 \mathrm{~A}}$ and $\overline{\mathrm{TV}} \overline{2 \mathrm{~A}}$ instructions
- Setting the port received the reception enable signal (SRDY) to the input mode. (Port D3 is used in this example)	- Setting the port transmitted the reception enable signal (SRDY) and outputting " H " level (reception impossible). (Port D3 is used in this example)
S $\overline{\mathrm{D}}$ instruction	SD instruction
* [Transmission enable state]	*[Reception enable state]
- Storing transmission data to serial I/O register SI.	- The SIOF flag is cleared to "0."
TSIAB instruction	$\overline{\text { SST instruction }}$
	- "L" level (reception possible) is output from port D3.
	RD instruction
[Transmission]	[Reception]
-Check port D3 is "L" level.	
SZD instruction	
- Serial transfer starts.	
SST instruction	
-Check transmission completes.	- Check reception completes.
SNZSI instruction	SNZSI instruction
-Wait (timing when continuously transferring)	- "H" level is output from port D3.
	SD instruction
	[Data processing]

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *.
When an external clock is selected as a synchronous clock, the clock is not controlled internally. Control the clock externally because serial transmit/receive is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the SIOF flag is set to " 1 " when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

LCD FUNCTION

The 4524 Group has an LCD (Liquid Crystal Display) controller/ driver. When the proper voltage is applied to LCD power supply input pins (VLC1-VLC3) and data are set in timer control register (W6), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.
4 common signal output pins and 20 segment signal output pins can be used to drive the LCD. By using these pins, up to 80 segments (when $1 / 4$ duty and $1 / 3$ bias are selected) can be controlled to display. The LCD power input pins (VLC1-VLC3) are also used as pins SEG0-SEG2. When SEGo-SEG2. The internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- $1 / 2$ duty, $1 / 2$ bias
- $1 / 3$ duty, $1 / 3$ bias
- $1 / 4$ duty, $1 / 3$ bias

Table 17 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
$1 / 2$	40 segments	COM0, COM1 (Note)
$1 / 3$	60 segments	COM0-COM2 (Note)
$1 / 4$	80 segments	COM0-COM3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W62), timer LC control bit (W63), and timer LC. Accordingly, the LCD clock frequency (F) is obtained by the following formula. Numbers (1) to (3) shown below the formula correspond to numbers in Figure 42, respectively.

- When using the prescaler output (ORCLK) as timer LC count source (W62="1")

- When using the bit 4 of timer 5 as timer LC count source (W62="0")

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame period $=\frac{\mathrm{n}}{\mathrm{F}}(\mathrm{s})$
$[F:$ LCD clock frequency $]$ 1/n: Duty

Note: Count source is stopped by setting "0" to this bit.

Fig. 42 LCD clock control circuit structure

Fig. 43 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When " 1 " is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When " 1 " is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3l and the display pixel at the cross section turns on
When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

Z	1											
X	12				13				14			
$Y \quad$ Bits	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG0	SEG0	SEG0	SEG0	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12				
13	SEG5	SEG5	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13				
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14				
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15				
COM	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0

Note: The area marked "__ " is not the LCD display RAM.

Fig. 44 LCD RAM map

Table 18 LCD control registers

LCD control register L1		at reset : 00002			at power down : state retained	R/W TAL $1 /$ TL 1 A
L13	Internal dividing resistor for LCD power supply selection bit (Note 2)	0		$2 r \times 3,2 r \times 2$		
		1		$r \times 3, r \times 2$		
L12	LCD control bit	0		Off		
		1		On		
L11	LCD duty and bias selection bits	L11	L10	Duty	Bi	
		0	0		Not available	
		0	1	1/2	$1 /$	
L10		1	0	1/3	$1 /$	
		1	1	1/4		

LCD control register L2		at reset : 11112		at power down : state retained	$\begin{gathered} \mathrm{W} \\ \mathrm{TL2A} \end{gathered}$
L23	VLC3/SEG0 pin function switch bit (Note 3)	0	SEG0		
		1	VLC3		
L22	VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1		
		1	VLC2		
L21	VLC1/SEG2 pin function switch bit (Note 4)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power supply control bit	0	Internal dividing resistor valid		
		1	Internal dividing resistor invalid		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: "r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and " r multiplied by 2 " is used at $1 / 2$ bias.
3: VLC3 is connected to VDD internally when SEG0 pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

1/2 Duty, $1 / 2$ Bias: When writing (XX10)2 to address $\mathrm{M}(1,14,8)$ in RAM.

$1 / 3$ Duty, $1 / 3$ Bias: When writing (X101)2 to address $M(1,14,8)$ in RAM.

1/4 Duty, $1 / 3$ Bias: When writing (1010)2 to address $M(1,14,8)$ in RAM.

Fig. 45 LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power circuit suitable for the LCD panel. The LCD control circuit structure is fixed by the following setting.
(1) Set the control of internal dividing resistor by bit 0 of register L2.
(2) Select the internal dividing resistor by bit 3 of register L1.
(3) Select the bias condition by bits 0 and 1 of register L1.

- Internal dividing resistor

The 4524 Group has the internal dividing resistor for LCD power supply.
When bit 0 of register L 2 is set to " 0 ", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to " 0 ", the internal dividing resistor is turned off.
The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- $L 13=$ " 0 ", $1 / 3$ bias used: $2 r \times 3=6 r$
- $\mathrm{L} 13=$ " 0 ", $1 / 2$ bias used: $2 r \times 2=4 r$
- L13 = "1", $1 / 3$ bias used: $r \times 3=3 r$
- L13 = " 1 ", $1 / 2$ bias used: $r \times 2=2 r$
- Vlc3/SEGo pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.
When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.
When the SEGo pin function is selected, VLC3 is connected to VDD internally.

- VLC2/SEG1, VLC1/SEG2 pin

The selection of VLC2/SEG1 pin function is controlled with the bit 2 of register L2.
The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.
When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of $0<$ VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at $1 / 2$ bias.
When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin has the same electric potential at $1 / 2$ bias. When SEG1 and SEG2 pin function is selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividingg voltage.

Fig. 46 LCD power source circuit example (1/3 bias condition selected)

RESET FUNCTION

System reset is performed by applying " L " level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.
Then when " H " level is applied to RESET pin, program starts from address 0 in page 0 .

Note: The number of clock cycles depends on the internal state of the microcomputer when reset is performed.

Fig. 47 Reset release timing

Fig. 48 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to 100μ s or less. If the rising time ex-
ceeds $100 \mu \mathrm{~s}$, connect a capacitor between the $\overline{\text { RESET }}$ pin and VSS at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Notes 1: $--\mid<--$ - This symbol represents a parasitic diode.
2: Applied potential to RESET pin must be VdD or less.
3: Keep the value of supply voltage to the minimum value or more of the recommended operating conditions.

Fig. 49 Structure of reset pin and its peripherals, and power-on reset operation

Table 19 Port state at reset

Name	Function	State
D0-D3	D0-D3	High-impedance (Notes 1, 2)
D4/Sin, D5/Sout, D6/Sck	D4-D6	High-impedance (Notes 1, 2)
D7/CNTR0	D7	High-impedance (Notes 1, 2)
D8/INT0, D9/INT1	D8, D9	High-impedance (Note 1)
P00-P03	P00-P03	High-impedance (Notes 1, 2, 3)
P10-P13	P10-P13	High-impedance (Notes 1, 2, 3)
P20/AIN0-P23/AIN3	P20-P23	High-impedance (Note 1)
P30/AIN4-P33/AIN7	P30-P33	High-impedance (Note 1)
P40-P43	P40-P43	High-impedance (Notes 1, 2)
C/CNTR1	C	"L" (Vss) level

Notes 1: Output latch is set to "1."
2: Output structure is N -channel open-drain.
3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 50 and 51 show internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 50 are undefined, so set the initial value to them.

Fig. 50 Internal state at reset

- Key-on wakeup control register K0	0	0	0		0
- Key-on wakeup control register K1	0	0	0		0
- Key-on wakeup control register K2	0	0	0		0
- Pull-up control register PUO	0	0	0		0
- Pull-up control register PU1	0	0	0		0
- Port output structure control register FR0	0	0	0		0
- Port output structure control register FR1	0	0	0		
- Port output structure control register FR2	0	0	0		
- Port output structure control register FR3	0	0	0		
- Carry flag (CY)					0
- Register A	0	0	0		
- Register B	0	0	0		
- Register D			\times		
- Register E		\times	\times		
- Register X	0	0	0		
- Register Y	0	0	0		
- Register Z			\times		
- Stack pointer (SP)			1		
- Operation source clock.	lator	(op	era		
- Ceramic resonator circuit			per		
- RC oscillation circuit.					
- Quarts-crystal oscillat					

" \times " represents undefined.
Fig. 51 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

The voltage drop detection circuit is valid when CPU is active while the VDCE pin is "H".
Even after system goes into the power down mode, the voltage drop detection circuit is also valid with the SVDE instruction.
Execution of SVDE instruction is valid only at once.
In order to release the execution of the SVDE instruction, system reset is not required.

Fig. 52 Voltage drop detection reset circuit

Note: Detection voltage of voltage drop detection circuit does not have hysteresis.
Fig. 53 Voltage drop detection circuit operation waveform
Table 20 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At power down (SVDE instruction is not executed)	At power down (SVDE instruction is executed)
"L"	Invalid	Invalid	
"H"	Invalid	Invalid	Valid

- Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 54);
supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

ig. 54 Vdd and Vrst

POWER DOWN FUNCTION

The 4524 Group has 2-type power down functions. System enters into each power down state by executing the following instructions.

- Clock operating mode \qquad EPOF and POF instructions
- RAM back-up mode \qquad EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-Xcout oscillation
- LCD display
- Timer 5

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 5 underflow occurs in the power down mode. In either case, the CPU starts executing the program from address 0 in page 0 . In this case, the P flag is " 1 ."

(4) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- reset pulse is input to $\overline{\text { RESET }}$ pin,
- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is " 0 ."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T5F flag.

Table 21 Functions and states retained at power down

Function	Power down mode	
	Clock operating	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	\times	\times
Contents of RAM	0	0
Interrupt control registers V1, V2	\times	\times
Interrupt control registers I1 to I3	0	0
Selected oscillation circuit	0	0
Clock control register MR	0	0
Timer 1 to timer 4 functions	(Note 3)	(Note 3)
Timer 5 function	\bigcirc	\bigcirc
Timer LC function	\bigcirc	(Note 3)
Watchdog timer function	\times (Note 4)	$\times($ Note 4)
Timer control registers PA, W4	\times	\times
Timer control registers W1 to W3, W5, W6	0	0
Serial I/O function	\times	\times
Serial I/O control register J1	0	0
A/D function	\times	\times
A/D control registers Q1 to Q3	0	0
LCD display function	0	(Note 5)
LCD control registers L1, L2	\bigcirc	\bigcirc
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	\bigcirc	\bigcirc
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers FR0 to FR3	O	O
External interrupt request flags (EXFO, EXF1)	\times	\times
Timer interrupt request flags (T1F to T4F)	(Note 3)	(Note 3)
Timer interrupt request flag (T5F)	\bigcirc	0
A/D conversion completion flag (ADF)	\times	\times
Serial I/O transmit/receive completion flag SIOF	\times	\times
Interrupt enable flag (INTE)	\times	\times
Watchdog timer flags (WDF1, WDF2)	\times (Note 4)	\times (Note 4)
Watchdog timer enable flag (WEF)	\times (Note 4)	\times (Note 4)

Notes 1:" O " represents that the function can be retained, and " X " represents that the function is initialized.
Registers and flags other than the above are undefined at power down, and set an initial value after returning.
2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at power down.
3: The state of the timer is undefined.
4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
5: LCD is turned off.
6: When the SVDE instruction is executed and " H " level is applied to the VDCE pin, this function is valid at power down.
7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/ CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 5 interrupt request flag (T5F) is used to return from the clock operating mode.
An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.
Table 22 shows the return condition for each return source.

(7) Control registers

- Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TKOA instruction. In addition, the TAKO instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1

Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K2

Register K2 controls the INT0 and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A .

- Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPUOA instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

- Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

- External interrupt control register I1

Register 11 controls the valid waveform of the external 0 interrupt, the input control of INT0 pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAl1 instruction can be used to transfer the contents of register $I 1$ to register A.

- External interrupt control register 12

Register 12 controls the valid waveform of the external 1 interrupt, the input control of INT1 pin and the return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 22 Return source and return condition

Return source		Return condition	Remarks
$\begin{array}{\|c} \overline{\widetilde{0}} \\ \stackrel{\rightharpoonup}{\overline{0}} \end{array}$	Ports P00-P03 Ports P10-P13	Return by an external "L" level input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to " H " level before going into the power down state.
	INT0 pin INT1 pin	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L"). When the return signal is input, the interrupt request flag (EXFO, EXF1) is not set to " 1 ".	Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
Timer 5 interrupt request flag (T5F)		Return by timer 5 underflow or by setting T5F to " 1 ". It can be used in the clock operating mode.	Clear T5F with the SNZT5 instruction before system enters into the power down state. When system enters into the power down state while T5F is "1", system returns from the state immediately because it is recognized as return condition.

Stabilizing time @: Microcomputer starts its operation after counting the on-chip oscillator clock 5400 to 5424 times.
Stabilizing time (b): In high-speed through-mode, microcomputer starts its operation after counting the f(RING) 675 times. In high-speed/2 mode, microcomputer starts its operation after counting the $f($ RING $) 1350$ times. In high-speed/4 mode, microcomputer starts its operation after counting the f(RING) 2700 times. In high-speed/8 mode, microcomputer starts its operation after counting the $f($ RING $) 5400$ times,
: In high-speed through-mode, microcomputer starts its operation after counting the $f($ XIN $) 675$ times. In high-speed/2 mode, microcomputer starts its operation after counting the $\mathrm{f}(\mathrm{XIN}) 1350$ times In high-speed/4 mode, microcomputer starts its operation after counting the $f(X \mathbb{N}) 2700$ times
In high-speed/8 mode, microcomputer starts its operation after counting the $f(X I N) 5400$ times

Stabilizing time (d): In high-speed through-mode, microcomputer starts its operation after counting the $\mathrm{f}(\mathrm{XIN}) 21$ times. In high-speed/2 mode, microcomputer starts its operation after counting the $\mathrm{f}($ XIN $) 42$ times. In high-speed/4 mode, microcomputer starts its operation after counting the $\mathrm{f}($ XIN $) 84$ times. In high-speed/8 mode, microcomputer starts its operation after counting the $f(\mathrm{XIN}) 168$ times.
Stabilizing time (e): In low-speed through-mode, microcomputer starts its operation after counting the $f(\mathrm{XCIN}) 675$ times. In low-speed/2 mode, microcomputer starts its operation after counting the $f(\mathrm{XCIN}) 1350$ times In low-speed/4 mode, microcomputer starts its operation after counting the $f(\mathrm{XCIN}) 2700$ times. In low-speed/8 mode, microcomputer starts its operation after counting the $\mathrm{f}(\mathrm{XCIN}) 5400$ times.

Notes 1: Continuous execution of the EPOF instruction and the POF instruction is required to go into the clock operating state Continuous execution of the EPOF instruction and the POF2 instruction is required to go into the RAM back-up stat
2. Through the ceramic resonator is operating, the on-chip oscillator clock is selected as the operation source clock

3: The oscillator clock corresponding to each instruction is selected as the operation source clock, and the on-chip oscillator is stopped.
4: The main clock ($f(X \operatorname{XIN})$ or $f($ RING $)$) or sub-clock ($f(\mathrm{XCIN})$) is selected for operation source clock by the bit 0 of clock control register MR.
5: The sub-clock (quartz-crystal oscillation) is operating except in state F
Fig. 55 State transition

Fig. 56 Set source and clear source of the P flag

Fig. 57 Start condition identified example using the SNZP instruction

Table 23 Key-on wakeup control register, pull-up control register and interrupt control register

Key-on wakeup control register K0		at reset:00002		at power down : state retained
K03				

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	R/W TAK1/
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup used		
		1	Key-on wakeup not used		
K12	Port P12 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P11 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K10	Port P10 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K2		R/W KAK2/		
K23	INT1 pin K22 return condition selection bit	INT1 pin key-on wakeup control bit	0	Return by level
	INT0 pin return condition selection bit	1	Return by edge	
K20	INT0 pin key-on wakeup control bit	1	Key-on wakeup not used	

Note: " R " represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU0/ } \end{gathered}$
PU03	Port Р03 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU02	Port P02 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU00	Port P0o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
PU13	Port P13 pull-up transistor control bit	0	Pull-up transistor OFF		
	PU12	Port P12 pull-up transistor control bit	0	Pull-up transistor ON	
PU11	Port P11 pull-up transistor control bit	1	Pull-up transistor OFF		
PU10	Port P10 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction)		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INTO pin Timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

| Interrupt control register I2 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | \(\left.\begin{array}{c}R/W

TAI2/TI2A\end{array}\right]\)

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $\mathrm{I} 12, \mathrm{I} 13 \mathrm{I} 22$ and I 23 are changed, the external interrupt request flag (EXFO, EXF1) may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- Ceramic resonator
- RC oscillation circuit
- Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.
Figure 58 shows the structure of the clock control circuit. The 4524 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4524 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.
The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

Fig. 58 Clock control circuit structure

(1) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this MCU.
After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.
When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction is valid only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.
Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, this MCU operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock ($f($ XIN $)$) without using the ceramic resonator or the RC oscillation, connect XIN pin to VSs and leave Xout pin open (Figure 60).
The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that margin of frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the main clock ($f(\mathrm{XIN})$), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and Xout (Figure 61).

(4) RC oscillation

When the RC oscillation is used as the main clock ($f(\mathrm{XIN})$), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 62).
The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

Fig. 59 Switch to ceramic oscillation/RC oscillation

Fig. 60 Handling of XIN and Xout when operating on-chip oscillator

Fig. 61 Ceramic resonator external circuit

Fig. 62 External RC oscillation circuit

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIn pin to the clock source and leave Xout pin open. Then, execute the CMCK instruction (Figure 63).
Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down function (POF or POF2 instruction) cannot be used when using the external clock.

(6) Sub-clock generating circuit $f\left(X_{\text {cIN }}\right)$

The quartz-crystal oscillator can be used for the sub-clock signal $f(X C I N)$. Connect a quartz-crystal oscillator and this external circuit to pins XCIN and Xcout at the shortest distance. A feedback resistor is built in between pins XCIN and Xcout (Figure 64).

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

Table 24 Clock control register MR

Fig. 63 External clock input circuit

Fig. 64 External quartz-crystal circuit

Clock control register MR		at reset : 11002		at power down : state retained	$\begin{aligned} & \text { R/W } \\ & \text { TAMR/ } \end{aligned}$
MR3	Operation mode selection bits	MR3 ${ }^{\text {MR2 }}$		Operation mode	
		0	Through mo	ncy not divided)	
MR2		0	Frequency div	mode	
		1	Frequency div	mode	
		$1{ }^{1}$	Frequency divi	mode	
MR1	Main clock oscillation circuit control bit	0	Main clock	nabled	
		1	Main clock	top	
MRo	System clock selection bit	0	Main clock	(RING))	
		1	Sub-clock (f		

Note : "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

1.Mask ROM Order Confirmation Form*
2.Mark Specification Form*
3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
*For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.1 \mu \mathrm{~F}$) between pins VDD and VSs at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as Vpp pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about $5 \mathrm{k} \Omega$ (connect this resistor to CNVss/ VPP pin as close as possible).
(2) Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(3) Register initial values 2

The initial value of the following registers are undefined at power down. After system is returned from power down, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)
(4) Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.
(5) Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.
Stop counting and then execute the TPSAB instruction to set prescaler data.

(6) Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.
(7) Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.
(8) Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.
(9) Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload regiser R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1 , timer 3 or timer 4 underflows.

(0) Timer 4

Avoid a timing when timer 4 underflows to stop timer 4.
When " H " interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

(4) Timer 5

Stop timer 5 counting to change its count source.
12 Timer input/output pin
Set the port C output latch to " 0 " to output the PWM signal from
C/CNTR pin. C/CNTR pin.
(13)Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction, the WRST instruction continuously, and clear the WEF flag to " 0 ".
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the WRST instruction before system enters into the power down state.
(14) Multifunction
- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input of ports D4-D6 can be used even when SIN, Sout and SCK pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin are selected.
- Be careful that the input of port D7 can be used even when output of CNTR0 pin are selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin are selected.
(15) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.
(16) D8/INT0 pin
(1) Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register I1 in program, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 65(1) and then, change the bit 3 of register 11 .
In addition, execute the SNZO instruction to clear the EXF0 flag to " 0 " after executing at least one instruction (refer to Figure 65(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 653).

LA	4	; (XXX02)
TV1A		; The SNZ0 instruction is valid1)
LA	8	; (1×××2)
TI1A		; Control of INT0 pin input is changed
NOP	 (2)
SNZ0		; The SNZO instruction is executed (EXF0 flag cleared)
NOP		.. 3

Fig. 65 External 0 interrupt program example-1
(2) Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared, the power down function is selected and the input of INTO pin is disabled, be careful about the following notes.

- When the input of INTO pin is disabled, invalidate the key-on wakeup function of INT0 pin (register K20 = "0") before system goes into the power down mode. (refer to Figure 66(1).

Fig. 66 External 0 interrupt program example-2

3 Note on bit 2 of register 11
When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register I1 in program, be careful about the following notes.

- Depending on the input state of the D8/INT0 pin, the external 0 interrupt request flag (EXFO) may be set when the bit 2 of register 11 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to " 0 " (refer to Figure 671) and then, change the bit 2 of register IL .
In addition, execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction (refer to Figure 67(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZO instruction (refer to Figure 673).

Fig. 67 External 0 interrupt program example-3

(1) Dg/INT1 pin

(1) Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I 2 in program, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register 12 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 68(1) and then, change the bit 3 of register I 2 .
In addition, execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction (refer to Figure 68(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 683).

:	
LA 4	; ($\times \times \times \times 2$)
TV1A	; The SNZ1 instruction is valid1
LA 8	; (1×××2)
TI2A	; Control of INT1 pin input is changed
NOP	.. (2)
SNZ1	; The SNZ1 instruction is executed (EXF1 flag cleared)
NOP	... (3)
:	
\times : these bits are not used here.	

Fig. 68 External 1 interrupt program example-1
(3) Note [2] on bit 3 of register I2

When the bit 3 of register I2 is cleared, the power down function is selected and the input of INT1 pin is disabled, be careful about the following notes.

- When the input of INT1 pin is disabled, invalidate the key-on wakeup function of INT1 pin (register K22 = " 0 ") before system goes into the power down mode. (refer to Figure 69(1).

\vdots	
LA	0

Fig. 69 External 1 interrupt program example-2
(3) Note on bit 2 of register I2

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I 2 in program, be careful about the following notes.

- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register 12 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 70(1) and then, change the bit 2 of register I 2.
In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 70(2).
Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 703).

Fig. 70 External 1 interrupt program example-3
(18)A/D converter-1

- When the TALA instruction is executed, the low-order 2 bits of register $A D$ is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is " 0 ."
- Do not change the operating mode (both A/D conversion mode and comparator mode) of A / D converter with the bit 3 of register Q1 while the A / D converter is operating.
- Clear the bit 2 of register V2 to " 0 " to change the operating mode of the A / D converter from the comparator mode to A / D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A / D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

LA 8	; (X0X×2)
TV2A	; The SNZAD instruction is valid (1)
LA 0	; (0XXX2)
TQ1A	Operation mode of A / D converter is changed from comparator mode to A / D conversion mode.
SNZAD	
NOP	
:	hese bits are not used here.

Fig. 71 A/D converter program example-3

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A / D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor ($0.01 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$) to analog input pins (Figure 72).
When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 73. In addition, test the application products sufficiently.

Apply the voltage withiin the specifications to an analog input pin.
Fig. 72 Analog input external circuit example-1

Fig. 73 Analog input external circuit example-2
20 Note on voltage drop detection circuit
The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 74);
supply voltage does not fall below to VRST, and
its voltage re-goes up with no reset.
In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

Fig. 74 VDD and VRST

92 POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.
Note that system cannot enter the power down state when executing only the POF or POF2 instruction.
Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

22 Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to $100 \mu \mathrm{~s}$ or less. If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(3) Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).
The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

920 On-chip oscillator
The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that margin of frequencies when designing application products.
Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the margin of frequency of the on-chip oscillator clock.

25 External clock
When the external clock signal is used as the main clock ($\mathrm{f}(\mathrm{XIN})$), note that the power down mode (POF or POF2 instruction) cannot be used.
§ Difference between Mask ROM version and One Time PROM version Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value - the amount of noise-proof
- a margin of operation - noise radiation, etc.,

Accordingly, be careful of them when swithcing.
97 Note on Power Source Voltage
When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.
In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

| Interrupt control register V1 | | at reset : 00002 | | | at power down : 00002 |
| :---: | :--- | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}R/W

TAV1/TV1A\end{array}\right]\)

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W TAV2/TV2A
V23	Timer 4, serial I/O interrupt enable bit	0	Interrupt disabled (SNZT4, SNZSI instruction is valid)		
		1	Interrupt enabled (SNZT4, SNZSI instruction is invalid)		
V22	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
		1	Interrupt enabled (SNZAD instruction is invalid)		
V21	Timer 5 interrupt enable bit	0	Interrupt disabled (SNZT5 instruction is valid)		
		1	Interrupt enabled (SNZT5 instruction is invalid)		
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid)		

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT0 pin input control bit (Note 2)	0	INT0 pin input disabled		
		1	INT0 pin input enabled		
112	Interrupt valid waveform for INTO pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZIO instruction)		
111	INTO pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT0 pin Timer 1 count start synchronous circuit selection bit	0	Timer 1 count start synchronous circuit not selected		
		1	Timer 1 count start synchronous circuit selected		

Interrupt control register 12		at reset : 00002		at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disabled		
		1	INT1 pin input enabled		
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
		1	Rising waveform/"H" level ("H" level is recognized with the SNZI1 instruction)		
121	INT1 pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous circuit selection bit	0	Timer 3 count start synchronous circuit not selected		
		1	Timer 3 count start synchronous circuit selected		

Interrupt control register I3		at reset : 02		at power down : state retained	R/W TAI3/TI3A
I30	Timer 4, serial I/O interrupt source selection bit	0	Timer 4 interrupt valid, serial I/O interrupt invalid		
	1	Serial I/O interrupt valid, timer 4 interrupt invalid			

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $\mathrm{I} 12, \mathrm{I} 13 \mathrm{I} 22$ and I 23 are changed, the external interrupt request flag (EXFO, EXF1) may be set to "1".

$\left.$| Clock control register MR | | at reset : 11002 | | | at power down : state retained |
| :---: | :--- | :---: | :---: | :---: | :---: | | R/W |
| :---: |
| TAMR/ |
| TMRA | \right\rvert\,

Timer control register PA		at reset : 02		at power down :02	W
PA0	TPAA				

| Timer control register W1 | | at reset : 00002 | | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}R/W

TAW1/TW1A\end{array}\right]\)

Timer control register W2		at reset : 00002			at power down : state retained	R/W TAW2/TW2A
W23	CNTR0 output control bit	0		Timer 1 underflow signal divided by 2 output		
			1	Timer 2 underflow signal divided by 2 output		
W22	Timer 2 control bit	0		Stop (state retained)		
			1	Operating		
W21	Timer 2 count source selection bits	W21	W20		Count source	
		0	0	System clock		
		0	1	Prescaler out	RCLK)	
W20		1	0	Timer 1 underflow signal (T1UDF)		
		1	1	PWM signal (PWMOUT)		

| Timer control register W3 | | at reset : 00002 | | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}R/W

TAW3/TW3A\end{array}\right]\)

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 1 count start synchronous circuit is selected ($110=$ " 1 ").
3: This function is valid only when the timer 3 count start synchronous circuit is selected ($120=$ " 1 ").
4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

Timer control register W4		at reset : 00002		at power down : 00002	R/W TAW4/TW4A
W43	CNTR1 output control bit	0	CNTR1 output invalid		
		1	CNTR1 output valid		
W42	PWM signal " H " interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
		1	PWM signal "H" interval expansion function valid		
W41	Timer 4 control bit	0	Stop (state retained)		
		1	Operating		
W40	Timer 4 count source selection bit	0	XIN input		
		1	Prescaler output (ORCLK) divided by 2		

Timer control register W5		at reset : 00002			at power down : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no function, but read/write is enabled.		
W52	Timer 5 control bit	0		Stop (state initialized)		
				Operating		
W51	Timer 5 count value selection bits	W51 W50		Count value		
		0	0	Underflow occurs every 8192 counts		
		0	1	Underflow occurs every 16384 counts		
W50		1	0	Underflow occurs every 32768 counts		
		1	1	Underflow occurs every 65536 counts		

Timer control register W6		at reset : 00002		at power down: state retained	R/W TAW6/TW6A
W63	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W62	Timer LC count source selection bit	0	Bit 4 (T54) of timer 5		
		1	Prescaler output (ORCLK)		
W61	CNTR1 output auto-control circuit selection bit	0	CNTR1 output auto-control circuit not selected		
		1	CNTR1 output auto-control circuit selected		
W60	D7/CNTR0 pin function selection bit (Note 2)	0	D7(//O)/CNTR0 input		
		1	CNTR0 input/output/D7 (input)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTRO input is valid only when CNTRO input is selected for the timer 1 count source.

Serial I/O control register J1		at reset : 00002			at power down : state retained	R/W TAJ1/TJ1A
	Serial I/O synchronous clock selection bits	J13	J12		Synchronous clock	
J13		0	0	Instruction c	STCK) divided by 8	
J12		0	1	Instruction c	STCK) divided by 4	
		1	0	Instruction	STCK) divided by 2	
		1	1	External clo	nput)	
J11	Serial I/O port function selection bits	J11	J10	Port function		
		0	0	D6, D5, D4 s	Sck, Sout, Sin not selected	
		0	1	Sck, Sout,	ted/D6, D5, Sin not selected	
J10		1	0	SCK, D5, Sin selected/D6, Sout, D4 not selected		
		1	1	Sck, Sout, Sin selected/D6, D5, D4 not selected		

A/D control register Q1		at reset : 00002				at power down : state retained	R/W TAQ1/TQ1A
Q13	A/D operation mode selection bit	A/D conversion mode					
		Comparator mode					
Q12	Analog input pin selection bits	Q12	Q11	Q10		Analog input pins	
		0	0	0	AIN0		
		0	0	1	AIN1		
Q11		0	1	0	AIN2		
		0	1	1	AIN3		
		1	0	0	AIN4		
Q10		1	0	1	AIN5		
		1	1	0	AIN6		
		1	1	1	AIN7		

A/D control register Q2		at reset : 00002		at power down : state retained	R/W
Q23	P23/AIN3 pin function selection bit	0	P23		
		1	AIN3		
Q22	P22/AIN2 pin function selection bit	0	P22		
		1	AIN2		
Q21	P21/AIN1 pin function selection bit	0	P21		
		1	AIN1		
Q20	P20/AIN0 pin function selection bit	0	P20		
		1	AINO		

A/D control register Q3		at reset : 00002		at power down : state retained	TAQ3/TQ3A
Q33	P33/AIN7 pin function selection bit	0	P33		
		1	AIN7		
Q32	P32/AIN6 pin function selection bit	0	P32		
		1	AIN6		
Q31	P31/AIN5 pin function selection bit	0	P31		
		0	AIN5		

Note: "R" represents read enabled, and "W" represents write enabled.

LCD control register L1		at reset : 00002			at power down : state retained	R/W
L13	Internal dividing resistor for LCD power supply selection bit (Note 2)	0		$2 r \times 3,2 r \times 2$		
		1		$r \times 3, r \times 2$		
L12	LCD control bit	0		Off		
		1		On		
L11	LCD duty and bias selection bits	L11	L10	Duty	Bi	
		0	0		Not available	
		0	1	1/2	1	
L10		1	0	1/3	1	
		1	1	1/4	1	

LCD control register L2		at reset : 11112		at power down : state retained	W
L23	VLC3/SEG0 pin function switch bit (Note 3)	0	SEG0		
		1	VLC3		
L22	VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1		
		1	VLC2		
L21	VLC1/SEG2 pin function switch bit (Note 4)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power supply control bit	0	Internal dividing resistor valid		
		1	Internal dividing resistor invalid		

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/
PU03	Port P03 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU02	Port P02 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU00	Port P0o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Pull-up control register PU1		at reset : 00002		at power down : state retained	$\begin{gathered} \text { R/W } \\ \text { TAPU1/ } \end{gathered}$
PU13	Port P13 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU12	Port P12 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU11	Port P11 pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		
PU10	Port P1o pull-up transistor control bit	0	Pull-up transistor OFF		
		1	Pull-up transistor ON		

Notes 1: " R " represents read enabled, and " W " represents write enabled.
2: "r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and " r multiplied by 2 " is used at $1 / 2$ bias.
3: VLC3 is connected to VDD internally when SEGo pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Port output structure control register FR0		at reset :00002		at power down : state retained
FR03	Ports P12, P13 output structure selection bit	0	N-channel open-drain output	
FR02	Ports P10, P11 output structure selection bit	0	CMOS output	
FR01	Ports P02, P03 output structure selection bit	1	N-channel open-drain output	
	Ports P00, P01 output structure selection bit	0	N-channel open-drain output	

Port output structure control register FR1		at reset :00002		at power down : state retained
FR13	TFR1A			
Fort D3 output structure selection bit		N-channel open-drain output		
		1	CMOS output	
FR12	Port D2 output structure selection bit	0	N-channel open-drain output	
		Port D1 output structure selection bit	0	CMOS output
			CMOS output	
FR10	Port Do output structure selection bit	0	N-channel open-drain output	
		1	CMOS output	

Port output structure control register FR2		at reset : 00002		at power down : state retained	W TFR2A
FR23	Port D7/CNTR0 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR22	Port D6/Sck output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR21	Port D5/SOUT output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR20	Port D4/SIN output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

\left.| Port output structure control register FR3 | | at reset : 00002 | | at power down : state retained |
| :--- | :--- | :--- | :--- | :--- |
| TFR3A | | | | |$\right]$

[^0]| Key-on wakeup control register K0 | | at reset : 00002 | | at power down : state retained | $\begin{gathered} \text { R/W } \\ \text { TAKO/ } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| K03 | Port P03 key-on wakeup control bit | 0 | Key-on wakeup not used | | |
| | | 1 | Key-on wakeup used | | |
| K02 | Port P02 key-on wakeup control bit | 0 | Key-on wakeup not used | | |
| | | 1 | Key-on wakeup used | | |
| K01 | Port P01 key-on wakeup control bit | 0 | Key-on wakeup not used | | |
| | | 1 | Key-on wakeup used | | |
| K00 | Port P0o key-on wakeup control bit | 0 | Key-on wakeup not used | | |
| | | 1 | Key-on wakeup used | | |

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	R/W TAK1/
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K12	Port P12 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K11	Port P11 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K10	Port P10 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2 TK2A
K23	INT1 pin return condition selection bit	0	Returned by level		
		1	Returned by edge		
K22	INT1 pin key-on wakeup control bit	0	Key-on wakeup invalid		
		1	Key-on wakeup valid		
K21	INT0 pin return condition selection bit	0	Returned by level		
		1	Returned by edge		
K20	INT0 pin key-on wakeup control bit	0	Key-on wakeup invalid		
		1	Key-on wakeup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

The 4524 Group has the 136 instructions. Each instruction is described as follows;
(1) Index list of instruction function
(2) Machine instructions (index by alphabet)
(3) Machine instructions (index by function)
(4) Instruction code table

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	PS	Prescaler
B	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	T3	Timer 3
V1	Interrupt control register V1 (4 bits)	T4	Timer 4
V2	Interrupt control register V2 (4 bits)	T5	Timer 5
11	Interrupt control register I1 (4 bits)	TLC	Timer LC
12	Interrupt control register I2 (4 bits)	T1F	Timer 1 interrupt request flag
13	Interrupt control register I3 (1 bit)	T2F	Timer 2 interrupt request flag
MR	Clock control register MR (4 bits)	T3F	Timer 3 interrupt request flag
PA	Timer control register PA (1 bit)	T4F	Timer 4 interrupt request flag
W1	Timer control register W1 (4 bits)	T5F	Timer 5 interrupt request flag
W2	Timer control register W2 (4 bits)	WDF1	Watchdog timer flag
W3	Timer control register W3 (4 bits)	WEF	Watchdog timer enable flag
W4	Timer control register W4 (4 bits)	INTE	Interrupt enable flag
W5	Timer control register W5 (4 bits)	EXFO	External 0 interrupt request flag
W6	Timer control register W6 (4 bits)	EXF1	External 1 interrupt request flag
J1	Serial I/O control register J1 (4 bits)	P	Power down flag
Q1	A/D control register Q1 (4 bits)	ADF	A/D conversion completion flag
Q2	A/D control register Q2 (4 bits)	SIOF	Serial I/O transmit/receive completion flag
Q3	A/D control register Q3 (4 bits)		
L1	LCD control register L1 (4 bits)	D	Port D (10 bits)
L2	LCD control register L2 (4 bits)	P0	Port P0 (4 bits)
PU0	Pull-up control register PU0 (4 bits)	P1	Port P1 (4 bits)
PU1	Pull-up control register PU1 (4 bits)	P2	Port P2 (4 bits)
FR0	Port output format control register FR0 (4 bits)	P3	Port P3 (4 bits)
FR1	Port output format control register FR1 (4 bits)	P4	Port P4 (4 bits)
FR2	Port output format control register FR2 (4 bits)	C	Port C (1 bit)
FR3	Port output format control register FR3 (4 bits)		
K0	Key-on wakeup control register K0 (4 bits)	x	Hexadecimal variable
K1	Key-on wakeup control register K1 (4 bits)	y	Hexadecimal variable
K2	Key-on wakeup control register K2 (4 bits)	z	Hexadecimal variable
X	Register X (4 bits)	p	Hexadecimal variable
Y	Register Y (4 bits)	n	Hexadecimal constant
Z	Register Z (2 bits)	i	Hexadecimal constant
DP	Data pointer (10 bits) (It consists of registers X, Y, and Z)	$\sum_{A 3 A}^{j}$	Hexadecimal constant Binary notation of hexadecimal variable A
PC	Program counter (14 bits)	Аз	(same for others)
PCH	High-order 7 bits of program counter		
PCL	Low-order 7 bits of program counter	\leftarrow	Direction of data movement
SK	Stack register (14 bits $\times 8$)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (3 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
RPS	Prescaler reload register (8 bits)	-	Negate, Flag unchanged after executing instruction
R1	Timer 1 reload register (8 bits)	M (DP)	RAM address pointed by the data pointer
R2	Timer 2 reload register (8 bits)	a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R3	Timer 3 reload register (8 bits)	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R4L	Timer 4 reload register (8 bits)		in page p5 p4 p3 p2 p1 p0
R4H	Timer 4 reload register (8 bits)	C	Hex. C + Hex. number x
RLC	Timer LC reload register (4 bits)	$\stackrel{+}{\mathrm{x}}$	

Note : Some instructions of the 4524 Group has the skip function to unexecute the next described instruction. The 4524 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2 . Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes " 1 " if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Note: p is 0 to 63 for M34524M8,
p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Note: p is 0 to 63 for M34524M8, p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

INDEX LIST OF INSTRUCTION FUNCTION (continued)

$\begin{gathered} \text { Group- } \\ \text { ing } \\ \hline \end{gathered}$	Mnemonic	Function	Page	$\begin{gathered} \text { Group- } \\ \text { ing } \\ \hline \end{gathered}$	Mnemonic	Function	Page
	CLD	(D) $\leftarrow 1$	94, 142		TAL1	$(\mathrm{A}) \leftarrow(\mathrm{L} 1)$	116, 144
	RD	$(\mathrm{D}(\mathrm{Y}) \mathrm{)} \leftarrow 0$	102, 142	尔	TL1A	$(\mathrm{L} 1) \leftarrow(\mathrm{A})$	124, 144
		$(\mathrm{Y})=0$ to 9		$\begin{aligned} & \circ \\ & 0 \\ & \hline 0 \end{aligned}$		$(\mathrm{L} 2) \leftarrow(\mathrm{A})$	124, 144
	SD	$(\mathrm{D}(\mathrm{Y})) \leftarrow 1$	104, 142				
		$(\mathrm{Y})=0$ to 9			TABSI	$(\mathrm{B}) \leftarrow(\mathrm{SI} 7-\mathrm{Sl} 4)(\mathrm{A}) \leftarrow(\mathrm{SI} 3-\mathrm{Slo})$	113, 144
	SZD	$(\mathrm{D}(\mathrm{Y}) \mathrm{)}=0$?	109, 142		TSIAB	$(\mathrm{Sl}-\mathrm{SI} 4) \leftarrow(\mathrm{B})(\mathrm{Sl} 3-\mathrm{SlO}) \leftarrow(\mathrm{A})$	128, 144
		$(\mathrm{Y})=0$ to 9					
	RCP		102, 142		SST	(SIOF) $\leftarrow 0$	108, 144
		(C) $\leftarrow 0$				Serial I/O starting	
	SCP	(C) $\leftarrow 1$	104, 142		SNZSI	$\mathrm{V} 23=0:(\mathrm{SIOF})=1 ?$ After skipping, (SIOF) $\leftarrow 0$	107, 144
	TAPU0	$(\mathrm{A}) \leftarrow(\mathrm{PUO})$	117, 142				
					TAJ1	$(\mathrm{A}) \leftarrow(\mathrm{J} 1)$	115, 144
	TPUOA	$(\mathrm{PUO}) \leftarrow(\mathrm{A})$	126, 142			$(\mathrm{J} 1) \leftarrow(\mathrm{A})$	123, 144
	TAPU1	$(\mathrm{A}) \leftarrow(\mathrm{PU1})$	117, 142				
					TABAD	In A/D conversion mode,	112, 146
	TPU1A	$(\mathrm{PU1} 1) \leftarrow(\mathrm{A})$	126, 142			$(\mathrm{B}) \leftarrow(\mathrm{AD9}-\mathrm{AD} 6)$ $(\mathrm{A}) \leftarrow(\mathrm{AD} 5-\mathrm{AD} 2)$	
	TAK0	$(\mathrm{A}) \leftarrow(\mathrm{KO})$	124, 144			In comparator mode,	
						$(\mathrm{B}) \leftarrow($ AD7-AD4)	
	TKOA	$(\mathrm{K} 0) \leftarrow(\mathrm{A})$	115, 144			$(\mathrm{A}) \leftarrow(\mathrm{AD} 3-\mathrm{AD} 0)$	
	TAK1	$(\mathrm{A}) \leftarrow(\mathrm{K} 1)$	124, 144		TALA	$\begin{aligned} & \left(\mathrm{A}_{3}, \mathrm{~A}_{2}\right) \leftarrow(\mathrm{AD} 1, \mathrm{AD} 0) \\ & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow 0 \end{aligned}$	116, 146
	TK1A	$(\mathrm{K} 1) \leftarrow(\mathrm{A})$	115, 144				
					TADAB	$($ AD7-AD4) $\leftarrow(\mathrm{B})$	114, 146
	TAK2	$(\mathrm{A}) \leftarrow$ (K 2$)$	124, 144			$(\mathrm{AD} 3-\mathrm{AD} 0) \leftarrow(\mathrm{A})$	
	TK2A	$(\mathrm{K} 2) \leftarrow(\mathrm{A})$	115, 144	$\stackrel{\text { 들 }}{\text { ¢ }}$	ADST	$(\mathrm{ADF}) \leftarrow 0$ A/D conversion starting	92, 146
	TFROA	$($ FR0 $) \leftarrow($ A $)$	122, 144	\%			
				\bigcirc	SNZAD	$\mathrm{V} 22=0:(\mathrm{ADF})=1 ?$	106, 146
	TFR1A	$($ FR1 $) \leftarrow(A)$	122, 144			After skipping, (ADF) $\leftarrow 0$	
	TFR2A	$(\mathrm{FR} 2) \leftarrow(\mathrm{A})$	122, 144		TAQ1	$(\mathrm{A}) \leftarrow($ Q1)	117, 146
	TFR3A	$($ (FR3 $) \leftarrow(\mathrm{A})$	122, 144		TQ1A	$($ Q1) $\leftarrow($ A $)$	127, 146
든믕응능응	CMCK	Ceramic resonator selected	95, 144		TAQ2	$(\mathrm{A}) \leftarrow$ (Q2)	117, 146
	CRCK	RC oscillator selected	95, 144		TQ2A	$(\mathrm{Q} 2) \leftarrow$ (A$)$	127, 146
	TAMR	$(\mathrm{A}) \leftarrow(\mathrm{MR})$	116, 144		TAQ3	$(\mathrm{A}) \leftarrow($ Q3)	118, 146
	TMRA	$(\mathrm{MR}) \leftarrow(\mathrm{A})$	125, 144		TQ3A	$($ Q3) \leftarrow (A$)$	127, 146

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Grouping	Mnemonic	Function	Page
	NOP	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$	99, 146
	POF	Transition to clock operating mode	101, 146
	POF2	Transition to RAM back-up mode	101, 146
	EPOF	POF, POF2 instructions valid	96, 146
	SNZP	$(\mathrm{P})=1$?	106, 146
	DWDT	Stop of watchdog timer function enabled	96, 146
	WRST	$(W D F 1)=1 ?$ After skipping, $($ WDF1 $) \leftarrow 0$	130, 146
	RBK*	When TABP p instruction is executed, $\mathrm{P} 6 \leftarrow 0$	102, 146
	SBK*	When TABP p instruction is executed, $\mathrm{P} 6 \leftarrow 1$	104, 146
	SVDE	At power down mode, voltage drop detection circuit valid	108, 146

Note: *(RBK, SBK) cannot be used in the M34524M8.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

ADST (A/D conversion STart)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	1	1	1	1	1	2	9	F	16				
															1	1	-	-

ADF) $\leftarrow 0$

Q13 $=0: A / D$ conversion starting
Q13 $=1$: Comparator operation starting
(Q13 : bit 3 of A/D control register Q1)

Grouping: A/D conversion operation
Description: Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode $($ Q13 $=0$) or the comparator operation at the comparator mode (Q13 $=1)$ is started.

AM (Add accumulator and Memory)

Operation: $\quad(A) \leftarrow(A)+(M(D P))$

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-

Grouping: Arithmetic operation
Description: Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.

AMC (Add accumulator, Memory and Carry)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

BL p, a (Branch Long to address a in page p)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

Operation: $\quad(\mathrm{A}) \leftarrow \overline{(\mathrm{A})}$

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping: Arithmetic operation	Arithmetic operation		
Description: Stores the one's complement for register A's contents in register A.			

CMCK (Clock select: ceraMic oscillation ClocK)

CRCK (Clock select: Rc oscillation ClocK)

DEY (DEcrement register Y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

IAP0 (Input Accumulator from port P0)																	
Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	0	0	2	6	0				
														1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{P} 0)$													Grouping: Descriptio	Input/Output operation		
															Transfers	e input of	rt P0 to register

IAP1 (Input Accumulator from port P1)

IAP2 (Input Accumulator from port P2)

Instruction code	D9									Do				$\begin{aligned} & \text { Number of } \\ & \text { words } \end{aligned}$	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	0	0	0	1		2	6	2				
														1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{P} 2)$													Grouping:	Input/Output operation		
														Description	Transfers	he input	P2 to register

IAP3 (Input Accumulator from port P3)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

LXY x, y (Load register X and Y with x and y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

LZ z (Load register Z with z)																	
Instruction code	D9 Do										0			Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	1	0	z1		0	4	8 +z ${ }_{16}$				
														1	1	-	-
Operation:	$(\mathrm{Z}) \leftarrow \mathrm{zz}=0$ to 3													Grouping:	RAM addr	sses	
														Description	Loads the register Z.	value z in	immediate field

NOP (No OPeration)

OP0A (Output port P0 from Accumulator)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	1	0	0	0	0		2	2	$0{ }_{16}$				
														1	1	-	-
Operation:	$(\mathrm{P} 0) \leftarrow(\mathrm{A})$													Grouping:	Input/Output operation		
														Description:	Outputs the contents of register A to po PO.		

OP1A (Output port P1 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

OP2A (Output port P2 from Accumulator)

 P2.

OP3A (Output port P3 from Accumulator)

OP4A (Output port P4 from Accumulator)

OR (logical OR between accumulator and memory)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

POF2 (Power OFf2)

RAR (Rotate Accumulator Right)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	1	0		0	1	D ${ }_{16}$				
Operation:	$\rightarrow \mathrm{CY} \rightarrow{\mathrm{A} 3 \mathrm{~A}_{2} \mathrm{Al}_{1} \mathrm{~A}_{0}}^{\text {a }}$													Grouping: Arithmetic operation			
														Description:	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.		

RB j (Reset Bit)

Instruction code	D9									Do				$\begin{gathered} \text { Number of } \\ \text { words } \end{gathered}$	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	1	1	j	j_{2}	0	4	${ }_{+}^{C}{ }_{\text {+ }}{ }_{16}$				
Operation:	$(\mathrm{Mj}(\mathrm{DP})) \leftarrow 0$													Grouping: Bit operation			
	$\mathrm{j}=0$ to 3													Description: Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

RBK (Reset Bank flag)														
Instruction	D9									Do				
code	0	0	0	1	0	0	0	0	0	0		4		

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-

Operation: When TABP p instruction is executed, P6 $\leftarrow 0$
Grouping: Other operation
Description: Sets referring data area to pages 0 to 63 when the TABP p instruction is executed.
Note: This instruction cannot be used in M34524M8.

RC (Reset Carry flag)

RCP (Reset Port C)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

RTS (ReTurn from subroutine and Skip)

Operation: $\quad(P C) \leftarrow(S K(S P))$

$$
(\mathrm{SP}) \leftarrow(\mathrm{SP})-1
$$

Grouping: Return operation
Description: Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

SB \mathbf{j} (Set Bit)																
Instruction code	D9 Do												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	1	1	j	$\mathrm{j}_{2} 0$	5	$\begin{array}{\|c\|} \hline \mathrm{C} \\ +\mathrm{j} \\ \hline 16 \end{array}$				
Operation:	$\begin{aligned} & (\operatorname{Mj}(D P)) \leftarrow 1 \\ & \mathrm{j}=0 \text { to } 3 \end{aligned}$												Grouping: Bit operation			
													Description:	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$.		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping:	Other operation		
Description:Sets referring data area to pages 64 to 127 when the TABP p instruction is executed.			

Note: This instruction cannot be used in M34524M8.
In M34524MC, referring data area is pages 64 to 95.

SC (Set Carry flag)

SCP (Set Port C)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	1	0	1	0	0	0	1	1	0	1	2	8	D					
															1	1	-	-
Operation:	(C) $\leftarrow 1$														Grouping: Input/Output operation			
															Description	Sets (1) to	port C.	

SD (Set port D specified by register Y)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	0	1	0	1	0	1	5					
															1	1	-	-
Operation:	$(\mathrm{D}(\mathrm{Y})) \leftarrow 1$														Grouping: Input/Output operation			
															Description: Sets (1) to a bit of port D specified by register Y .			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SEA n (Skip Equal, Accumulator with immediate data n)

SEAM (Skip Equal, Accumulator with Memory)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	0	1	1	0		2	6					
															1	1	-	$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))^{\text {a }}$

Operation: $\quad(A)=(M(D P))$?

Grouping: Comparison operation
Description: Skips the next instruction when the contents of register A is equal to the contents of M(DP).
Executes the next instruction when the contents of register A is not equal to the contents of M(DP).

SNZO (Skip if Non Zero condition of external 0 interrupt request flag)

SNZ1 (Skip if Non Zero condition of external 1 interrupt request flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZAD (Skip if Non Zero condition of A/D conversion completion flag)

SNZIO (Skip if Non Zero condition of external 0 Interrupt input pin)

SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin)

Operation:	I22 = 0 : (INT1) = "L" ?
	I22 = 1 : (INT1) = "H" ?

(I22 : bit 2 of the interrupt control register I2)

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	$\mathrm{I} 22=0:($ (INT1) $=$ " L " $\mathrm{I} 22=1$

Grouping: Interrupt operation
Description: When $\mathrm{I} 22=0$: Skips the next instruction when the level of INT1 pin is "L." Executes the next instruction when the level of INT1 pin is "H."
When I 22 = 1 : Skips the next instruction when the level of INT1 pin is "H." Executes the next instruction when the level of INT1 pin is "L."

SNZP (Skip if Non Zero condition of Power down flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZSI (Skip if Non Zero condition of Serial I/o interrupt request flag)

SNZT1 (Skip if Non Zero condition of Timer 1 interrupt request flag)

SNZT2 (Skip if Non Zero condition of Timer 2 interrupt request flag)

SNZT3 (Skip if Non Zero condition of Timer 3 interrupt request flag)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SNZT4 (Skip if Non Zero condition of Timer 4 inerrupt request flag)

SNZT5 (Skip if Non Zero condition of Timer 5 inerrupt request flag)

SST (Serial i/o transmission/reception STart)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

SZC (Skip if Zero, Carry flag)

SZD (Skip if Zero, port D specified by register Y)

T1AB (Transfer data to timer 1 and register R1 from Accumulator and register B)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

T2AB (Transfer data to timer 2 and register R2 from Accumulator and register B)

T3AB (Transfer data to timer 3 and register R3 from Accumulator and register B)

T4AB (Transfer data to timer 4 and register R4L from Accumulator and register B)

T4HAB (Transfer data to register R4H from Accumulator and register B)

\qquad

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAB (Transfer data to Accumulator from register B)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	1	1	1	1	0	0	1	E				
														1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{B})$													Grouping:	Register to register transfer		
														Description:	Transfers ister A.	he conten	register B to

TAB1 (Transfer data to Accumulator and register B from timer 1)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	1	0	0	0		2	7	$0{ }_{16}$				
Operation:	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10) \end{aligned}$													Grouping: Timer operation			
														Description: Transfers the high-order 4 bits (T17-T14) of timer 1 to register B. Transfers the low-order 4 bits (T13-T10) of timer 1 to register A.			

TAB2 (Transfer data to Accumulator and register B from timer 2)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	1	0	0	0		2	7	1					
															1	1	-	-

Operation: $\quad(B) \leftarrow(T 27-T 24)$
$(\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20)$

Grouping: Timer operation
Description: Transfers the high-order 4 bits (T27-T24) of timer 2 to register B.
Transfers the low-order 4 bits (T23-T20) of timer 2 to register A.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAB3 (Transfer data to Accumulator and register B from timer 3)

TAB4 (Transfer data to Accumulator and register B from timer 4)

Instruction code	D9									Do					Number ofwords words	Number of cycles	Flag CY	Skip condition
		0	0	1	1	1	0	0	1	1	2	7	3					
															1	1	-	-
Operation:	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 47-\mathrm{T} 44) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 43-\mathrm{T} 40) \end{aligned}$														Grouping: \quad Timer operation			
															Description	Transfers the high-order 4 bits (T47-T44) of timer 4 to register B.		
															Transfers the low-order 4 bits (T43-T40) of timer 4 to register A.			

TABAD (Transfer data to Accumulator and register B from register AD)

TABE (Transfer data to Accumulator and register B from register E)

Operation:
$(\mathrm{B}) \leftarrow\left(\mathrm{E} 7-\mathrm{E}_{4}\right)$
(A) $\leftarrow\left(\right.$ E $\left._{3}-\mathrm{E}_{0}\right)$

Grouping: Register to register transfer
Description: Transfers the high-order 4 bits (E7-E4) of register E to register B , and low-order 4 bits of register E to register A .

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

Instruction code	D9									Do				Number of words		Number of cycles	Flag CY	Skip condition
	0	0	1	0	p5	p4	p3	p2	p1	po 2	0	[$\begin{gathered}8 \\ +\mathrm{p}\end{gathered}$	$\mathrm{p}{ }_{16}$					
															1	3	-	-

Operation: $\quad(S P) \leftarrow(S P)+1$ $(\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC})$
$($ PCH $) \leftarrow$ p
$(\mathrm{PCL}) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0, \mathrm{~A} 3-\mathrm{A} 0)$
$(\mathrm{B}) \leftarrow(\mathrm{ROM}(\mathrm{PC})) 7-4$
$(A) \leftarrow(\operatorname{ROM}(P C)) 3-0$
$(\mathrm{PC}) \leftarrow(\mathrm{SK}(\mathrm{SP}))$
$(S P) \leftarrow(S P)-1$

Description: Transfers bits 7 to 4 to register B and bits 3 to 0 to register A . These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DRo A3 A2 A1 A0) 2 specified by registers A and D in page p.
The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63 .
Note: p is 0 to 63 for M34524M8, and p is 0 to 95 for M34524MC, and p is 0 to 127 for M34524ED. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.

TABPS (Transfer data to Accumulator and register B from PreScaler)

Instruction code	D9									Do				Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	1	1	0	1	0	$1{ }_{2}$	2	7	$5{ }_{16}$				
														1	1	-	-

Operation: $\quad(\mathrm{B}) \leftarrow\left(\mathrm{TPS}_{7}-\mathrm{TPS} 4\right)$

Grouping: Timer operation
Description: Transfers the high-order 4 bits (TPS7TPS4) of prescaler to register B, and transfers the low-order 4 bits (TPS3-TPSo) of prescaler to register A .

TABSI (Transfer data to Accumulator and register B from register SI)

Operation: $\quad(\mathrm{B}) \leftarrow(\mathrm{SI} 17-\mathrm{S} \mid 4)$
$(\mathrm{A}) \leftarrow($ S $3-\mathrm{SlO})$

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-

Grouping: Serial I/O operation
Description: Transfers the high-order 4 bits (S17-SI4) of serial I/O register SI to register B, and transfers the low-order 4 bits (SI3-SIo) of serial I/O register SI to register A .

TAD (Transfer data to Accumulator from register D)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TADAB (Transfer data to register AD from Accumulator from register B)

TAl1 (Transfer data to Accumulator from register I1)

TAI2 (Transfer data to Accumulator from register I2)

TAI3 (Transfer data to Accumulator from register I3)

Note: When the TAI3 instruction is executed, " 0 " is stored to the high-order 3 bits ($\mathrm{A}_{3}-\mathrm{A} 1$) of register A .

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAJ1 (Transfer data to Accumulator from register J1)

TAK0 (Transfer data to Accumulator from register K0)

TAK1 (Transfer data to Accumulator from register K1)

Instruction code	D9									Do				$\begin{gathered} \text { Number of } \\ \text { words } \end{gathered}$	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	1	1	0	0	1	2	5	916				
														1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{K} 1)$													Grouping: Description:	Input/Output operation		
															Transfers control reg	the conte ster K1 to	of key-on wakeup ister A.

TAK2 (Transfer data to Accumulator from register K2)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAL1 (Transfer data to Accumulator from register L1)

TALA (Transfer data to Accumulator from register LA)

TAM \mathbf{j} (Transfer data to Accumulator from Memory)

Operation:	$(A) \leftarrow(M(D P))$
	$(X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j})$
	$\mathrm{j}=0$ to 15

Number of words	Number of cycles	Flag CY	Skip condition
1	1	-	-
Grouping:	RAM to register transfer		
Description:	After transferring the contents of M(DP) to		
register A, an exclusive OR operation is			
performed between register X and the value			
j in the immediate field, and stores the re-			
sult in register X.			

TAMR (Transfer data to Accumulator from register MR)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAPU0 (Transfer data to Accumulator from register PU0)

TAPU1 (Transfer data to Accumulator from register PU1)

TAQ1 (Transfer data to Accumulator from register Q1)

TAQ2 (Transfer data to Accumulator from register Q2)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TASP (Transfer data to Accumulator from Stack Pointer)

TAV1 (Transfer data to Accumulator from register V1)

TAV2 (Transfer data to Accumulator from register V2)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAW1 (Transfer data to Accumulator from register W1)

TAW2 (Transfer data to Accumulator from register W2)

TAW3 (Transfer data to Accumulator from register W3)

TAW4 (Transfer data to Accumulator from register W4)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAW5 (Transfer data to Accumulator from register W5)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	1	0	0	1	1	1	1	2	4						
															1	1	-	-
Operation:	$(\mathrm{A}) \leftarrow(\mathrm{W} 5)$														Grouping: Timer operation			
															Descriptio	Transfers ister W5 to	he conten register A	f timer control

TAW6 (Transfer data to Accumulator from register W6)

TAX (Transfer data to Accumulator from register X)

TAY (Transfer data to Accumulator from register Y)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TAZ (Transfer data to Accumulator from register Z)

TBA (Transfer data to register B from Accumulator)

TDA (Transfer data to register D from Accumulator)

TEAB (Transfer data to register E from Accumulator and register B)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TFROA (Transfer data to register FR0 from Accumulator)

TFR1A (Transfer data to register FR1 from Accumulator)

TFR2A (Transfer data to register FR2 from Accumulator)

TFR3A (Transfer data to register FR3 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	1	0	1	1	1	2	1	7					
															1	1	-	-
Operation:	$(11) \leftarrow(A)$														Grouping: Interrupt operation			
															Description	Transfers rupt contro	he conten register	register A to in

T12A (Transfer data to register I2 from Accumulator)

TI3A (Transfer data to register I3 from Accumulator)

TJ1A (Transfer data to register J1 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TK0A (Transfer data to register K0 from Accumulator)

TK1A (Transfer data to register K1 from Accumulator)

TK2A (Transfer data to register K2 from Accumulator)

TL1A (Transfer data to register L1 from Accumulator)

Instruction code	D9									Do					Number ofwords	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	0	1		2	0	A					
															1	1	-	-
Operation:	$(\mathrm{L} 1) \leftarrow$ (A)														Grouping:	LCD operation		
															Descriptio	Transfers control re	he conten ister L1.	of register A to LCD

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TLCA (Transfer data to timer LC and register RLC from Accumulator)

TMA j (Transfer data to Memory from Accumulator)

TMRA (Transfer data to register MR from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
TPAA (Transfer data to register PA from Accumulator)

Instruction code	D9									Do					Number ofwords words	Number of cycles	Flag CY	Skip condition
	1	0	1		1	0	1	0	1	0	2	A	A					
															1	1	-	-
Operation:	$(\mathrm{PAo}) \leftarrow\left(\mathrm{A}_{0}\right)$													Grouping: Timer operation				
															Description	Transfers register A	he conten to timer co	flowermost bit register PA

TPSAB (Transfer data to Pre-Scaler from Accumulator and register B)

TPU0A (Transfer data to register PU0 from Accumulator)

TPU1A (Transfer data to register PU1 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TQ1A (Transfer data to register Q1 from Accumulator)

Instruction code	D9									Do				Number ofwords	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	0	1	0		2	0	4				
														1	1	-	-
Operation:	$($ Q1) $\leftarrow($ A $)$													Grouping:	A/D conve	sion oper	
														Description	Transfer control r	he conten ister Q1.	f register A to A / D

TQ2A (Transfer data to register Q2 from Accumulator)

TQ3A (Transfer data to register Q3 from Accumulator)

TR1AB (Transfer data to register R1 from Accumulator and register B)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TR3AB (Transfer data to register R3 from Accumulator and register B)

Instruction code	D9									Do					Number of words	Number of cycles	Flag CY	Skip condition			
	1	0	0	0	1	1	1	0	1	1	2	3	B								
															1	1	-	-			
Operation:	$($ R37-R34) $\leftarrow(\mathrm{B})$														Grouping: Timer operation						
	$(\mathrm{R} 33-\mathrm{R} 30) \leftarrow(\mathrm{A})$														Description: Transfers the contents of register B to the high-order 4 bits (R37-R34) of reload register R3, and the contents of register A to the low-order 4 bits (R33-R30) of reload register R3.						

TSIAB (Transfer data to register SI from Accumulator and register B)

TV1A (Transfer data to register V1 from Accumulator)

TV2A (Transfer data to register V2 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TW1A (Transfer data to register W1 from Accumulator)																	
Instruction code	D9 ${ }^{\text {do }}$													$\begin{gathered} \hline \begin{array}{c} \text { Number of } \\ \text { words } \end{array} \\ \hline \end{gathered}$	Number of cycles	Flag CY	Skip condition
	1	0	0	0	0	0	1	1	1		2	0	E 16				
														1	1	-	-
Operation:	$(\mathrm{W} 1) \leftarrow(\mathrm{A})$													Grouping:	Timer operation		
														Description	Transfers the contents of register A to timer control register W1.		

TW2A (Transfer data to register W2 from Accumulator)

TW3A (Transfer data to register W3 from Accumulator)

TW4A (Transfer data to register W4 from Accumulator)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TW5A (Transfer data to register W5 from Accumulator)

TW6A (Transfer data to register W6 from Accumulator)

TYA (Transfer data to register Y from Accumulator)

Instruction															
code	0	0	0		0	0	0	1	1	0		0	0	C	

Operation: $\quad(\mathrm{Y}) \leftarrow(\mathrm{A})$

WRST (Watchdog timer ReSeT)

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

XAMD j (eXchange Accumulator and Memory data and Decrement register Y and skip)

XAMI j (eXchange Accumulator and Memory data and Increment register Y and skip)

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Paramete Type of instructions	Mnemonic	Instruction code													Function
			D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation			
	TAB	0	0	0	0	0	1	1	1	1	0	01 E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{B})$
	TBA	0	0	0	0	0	0	1	1	1	0	0 O E	1	1	$(B) \leftarrow(A)$
	TAY	0	0	0	0	0	1	1	1	1	1	01 F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{Y})$
	TYA	0	0	0	0		0	1	1	0	0	000	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{A})$
	TEAB	0	0	0	0	0	1	1	0	1	0	01 A	1	1	$\begin{aligned} & (\mathrm{E} 7-\mathrm{E} 4) \leftarrow(\mathrm{B}) \\ & (\mathrm{E} 3-\mathrm{E} 0) \leftarrow(\mathrm{A}) \end{aligned}$
	TABE	0	0	0	0	1	0	1	0	1	0	02 A	1	1	$\begin{aligned} & (B) \leftarrow\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \\ & (\mathrm{A}) \leftarrow\left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \end{aligned}$
	TDA	0	0	0	0	1	0	1	0	0	1	029	1	1	$(\mathrm{DR} 2-\mathrm{DR} 0) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A} 0\right)$
	TAD	0	0	0	1	0	1	0	0	0	1	$\begin{array}{lll}0 & 5 & 1\end{array}$	1	1	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A} 0\right) \leftarrow(\mathrm{DR} 2-\mathrm{DR} 0) \\ & (\mathrm{A} 3) \leftarrow 0 \end{aligned}$
	TAZ	0	0	0	1	0	1	0		1	1	053	1	1	$\begin{aligned} & \left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right) \leftarrow\left(\mathrm{Z}_{1}, \mathrm{Z}_{0}\right) \\ & \left(\mathrm{A} 3, \mathrm{~A}_{2}\right) \leftarrow 0 \end{aligned}$
	TAX	0	0	0	1	0	1	0	0	1	0	052	1	1	$(\mathrm{A}) \leftarrow(\mathrm{X})$
	TASP	0	0	0	1	0		0	0	0	0	050	1	1	$\begin{aligned} & \left(\mathrm{A}_{2}-\mathrm{A} 0\right) \leftarrow\left(\mathrm{SP}_{2}-\mathrm{SP} 0\right) \\ & (\mathrm{A} 3) \leftarrow 0 \end{aligned}$
	LXY x, y	1	1	x3	x2	x1	x0	y3	y2	y1	yo	$3 \mathrm{x} y$	1	1	(X) $\leftarrow x x=0$ to 15 $(\mathrm{Y}) \leftarrow \mathrm{y} y=0$ to 15
	LZ z	0	0	0	1	0	0	1	0	Z1	zo	$\begin{array}{llll}0 & 4 & 8 \\ & & \\ & +z\end{array}$	1	1	$(\mathrm{Z}) \leftarrow \mathrm{zz}=0$ to 3
	INY	0	0	0	0	0	1	0	0	1	1	0 1 3	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$
	DEY	0	0	0	0	0	1	0	1	1	1	$\begin{array}{lll}0 & 1 & 7\end{array}$	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$
	TAM j	1	0	1	1	0	0	j	j	j	j	$2 \mathrm{C} j$	1	1	$\begin{aligned} & (A) \leftarrow(M(D P)) \\ & (X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$
	XAM j	1	0	1	1	0	1	j	j	j	j	2 D j	1	1	$\begin{aligned} & (\mathrm{A}) \leftarrow \rightarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$
	XAMD j	1	0	1	1	1	1	j	j	j	j	2 F j	1	1	$\begin{aligned} & (\mathrm{A}) \leftarrow \rightarrow(\mathrm{M}(\mathrm{DP})) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \\ & (\mathrm{Y}) \leftarrow(\mathrm{Y})-1 \end{aligned}$
	XAMI j	1	0	1	1	1	0	j	j	j	j	2 E j	1	1	$\begin{aligned} & (A) \leftarrow \rightarrow(M(D P)) \\ & (X) \leftarrow(X) E X O R(j) \\ & j=0 \text { to } 15 \\ & (Y) \leftarrow(Y)+1 \end{aligned}$
	TMA j	1	0	1	0	1	1	j	j	j	j	2 B j	1	1	$\begin{aligned} & (\mathrm{M}(\mathrm{DP})) \leftarrow(\mathrm{A}) \\ & (\mathrm{X}) \leftarrow(\mathrm{X}) \mathrm{EXOR}(\mathrm{j}) \\ & \mathrm{j}=0 \text { to } 15 \end{aligned}$

Skip condition		Datailed description
	- - - - - - - - - - - - -	Transfers the contents of register B to register A. Transfers the contents of register A to register B. Transfers the contents of register Y to register A . Transfers the contents of register A to register Y. Transfers the contents of register B to the high-order 4 bits (E7-E4) of register E, and the contents of register A to the low-order 4 bits (E3-E0) of register E. Transfers the high-order 4 bits (E7-E4) of register E to register B, and low-order 4 bits (E3-E0) of register E to register A. Transfers the contents of the low-order 3 bits $\left(A_{2}-A 0\right)$ of register A to register D. Transfers the contents of register D to the low-order 3 bits ($A 2-A 0$) of register A. Transfers the contents of register Z to the low-order 2 bits $(A 1, A 0)$ of register A. Transfers the contents of register X to register A. Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2-A0) of register A.
Continuous description - $\begin{aligned} & (Y)=0 \\ & (Y)=15 \end{aligned}$	- - - -	Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y . When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped. Loads the value z in the immediate field to register Z . Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed. Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed.
$(Y)=15$ $(Y)=0$	- - - - - - -	After transferring the contents of $M(D P)$ to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15 , the next instruction is executed. After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped. When the contents of register Y is not 0 , the next instruction is executed. After transferring the contents of register A to $M(D P)$, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: p is 0 to 63 for M34524M8,
p is 0 to 95 for M 34524 MC and
p is 0 to 127 for M34524ED.

Skip condition		Datailed description
Continuous description	-	Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63 .
-	-	Adds the contents of $\mathrm{M}(\mathrm{DP})$ to register A . Stores the result in register A . The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow $=0$	-	Adds the value n in the immediate field to register A , and stores a result in register A . The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of $M(D P)$, and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
$(C Y)=0$	-	Skips the next instruction when the contents of carry flag CY is " 0 ."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$.
$\begin{gathered} (M j(D P))=0 \\ j=0 \text { to } 3 \end{gathered}$	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $\mathrm{M}(\mathrm{DP})$ is " 0 ." Executes the next instruction when the contents of bit j of $M(D P)$ is " 1. ."
$(A)=(M(D P))$	-	Skips the next instruction when the contents of register A is equal to the contents of $M(D P)$. Executes the next instruction when the contents of register A is not equal to the contents of $M(D P)$.
$(\mathrm{A})=\mathrm{n}$	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

MACHINE INSTRUCTIONS (continued)

Note: p is 0 to 63 for M34524M8,
p is 0 to 95 for M34524MC and p is 0 to 127 for M34524ED.

Skip condition		Datailed description
	-	Branch within a page : Branches to address a in the identical page. Branch out of a page : Branches to address a in page p. Branch out of a page : Branches to address (DR2 DR1 DRo $\left.A 3 A_{2} A 1 A 0\right) 2$ specified by registers D and A in page p .
	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2. Call the subroutine: Calls the subroutine at address a in page p. Call the subroutine : Calls the subroutine at address (DR2 DR1 DR1 $A_{3} A_{2} A 1 A 0$) 2 specified by registers D and A in page p.
Skip at uncondition	- - - -	Returns from interrupt service routine to main routine. Returns each value of data pointer ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt. Returns from subroutine to the routine called the subroutine. Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Paramete Type of instructions	Mnemonic	Instruction code													Function
		D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation			
	DI	0	0	0	0	0	0	0	1	0	0	$0 \quad 0 \quad 4$	1	1	$($ INTE $) \leftarrow 0$
	El	0	0	0	0	0	0	0	1	0	1	005	1	1	$($ INTE) $\leftarrow 1$
	SNZO	0	0	0	0	1	1	1	0	0	0	038	1	1	$\mathrm{V} 10=0:(E X F 0)=1 ?$ After skipping, (EXFO) $\leftarrow 0$ V10 = 1: SNZ0 = NOP
	SNZ1	0	0	0	0	1	1	1	0	0	1	039	1	1	$\begin{aligned} & \text { V11 }=0:(\text { EXF1 })=1 ? \\ & \text { After skipping, }(E X F 1) \leftarrow 0 \\ & \text { V11 }=1: \text { SNZ1 = NOP } \end{aligned}$
	SNZIO	0	0	0	0	1	1	1	0	1	0	03 A	1	1	$112=1:($ INTO $)=$ "H" ?
															$112=0:($ INTO $)=$ "L" ?
	SNZI1	0	0	0	0	1	1	1	0	1	1	03 B	1	1	$\mathrm{I} 22=1:(\mathrm{INT} 1)=$ "H" ?
															$\mathrm{I} 22=0$: (INT1) = "L"?
	TAV1	0	0	0	1	0	1	0	1	0	0	$0 \quad 54$	1	1	$(\mathrm{A}) \leftarrow(\mathrm{V} 1)$
	TV1A	0	0	0	0	1	1	1	1	1	1	03 F	1	1	$(\mathrm{V} 1) \leftarrow(\mathrm{A})$
	TAV2	0	0	0	1	0	1	0	1	0	1	055	1	1	$(\mathrm{A}) \leftarrow(\mathrm{V} 2)$
	TV2A	0	0	0	0	1	1	1	1	1	0	03 E	1	1	$(\mathrm{V} 2) \leftarrow(\mathrm{A})$
	TAI1	1	0	0	1	0	1	0	0	1	1	253	1	1	$(\mathrm{A}) \leftarrow(\mathrm{ll})$
	TI1A	1	0	0	0	0	1	0	1	1	1	217	1	1	$(11) \leftarrow(A)$
	TAI2	1	0	0	1	0	1	0	1	0	0	254	1	1	$(\mathrm{A}) \leftarrow(\mathrm{I} 2)$
	TI2A	1	0	0	0	0	1	1	0	0	0	218	1	1	(12) $\leftarrow(A)$
	TAI3	1	0	0	1	0	1	0	1	0	1	255	1	1	$(\mathrm{A} 0) \leftarrow(\mathrm{I} 30),(\mathrm{A} 3-\mathrm{A} 1) \leftarrow 0$
	TI3A	1	0	0	0	0	1	1	0	1	0	21 A	1	1	$(\mathrm{I} 30) \leftarrow(\mathrm{A} 0)$
	TPAA	1	0	1	0	1	0	1	0	1	0	2 A A	1	1	$(\mathrm{PA} 0) \leftarrow(\mathrm{A} 0)$
	TAW1	1	0	0	1	0	0	1	0	1	1	24 B	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	20 E	1	1	$(\mathrm{W} 1) \leftarrow(\mathrm{A})$
	TAW2	1	0	0	1	0	0	1	1	0	0	24 C	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 2)$
	TW2A	1	0	0	0	0	0	1	1	1	1	20 F	1	1	$(\mathrm{W} 2) \leftarrow(\mathrm{A})$
	TAW3	1	0	0	1	0	0	1	1	0	1	24 D	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 3)$
	TW3A	1	0	0	0	0	1	0	0	0	0	210	1	1	$(\mathrm{W} 3) \leftarrow(\mathrm{A})$
	TAW4	1	0	0	1	0	0	1	1	1	0	24 E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 4)$
	TW4A	1	0	0	0	0	1	0	0	0	1	211	1	1	$(\mathrm{W} 4) \leftarrow(\mathrm{A})$

Skip condition	$\begin{aligned} & \bar{\delta} \\ & \text { B } \\ & \frac{\pi}{4} \\ & \frac{2}{6} \\ & 0 \end{aligned}$	Datailed description
-	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
-	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
$\mathrm{V} 10=0:(E X F 0)=1$	-	When $\mathrm{V} 10=0$: Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXFO flag. When the EXF0 flag is " 0, " executes the next instruction. When $\mathrm{V} 10=1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
$\mathrm{V} 11=0:(E X F 1)=1$	-	When $\mathrm{V} 11=0$: Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is " 0 ," executes the next instruction. When V 11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V 1)
$\begin{gathered} (\text { INTO })=" \mathrm{H} " \\ \text { However, } \mathrm{I} 12=1 \end{gathered}$	-	When I12 = 1 : Skips the next instruction when the level of INTO pin is "H." (112: bit 2 of interrupt control register I1)
$\begin{gathered} (\text { INTO })=" L " \\ \text { However, } \mathrm{I} 12=0 \end{gathered}$	-	When 112 = 0 : Skips the next instruction when the level of INT0 pin is "L."
$(\text { INT1 })=\text { "H" }$ However, $\mathrm{I} 22=1$	-	When $\mathrm{I} 22=1$: Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)
$\begin{gathered} (\text { INT1 })=" L " \\ \text { However, } 122=0 \end{gathered}$	-	When I 22 = 0 : Skips the next instruction when the level of INT1 pin is "L."
-	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register 11 to register A .
-	-	Transfers the contents of register A to interrupt control register I1.
-	-	Transfers the contents of interrupt control register 12 to register A .
-	-	Transfers the contents of register A to interrupt control register 12.
-	-	Transfers the contents of interrupt control register 13 to the lowermost bit (A0) of register A.
-	-	Transfers the contents of the lowermost bit (A0) of register A to interrupt control register 13.
-	-	Transfers the contents of register A to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W3 to register A.
-	-	Transfers the contents of register A to timer control register W3.
-	-	Transfers the contents of timer control register W4 to register A.
-	-	Transfers the contents of register A to timer control register W4.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Paramete Pa Type of instructions	Mnemonic	Instruction code											$\begin{aligned} & \begin{array}{l} \overline{0} \\ \frac{1}{\omega} \\ 0 \\ 0 \\ \frac{0}{0} \\ \frac{1}{3} \\ 3 \end{array} \end{aligned}$		Function
			D8	D7	D6	D5	D4	D3		D1	Do	Hexadecimal notation			
	TAW5	1	0	0	1	0	0	1	1	1	1	24 F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 5)$
	TW5A	1	0	0	0	0	1	0	0	1	0	212	1	1	$(\mathrm{W} 5) \leftarrow(\mathrm{A})$
	TAW6	1	0	0	1	0	1	0	0	0	0	250	1	1	$(\mathrm{A}) \leftarrow(\mathrm{W} 6)$
	TW6A	1	0	0	0	0	1	0	0	1	1	213	1	1	$(\mathrm{W} 6) \leftarrow(\mathrm{A})$
	TABPS	1	0	0	1	1	1	0	1	0	1	275	1	1	$(\mathrm{B}) \leftarrow(\mathrm{TPS} 7-\mathrm{TPS} 4)$ $(\mathrm{A}) \leftarrow($ TPS3-TPSo $)$
	TPSAB	1	0	0	0	1	1	0	1	0	1	235	1	1	$\begin{aligned} & (\text { RPS7-RPS } 4) \leftarrow(B) \\ & (\text { TPS7-TPS4 }) \leftarrow(\mathrm{B}) \\ & (\text { RPS3-RPS } 0) \leftarrow(A) \\ & (\text { TPS3-TPS }) \leftarrow(A) \end{aligned}$
	TAB1	1	0	0	1	1	1	0	0	0	0	270	1	1	$(\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14)$ $(\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10)$
	T1AB	1	0	0	0	1	1	0	0	0	0	230	1	1	$\begin{aligned} & (\text { R17-R14 }) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A}) \end{aligned}$
	TAB2	1	0	0	1	1	1	0	0	0	1	271	1	1	$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 27-\mathrm{T} 24) \\ & (\mathrm{A}) \leftarrow(\mathrm{T} 23-\mathrm{T} 20) \end{aligned}$
	T2AB	1	0	0	0	1	1	0	0	0	1	231	1	1	$\begin{aligned} & (\text { R27-R24 }) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 27-\mathrm{T} 24) \leftarrow(\mathrm{B}) \\ & (\mathrm{R23-R20}) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 23-\mathrm{T} 20) \leftarrow(\mathrm{A}) \end{aligned}$
	TAB3	1	0	0	1	1	1	0	0	1	0	272	1	1	$\begin{aligned} & (B) \leftarrow(T 37-T 34) \\ & (A) \leftarrow(T 33-T 30) \end{aligned}$
	T3AB	1	0	0	0	1	1	0	0	1	0	232	1	1	$\begin{aligned} & (\text { R37-R34 }) \leftarrow(B) \\ & (\text { T37-T34 }) \leftarrow(B) \\ & (\text { R33-R30 }) \leftarrow(A) \\ & (\text { T33-T30 }) \leftarrow(A) \end{aligned}$
	TAB4	1	0	0	1	1	1	0	0	1	1	273	1	1	$(\mathrm{B}) \leftarrow(\mathrm{T} 47-\mathrm{T} 44)$ $(\mathrm{A}) \leftarrow(\mathrm{T} 43-\mathrm{T} 40)$
	T4AB	1	0	0	0	1	1	0	0	1	1	233	1	1	$\begin{aligned} & (R 4 L 7-R 4 L 4) \leftarrow(B) \\ & (T 47-T 44) \leftarrow(B) \\ & (R 4 L 3-R 4 L 0) \leftarrow(A) \\ & (T 43-T 40) \leftarrow(A) \end{aligned}$
	T4HAB	1	0	0	0	1	1	0	1	1	1	237	1	1	$\begin{aligned} & (\mathrm{R} 4 \mathrm{H} 7-\mathrm{R} 4 \mathrm{H} 4) \leftarrow(\mathrm{B}) \\ & \left(\mathrm{R} 4 \mathrm{H}_{3}-\mathrm{R} 4 \mathrm{H} 0\right) \leftarrow(\mathrm{A}) \end{aligned}$
	TR1AB	1	0	0	0	1	1	1	1	1	1	23 F	1	1	$\begin{aligned} & (R 17-R 14) \leftarrow(B) \\ & (R 13-R 10) \leftarrow(A) \end{aligned}$
	TR3AB	1	0	0	0	1	1	1	0	1	1	23 B	1	1	$\begin{aligned} & (\text { R37-R34) } \leftarrow(\mathrm{B}) \\ & (\text { R33-R30 }) \leftarrow(\mathrm{A}) \end{aligned}$
	T4R4L	1	0	1	0	0	1	0	1	1	1	297	1	1	$(\mathrm{T} 47-\mathrm{T} 40) \leftarrow(\mathrm{R} 4 \mathrm{~L} 7-\mathrm{R} 4 \mathrm{~L} 0)$
	TLCA	1	0	0	0	0	0	1	1	0	1	20 D	1	1	$\begin{aligned} & (\mathrm{LC}) \leftarrow(\mathrm{A}) \\ & (\mathrm{RLC}) \leftarrow(\mathrm{A}) \end{aligned}$

Skip condition		Datailed description
-	-	Transfers the contents of timer control register W5 to register A.
-	-	Transfers the contents of register A to timer control register W5.
-	-	Transfers the contents of timer control register W6 to register A.
-	-	Transfers the contents of register A to timer control register W6.
-	-	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	-	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	-	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	-	Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.
-	-	Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R 4 H , and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.
-	-	Transfers the contents of timer 4 reload register R4L to timer 4.
-	-	Transfers the contents of register A to timer LC and timer LC reload register RLC.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter Type of instructions	Mnemonic						struc	ction	cod						
		D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	$\frac{\hat{y}_{5}^{E}}{\Sigma}$	$\frac{e_{1}^{\prime}}{工}$	
	SNZT1	1	0	1	0		0	0	0	0	0	280	1	1	$\begin{aligned} & \mathrm{V} 12=0:(\mathrm{T} 1 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 1 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 12=1: \mathrm{NOP} \end{aligned}$
	SNZT2	1	0	1	0	0	0	0	0	0	1	281	1	1	$\begin{aligned} & \mathrm{V} 13=0:(\mathrm{T} 2 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 2 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 13=1: \mathrm{NOP} \end{aligned}$
	SNZT3	1	0	1	0	0	0	0	0	1	0	282	1	1	$\begin{aligned} & \mathrm{V} 20=0:(\mathrm{T} 3 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 3 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 20=1: \mathrm{NOP} \end{aligned}$
	SNZT4	1	0	1	0					1	1	283	1	1	$\begin{aligned} & \mathrm{V} 23=0:(\mathrm{T} 4 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 4 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 23=1: \mathrm{NOP} \end{aligned}$
	SNZT5	1	0	1	0	0	0	0	1	0	0	284	1	1	$\begin{aligned} & \mathrm{V} 21=0:(\mathrm{T} 5 \mathrm{~F})=1 ? \\ & \text { After skipping, }(\mathrm{T} 5 \mathrm{~F}) \leftarrow 0 \quad \mathrm{~V} 21=1: \mathrm{NOP} \end{aligned}$
	IAP0	1	0	0	1	1	0	0	0	0	0	260	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 0)$
	OPOA	1	0	0	0	1	0	0	0	0	0	220	1	1	$(\mathrm{P} 0) \leftarrow(\mathrm{A})$
	IAP1	1	0	0	1	1	0	0	0	0	1	261	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 1)$
	OP1A	1	0	0	0	1	0	0	0	0	1	221	1	1	$(\mathrm{P} 1) \leftarrow(\mathrm{A})$
	IAP2	1	0	0	1	1	0	0	0	1	0	262	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 2)$
	OP2A	1	0	0	0	1	0	0	0	1	0	222	1	1	$(\mathrm{P} 2) \leftarrow(\mathrm{A})$
	IAP3	1	0	0	1	1	0	0	0	1	1	263	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 3)$
	OP3A	1	0	0	0	1	0	0	0	1	1	223	1	1	$(\mathrm{P} 3) \leftarrow(\mathrm{A})$
	IAP4	1	0	0	1	1	0	0	1	0	0	264	1	1	$(\mathrm{A}) \leftarrow(\mathrm{P} 4)$
	OP4A	1	0	0	0	1	0	0	1	0	0	224	1	1	$(\mathrm{P} 4) \leftarrow(\mathrm{A})$
	CLD	0	0	0	0	0	1	0	0	0	1	011	1	1	(D) $\leftarrow 1$
	RD	0	0	0	0	0	1	0	1	0	0	$0 \quad 14$	1	1	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 0 \\ & (\mathrm{Y})=0 \text { to } 9 \end{aligned}$
	SD	0	0	0	0	0	1	0	1	0	1	015	1	1	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 1 \\ & (\mathrm{Y})=0 \text { to } 9 \end{aligned}$
	SZD		0	0	0						0	024	1	1	$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 ? \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$
		0	0	0	0	1	0	1	0	1	1	02 B	1	1	
	RCP	1	0	1	0	0	0	1	1	0	0	28 C	1	1	(C) $\leftarrow 0$
	SCP	1	0	1	0	0	0	1	1	0	1	28 D	1	1	(C) $\leftarrow 1$
	TAPU0	1	0	0	1	0	1	0	1	1	1	257	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PU} 0)$
	TPU0A	1	0	0	0	1	0	1	1	0	1	22 D	1	1	$(\mathrm{PU} 0) \leftarrow(\mathrm{A})$
	TAPU1	1	0	0	1	0	1	1	1	1	0	25 E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{PU1})$
	TPU1A	1	0	0	0	1	0	1	1	1	0	22 E	1	1	$(\mathrm{PU1}) \leftarrow(\mathrm{A})$

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Skip condition	$\begin{aligned} & \grave{U} \\ & \text { O } \\ & \frac{\pi}{4} \\ & \frac{1}{2} \\ & 0 \end{aligned}$	Datailed description
-	- - - - - - - - -	Transfers the contents of key-on wakeup control register K0 to register A. Transfers the contents of register A to key-on wakeup control register K0 . Transfers the contents of key-on wakeup control register K1 to register A. Transfers the contents of register A to key-on wakeup control register K1. Transfers the contents of key-on wakeup control register K2 to register A. Transfers the contents of register A to key-on wakeup control register K2. Transferts the contents of register A to port output format control register FR0. Transferts the contents of register A to port output format control register FR1. Transferts the contents of register A to port output format control register FR2. Transferts the contents of register A to port output format control register FR3.
		Transfers the contents of LCD control register L1 to register A. Transfers the contents of register A to LCD control register L1. Transfers the contents of register A to LCD control register L2.
$\mathrm{V} 23=0:(\mathrm{SIOF})=1$		Transfers the high-order 4 bits of serial I/O register SI to register B, and transfers the low-order 4 bits of serial I/O register SI to register A. Transfers the contents of register B to the high-order 4 bits of serial I/O register SI, and transfers the contents of register A to the low-order 4 bits of serial I/O register SI. Clears (0) to SIOF flag and starts serial I/O. Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is " 0 " and contents of SIOF flag is "1." After skipping, clears (0) to SIOF flag. Transfers the contents of serial I/O control register J1 to register A. Transfers the contents of register A to serial I/O control register J1.
	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	Selects the ceramic resonator for main clock, stops the on-chip oscillator (internal oscillator). Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator). Transfers the contents of clock control regiser MR to register A. Transfers the contents of register A to clock control register MR.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

[^1]\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Datailed description

\hline -

- \& -
-
- \& | In the A / D conversion mode $(Q 13=0)$, transfers the high-order 4 bits (AD9-AD6) of register $A D$ to register B, and the middle-order 4 bits (AD5-AD2) of register AD to register A. In the comparator mode (Q13 $=1$), transfers the middle-order 4 bits (AD7-AD4) of register AD to register B, and the low-order 4 bits (AD3-AD0) of register AD to register A. |
| :--- |
| (Q13: bit 3 of A/D control register Q1) |
| Transfers the low-order 2 bits (AD1, ADo) of register $A D$ to the high-order 2 bits (AD3, AD2) of register A. |

\hline - \& - \& In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7-AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3-AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)

\hline - \& - \& | Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 $=0)$ or the comparator operation at the comparator mode $(Q 13=1)$ is started. |
| :--- |
| (Q13 = bit 3 of A/D control register Q1) |

\hline $\mathrm{V} 22=0:(\mathrm{ADF})=1$ \& - \& When V 22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is " 0 ," executes the next instruction. (V22: bit 2 of interrupt control register V2)

\hline - \& - \& Transfers the contents of A/D control register Q1 to register A.

\hline - \& - \& Transfers the contents of register A to A/D control register Q1.

\hline - \& - \& Transfers the contents of A/D control register Q2 to register A.

\hline - \& - \& Transfers the contents of register A to A/D control register Q2.

\hline - \& - \& Transfers the contents of A/D control register Q3 to register A.

\hline - \& - \& Transfers the contents of register A to A/D control register Q3.

\hline - \& - \& No operation; Adds 1 to program counter value, and others remain unchanged.

\hline - \& - \& Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.

\hline - \& - \& Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.

\hline - \& - \& Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.

\hline $(P)=1$ \& - \& Skips the next instruction when the P flag is " 1 ". After skipping, the P flag remains unchanged.

\hline $($ WDF1 $)=1$ \& - \& Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.

\hline - \& - \& Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.

\hline - \& - \& Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.

\hline - \& - \& Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.

\hline - \& - \& Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode) when VDCE pin is " H ".

\hline
\end{tabular}

INSTRUCTION CODE TABLE

	-D4	000000	000001	000010	000011000	000100	000101	000110	000111	001000	001001	1001010	001011	1001100	001101	001110	001111	010000	011000
D3-D0	Hex.	00	01	02	03	04	05	06	07	08	09	0A	0B	OC	0D	OE	OF	10-17	18-1F
0000	0	NOP	BLA	SZB	BMLA	RBK**	TASP	$\begin{aligned} & \mathrm{A} \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 0 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 0 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 32^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 48^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0001	1	-	CLD	$\begin{gathered} \text { SZB } \\ 1 \end{gathered}$	-	SBK**	TAD	$\begin{gathered} A \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 1 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 1 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 17 \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 33^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 49^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0010	2	POF	-	$\begin{gathered} \text { SZB } \\ 2 \end{gathered}$	-	-	TAX	A 2	$\begin{gathered} \text { LA } \\ 2 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 2 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 18 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 34^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 50^{\star} \end{gathered}$	BML	BML	BL	BL	BM	B
0011	3	SNZP	INY	$\begin{gathered} \text { SZB } \\ 3 \end{gathered}$	-	-	TAZ	$\begin{gathered} \mathrm{A} \\ 3 \end{gathered}$	$\begin{gathered} \text { LA } \\ 3 \end{gathered}$	TABP 3	$\begin{gathered} \text { TABP } \\ 19 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 35^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 51^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0100	4	DI	RD	SZD	-	RT	TAV1	$\begin{aligned} & \mathrm{A} \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 4 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 20 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 36^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 52^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0101	5	El	SD	SEAn	-	RTS	TAV2	$\begin{gathered} A \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{LA} \\ 5 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 5 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 21 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 37^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 53^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
0110	6	RC	-	SEAM	-	RTI	-	$\begin{aligned} & \text { A } \\ & 6 \end{aligned}$	$\begin{gathered} \text { LA } \\ 6 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 22 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 38^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 54^{\star} \end{gathered}$	BML	BML	BL	BL	BM	B
0111	7	SC	DEY	-	-	-	-	$\begin{aligned} & \text { A } \\ & 7 \end{aligned}$	$\begin{gathered} \text { LA } \\ 7 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 23 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 39^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 55^{*} \\ \hline \end{gathered}$	BML	BML	BL	BL	BM	B
1000	8	POF2	AND	-	SNZO	$\begin{gathered} \mathrm{LZ} \\ 0 \\ \hline \end{gathered}$	-	$\begin{gathered} A \\ 8 \end{gathered}$	$\begin{gathered} \text { LA } \\ 8 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 24 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 40^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 56^{\star} \end{gathered}$	BML	BML	BL	BL	BM	B
1001	9	-	OR	TDA	SNZ1	$\begin{gathered} \mathrm{LZ} \\ 1 \end{gathered}$	-	A 9	$\begin{gathered} \text { LA } \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 9 \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 41^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 57^{*} \\ \hline \end{gathered}$	BML	BML	BL	BL	BM	B
1010	A	AM	TEAB	TABE	SNZIO	$\begin{gathered} \mathrm{LZ} \\ 2 \\ \hline \end{gathered}$	-	$\begin{gathered} \text { A } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { LA } \\ 10 \end{gathered}$	$\begin{array}{c\|} \text { TABP } \\ 10 \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 26 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 42^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 58^{*} \\ \hline \end{gathered}$	BML	BML	BL	BL	BM	B
1011	B	AMC	-	-	SNZI1	$\begin{gathered} \mathrm{LZ} \\ 3 \end{gathered}$	EPOF	$\begin{gathered} \text { A } \\ 11 \end{gathered}$	$\begin{gathered} \text { LA } \\ 11 \end{gathered}$	TABP 11	$\begin{gathered} \text { TABP } \\ 27 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 43^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 59^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1100	C	TYA	CMA	-	-	$\begin{gathered} \text { RB } \\ 0 \end{gathered}$	$\begin{gathered} \text { SB } \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 12 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 12 \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 44^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { TABP } \\ 60^{*} \\ \hline \end{gathered}$	BML	BML	BL	BL	BM	B
1101	D	-	RAR	-	-	$\begin{gathered} \mathrm{RB} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 1 \end{gathered}$	$\begin{gathered} \text { A } \\ 13 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 13 \end{aligned}$	$\left\lvert\, \begin{gathered} \text { TABP } \\ 13 \end{gathered}\right.$	$\begin{gathered} \text { TABP } \\ 29 \end{gathered}$	$\begin{gathered} \mathrm{TABP} \\ 45^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 61^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1110	E	TBA	TAB	-	TV2A	$\begin{gathered} \text { RB } \\ 2 \end{gathered}$	$\begin{gathered} \text { SB } \\ 2 \end{gathered}$	$\begin{gathered} \text { A } \\ 14 \end{gathered}$	$\begin{gathered} \text { LA } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 14 \end{array}$	$\begin{gathered} \text { TABP } \\ 30 \end{gathered}$	$\begin{gathered} \text { TABP } \\ 46^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 62^{*} \end{gathered}$	BML	BML	BL	BL	BM	B
1111	F	-	TAY	SZC	TV1A	$\begin{gathered} \mathrm{RB} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { LA } \\ 15 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TABP } \\ 15 \\ \hline \end{array}$	$\begin{gathered} \text { TABP } \\ 31 \end{gathered}$	$\begin{gathered} \hline \text { TABP } \\ 47^{*} \end{gathered}$	$\begin{gathered} \text { TABP } \\ 63^{*} \\ \hline \end{gathered}$	BML	BML	BL	BL	BM	B

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	$1 p$	paaa	aaaa
BML	$1 p$	paaa	aaaa
BLA	$1 p$	$p p 00$	$p p p p$
BMLA	$1 p$	$p p 00$	$p p p p$
SEA	00	0111	nnnn
SZD	00	0010	1011

- ** (SBK and RBK instructions) cannot be used in the M34524M8.
- * cannot be used after the SBK instruction is executed in the M34524MC.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34524MC/ED.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34524MC.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 in the M34524ED.
(Ex. TABP $0 \rightarrow$ TABP 64)
- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63 .
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63 .

INSTRUCTION CODE TABLE (continued)

$\#$	D4	100000	100001	1000101	1000111	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000
	$0 \begin{gathered} \text { Hex. } \\ \text { notation } \end{gathered}$	20	21	22	23	24	25	26	27	28	29	2 A	2B	2C	2D	2E	2F	30-3F
0000	0	-	TW3A	OP0A	T1AB	-	TAW6	IAPO	TAB1	SNZT1	-	WRST	$\begin{gathered} \text { TMA } \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 0 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 0 \end{gathered}$	$\begin{array}{\|c} \text { XAMI } \\ 0 \end{array}$	$\begin{array}{\|c} \text { XAMD } \\ 0 \end{array}$	LXY
0001	1	-	TW4A	OP1A	T2AB	-	-	IAP1	TAB2	SNZT2	-	-	TMA 1	$\begin{gathered} \text { TAM } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 1 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 1 \end{array}$	LXY
0010	2	TJ1A	TW5A	OP2A	T3AB	TAJ1	TAMR	IAP2	TAB3	SNZT3	-	-	$\begin{gathered} \text { TMA } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 2 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 2 \end{gathered}$	$\begin{array}{\|c} \text { XAMI } \\ 2 \end{array}$	$\begin{array}{\|c} \hline \text { XAMD } \\ 2 \end{array}$	LXY
0011	3	-	TW6A	OP3A	T4AB	-	TAI1	IAP3	TAB4	SNZT4	SVDE	-	$\begin{gathered} \text { TMA } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { TAM } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAM } \\ 3 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 3 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 3 \end{array}$	LXY
0100	4	TQ1A	TK1A	OP4A	-	TAQ1	TAI2	IAP4	-	SNZT5	-	-	$\begin{gathered} \text { TMA } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { TAM } \\ 4 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { XAM } \\ 4 \end{array}$	$\begin{array}{\|c} \text { XAMI } \\ 4 \end{array}$	$\begin{array}{\|c} \hline \text { XAMD } \\ 4 \end{array}$	LXY
0101	5	TQ2A	TK2A	-	TPSAB	TAQ2	TAI3	-	TABPS	-	-	-	$\begin{gathered} \text { TMA } \\ 5 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 5 \end{gathered}$	$\begin{array}{\|c} \text { XAMI } \\ 5 \end{array}$	$\begin{gathered} \mathrm{XAMD} \\ 5 \end{gathered}$	LXY
0110	6	TQ3A	TMRA	-	-	TAQ3	TAK0	-	-	-	-	-	$\begin{gathered} \text { TMA } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 6 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 6 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 6 \end{array}$	LXY
0111	7	-	TI1A	-	4 HAB	-	TAPU0	-	-	SNZAD	T4R4L	-	$\begin{gathered} \text { TMA } \\ 7 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 7 \end{gathered}$	$\begin{gathered} \text { XAM } \\ 7 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMI } \\ 7 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 7 \\ \hline \end{array}$	LXY
1000	8	-	TI2A	TFR0A	TSIAB	-	-	-	TABSI	SNZSI	-	-	$\begin{gathered} \text { TMA } \\ 8 \end{gathered}$	$\begin{gathered} \text { TAM } \\ 8 \end{gathered}$	$\begin{array}{\|c} \text { XAM } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { XAMI } \\ 8 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 8 \\ \hline \end{array}$	LXY
1001	9	-	-	TFR1AT	TADAB	TALA	TAK1	-	TABAD	-	-	-	$\begin{gathered} \text { TMA } \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \text { TAM } \\ 9 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { XAM } \\ 9 \end{array}$	$\begin{array}{\|c} \text { XAMI } \\ 9 \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 9 \end{array}$	LXY
1010	A	TL1A	TI3A	TFR2A	-	TAL1	TAK2	-	-	-	CMCK	TPAA	$\begin{gathered} \text { TMA } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 10 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { XAM } \\ 10 \end{array}$	$\begin{gathered} \text { XAMI } \\ 10 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 10 \end{array}$	LXY
1011	B	TL2A	TK0A	TFR3AT	TR3AB	TAW1	-	-	-	-	CRCK	-	$\begin{gathered} \text { TMA } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 11 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { XAM } \\ \hline \end{array}$	$\begin{array}{\|c} \text { XAMI } \\ 11 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 11 \\ \hline \end{array}$	LXY
1100	C	-	-	-	-	TAW2	-	-	-	RCP	DWDT	-	$\begin{gathered} \text { TMA } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { XAM } \\ 12 \\ \hline \end{array}$	$\begin{gathered} \text { XAMI } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 12 \\ \hline \end{array}$	LXY
1101	D	TLCA	-	TPU0A	-	TAW3	-	-	-	SCP	-	-	$\begin{gathered} \text { TMA } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { TAM } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAM } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 13 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 13 \\ \hline \end{array}$	LXY
1110	E	TW1A	-	TPU1A	-	TAW4	TAPU1	-	-	-	SST	-	$\begin{gathered} \hline \text { TMA } \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { XAM } \\ 14 \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 14 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 14 \end{array}$	LXY
1111	F	TW2A	-	-	TR1AB	TAW5	-	-	-	-	ADST	-	$\begin{gathered} \text { TMA } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TAM } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAM } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { XAMI } \\ 15 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 15 \end{array}$	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the loworder 4 bits of the machine language code, and D9-D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	$1 p$	paaa	aaaa
BML	$1 p$	paaa	aaaa
BLA	$1 p$	$p p 00$	$p p p p$
BMLA	$1 p$	$p p 00$	$p p p p$
SEA	00	0111	nnnn
SZD	00	0010	1011

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4524 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.
The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.
Table 25 shows the product of built-in PROM version. Figure 75 shows the pin configurations of built-in PROM versions.
The One Time PROM version has pin-compatibility with the mask ROM version.

Table 25 Product of built-in PROM version

Part number	PROM size $(\times 10$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34524EDFP	16384 words	512 words	$64 P 6 N-A$	One Time PROM [shipped in blank]

PIN CONFIGURATION (TOP VIEW)

Outline 64P6N-A
Fig. 75 Pin configuration of built-in PROM version

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.
In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.
Programming adapter is listed in Table 26. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

- Writing and reading of built-in PROM

Programming voltage is 12.5 V . Write the program in the PROM of the built-in PROM version as shown in Figure 76.

(2) Notes on handling

(1) A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
(2) For the One Time PROM version shipped in blank, Renesas Technology corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 77 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

Table 26 Programming adapter

Part number	Name of Programming Adapter
M34524EDFP	PCA7448

Fig. 76 PROM memory map

Fig. 77 Flow of writing and test of the product shipped in blank

CHAPTER 2

APPLICATION

2.1 I/O pins
2.2 Interrupts
2.3 Timers
2.4 A/D converter
2.5 Serial I/O
2.6 LCD function
2.7 Reset
2.8 Voltage drop detection circuit
2.9 Power down
2.10 Oscillation circuit

2.1 I/O pins

The 4524 Group has twenty-eight I/O pins and three output pins.
Port P2 is also used as analog input pins Aino-Ain3.
Port P3 is also used as analog input pins Ain4-Ain7.
Ports D4-D6 are also used as Serial I/O pins Sin, Sout, Sck.
Port D7 is also used as CNTRO I/O pin.
Port D8 is also used as INTO input pin.
Port D9 is also used as INT1 input pin.
Port C is also used as CNTR1 I/O pin.
This section describes each port I/O function, related registers, application example using each port function and notes.

2.1.1 I/O ports

(1) Port PO

Port PO is a 4-bit I/O port.
Port P0 has the key-on wakeup function which turns ON/OFF with register K0 and pull-up transistor which turns ON/OFF with register PUO.

- Input

In the following conditions, the pin state of port PO is transferred as input data to register A when the IAPO instruction is executed.

- Set bit FR00 or bit FR01 of register FR0 to "0" according to the port to be used.
- Set the output latch of specified port $\mathrm{PO} \mathrm{i}(\mathrm{i}=0,1,2$ or 3) to " 1 " with the OPOA instruction.

If FROO or FR01 is " 0 " and the output latch is " 0 ", " 0 " is output to specified port P0.
If FR00 or FR01 is " 1 ", the output latch value is output to specified port P0.

- Output

The contents of register A is set to the output latch with the OPOA instruction, and is output to port PO.
N -channel open-drain or CMOS can be selected as the output structure of port PO in 2 bits unit by setting FROO or FRO1.

(2) Port P1

Port P1 is a 4-bit I/O port.
Port P1 has the key-on wakeup function which turns ON/OFF with register K1 and pull-up transistor which turns ON/OFF with register PU1.

- Input

In the following conditions, the pin state of port P1 is transferred as input data to register A when the IAP1 instruction is executed.

- Set bit FRO2 or bit FRO3 of register FRO to "0" according to the port to be used.
- Set the output latch of specified port P1i ($\mathrm{i}=0,1,2$ or 3) to " 1 " with the OP1A instruction.

If FRO2 or FRO3 is " 0 " and the output latch is " 0 ", " 0 " is output to specified port P1.
If FRO2 or FR03 is "1", the output latch value is output to specified port P1.

- Output

The contents of register A is set to the output latch with the OP1A instruction, and is output to port P1.
N-channel open-drain or CMOS can be selected as the output structure of port P1 in 2 bits unit by setting FRO2 or FRO3.

(3) Port P2

Port P2 is a 4-bit I/O port.
P20-P23 are also used as analog input pins Aino-Ain3.

- Input

In the following condition, the pin state of port P2 is transferred as input data to register A when the IAP2 instruction is executed.

- Set the output latch of specified port P2i ($\mathrm{i}=0,1,2$ or 3) to " 1 " with the OP2A instruction.

If the output latch is " 0 ", " 0 " is output to specified port P2.

- Output

The contents of register A is set to the output latch with the OP2A instruction, and is output to port P2.
The output structure is an N -channel open-drain.
Note: Ports P20-P23 are used as input/output port P2, set the corresponding bit of register Q2 to "0".

(4) Port P3

Port P3 is a 4-bit I/O port.
P30-P33 are also used as analog input pins AIN4-AIN7.

- Input

In the following condition, the pin state of port P3 is transferred as input data to register A when the IAP3 instruction is executed.

- Set the output latch of specified port P3i ($\mathrm{i}=0,1,2$ or 3) to " 1 " with the OP3A instruction.

If the output latch is " 0 ", " 0 " is output to specified port P3.

- Output

The contents of register A is set to the output latch with the OP3A instruction, and is output to port P3.
The output structure is an N-channel open-drain.
Note: Ports P30-P33 are used as input/output port P3, set the corresponding bit of register Q3 to "0".

(5) Port P4

Port P4 is a 4-bit I/O port.

- Input

In the following conditions, the pin state of port P4 is transferred as input data to register A when the IAP4 instruction is executed.

- Set bit i ($\mathrm{i}=0,1,2$ or 3) of register FR3 to " 0 " according to the port to be used.
- Set the output latch of specified port P4i ($\mathrm{i}=0,1,2$ or 3) to " 1 " with the OP4A instruction.

If FR3i is " 0 " and the output latch is " 0 ", " 0 " is output to specified port P4.
If FR3i is " 1 ", the output latch value is output to specified port P4.

- Output

The contents of register A is set to the output latch with the OP4A instruction, and is output to port P4.
N-channel open-drain or CMOS can be selected as the output structure of port P4 in 1 bit unit by setting register FR3.

(6) Port D

Ports D0-D7 are eight independent I/O ports, and ports D8 and D9 are two independent output ports.
Ports D4-D6 are also used as Serial I/O pins Sin, Sout, Sck. Port D7 is also used as CNTRO I/O pin. Port D8 is also used as INT0 input pin. Port D9 is also used as INT1 input pin. Also, as for INT0 and INT1, its key-on wakeup function is switched to ON/OFF by the register K20 and K22.

- Input/output of port D

Each pin of port D has an independent 1-bit wide I/O function. For I/O of ports D0-D7 and output of $D 8$ and $D 9$, select one of port D with the register Y of the data pointer first.

- Input

The pin state of port D can be obtained with the SZD instruction.
In the following conditions, if the pin state of port $\operatorname{Dj}(j=0,1,2,3,4,5,6$ or 7) is " 0 " when the SZD instruction is executed, the next instruction is skipped. If it is " 1 " when the SZD instruction is executed, the next instruction is executed.

- Set bit i ($\mathrm{i}=0,1,2$ or 3) of register FR1 or FR2 to " 0 " according to the port to be used.
- Set the output latch of specified port $D j$ to "1" with the SD instruction.

If FR1i or FR2 i is " 0 " and the output latch is " 0 ", " 0 " is output to specified port D.
If FR1i or FR2i is " 1 ", the output latch value is output to specified port D.

- Output

Set the output level to the output latch with the SD, CLD and RD instructions.
The state of pin enters the high-impedance state when the SD instruction is executed.
All port D enter the high-impedance state or "H" level state when the CLD instruction is executed. The state of pin becomes " L " level when the RD instruction is executed.
N-channel open-drain or CMOS can be selected as the output structure of ports Do-D7 in 1 bit unit by setting registers FR1, FR2.
The output structure of ports D8 and D9 is N-channel open-drain.
Notes 1: When the SD and RD instructions are used, do not set "10102" or more to register Y.
2: Port D4 is also used as serial I/O pin SIN. Accordingly, when using port D4, set bit 1 (J11) and bit 0 (J 10) of register J 1 to " 002 " or " 012 ."
3: Port D5 is also used as serial I/O pin Sout. Accordingly, when using port D5, set bit J11 and bit J10 to "002" or "102."
4: Port D6 is also used as serial I/O pin SCK. Accordingly, when using port D6, set bit J11 and bit J 10 to "002." Also, set bit J13 and bit J12 to "002", "012" or "102."
5: Port D7 is also used as CNTR0 pin. Accordingly, when using port D7, set bit 0 (W60) of register W6 to "0."
(7) Port C

Port C is a 1-bit output port. Port C is also used as CNTRO pin.

■ Output

- Data output from port C

Set the output level to the output latch with the SCP and RCP instructions. The state of pin becomes "H" level when the SCP instruction is executed. The state of pin becomes " L " level when the RCP instruction is executed. The output structure is CMOS.

Note: Port C is also used as CNTR1.
Accordingly, when using port C, set bit W31 and bit W30 to "002", "012" or "102." Also, set bit W43 and bit W61 to "0."

2.1.2 Related registers

(1) Timer control register W3

Table 2.1.1 shows the timer control register W3.
Set the contents of this register through register A with the TW3A instruction.
The contents of register W3 is transferred to register A with the TAW3 instruction.
Table 2.1.1 Timer control register W3

| Timer control register W3 | | at reset:00002 | | at power down : state retained |
| :--- | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 3 count start synchronous circuit is selected ($120=1$ ").
3: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.
4: When setting the port, W33-W32 are not used.
(2) Timer control register W4

Table 2.1.2 shows the timer control register W4.
Set the contents of this register through register A with the TW4A instruction.
The contents of register W4 is transferred to register A with the TAW4 instruction.
Table 2.1.2 Timer control register W4

| Timer control register W4 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When setting the port, W42-W40 are not used.

(3) Timer control register W6

Table 2.1 .3 shows the timer control register W6.
Set the contents of this register through register A with the TW6A instruction.
The contents of register W6 is transferred to register A with the TAW6 instruction.
Table 2.1.3 Timer control register W6

Timer control register W6		at reset :00002		at power down : state retained
W/W				
W63	Timer LC control bit	0	Stop (state retained)	
	W62	Timer LC count source selection bit	0	Operating
W61	CNTR1 output auto-control circuit selection bit	1	Prescaler output (ORCLK)	
	D7/CNTR0 pin function selection bit (Note 2)	0	CNTR1 output auto-control circuit not selected	
	1	CNTR1 output auto-control circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTRO input is valid only when CNTRO input is selected for the timer 1 count source.
3: When setting the port, W63-W62 are not used.

(4) Serial I/O control register J1

Table 2.1.4 shows the serial I/O control register J1.
Set the contents of this register through register A with the TJ1A instruction.
The contents of register J1 is transferred to register A with the TAJ1 instruction.
Table 2.1.4 Serial I/O control register J1

| Serial I/O control register J1 | | at reset: 00002 | | | at power down : state retained |
| :---: | :--- | :---: | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When setting the port, J13-J12 are not used.

(5) A/D control register Q2

Table 2.1.5 shows the A/D control register Q2.
Set the contents of this register through register A with the TQ2A instruction.
The contents of register Q2 is transferred to register A with the TAQ2 instruction.
Table 2.1.5 A/D control register Q2

AD control register Q2		at reset : 00002		at power down : state retained	R/W
Q23	P23/AIN3 pin function selection bit	0	P23		
		1	AIN3		
Q22	P22/AIN2 pin function selection bit	0	P22		
		1	AIN2		
Q21	P21/AIN1 pin function selection bit	0	P21		
		1	AIN1		
Q20	P20/AIN0 pin function selection bit	0	P20		
		1	Aino		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: In order to select AIN3-AINo, set register Q1 after setting register Q2.
(6) A / D control register Q3

Table 2.1.6 shows the A/D control register Q3.
Set the contents of this register through register A with the TQ3A instruction.
The contents of register Q3 is transferred to register A with the TAQ3 instruction.
Table 2.1.6 A/D control register Q3

AD control register Q3		at reset : 00002		at power down : state retained	R/W
Q33	P33/AIN7 pin function selection bit	0	P33		
		1	AIN7		
Q32	P32/AIN6 pin function selection bit	0	P32		
		1	AIN6		
Q31	P31/AIN5 pin function selection bit	0	P31		
		1	AIN5		
Q30	P30/AIN4 pin function selection bit	0	P30		
		1	AIN4		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: In order to select AIN7-AIN4, set register Q1 after setting regsiter Q3.

(7) Pull-up control register PUO

Table 2.1.7 shows the pull-up control register PU0.
Set the contents of this register through register A with the TPUOA instruction.
The contents of register PU0 is transferred to register A with the TAPU0 instruction.
Table 2.1.7 Pull-up control register PU0

| Pull-up control register PU0 | | at reset : 00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

(8) Pull-up control register PU1

Table 2.1.8 shows the pull-up control register PU1.
Set the contents of this register through register A with the TPU1A instruction.
The contents of register PU1 is transferred to register A with the TAPU1 instruction.

Table 2.1.8 Pull-up control register PU1

| Pull-up control register PU1 | | at reset : 00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

(9) Port output structure control register FR0

Table 2.1.9 shows the port output structure control register FRO.
Set the contents of this register through register A with the TFROA instruction.

Table 2.1.9 Port output structure control register FR0

Note: "W" represents write enabled.

(10) Port output structure control register FR1

Table 2.1.10 shows the port output structure control register FR1.
Set the contents of this register through register A with the TFR1A instruction.
Table 2.1.10 Port output structure control register FR1

Port output structure control register FR1		at reset : 00002		at power down : state retained	W
FR13	Port D3 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR12	Port D2 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR11	Port D1 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR10	Port Do output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Note: "W" represents write enabled.

(11) Port output structure control register FR2

Table 2.1.11 shows the port output structure control register FR2.
Set the contents of this register through register A with the TFR2A instruction.
Table 2.1.11 Port output structure control register FR2

Port output structure control register FR2		at reset : 00002		at power down : state retained	W
FR23	Port D7/CNTRO output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR22	Port D6/Sck output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR21	Port D5/Sout output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR20	Port D4/SIN output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Note: "W" represents write enabled.

(12) Port output structure control register FR3

Table 2.1.12 shows the port output structure control register FR3.
Set the contents of this register through register A with the TFR3A instruction.
Table 2.1.12 Port output structure control register FR3

Port output structure control register FR3		at reset : 00002		at power down : state retained	W
FR33	Port P43 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR32	Port P42 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR31	Port P41 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR30	Port P40 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Note: "W" represents write enabled.

(13) Key-on wakeup control register K0

Table 2.1.13 shows the key-on wakeup control register K0.
Set the contents of this register through register A with the TKOA instruction.
The contents of register KO is transferred to register A with the TAKO instruction.

Table 2.1.13 Key-on wakeup control register K0

Key-on wakeup control register K0		at reset : 00002		at power down : state retained	R/W
K03	Port P03 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K02	Port P02 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K01	Port P01 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		
K00	Port P00 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Note: "R" represents read enabled, and "W" represents write enabled.

(14) Key-on wakeup control register K1

Table 2.1.14 shows the key-on wakeup control register K1.
Set the contents of this register through register A with the TK1A instruction.
The contents of register K1 is transferred to register A with the TAK1 instruction.

Table 2.1.14 Key-on wakeup control register K1

| Key-on wakeup control register K1 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

(15) Key-on wakeup control register K2

Table 2.1.15 shows the key-on wakeup control register K2.
Set the contents of this register through register A with the TK2A instruction.
The contents of register K2 is transferred to register A with the TAK2 instruction.
Table 2.1.15 Key-on wakeup control register K2

| Key-on wakeup control register K2 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When setting the port, K22 and K23 are not used.

2.1.3 Port application examples

(1) Key input by key scan

Key matrix can be set up by connecting keys externally because port D output structure is an N channel open-drain and port P0 has the pull-up resistor.

Outline: The connecting required external part is just keys.
Specifications: Port D is used to output " L " level and port P0 is used to input 16 keys.
Figure 2.1.1 shows the key input and Figure 2.1 .2 shows the key input timing.

Fig. 2.1.1 Key input by key scan

Fig. 2.1.2 Key scan input timing

2.1.4 Notes on use

(1) Note when ports P0, P1, P4 and Do-D7 are used as an input port

In the following conditions, the pin state of port P0, P1, P4 or D0-D7 is transferred as input data to register A when the corresponding input instruction is executed.

- Set bit $\mathrm{i}(\mathrm{i}=0,1,2$ or 3) of register FR0, FR1, FR2 or FR3 to " 0 " according to the port to be used.
- Set the output latch of the specified port to " 1 " with the corresponding output instruction.

If bit i of FRO, FR1, FR2 or FR3 is " 0 " and the output latch is set to " 0 ," " 0 " is output to specified port.
If bit i of FR0, FR1, FR2 or FR3 is "1", the output latch value is output to specified port.

(2) Note when ports P2 and P3 are used as an input port

In the following condition, the pin state of port P2 or P3 is transferred as input data to register A when the IAP2 or IAP3 instruction is executed.

- Set the output latch of specified port P2i or P3i ($\mathrm{i}=0,1,2$ or 3) to "1" with the OP2A or OP3A instruction.
If the output latch is " 0 ", " 0 " is output to specified port P2 or P3.
(3) Noise and latch-up prevention

Connect an approximate $0.1 \mu \mathrm{~F}$ bypass capacitor directly to the Vss line and the VdD line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.
The CNVss pin is also used as the VPP pin (programming voltage $=12.5 \mathrm{~V}$) at the One Time PROM version.
Connect the CNVss/VPP pin to Vss through an approximate $5 \mathrm{k} \Omega$ resistor which is connected to the CNVss/VpP pin at the shortest distance.
(4) Multifunction

- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input of ports D4-D6 can be used even when Sin, Sout and Sck pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin is selected.
- Be careful that the input of port D7 can be used even when output of CNTRO pin is selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin is selected.
(5) Connection of unused pins

Table 2.1.16 shows the connections of unused pins.
(6) SD, RD, SZD instructions

When the SD and RD instructions are used, do not set "10102" or more to register Y.
When the SZD instructions is used, do not set "10002" or more to register Y.
(7) Port D8/INTO pin

When the power down mode is used by clearing the bit 3 of register 11 to " 0 " and setting the input of INT0 pin to be disabled, be careful about the following note.

- When the input of INTO pin is disabled (register $113=$ " 0 "), clear bit 0 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.
(8) Port D9/INT1 pin

When the power down mode is used by clearing the bit 3 of register 12 to " 0 " and setting the input of INT1 pin to be disabled, be careful about the following note.

- When the input of INT1 pin is disabled (register $\mathrm{I} 23=$ " 0 "), clear bit 2 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.

Table 2.1.16 Connections of unused pins

Pin	Connection	Usage condition	
XIN	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) Sub-clock input is selected for system clock ($\mathrm{MR} 0=1$).	(Note 1) (Note 2)
XOUT	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) RC oscillator is selected (CRCK instruction is executed) External clock input is selected for main clock (CMCK instruction is executed). Sub-clock input is selected for system clock (MR0=1).	
$\overline{\text { XCIN }}$	Connect to Vss.	Sub-clock is not used.	
XCOUT	Open.	Sub-clock is not used.	
D0-D3	Open.		
	Connect to Vss.	N -channel open-drain is selected for the output structure.	(Note 4)
D4/SIN	Open.	SIN pin is not selected.	
	Connect to Vss.	N -channel open-drain is selected for the output structure.	
D5/Sout	Open.		
	Connect to Vss.	N -channel open-drain is selected for the output structure.	
D6/Sck	Open.	Sck pin is not selected.	
	Connect to Vss.	N -channel open-drain is selected for the output structure.	
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.	
	Connect to Vss.	N -channel open-drain is selected for the output structure.	
D8/INT0	Open.	"0" is set to output latch.	
	Connect to Vss.		
D9/INT1	Open.	"0" is set to output latch.	
	Connect to Vss.		
$\frac{\text { C/CNTR1 }}{\text { P00-P03 }}$	Open.	CNTR1 input is not selected for timer 3 count source.	
	Open.	The key-on wakeup function is not selected.	(Note 4)
	Connect to Vss.	N -channel open-drain is selected for the output structure. The pull-up function is not selected. The key-on wakeup function is not selected.	(Note 5) (Note 4) (Note 4)
P10-P13	Open.	The key-on wakeup function is not selected.	(Note 4)
	Connect to Vss.	N -channel open-drain is selected for the output structure. The pull-up function is not selected. The key-on wakeup function is not selected.	(Note 5) (Note 4) (Note 4)
$\begin{aligned} & \hline \text { P20/AIN0- } \\ & \text { P23/AIn3 } \end{aligned}$	Open.		
	Connect to Vss.		
P3o/AIN4P33/AIN7	Open.		
	Connect to Vss.		
P40-P43	Open.		
	Connect to Vss.	N -channel open-drain is selected for the output structure.	(Note 4)
COM0-COM3	Open.		
VLC3/SEG0	Open.	SEGo pin is selected.	
VLC2/SEG1	Open.	SEG1 pin is selected.	
VLC1/SEG2	Open.	SEG2 pin is selected.	
SEG3-SEG19	Open.		

Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.
2: When sub-clock (XCIN) input is selected $(M R 0=1)$ for the system clock by setting " 1 " to bit 1 (MR1) of clock control register MR, main clock is stopped.
3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
4: Be sure to select the output structure of ports Do-D3 and P40-P43 and the pull-up function and key-on wakeup function of $\mathrm{P} 00-\mathrm{P} 03$ and $\mathrm{P} 10-\mathrm{P} 13$ with every one port. Set the corresponding bits of registers for each port.
5: Be sure to select the output structure of ports $\mathrm{P} 00-\mathrm{PO} 3$ and $\mathrm{P} 10-\mathrm{P} 13$ with every two ports. If only one of the two pins is used, leave another one open.
(Note when connecting unused pins to Vss or VDD)

- Connect the unused pins to Vss or VDD using the thickest wire at the shortest distance against noise.

2.2 Interrupts

The 4524 Group has eight interrupt sources : external (INT0, INT1), timer 1, timer 2, timer 3, timer 5, A/ D and timer 4 or serial I/O.
This section describes individual types of interrupts, related registers, application examples using interrupts and notes.

2.2.1 Interrupt functions

(1) External 0 interrupt (INTO)

The interrupt request occurs by the change of input level of INTO pin.
The interrupt valid waveform can be selected by the bits 1 and 2, and the INTO pin input is controlled by the bit 3 of the interrupt control register 11 .

■ External 0 interrupt INTO processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 0 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the external 0 interrupt occurs, the interrupt processing is executed from address 0 in page 1.

- When the interrupt is not used

The interrupt is disabled and the SNZO instruction is valid when the bit 0 of register V1 is set to "0."
(2) External 1 interrupt (INT1)

The interrupt request occurs by the change of input level of INT1 pin.
The interrupt valid waveform can be selected by the bits 1 and 2, and the INT1 pin input is controlled by the bit 3 of the interrupt control register I 2 .

■ External 1 interrupt INT1 processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 1 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the external 1 interrupt occurs, the interrupt processing is executed from address 2 in page 1.

- When the interrupt is not used

The interrupt is disabled and the SNZ1 instruction is valid when the bit 1 of register V1 is set to "0."

(3) Timer 1 interrupt

The interrupt request occurs by the timer 1 underflow.

■ Timer 1 interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 1 interrupt occurs, the interrupt processing is executed from address 4 in page 1.

- When the interrupt is not used

The interrupt is disabled and the SNZT1 instruction is valid when the bit 2 of register V 1 is set to "0."

(4) Timer 2 interrupt

The interrupt request occurs by the timer 2 underflow.

■ Timer 2 interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 2 interrupt occurs, the interrupt processing is executed from address 6 in page 1.

- When the interrupt is not used The interrupt is disabled and the SNZT2 instruction is valid when the bit 3 of register V1 is set to "0."

(5) Timer 3 interrupt

The interrupt request occurs by the timer 3 underflow.

■ Timer 3 interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 0 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the timer 3 interrupt occurs, the interrupt processing is executed from address 8 in page 1.

- When the interrupt is not used

The interrupt is disabled and the SNZT3 instruction is valid when the bit 0 of register V2 is set to "0."
(6) Timer 5 interrupt

The interrupt request occurs by the timer 5 underflow.

- Timer 5 interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 1 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the timer 5 interrupt occurs, the interrupt processing is executed from address A in page 1.

- When the interrupt is not used

The interrupt is disabled and the SNZT5 instruction is valid when the bit 1 of register V2 is set to " 0 ."

(7) A/D interrupt

The interrupt request occurs by the completion of A/D conversion.

■ A/D interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V2 and the interrupt enable flag INTE are set to " 1 ." When the A/D interrupt occurs, the interrupt processing is executed from address C in page 1 .

- When the interrupt is not used The interrupt is disabled and the SNZAD instruction is valid when the bit 2 of register V2 is set to "0."

(8) Timer 4 interrupt

The interrupt request occurs by the timer 4 underflow.

■ Timer 4 interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the timer 4 interrupt occurs, the interrupt processing is executed from address E in page 1 .

- When the interrupt is not used

The interrupt is disabled and the SNZT4 instruction is valid when the bit 3 of register V2 is set to "0."
(9) Serial I/O interrupt

The interrupt request occurs by the completion of serial I/O transmit/receive.
However, set the timer 4, serial I/O interrupt source selection bit (I30) to "1."

■ Serial I/O interrupt processing

- When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the serial I/O interrupt occurs, the interrupt processing is executed from address E in page 1 .

- When the interrupt is not used

The interrupt is disabled and the SNZSI instruction is valid when the bit 3 of register V 2 is set to " 0 ."

2.2.2 Related registers

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable.
Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction.
When any interrupt occurs while the INTE flag is " 1 ", the INTE flag is automatically cleared to " 0 ," so that other interrupts are disabled until the El instruction is executed.

Note: The interrupt enabled with the El instruction is performed after the El instruction and one more instruction.
(2) Interrupt request flag

The activated condition for each interrupt is examined. Each interrupt request flag is set to " 1 " when the activated condition is satisfied, even if the interrupt is disabled by the INTE flag or its interrupt enable bit.
Each interrupt request flag is cleared to "0" when either;
-an interrupt occurs, or
-the next instruction is skipped with a skip instruction.
(3) Interrupt control register V1

Table 2.2.1 shows the interrupt control register V1.
Set the contents of this register through register A with the TV1A instruction.
In addition, the TAV1 instruction can be used to transfer the contents of register V1 to register A.
Table 2.2.1 Interrupt control register V1

| Interrupt control register V1 | | at reset : 00002 | | at power down : 00002 |
| :---: | :---: | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: These instructions are equivalent to the NOP instruction.

(4) Interrupt control register V2

Table 2.2.2 shows the interrupt control register V2.
Set the contents of this register through register A with the TV2A instruction.
In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.
Table 2.2.2 Interrupt control register V2

Interrupt control register V2		at reset:00002		at power down : 00002		R/W
V23	Timer 4, serial I/O interrupt	0	Interrupt disabled (SNZT4, SNZSI instruction is valid)			
	enable bit (Note 2)	1	Interrupt enabled (SNZT4, SNZSI instruction is invalid) (Note 3)			
V22	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)			
		1	Interrupt enabled (SNZAD instruction is invalid) (Note 3)			
V21	Timer 5 interrupt enable bit	0	Interrupt disabled (SNZT5 instruction is valid)			
		1	Interrupt enabled (SNZT5 instruction is invalid) (Note 3)			
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)			
		1	Interrupt enabled (SNZT3 instruction is invalid) (Note 3)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (I30).
3: These instructions are equivalent to the NOP instruction.
(5) Interrupt control register I1

Table 2.2.3 shows the interrupt control register 11.
Set the contents of this register through register A with the TI1A instruction.
In addition, the TAl1 instruction can be used to transfer the contents of register 11 to register A .

Table 2.2.3 Interrupt control register I1

| Interrupt control register I1 | | at reset : 00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $I 12$ and 113 are changed, the external interrupt request flag EXFO may be set. Accordingly, clear EXF0 flag with the SNZO instruction when the bit 0 (V10) of register V1 to " 0 ". In this time, set the NOP instruction after the SNZO instruction, for the case when a skip is performed with the SNZO instruction.

(6) Interrupt control register $\mathbf{I 2}$

Table 2.2.4 shows the interrupt control register 12 .
Set the contents of this register through register A with the TI2A instruction.
In addition, the TAI2 instruction can be used to transfer the contents of register 12 to register A.

Table 2.2.4 Interrupt control register 12

| Interrupt control register I2 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $I 22$ and $I 23$ are changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction when the bit 1 (V11) of register V1 to " 0 ". In this time, set the NOP instruction after the SNZ1 instruction, for the case when a skip is performed with the SNZ1 instruction.
(7) Interrupt control register I3

Table 2.2.5 shows the interrupt control register 13.
Set the contents of this register through register A with the TI3A instruction.
In addition, the TAI3 instruction can be used to transfer the contents of register 13 to register A.
Table 2.2.5 Interrupt control register I3

| Interrupt control register I3 | | at reset :02 | | at power down : state retained |
| :---: | :---: | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

2.2.3 Interrupt application examples

(1) External 0 interrupt

The INTO pin is used for external 0 interrupt, of which valid waveforms can be chosen, which can recognize the change of falling edge ("H" \rightarrow "L"), rising edge ("L" \rightarrow " H ") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H").

Outline: An external 0 interrupt can be used by dealing with the falling edge (" H " \rightarrow " L "), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H") as a trigger.
Specifications: An interrupt occurs by the change of an external signals edge ("H" \rightarrow " L " or " L " \rightarrow " H ").
Figure 2.2.1 shows an operation example of an external 0 interrupt, and Figure 2.2 .2 shows a setting example of an external 0 interrupt.
(2) External 1 interrupt

The INT1 pin is used for external 1 interrupt, of which valid waveforms can be chosen, which can recognize the change of falling edge ("H" \rightarrow "L"), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H").

Outline: An external 1 interrupt can be used by dealing with the falling edge (" H " \rightarrow " L "), rising edge ("L" \rightarrow "H") and both edges ("H" \rightarrow "L" or "L" \rightarrow "H") as a trigger.
Specifications: An interrupt occurs by the change of an external signals edge ("H" \rightarrow " L " or " L " \rightarrow " H ").
Figure 2.2.3 shows an operation example of an external 1 interrupt, and Figure 2.2 .4 shows a setting example of an external 1 interrupt.
(3) Timer 1 interrupt

Constant period interrupts by a setting value to timer 1 can be used.
Outline: The constant period interrupts by the timer 1 underflow signal can be used.
Specifications: Timer 1 divides the system clock frequency $=2.0 \mathrm{MHz}$, and the timer 1 interrupt occurs every 0.25 ms .

Figure 2.2 .5 shows a setting example of the timer 1 constant period interrupt.
(4) Timer 2 interrupt

Constant period interrupts by a setting value to timer 2 can be used.
Outline: The constant period interrupts by the timer 2 underflow signal can be used.
Specifications: Timer 2 and prescaler divide the system clock frequency ($=4.0 \mathrm{MHz}$), and the timer 2 interrupt occurs every 1 ms .

Figure 2.2 .6 shows a setting example of the timer 2 constant period interrupt.

(5) Timer 3 interrupt

Constant period interrupts by a setting value to timer 3 can be used.

Outline: The constant period interrupts by the timer 3 underflow signal can be used.
Specifications: Prescaler and timer 3 divide the system clock frequency $=4.0 \mathrm{MHz}$, and the timer 3 interrupt occurs every 1 ms .

Figure 2.2 .7 shows a setting example of the timer 3 constant period interrupt.
(6) Timer 4 interrupt

Constant period interrupts by a setting value to timer 4 can be used.

Outline: The constant period interrupts by the timer 4 underflow signal can be used.
Specifications: Timer 4 and prescaler divide the system clock frequency (= 4.0 MHz), and the timer 4 interrupt occurs every 50 ms .

Figure 2.2 .8 shows a setting example of the timer 4 constant period interrupt.

(7) Timer 5 interrupt

Timer 5 is a fixed dividing frequency timer. Constant period interrupts which count source is divided $2^{13}, 2^{14}, 2^{15}$ or 2^{16} can be used.

Outline: The constant period interrupts by the timer 5 underflow signal can be used.
Specifications: Timer 5 divides the sub-clock frequency $((f(X C I N)=32.768 \mathrm{kHz})$, and the timer 5 interrupt occurs every 500 ms .

Figure 2.2 .9 shows a setting example of the timer 5 constant period interrupt.

Fig. 2.2.1 External 0 interrupt operation example

Fig. 2.2.2 External 0 interrupt setting example

Note: The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of system clock.

Fig. 2.2.3 External 1 interrupt operation example

Fig. 2.2.4 External 1 interrupt setting example
Note: The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of system clock.

*A: The timer 1 count value to make the interrupt occur every 0.25 ms is set as follows.

```
0.25 ms \cong (2.0 MHz)-1 
    clock
```

" \times ": it can be "0" or " 1. "
"[]": instruction

Fig. 2.2.5 Timer 1 constant period interrupt setting example

Fig. 2.2.6 Timer 2 constant period interrupt setting example

Fig. 2.2.7 Timer 3 constant period interrupt setting example
*A: The prescaler count value and timer 4 count value to make the interrupt occur every 50 ms are set as follows.
50 ms \cong =
50 ms \cong =
"×": it can be "0" or "1."
"×": it can be "0" or "1."
"[]": instruction
"[]": instruction

Fig. 2.2.8 Timer 4 constant period interrupt setting example

*A: The timer 5 count value to make the interrupt occur every 500 ms is set as follows.

```
500 ms = (32.768 kHz)
    Sub-clock - - \overline{Timer }
```

" \times ": it can be "0" or "1."
"[]": instruction

Fig. 2.2.9 Timer 5 constant period interrupt setting example

2.2.4 Notes on use

(1) Setting of INTO interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction.
Depending on the input state of D8/INT0 pin, the external interrupt request flag (EXFO) may be set to " 1 " when the bit 2 of register 11 is changed.
(2) Setting of INTO pin input control

Set a value to the bit 3 of register I1, and execute the SNZO instruction to clear the EXFO flag to "0" after executing at least one instruction.
Depending on the input state of D8/INTO pin, the external interrupt request flag (EXFO) may be set to " 1 " when the bit 3 of register 11 is changed.
(3) Setting of INT1 interrupt valid waveform

Set a value to the bit 2 of register I2, and execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction.
Depending on the input state of D9/INT1 pin, the external interrupt request flag (EXF1) may be set to " 1 " when the bit 2 of register 12 is changed.
(4) Setting of INT1 pin input control

Set a value to the bit 3 of register I2, and execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction.
Depending on the input state of D9/INT1 pin, the external interrupt request flag (EXF1) may be set to " 1 " when the bit 3 of register 12 is changed.
(5) Multiple interrupts

Multiple interrupts cannot be used in the 4524 Group.
(6) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write EI and RTI instructions continuously.
(7) D8/INTO pin

When the external interrupt input pin INTO is used, set the bit 3 of register 11 to " 1 ".
Even in this case, port D8 output function is valid.
Also, the EXF0 flag is set to " 1 " when bit 3 of register 11 is set to " 1 " by input of a valid waveform (valid waveform causing external 0 interrupt) even if it is used as an output port D8.
(8) D9/INT1 pin

When the external interrupt input pin INT1 is used, set the bit 3 of register 12 to " 1 ".
Even in this case, port D9 output function is valid.
Also, the EXF1 flag is set to "1" when bit 3 of register I 2 is set to " 1 " by input of a valid waveform (valid waveform causing external 1 interrupt) even if it is used as an output port D9.
(9) POF instruction, POF2 instruction

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.
Note that system cannot enter the power down state when executing only the POF or POF2 instruction. Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

2.3 Timers

The 4524 Group has four 8-bit timers (each has a reload register), a 4-bit timer and a 16-bit fixed dividing frequency timer which has the watchdog timer function.
This section describes individual types of timers, related registers, application examples using timers and notes.

2.3.1 Timer functions

(1) Timer 1

- Timer operation

(Timer 1 has the timer 1 count start trigger function from D8/INT0 pin input)
(2) Timer 2

- Timer operation

(3) Timer 3

- Timer operation

(Timer 3 has the timer 3 count start trigger function from D9/INT1 pin input)
(4) Timer 4

- Timer operation

(Timer 4 has the PWM output function)
(5) Timer 5 (16-bit timer)

- Timer operation

(Timer 5 has the function to return from the clock operating mode (POF instruction execution))
(6) Timer LC

■ LCD clock generating

(7) 16-bit timer

- Watchdog function

Watchdog timer provides a method to reset the system when a program run-away occurs.
System operates after it is released from reset. When the timer count value underflows, the WDF1
flag is set to "1." Then, if the WRST instruction is never executed until timer WDT counts 65534, WDF2 flag is set to " 1 ," and system reset occurs.
When the DWDT instruction and the WRST instruction are executed continuously, the watchdog timer function is invalid.
The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is " 1 ", the WDF1 flag is cleared to " 0 " and the next instruction is skipped.

2.3.2 Related registers

(1) Interrupt control register V1

Table 2.3.1 shows the interrupt control register V1.
Set the contents of this register through register A with the TV1A instruction.
In addition, the TAV1 instruction can be used to transfer the contents of register V1 to register A.
Table 2.3.1 Interrupt control register V1

| Interrupt control register V1 | | at reset:00002 | | at power down : 00002 |
| :---: | :---: | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: These instructions are equivalent to the NOP instruction.
3: When timer is used, V11 and V10 are not used.
(2) Interrupt control register V2

Table 2.3.2 shows the interrupt control register V2.
Set the contents of this register through register A with the TV2A instruction.
In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.
Table 2.3.2 Interrupt control register V2

| Interrupt control register V2 | | at reset:00002 | | at power down : 00002 |
| :---: | :---: | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: These instructions are equivalent to the NOP instruction.
3: When timer is used, V21 is not used.

(3) Interrupt control register I3

Table 2.3.3 shows the interrupt control register 13 .
Set the contents of this register through register A with the TI3A instruction.
In addition, the TAI3 instruction can be used to transfer the contents of register 13 to register A.
Table 2.3.3 Interrupt control register I3

| Interrupt control register I3 | | at reset:02 | | at power down : state retained |
| :---: | :--- | :--- | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.
(4) Timer control register PA

Table 2.3.4 shows the timer control register PA.
Set the contents of this register through register A with the TPAA instruction.
Table 2.3.4 Timer control register PA

Timer control register PA		at reset $: 02$		at power down : state retained
W				
PA0	Prescaler control bit	0	Stop (state initialized)	
		1	Operating	

Note: "W" represents write enabled.

(5) Timer control register W1

Table 2.3 .5 shows the timer control register W1.
Set the contents of this register through register A with the TW1A instruction.
In addition, the TAW1 instruction can be used to transfer the contents of register W1 to register A.
Table 2.3.5 Timer control register W1

Timer control register W1		at reset : 00002			at power down : state retained	R/W
W13	Timer 1 count auto-stop circuit control bit (Note 2)	0		Timer 1 count auto-stop circuit not selected		
		1		Timer 1 count auto-stop circuit selected		
W12	Timer 1 control bit	0		Stop (state retained)		
		1		Operating		
W11	Timer 1 count source selection bits	W11	W10		Count source	
		0	0	Instruction	ock (INSTCK)	
		0	1	Prescaler	put (ORCLK)	
W10		1	0	Timer 5 und	rflow signal (T5UDF)	
		1	1	CNTR0 inp		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 1 count start synchronous circuit is selected ($110=1$ ").

(6) Timer control register W2

Table 2.3.6 shows the timer control register W2.
Set the contents of this register through register A with the TW2A instruction.
In addition, the TAW2 instruction can be used to transfer the contents of register W2 to register A.
Table 2.3.6 Timer control register W2

Timer control register W2		at reset : 00002			at power down : state retained	R/W
W23	CNTRO output selection bit	0		Timer 1 underflow signal divided by 2 output		
		1	1	Timer 2 underflow signal divided by 2 output		
W22	Timer 2 control bit	0	0	Stop (state retained)		
		1	1	Operating		
W21	Timer 2 count source selection bits	W21	W20		Count source	
		0	0	System c	(STCK)	
		0	1	Prescaler	put (ORCLK)	
W20		1	0	Timer 1 underflow signal (T1UDF)		
		1	1	PWM signal (PWMOUT)		

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Timer control register W3

Table 2.3 .7 shows the timer control register W3.
Set the contents of this register through register A with the TW3A instruction.
In addition, the TAW3 instruction can be used to transfer the contents of register W3 to register A.
Table 2.3.7 Timer control register W3

Timer control register W3		at reset : 00002			at power down : state retained	R/W
W33	Timer 3 count auto-stop circuit control bit (Note 2)	0		Timer 3 count auto-stop circuit not selected		
		1		Timer 3 count auto-stop circuit selected		
W32	Timer 3 control bit	0		Stop (state retained)		
		1		Operating		
W31	Timer 3 count source selection bits (Note 3)	W31	W30		Count source	
		0	0	PWM sign	(PWMOUT)	
		0	1	Prescaler	put (ORCLK)	
W30		1	0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 3 count start synchronous circuit is selected ($120=$ " 1 ").
3: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

(8) Timer control register W4

Table 2.3 .8 shows the timer control register W4.
Set the contents of this register through register A with the TW4A instruction.
In addition, the TAW4 instruction can be used to transfer the contents of register W4 to register A.
Table 2.3.8 Timer control register W4

| Timer control register W4 | | at reset:00002 | | at power down : 00002 |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

(9) Timer control register W5

Table 2.3 .9 shows the timer control register W5.
Set the contents of this register through register A with the TW5A instruction.
In addition, the TAW5 instruction can be used to transfer the contents of register W5 to register A.
Table 2.3.9 Timer control register W5

Timer control register W5		at reset : 00002			at power down : state retained	R/W
W53	Not used	0	0	This bit has no function, but read/write is enabled.		
			1			
W52	Timer 5 control bit	0		Stop (state initialized)		
		1		Operating		
W51	Timer 5 count value selection bits	W51	W50		Count value	
		0	0	Underflow	curs every 8192 counts	
		0	1	Underflow	curs every 16384 counts	
W50		1	0	Underflow	curs every 32768 counts	
		1	1	Underflow	curs every 65536 counts	

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When timer is used, W53 is not used.

(10) Timer control register W6

Table 2.3.10 shows the timer control register W6.
Set the contents of this register through register A with the TW6A instruction.
In addition, the TAW6 instruction can be used to transfer the contents of register W6 to register A.
Table 2.3.10 Timer control register W6

Timer control register W6		at reset : 00002		at power down : state retained	R/W
W63	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W62	Timer LC count source selection bit	0	Bit 4 (T54) of timer 5		
		1	Prescaler output (ORCLK)		
W61	CNTR1 output auto-control circuit selection bit	0	CNTR1 output auto-control circuit not selected		
		1	CNTR1 output auto-control circuit selected		
W60	D7/CNTR0 pin function selection bit (Note 2)	0	D7(I/O)/CNTR0 input		
		1	CNTR0 input/output/D7 (input)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTRO input is valid only when CNTRO input is selected for the timer 1 count source.

2.3.3 Timer application examples

(1) Timer operation: measurement of constant period

The constant period by the setting timer count value can be measured.
Outline: The constant period by the timer 1 underflow signal can be measured.
Specifications: Timer 1 and prescaler divide the system clock frequency $f(X I N)=4.0 \mathrm{MHz}$, and the timer 1 interrupt request occurs every 3 ms .

Figure 2.3 .4 shows the setting example of the constant period measurement.

(2) CNTRO output operation: buzzer output

Outline: Square wave output from timer 2 can be used for buzzer output.
Specifications: 4 kHz square wave is output from the CNTRO pin at system clock frequency $f(X I N)$ $=4.0 \mathrm{MHz}$. Also, timer 2 interrupt occurs simultaneously.

Figure 2.3 .1 shows the peripheral circuit example, and Figure 2.3 .5 shows the setting example of CNTR0 output.

In order to reduce the current dissipation, output is high-impedance state during buzzer output stop.

Fig. 2.3.1 Peripheral circuit example

(3) CNTRO input operation: event count

Outline: Count operation can be performed by using the signal (rising waveform) input from CNTR0 pin as the event.
Specifications: The low-frequency pulse from external as the timer 1 count source is input to CNTR0 pin, and the timer 1 interrupt request occurs every 100 counts.

Figure 2.3.6 shows the setting example of CNTR0 input.
(4) Timer operation: timer start by external input

Outline: The constant period can be measured by external input.
Specifications: Timer 3 operates by INT1 input as a trigger and an interrupt occurs after 1 ms .
Figure 2.3.7 shows the setting example of timer start.
(5) CNTR1 output control: PWM output control

Outline: The PWM output from CNTR1 pin can be performed by timer 4.
Specifications: Timer 4 divides the main clock frequency $f(X I N)=4.0 \mathrm{MHz}$ and the waveform, which "H" period is 0.875μ s of the $1.875 \mu \mathrm{~s}$ PWM periods, is output from CNTR1 pin.

Figure 2.3.2 shows the timer 4 operation and Figure 2.3 .8 shows the setting example of PWM output control.
(6) Timer operation: constant period counter by timer 5

Constant period time by the timer count value can be measured.

Outline: A clock with high accuracy can be set up by using a 32.768 kHz quartz-crystal oscillator.
Specifications: Timer 5 divides the sub-clock frequency $f(X C I N)=32.768 \mathrm{kHz}$ and timer 5 interrupt occurs every 250 ms .

Figure 2.3 .9 shows the setting example of constant period counter by timer 5 .

Note: At PWM signal "H" interval extension function: valid, set "0116" or more to reload register R4H.

Fig. 2.3.2 Timer 4 operation

(7) Watchdog timer

Watchdog timer provides a method to reset the system when a program run-away occurs.
Accordingly, when the watchdog timer function is set to be valid, execute the WRST instruction at a certain period which consists of 16-bit timers' 65534 counts or less (execute WRST instruction at less than 65534 machine cycles).

Outline: Execute the WRST instruction in 16-bit timer's 65534 counts at the normal operation. If a program runs incorrectly, the WRST instruction is not executed and system reset occurs.
Specifications: System clock frequency $f(X I N)=4.0 \mathrm{MHz}$ is used, and program run-away is detected by executing the WRST instruction in 49 ms .

Figure 2.3.3 shows the watchdog timer function, and Figure 2.3 .10 shows the example of watchdog timer.

Fig. 2.3.3 Watchdog timer function

Fig. 2.3.4 Constant period measurement setting example

Disable Interrupts
Timer 2 interrupt is temporarily disabled. Interrupt enable flag INTE

Interrupt control register V1

All interrupts disabled [DI]
b3: Timer 2 interrupt occurrence disabled [TV1A]

Stop Timer and Prescaler Operation
Timer 2 and prescaler are temporarily stopped.
Timer 2 count source and CNTR0 output are selected.

Timer control register PA
[TW2A]
b3: Timer 2 underflow signal divided by 2 selected for CNTRO output
b2: Timer 2 stop
b1, b0: Prescaler output (ORCLK) selected for Timer 2 count source
Prescaler stop [TPAA]

Set CNTR0 Output
The output structure of the CNTRO pin is set to N -channel open-drain output.

Set Timer Value and Prescaler Value
Timer 2 and prescaler count times are set. (The formula is shown *A below.)
Timer 2 reload register R2 "2916"

\downarrow

Clear Interrupt Request
Timer 2 interrupt activated condition is cleared.
Timer 2 interrupt request flag T2F 0
Prescaler count value 3 set [TPSAB]

Timer 2 interrupt activated condition cleared [SNZT2]
Note when the interrupt request is cleared
When (5) is executed, considering the skip of the next instruction according to the interrupt request flag T2F,
insert the NOP instruction after the SNZT2 instruction.
\downarrow
Start Timer Operation and Prescaler Operation

*A: The prescaler count value and timer 2 count value to make the underflow occur every $125 \mu \mathrm{~s}$ are set as follows.

" \times ": it can be "0" or "1."
"[]": instruction
Fig. 2.3.5 CNTRO output setting example

Fig. 2.3.6 CNTRO input setting example
However, specify the pulse width input to CNTR0 pin, CNTR1 pin. Refer to section "3.1 Electrical characteristics" for the timer external input period condition.

(Note when the interrupt request is cleared
When (6) is executed, considering the skip of the next instruction according to the interrupt request flag T3F,
insert the NOP instruction after the SNZT3 instruction.
\downarrow

Enable Interrupts
The Timer 3 interrupt which is temporarily disabled is enabled.

*A: The prescaler count value and timer 3 count value to make the interrupt occur every 1 ms are set as follows.

```
1 ms\cong(4.0 MHz)-1 < 3 < (15 +1) }\times(82+1
```



```
clock count value
"X": it can be "0" or "1."
"[ ]": instruction
```

Fig. 2.3.7 Timer start by external input setting example

Notes 1: (1) and (7) are not required when serial I/O interrupt is used.
2: Set the count sources except the CNTR1 input as the timer 3 count source.
"X": it can be "0" or "1."
"[]": instruction

Fig. 2.3.8 PWM output control setting example

Disable Interrupts
Timer 5 interrupt is temporarily disabled.
Interrupt enable flag INTE $\quad 0 \quad$ All interrupts disabled [DI]
Interrupt control register V2

b1: Timer 5 interrupt occurrence disabled [TV2A]
\downarrow

(2) Stop Timer Value

Timer 5 interrupt is temporarily disabled.
Timer 5 count time is set.
(The formula is shown *A below.)
Timer control register W5

b3		b0	
X	0	0	0

b2: Timer 5 stop
Timer 5 count value initialized
b1,b0: Timer count value 2^{13} set

\downarrow

Clear Interrupt Request
Timer 5 interrupt activated condition is cleared.
Timer 5 interrupt request flag T5F 0
Timer 5 interrupt activated condition cleared [SNZT5]
\downarrow
Note when the interrupt request is cleared
When (3) is executed, considering the skip of the next instruction according to the interrupt request flag T5F,
insert the NOP instruction after the SNZT5 instruction.
\downarrow
(4) Start Timer Operation

Timer 5 temporarily stopped is restarted.
imer control register W5

b2: Timer 5 operation start [TW5A]

Enable Interrupts
The Timer 5 interrupt which is temporarily disabled is enabled.

Interrupt control register V2 Interrupt enable flag INTE	b3		b0	b1: Timer 5 interrupt occurrence enabled [TV2A] All interrupts enabled [EI]
	-	$\times 11$	\times	
	1			

*A: The timer 5 count value to make the interrupt occur every 250 ms is set as follows.
$250 \mathrm{~ms} \cong(32.768 \mathrm{kHz})^{-1} \times 2^{13}$
Sub-clock Timer 5 count value
" \times ": it can be "0" or "1."
"[]": instruction

Fig. 2.3.9 Constant period counter by timer 5 setting example

Main Routine (every 20 ms)
(1) Reset Flag WDF1

Watchdog timer flag WDF1 is reset. $0 \quad$ Watchdog timer flag WDF1 cleared. [WRST]

Note when the watchdog timer flag is cleared
When ${ }^{(1)}$ is executed, considering the skip of the next instruction according to the watchdog timer flag WDF1, insert the NOP instruction after the WRST instruction.

In the interrupt service routine, do not clear watchdog timer flag WDF1.
Interrupt may be executed even if program run-away occurs.
$\left[\begin{array}{l}\mathrm{W} \\ : \\ \text { : }\end{array}\right.$
When going to RAM back-up mode

WRST ; WDF flag cleared
NOP
DI ; Interrupt disabled
EPOF ; POF instruction enabled
POF
\downarrow
Oscillation stop (RAM back-up mode)

In the RAM back-up mode, WEF, WDF1 and WDF2 flags are initialized.
However, when WDF2 flag is set to "1", at the same time, system goes into RAM back-up mode, microcomputer may be reset.
When watchdog timer and RAM back-up mode are used, execute the WRST instruction to initialize WDF1 flag before system goes into the RAM back-up mode.

Fig. 2.3.10 Watchdog timer setting example

2.3.4 Notes on use

(1) Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.
Stop counting and then execute the TPSAB instruction to set prescaler data.
(2) Count source

Stop timer 1, 2, 3, 4 or LC counting to change its count source.
(3) Reading the count values

Stop timer 1, 2, 3 or 4 counting and then execute the TAB1, TAB2, TAB3 or TAB4 instruction to read its data.
(4) Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the T1AB, T2AB, T3AB, T4AB or TLCA instruction to write its data.
(5) Writing to reload register R 1 , reload register R 3 and reload register R 4 H

When writing data to reload register R1 while timer 1 is operating respectively, avoid a timing when timer 1 underflows.
When writing data to reload register R3 while timer 3 is operating respectively, avoid a timing when timer 3 underflows.
When writing data to reload register R 4 H while timer 4 is operating respectively, avoid a timing when timer 4 underflows.
(6) Timer 4

- Avoid a timing when timer 4 underflows to stop timer 4.
- When "H" interval extension function of the PWM signal is set to be "valid", set "0116" or more to reload register R4H.
(7) Timer 5

Stop timer 5 counting to change its count source.
(8) Timer input/output pin

- Set the port C output latch to " 0 " to output the PWM signal from C/CNTR1 pin.
(9) Watchdog timer
- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction, the WRST instruction continuously, and clear the WEF flag to "0".
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the WRST instruction before system enters into the power down state.
(10) Pulse width input to CNTR0 pin, CNTR1 pin

Refer to section "3.1 Electrical characteristics" for rating value of pulse width input to CNTR0 pin, CNTR1 pin.

2.4 A/D converter

The 4524 Group has an 8-channel A/D converter with the 10-bit successive comparison method.
This A/D converter can also be used as a comparator to compare analog voltages input from the analog input pin with preset values.
This section describes the related registers, application examples using the A/D converter and notes.
Figure 2.4.1 shows the A/D converter block diagram.

Fig. 2.4.1 A/D converter structure

2.4.1 Related registers

(1) Interrupt control register V2

Table 2.4.1 shows the interrupt control register V2.
Set the contents of this register through register A with the TV2A instruction.
In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 2.4.1 Interrupt control register V2

| Interrupt control register V2 | | at reset :00002 | | at power down : 00002 | |
| :---: | :--- | :---: | :--- | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (130).
3: These instructions are equivalent to the NOP instruction.
4: When setting the A / D converter, $\mathrm{V} 23, \mathrm{~V} 2{ }_{1}$ and V 20 are not used.
(2) A/D control register Q1

Table 2.4.2 shows the A/D control register Q1.
Set the contents of this register through register A with the TQ1A instruction.
In addition, the TAQ1 instruction can be used to transfer the contents of register Q1 to register A.
Table 2.4.2 A/D control register Q1

A/D control register Q1		at reset : 00002				at power down : state retained	R/W
Q13	A/D operation mode control bit	0		A/D conversion mode			
		1		Comparator mode			
Q12	Analog input pin selection bits	Q12	Q11	Q10		Analog input pins	
		0	0	0	AINO		
		0	0	1	AIN1		
Q11		0	1	0	AIN2		
		0	1	1	AIN3		
		1	0	0	AIN4		
Q10		1	0	1	Aln5		
		1	1	0	AIN6		
		1	1	1	AIN7		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: In order to select $A_{i n 7-A i n o, ~ s e t ~ r e g i s t e r ~ Q 1 ~ a f t e r ~ s e t t i n g ~ r e g s i t e r ~ Q 2, ~ Q 3 . ~}^{\text {Q }}$

(3) A/D control register Q2

Table 2.4.3 shows the A/D control register Q2.
Set the contents of this register through register A with the TQ2A instruction.
The contents of register Q2 is transferred to register A with the TAQ2 instruction.
Table 2.4.3 A/D control register Q2

AD control register Q2		at reset : 00002		at power down : state retained	R/W
Q23	$\mathrm{P} 23 / \mathrm{Aln3}$ pin function selection bit	0	P23		
		1	AIn3		
Q22	$\mathrm{P} 2_{2} / \mathrm{AlN2}$ pin function selection bit	0	P 22		
		1	AIN2		
Q2 ${ }_{1}$	$\mathrm{P} 21 /$ Ains pin function selection bit	0	P21		
		1	AIN1		
Q20	P2o/Aino pin function selection bit	0	P20		
		1	Aino		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: In order to select Ainз-Aino, set register Q1 after setting regsiter Q2.
(4) A/D control register Q3

Table 2.4.4 shows the A/D control register Q3.
Set the contents of this register through register A with the TQ3A instruction.
The contents of register Q3 is transferred to register A with the TAQ3 instruction.
Table 2.4.4 A/D control register Q3

AD control register Q3		at reset : 00002		at power down : state retained	R/W
Q33	$\mathrm{P} 3_{3} / \mathrm{Aln}^{\text {in }}$ pin function selection bit	0	P33		
		1	AIN7		
Q3 2	P32/Aın6 pin function selection bit	0	P 32		
		1	Ain6		
Q3 ${ }_{1}$	$\mathrm{P} 3_{1 /} /$ Ains pin function selection bit	0	P31		
		1	Ain5		
Q30	P3o/Ain4 pin function selection bit	0	P30		
		1	AIN4		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: In order to select $A_{\text {In }}-A_{i n 4}$, set register Q1 after setting regsiter Q3.

2.4.2 A/D converter application examples

(1) A/D conversion mode

Outline: Analog input signal from a sensor can be converted into digital values.
Specifications: Analog voltage values from a sensor is converted into digital values by using a 10 bit successive comparison method. Use the AINo pin for this analog input.

Figure 2.4.2 shows the A / D conversion mode setting example.
(1) Disable Interrupts

A/D interrupt is temporarily disabled.
Interrupt enable flag INTE

Interrupt control register V2 \quad| | \times | 0 | X | \times |
| :--- | :--- | :--- | :--- | :--- |
| b2: A/D interrupt occurrence disabled [TV2A] | | | | |

\downarrow
(2) Set A/D Converter

A/D conversion mode is selected to A/D operation mode.
Analog input pin Aino is selected.

A/D control register Q2	b3			b0	b0: AINo pin function selected [TQ2A]	
	\times	\times	\times	1		
	b3			b0		
A/D control register Q1	0	0	0	0		

Clear Interrupt Request
A/D interrupt activated condition is cleared. A/D conversion completion flag ADF \qquad A/D interrupt activated condition cleared [SNZAD]

Note when the interrupt request is cleared
When (3) is executed, considering the skip of the next instruction according to the flag ADF, insert the NOP instruction after the SNZAD instruction.
\downarrow

When interrupt is not used
When interrupt is used
Set Interrupt
Interrupts except A/D conversion is enabled. [EI]

b3
b bo

(7) Execute A/D Conversion

High-order 8 bits of register AD
$\rightarrow \quad$ Register A and register B [TABAD]
Low-order 2 bits of register AD

$$
\rightarrow \quad \text { High-order } 2 \text { bits of register A [TALA] }
$$

" 0 " is set to low-order 2 bits of register A

When A / D conversion is executed by the same channel, repeat (5) to (7).
When A / D conversion is executed by another channel, repeat $\mathbb{1}$ to (7).
" \times ": it can be " 0 " or " 1 ."
"[]": instruction
Fig. 2.4.2 A/D conversion mode setting example

2.4.3 Notes on use

(1) Note when the A / D conversion starts again

When the A/D conversion starts again with the ADST instruction during A/D conversion, the previous input data is invalidated and the A / D conversion starts again.
(2) A / D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A / D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor ($0.01 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$) to analog input pins.
Figure 2.4 .3 shows the analog input external circuit example-1.
When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 2.4.4. In addition, test the application products sufficiently.

Apply the voltage withiin the specifications to an analog input pin.

Fig. 2.4.3 Analog input external circuit example-1

Fig. 2.4.4 Analog input external circuit example-2

(3) Notes for the use of A/D conversion 2

Do not change the operating mode of the A/D converter by bit 3 of register Q1 during A/D conversion (A/D conversion mode and comparator mode).
(4) Notes for the use of A / D conversion 3

When the operating mode of the A / D converter is changed from the comparator mode to the A / D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode (refer to Figure 2.4.5(1).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag to " 0 ".

\vdots Clear bit 2 of register V2 to "0"......(1) \downarrow Change of the operating mode of the A/D converter from the comparator mode to the A/D conversion mode \downarrow Clear the ADF flag to "0" with the SNZAD instruction \downarrow Execute the NOP instruction for the case when a skip is performed with the SNZAD instruction \vdots

Fig. 2.4.5 A/D converter operating mode program example
(5) A / D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains " 0 ," not set to "1."
In this case, the A / D interrupt does not occur even when the usage of the A / D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.
(6) Analog input pins

When P2o/AIN0-P23/AIN3, P3o/AIN4-P33/Ain7 are set to pins for analog input, they cannot be used as I/O ports P2 and P3.
(7) TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the highorder 2 bits of register A, and simultaneously, the low-order 2 bits of register A is " 0 ."
(8) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/ D converter are different from those when not using A/D converter.
Table 2.4.5 shows the recommended operating conditions when using A/D converter.
Table 2.4.5 Recommended operating conditions (when using A/D converter)

Parameter	Condition	Limits			Unit
		Min.	Typ.	Max.	
System clock frequency (at ceramic resonance) (Note 2)	$\mathrm{VDD}=4.0$ to 5.5 V (through mode)	0.1		6.0	MHz
	$\mathrm{V} D \mathrm{LD}=2.7$ to 5.5 V (through mode)	0.1		4.4	
	$\mathrm{VDD}=2.7$ to 5.5 V (Frequency/2 mode)	0.1		3.0	
	$\mathrm{VDD}=2.7$ to 5.5 V (Frequency/4 mode)	0.1		1.5	
	VDD $=2.7$ to 5.5 V (Frequency/8 mode)	0.1		0.7	
System clock frequency (at RC oscillation) (Note 2)	$\mathrm{VDD}=2.7$ to 5.5 V (through mode)	0.1		4.4	MHz
	VDD $=2.7$ to 5.5 V (Frequency/2 mode)	0.1		2.2	
	$\mathrm{VDD}=2.7$ to 5.5 V (Frequency/4 mode)	0.1		1.1	
	VDD $=2.7$ to 5.5 V (Frequency/8 mode)	0.1		0.5	
System clock frequency (ceramic resonance selected, at external clock input)	$\mathrm{VDD}=4.0$ to 5.5 V (through mode)	0.1		4.8	MHz
	$\mathrm{V} D \mathrm{~L}=2.7$ to 5.5 V (through mode)	0.1		3.2	
	VDD $=2.7$ to 5.5 V (Frequency/2 mode)	0.1		2.4	
	VDD $=2.7$ to 5.5 V (Frequency/4 mode)	0.1		1.2	
	VDD $=2.7$ to 5.5 V (Frequency/8 mode)	0.1		0.6	

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

2.5 Serial I/O

The 4524 Group has a clock-synchronous serial I/O which can be used to transmit and receive 8-bit data. This section describes serial I/O functions, related registers, application examples using serial I/O and notes.

2.5.1 Carrier functions

Serial I/O consists of the serial I/O register SI, serial I/O control register J1, serial I/O transmit/receive completion flag SIOF and serial I/O counter.
A clock-synchronous serial I/O uses the shift clock generated by the clock control circuit as a synchronous clock. Accordingly, the data transmit and receive operations are synchronized with this shift clock.
In transmit operation, data is transmitted bit by bit from the Sout pin synchronously with the falling edges of the shift clock.
In receive operation, data is received bit by bit from the SIN pin synchronously with the rising edges of the shift clock.

Note: 4524 Group only supports LSB-first transmit and receive.

- Shift clock

When using the internal clock of 4524 Group as a synchronous clock, eight shift clock pulses are output from the ScK pin when a transfer operation is started. Also, when using some external clock as a synchronous clock, the clock that is input from the Sck pin is used as the shift clock.

- Data transfer rate (baudrate)

When using the internal clock, the data transfer rate can be determined by selecting the instruction clock divided by 2, 4 or 8 .
When using an external clock, the clock frequency input to the ScK pin determines the data transfer rate.

Figure 2.5.1 shows the serial I/O block diagram.

Fig. 2.5.1 Serial I/O block diagram

2.5.2 Related registers

(1) Serial I/O register SI

Serial I/O register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register $S I$ through registers A and B with the TSIAB instruction.
Also, the low-order 4 bits of register SI is transferred to register A , and the high-order 4 bits of register SI is transferred to register B with the TABSI instruction.
(2) Serial I/O transmit/receive completion flag (SIOF)

Serial I/O transmit/receive completion flag (SIOF) is set to " 1 " when serial data transmit or receive operation completes. The state of SIOF flag can be examined with the skip instruction (SNZSI).
(3) Interrupt control register V2

Table 2.5.1 shows the interrupt control register V2.
Set the contents of this register through register A with the TV2A instruction.
In addition, the TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 2.5.1 Interrupt control register V2

Interrupt control register V2		at reset: 00002		at power down : 00002	R/W
V23	Timer 4, serial I/O interrupt enable bit (Note 2)	0	Interrupt disabled (SNZT4, SNZSI instruction is valid)		
		1	Interrupt enabled (SNZT4, SNZSI instruction is invalid) (Note 3)		
V2 ${ }_{2}$	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
		1	Interrupt enabled (SNZAD instruction is invalid) (Note 3)		
V2 ${ }_{1}$	Timer 5 interrupt enable bit	0	Interrupt disabled (SNZT5 instruction is valid)		
		1	Interrupt enabled (SNZT5 instruction is invalid) (Note 3)		
V20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)		
		1	Interrupt enabled (SNZT3 instruction is invalid) (Note 3)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Select the timer 4 interrupt or serial I/O interrupt by the timer 4, serial I/O interrupt source selection bit (130).
3: These instructions are equivalent to the NOP instruction.
4: When setting the Serial $\mathrm{I} / \mathrm{O}, \mathrm{V} 2_{3}, \mathrm{~V} 2_{1}$ and $\mathrm{V} 2{ }_{0}$ are not used.
(4) Interrupt control register I3

Table 2.5.2 shows the interrupt control register I3.
Set the contents of this register through register A with the TI3A instruction.
In addition, the TAI3 instruction can be used to transfer the contents of register 13 to register A.
Table 2.5.2 Interrupt control register I3

Interrupt control register I3		at reset $: 0_{2}$		at power down : state retained
R/W				
13_{0}	Timer 4, serial I/O interrupt source selection bit	0	Timer 4 interrupt valid, serial I/O interrupt invalid	
	1	Serial I/O interrupt valid, timer 4 interrupt invalid		

Note: "R" represents read enabled, and "W" represents write enabled.

(5) Serial I/O mode register J1

Table 2.5.3 shows the serial I/O mode register J1.
Set the contents of this register through register A with the TJ1A instruction.
In addition, the TAJ1 instruction can be used to transfer the contents of register J1 to register A.
Table 2.5.3 Serial I/O mode register J1

Serial I/O control register J1		at reset : 00002			at power down : state retained	R/W
J 13	Serial I/O synchronous clock selection bits	$\mathrm{J1}_{3}$	J12	Synchronous clock		
		0	0	Instruction clock (INSTCK) divided by 8		
		0	1	Instruction clock (INSTCK) divided by 4		
J12		1	0	Instruction clock (INSTCK) divided by 2		
		1	1	External clock (Sck input)		
J1 1^{1}	Serial I/O port function selection bits	J11	J10	Port function		
		0	0	$\mathrm{D}_{6}, \mathrm{D}_{5}, \mathrm{D}_{4}$ selected/Sck, Sout, $\mathrm{Sin}_{\text {in }}$ not selected		
		0	1	Sck, Sout, D_{4} selected/ $\mathrm{D}_{6}, \mathrm{D}_{5}$, Sin not selected		
J10		1	0	Sck, D_{5}, Sin selected/D6, Sout, D_{4} not selected		
		1	1	Scк, Sout, Sin selected/D6, D_{5}, D_{4} not selected		

Note: "R" represents read enabled, and "W" represents write enabled.

2.5.3 Operation description

Figure 2.5 .2 shows the serial I/O connection example, Figure 2.5 .3 shows the serial I/O register state, and Figure 2.5.4 shows the serial I/O transfer timing.

Master (internal clock selected)

Note: The control signal is used to inform the master by the pin level that the slave is in a ready state to receive. The 4524 Group does not have a control pin exclusively used for serial I/O.
Accordingly, if a control signal is required, use the normal input/output ports.

Fig. 2.5.2 Serial I/O connection example

Fig. 2.5.3 Serial I/O register state when transfer

Mo-M7: Contents of master serial I/O register
So-S7: Contents of slave serial I/O register
Rising of Sск: Serial input
Falling of Sck: Serial output
$\mathrm{M} 7^{\prime}, \mathrm{St}^{\prime}$: Contents of previous master, slave MSB

Fig. 2.5.4 Serial I/O transfer timing

The full duplex communication of master and slave is described using the connection example shown in Figure 2.5.2.

(1) Transmit/receive operation of master

(1) Set the transmit data to the serial I/O register SI with the TSIAB instruction.

When the TSIAB instruction is executed, the contents of register A are transferred to the low-order 4 bits of register SI and the contents of register B are transferred to the high-order 4 bits of register SI.
(2) Check whether the microcomputer on the slave side is ready to transmit/receive or not. In the connection example in Figure 2.5.2, check that the input level of control signal is "L" level.
(3) Start serial transmit/receive with the SST instruction.

When the SST instruction is executed, the serial I/O transmit/receive completion flag (SIOF) is cleared to "0."
(4) The transmit data is output from the Sout pin synchronously with the falling edges of the shift clock.
(5) The transmit data is output bit by bit beginning with the LSB of register SI. Each time one bit is output, the contents of register SI is shifted one bit position toward the LSB.
(6) Also, the receive data is input from the SIN pin synchronously with the rising edges of the shift clock.
(7) The receive data is input bit by bit to the MSB of register SI.
(8) A serial I/O interrupt request occurs when the transmit/receive data is completed, and the SIOF flag is set to "1."
(9) The receive data is taken in within the serial I/O interrupt service routine; or the data is taken in after examining the completion of the transmit/receive operation with the SNZSI instruction without using an interrupt.
Also, the SIOF flag is cleared to " 0 " when an interrupt occurs or the SNZSI instruction is executed.

Notes 1: Repeat steps (1) through (9) to transmit/receive multiple data in succession.
2: For the program on the master side, start to transmit the next data at the next timing (control signal turns "L"). Do not start to transmit the next data during the previous data transfer (control signal = "L").

(2) Transmit/receive operation of slave

(1) Set the transmit data into the serial I/O register SI with the TSIAB instruction.

When the TSIAB instruction is executed, the contents of register A are transferred to the loworder bits of register SI and the contents of register B are transferred to the high-order bits of register SI. At this time, the Sck pin must be at the "H" level.
(2) Start serial transmit/receive with the SST instruction. However, in Figure 2.5 .2 where an external clock is selected, transmit/receive is not started until the clock is input. When the SST instruction is executed, the serial I/O transmit/receive completion flag (SIOF) is cleared to " 0 ."
(3) The microcomputer on the master side is informed that the receiving side is ready to receive. In the connection example in Figure 2.5.2, the control signal "L" level is output.
(4) The transmit data is output from the SOUT pin synchronously with the falling edges of the shift clock.
(5) The transmit data is output bit by bit beginning with the LSB of register SI. Each time one bit is output, the contents of register SI are shifted to one bit position toward the LSB.
(6) Also, the receive data is input from the SIN pin synchronously with the rising edges of the shift clock.
(7) The receive data is input bit by bit to the MSB of register SI.
(8) A serial I/O interrupt request occurs when the transmit/receive is completed, and the SIOF flag is set to "1."
(9) Read the receive data within the serial I/O interrupt service routine; or read the data after examining the completion of the transmit/receive operation with the SNZSI instruction without using an interrupt. Also, the SIOF flag is cleared to " 0 " when an interrupt occurs or the SNZSI instruction is executed.
(10) Set the control signal pin level to "H" after the receive operation is completed.

Note: Repeat steps (1) through (10) to transmit/receive multiple data in succession.

2.5.4 Serial I/O application example

(1) Serial I/O

Outline: The 4524 Group can communicate with peripheral ICs.
Specifications: Figure 2.5.2 Serial I/O connection example.

Figure 2.5.5 shows the setting example when a serial I/O interrupt of master side is not used, and Figure 2.5 .6 shows the slave serial I/O setting example.

Fig. 2.5.5 Setting example when a serial I/O of master side is not used
Disable Interrupts
Timer 4 and serial I/O interrupt are temporarily disabled.
Interrupt enable flag INTE 0 All interrupts disabled [DI]

Select Serial I/O Interrupt
Serial I/O is selected for the interrupt source.
Interrupt control register I3

$$
\begin{array}{|c|c}
\mathrm{b0} \\
1 & \text { Serial I/O interrupt valid [TI3A] } \\
\hline
\end{array}
$$

(3) Set Port
Port for control signal is set to "H" output.

Port D3 output latch
Set to "H" output [SD] b3: Port D3 CMOS output selected

Note when the interrupt request is cleared
When (5) is executed, considering the skip of the next instruction according to the flag SIOF,
insert the NOP instruction after the SNZSI instruction.
Set Interrupts
The Serial I/O interrupt which is temporarily disabled is enabled.

b3: Serial I/O interrupt occurrence enabled [TV2A] All interrupts enabled [EI]
Set Transmit Data
Transmit data is set to serial I/O register.
Serial I/O register SI $\times \times 16$
[TSIAB]
Set Start of Serial I/O Operation
Serial I/O operation enabled state (serial transfer started, control signal "L" level output) is set.
Serial transfer start
[SST]

Port D3 output latch
Set to "L" output [RD]
Serial transmit/receive by clock of master side
Receive Data Processing by Serial I/O interrupt
Serial I/O operation disabled state (control signal "H" level output) is set and received data processing is performed.

Specify bit position of port D [TYA]
Set to "H" output [SD]
register A, register B [TABSI]
When serial communication is executed, repeat (7) to (9).
" \times ": it can be " 0 " or " 1 ."
"[]": instruction

Fig. 2.5.6 Setting example when a serial I/O interrupt of slave side is used

2.5.5 Notes on use

(1) Note when an external clock is used as a synchronous clock:

- An external clock is selected as the synchronous clock, the clock is not controlled internally.
- Serial transmit/receive is continued as long as an external clock is input. If an external clock is input 9 times or more and serial transmit/receive is continued, the receive data is transferred directly as transmit data, so that be sure to control the clock externally.
Note also that the SIOF flag is set to "1" when a clock is counted 8 times.
- Be sure to set the initial input level on the external clock pin to "H" level.
- Refer to section "3.1 Electrical characteristics" when using serial I/O with an external clock.

2.6 LCD function

The 4524 Group has an LCD (Liquid Crystal Display) controller/driver.
4 common signal output pins and 20 segment signal output pins can be used to drive the LCD. By using these pins, up to 80 segments (when $1 / 4$ duty and $1 / 3$ bias are selected) can be controlled to display.
This section describes the LCD operation description, related registers, application examples using the LCD and notes.

2.6.1 Operation description

(1) LCD duty and bias control

Table 2.6 .1 shows the duty and maximum number of displayed pixels. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.
The LCD power input pins ($\mathrm{V}_{\mathrm{LC} 1}-\mathrm{V}_{\mathrm{LC} 3}$) are also used as pins SEGo-SEG2. The internal power (VDD) is used for the LCD power.

Table 2.6.1 Duty and maximum number of displayed pixels

Duty	Bias	Maximum number of displayed pixels	Used COM pins
$1 / 2$	$1 / 2$	40 segments	COM0, COM1 (Note)
$1 / 3$	$1 / 3$	60 segments	COM0-COM2 (Note)
$1 / 4$	$1 / 3$	80 segments	COM0-COM3

Note: Leave unused COM pins open.

Note: Count source is stopped by setting " 0 " to this bit.
Fig. 2.6.1 LCD clock control circuit structure

(2) LCD drive timing

The LCD clock frequency (F) and frame frequency generating the LCD drive timing are shown below. Figure 2.6.1 shows the structure of the LCD clock circuit.

- When the prescaler output (ORCLK) is used for the timer LC count source (W62 = "1")

- When bit $4\left(\mathrm{~T}_{4}\right)$ of timer 5 is used for the timer LC count source (W62 = "0")

The frame frequency for each display method can be obtained by the following formula.
Frame frequency $=\frac{\mathrm{F}}{\mathrm{n}}(\mathrm{Hz}) \quad$ Frame period $=\frac{\mathrm{n}}{\mathrm{F}}(\mathrm{s})$
[F: Frame frequency, 1/n: Duty]

(3) LCD display method

The 4524 Group has the LCD RAM area for the LCD display.
When " 1 " is written to a bit in the LCD RAM data, the display pixel which correspond to the bit automatically turns on.
Figure 2.6.2 shows the LCD RAM map.

Z	1											
X	12				13				14			
$Y \quad$ Bits	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG0	SEG0	SEG0	SEG0	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12				
13	SEG5	SEG5	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13				
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14				
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15				
COM	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0

Note: The area marked " __ " is not the LCD display RAM.
Fig. 2.6.2 LCD RAM map

2.6.2 Related registers

(1) LCD control register L1

Table 2.6.2 shows the LCD control register L1.
Set the contents of this register through register A with the TL1A instruction. The TAL1 instruction can be used to transfer the contents of register L1 to register A .

Table 2.6.2 LCD control register L1

	LCD control register L1	at reset : 00002			at power down : state retained		R/W
L13	Internal dividing resistor for LCD power supply selection bit (Note 2)	$0 \mathrm{l\mid l}$					
				$r \times 3, r \times 2$			
L12	LCD on/off bit	0		Off			
		1		On			
L11	LCD duty and bias selection bits	L11	L10		Duty	Bias	
		0	0				
		0	1		1/2	1/2	
L10		1	0		1/3	1/3	
		1	1		1/4	1/3	

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: " r (resistor) multiplied by 3 " is used at $1 / 3$ bias, and " r multiplied by 2 " is used at $1 / 2$ bias.

(2) LCD control register L2

Table 2.6.3 shows the LCD control register L2.
Set the contents of this register through register A with the TL2A instruction.
Table 2.6.3 LCD control register L2

LCD control register L2		at reset : 11112		at power down : state retained	W
L23	VLC3/SEG0 function switch bit (Note 2)	0	SEG0		
		1	VLC3		
L22	VLC2/SEG1 function switch bit (Note 3)	0	SEG1		
		1	VLC2		
L21	VLC1/SEG2 function switch bit (Note 3)	0	SEG2		
		1	VLC1		
L20	Internal dividing resistor for LCD power supply control bit	0	Internal dividing resistor valid		
		1	Internal dividing resistor invalid		

Notes 1: "W" represents write enabled.
2: $V_{\text {Lcz }}$ is connected to $V_{d o}$ internally when SEGo pin is selected.
3: Use internal dividing resistor when SEG ${ }_{1}$ and SEG 2 pins are selected.

(3) Timer control register W6

Table 2.6.4 shows the timer control register W6.
Set the contents of this register through register A with the TW6A instruction.
In addition, the TAW6 instruction can be used to transfer the contents of register W6 to register A.
Table 2.6.4 Timer control register W6

Timer control register W6		at reset : 00002		at power down : state retained	R/W
W63	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W62	Timer LC count source selection bit	0	Bit 4 (T54) of timer 5		
		1	Prescaler output (ORCLK)		
W61	CNTR1 output auto-control circuit selection bit	0	CNTR1 output auto-control circuit not selected		
		1	CNTR1 output auto-control circuit selected		
W6o	D7/CNTR0 pin function selection bit (Note 2)	0	D7(I/O)/CNTR0 input		
		1	CNTR0 input/output/D7 (input)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTRO input is valid only when CNTR0 input is selected for the timer 1 count source.
3: When setting the LCD, W61, W6o are not used.

2.6.3 LCD application examples

(1) LCD display

LCD display function can be used to display 80 pixels (maximum 4 common $\times 20$ segment).
Outline: LCD can be displayed easily by using the LCD display function.
Specifications: $1 / 4$ duty and $1 / 3$ bias LCD is displayed by using LCD display panel example. Bit 4 of timer 5 is used for the LCD clock source, the sub-clock $f(X C I N)=32.768 \mathrm{kHz}$ is used for the timer 5 clock source, and the frame frequency is set to 85.3 Hz .

Figure 2.6.3 shows the LCD display panel example, Figure 2.6 .4 shows the segment assignment example, Figure 2.6 .5 shows the LCD RAM assignment example, and Table 2.6 .6 shows the initial setting example.
ล Program Su. Mo. Tu. We. Th. Fr. Sa.
 Start Stop

 B
CH

Fig. 2.6.3 LCD display panel example

Fig. 2.6.4 Segment assignment example

Z	1											
X	0				1				2			
$Y \quad$ Bit	3	2	1	0	3	2	1	0	3	2	1	0
8	(1)-g	(1)-e	(1)-d	(1)-C	Start	(1)-f	(1)-b	(1)-a	We.	Tu.	Mo.	Su.
9	(2)-g	(2)-e	(2)-d	(2)-C	Stop	(2)-f	(2)-b	(2)-a	Every	Sa.	Fr.	Tu.
10	(3)-g	(3)-f	(3)-d	(3)-C	-	(3)-f	(3)-b	(3)-a	BS	CH	EP	SP
11	(4)-g	(4)-e	(4)-d	(4)-C	Unused	(4)-f	(4)-b	(4)-a	$\overbrace{2}$	P.M.	A.M.	Program
12	(5)-g	(5)-e	(5)-d	(5)-C	-	(5)-f	(5)-b	(5)-a				
13	(6)-g	(6)-e	(6)-d	(6)-C	Unused	(6)-f	(6-b	(6)-a	-	-	-	-
14	(7)-g	(7)-e	(7)-d	(7)-C	Unused	(7)-f	(7)-b	(7-a				
15	(8)-g	(8)-e	(8)-d	(8)-c	Unused	(8)-f	(8)-b	(8)-a				
COM	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0

Note: - LCD display RAM is not assigned.
Fig. 2.6.5 LCD RAM assignment example

*A: The timer LC count value when the frequency is set to 85.3 Hz is set as follows.
$\begin{aligned} 85.3 \mathrm{~Hz} \cong & (32.768 \mathrm{kHz}) \times \frac{1}{16} \times \frac{1}{(2+1)} \times \frac{1}{2} \times \frac{1}{4} \\ & \overline{\text { Sub-clock }-}-\begin{array}{l}\overline{\text { Bit }-\overline{4} \text { of }} \begin{array}{l}\text { Timert } \bar{C}- \\ \text { timer } 5\end{array} \\ \text { count value }\end{array}\end{aligned}$
" \times ": it can be "0" or "1."
"[]": instruction
Fig. 2.6.6 Initial setting example

2.6.4 Notes on use

(1) Timer LC count source

Stop timer LC counting to change timer LC count source.
(2) Writing to timer LC

Stop timer LC counting and then execute the data write instruction (TLCA).
(3) $\mathrm{V}_{\text {Lc3 }} / \mathrm{SEG}_{0}$ pin

When the $\mathrm{V}_{\text {Lcз }}$ pin function is selected, apply voltage of $\mathrm{V}_{\text {Lc3 }}<\mathrm{V}_{\mathrm{DD}}$ to the pin externally.
(4) $\mathrm{V}_{\mathrm{Lc} 2} / \mathrm{SEG}_{1}$ pin, $\mathrm{V}_{\mathrm{Lc}} / \mathrm{SEG}_{2}$ pin

- When the $\mathrm{V}_{\mathrm{Lc} 2}$ pin and $\mathrm{V}_{\mathrm{Lc} 1}$ pin functions are selected and the internal dividing resistor is not used; Apply voltage of $0<V_{\text {LC1 }}<\mathrm{V}_{\text {LC2 }}<\mathrm{V}_{\text {LC3 }}$ to these pins.
Short the Vlcz pin and Vlci pin at $1 / 2$ bias.
- When SEG $_{1}$ and SEG $_{2}$ pin function is selected;

Use the internal dividing resistor.
(5) LCD power circuit

Select the LCD power circuit suitable for LCD panel and evaluate the display state on the actual system.

2.7 Reset

System reset is performed by applying "L" level to the RESET pin for 1 machine cycle or more when the following conditions are satisfied:

- the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, the program starts from address 0 in page 0 after elapsing of the internal oscillation stabilizing time (On-chip oscillator (internal oscillator) clock is counted for 5400 to 5424 times). Figure 2.7 .2 shows the oscillation stabilizing time.

2.7.1 Reset circuit

The 4524 Group has the voltage drop detection circuit.

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the minimum rating value of the recommended operating conditions must be set to $100 \mu \mathrm{~s}$ or less. If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the $\overline{\mathrm{RESET}}$ pin and Vss at the shortest distance, and input " L " level to RESET pin until the value of supply voltage reaches the minimum rating value of the recommended operating conditions.

Fig. 2.7.1 Structure of reset pin and its peripherals, and power-on reset operation

Fig. 2.7.2 Oscillation stabilizing time after system is released from reset

2.7.2 Internal state at reset

Figure 2.7.3 shows the internal state at reset. The contents of timers, registers, flags and RAM other than shown in Figure 2.7.3 are undefined, so that set them to initial values.
Address 0 in page 0 is set to program counter.

- Interrupt enable flag (INTE)
Address 0 in page 0 is set to program counter.
- Power down flag (P) ... 0
- External 0 interrupt request flag (EXF0) .. 0
- External 1 interrupt request flag (EXF1) ... 0
- Interrupt control register V1

- Interrupt control register I3 0
- Timer 1 interrupt request flag (T1F) ... 0
- Timer 2 interrupt request flag (T2F) .. 0
- Timer 3 interrupt request flag (T3F) .. 0
- Timer 4 interrupt request flag (T4F) ... 0
- Timer 5 interrupt request flag (T5F) ... 0
- Watchdog timer flags (WDF1, WDF2) ... 0
- Watchdog timer enable flag (WEF) .. 1
- Timer control register PA ... 0

- Timer control register W3 ...0|0|0|0|0

- Serial I/O transmit/receive completion flag (SIOF) 0
- Serial I/O mode register J1 ... 0 0 $00|0| 0$
- Serial I/O register SI
- A/D conversion completion flag (ADF)

| X | \times |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- A/D control register Q1 .. 0 0 $00|0| 0$
- A/D control register Q2 ... 0 0 $00|0| 0$
- A/D control register Q3 .. 0 0 $00|0| 0$
- Successive approximation register AD ... | | \times |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Comparator register ... $X|\times|\times|\times|\times|\times|\times| x$
- LCD control register L1

0	0	0	0

- LCD control register L2

1	1	1	1

(Prescaler stopped)
(Timer 1 stopped)
(Timer 2 stopped)
(Timer 3 stopped)
(Timer 4 stopped)
(Timer 5 stopped)
(Timer LC stopped)
(External clock selected, serial I/O port not selected)
(Interrupt disabled)
(Interrupt disabled)
\square
\square

- Carry flag (CY) .. 0

- Register B ..0 0 0 0 0 0 0 0
- Register D .. $\times \times \times \times$
- Register E .. $x|\times|\times|\times|\times|\times| x$
- Register X ...00|0||0|0
- Register Y .. 0 0 $0|0| 0$
- Register Z .. \times X
- Stack pointer (SP) .. 1 1 1 1 1 1
- Operation source clock On-chip oscillator (operating)
- Ceramic resonator circuit .. Operating
- RC oscillation circuit... Stop
- Quartz-crystal oscillator.. Operating

Fig. 2.7.4 Internal state at reset

2.7.3 Notes on use

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the minimum rating value of the recommended operating conditions must be set to $100 \mu \mathrm{~s}$ or less. If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum rating value of the recommended operating conditions.
Refer to section "3.1 Electrical characteristics" for the reset voltage of the recommended operating conditions.

2.8 Voltage drop detection circuit

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.
Figure 2.8.1 shows the voltage drop detection circuit, and Figure 2.8.2 shows the operation waveform example of the voltage drop detection circuit. Table 2.8.1 shows the voltage drop detection circuit operation state.
Refer to section "3.1 Electrical characteristics" for the reset voltage of the voltage drop detection circuit.

Fig. 2.8.1 Voltage drop detection circuit

Fig. 2.8.2 Voltage drop detection circuit operation waveform example
Table 2.8.1 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At power down (SVDE instruction is not executed)	At power down (SVDE instruction is executed)
"L"	Invalid	Invalid	
"H"	Invalid	Invalid	Valid

2.8.1 Note on use

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and re-goes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 2.8.3);

- supply voltage does not fall below to Vrst, and
- its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to Vrst and re-goes up after that.

Fig. 2.8.3 Vdd and Vrst

2.9 Power down

The 4524 Group has the clock operating mode and RAM back-up mode for the power down function. In this section, the state transition, each power down function related register and application example for the power down function are described.
Figure 2.9.1 shows the state transition.

Stabilizing time @ : Microcomputer starts its operation after counting the on-chip oscillator clock 5400 to 5424 times.
Stabilizing time (b): In high-speed through-mode, microcomputer starts its operation after counting the f(RING) 675 times. In high-speed/2 mode, microcomputer starts its operation after counting the f(RING) 1350 times. In high-speed/4 mode, microcomputer starts its operation after counting the f(RING) 2700 times. In high-speed/8 mode, microcomputer starts its operation after counting the f(RING) 5400 times.

Stabilizing time (c): In high-speed through-mode, microcomputer starts its operation after counting the $f($ XIN $) 675$ times. In high-speed/2 mode, microcomputer starts its operation after counting the $f(X I N) 1350$ times. In high-speed/4 mode, microcomputer starts its operation after counting the $f($ XIN $) 2700$ times. In high-speed/8 mode, microcomputer starts its operation after counting the f(XIN) 5400 times.

Stabilizing time (d): In high-speed through-mode, microcomputer starts its operation after counting the f(XIN) 21 times. In high-speed/2 mode, microcomputer starts its operation after counting the $f($ XIN $) 42$ times. In high-speed/4 mode, microcomputer starts its operation after counting the $f(X I N) 84$ times. In high-speed/8 mode, microcomputer starts its operation after counting the $f(X I N) 168$ times.

Stabilizing time (e): In low-speed through-mode, microcomputer starts its operation after counting the f(XCIN) 675 times. In low-speed/2 mode, microcomputer starts its operation after counting the f(XCIN) 1350 times. In low-speed/4 mode, microcomputer starts its operation after counting the $f(X C I N) 2700$ times. In low-speed/8 mode, microcomputer starts its operation after counting the $f(X \operatorname{CIN}) 5400$ times.

Notes 1: Continuous execution of the EPOF instruction and the POF instruction is required to go into the clock operating state. Continuous execution of the EPOF instruction and the POF2 instruction is required to go into the RAM back-up state.
2: Through the ceramic resonator is operating, the on-chip oscillator clock is selected as the operation source clock.
3: The oscillator clock corresponding to each instruction is selected as the operation source clock, and the on-chip oscillator is stopped.
4: The main clock ($f(\mathrm{XIN})$ or $f(\mathrm{RING})$) or sub-clock ($f(\mathrm{XCIN})$) is selected for operation source clock by the bit 0 of clock control register MR.
5: The sub-clock (quartz-crystal oscillation) is operating except in state F.

Fig. 2.9.1 State transition

2.9.1 Power down mode

The system goes into power down mode when the POF or POF2 instruction is executed immediately after the EPOF instruction is executed. Table 2.9.1 shows the function and state retained at power down mode. Also, Table 2.9.2 shows the return source from this state.

(1) Clock operating mode

The system goes into clock operating mode when the POF instruction is executed immediately after the EPOF instruction is executed.
As main clock oscillation (XIN-XOUT) and system clock stop with RAM, the state of reset circuit, subclock oscillation circuit (XCIN-XCOUT), LCD display and timer 5 retained, current dissipation can be reduced.
(2) RAM back-up mode

The system goes into RAM back-up mode when the POF2 instruction is executed immediately after the EPOF instruction is executed.
As oscillation stops with RAM and the state of reset circuit retained, current dissipation can be reduced without losing the contents of RAM.

Table 2.9.1 Functions and states retained at power down mode

Function	Power down mode	
	Clock operating	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	\times	\times
Contents of RAM	0	0
Interrupt control registers V1, V2	\times	\times
Interrupt control registers I1 to I3	0	0
Selected oscillation circuit	\bigcirc	\bigcirc
Clock control register MR	\bigcirc	\bigcirc
Timer 1 to timer 4 functions	(Note 3)	(Note 3)
Timer 5 function	\bigcirc	O
Timer LC function	\bigcirc	(Note 3)
Watchdog timer function	\times (Note 4)	\times (Note 4)
Timer control registers PA, W4	\times	\times
Timer control registers W1 to W3, W5, W6	0	0
Serial I/O function	\times	\times
Serial I/O control register J1	0	0
A/D function	\times	\times
A/D control registers Q1 to Q3	0	O
LCD display function	0	(Note 5)
LCD control registers L1, L2	O	\bigcirc
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers FR0 to FR3	0	0
External interrupt request flags (EXF0, EXF1)	\times	\times
Timer interrupt request flags (T1F to T4F)	(Note 3)	(Note 3)
Timer interrupt request flag (T5F)	0	0
A/D conversion completion flag (ADF)	\times	\times
Serial I/O transmit/receive completion flag SIOF	\times	\times
Interrupt enable flag (INTE)	\times	\times
Watchdog timer flags (WDF1, WDF2)	\times (Note 4)	\times (Note 4)
Watchdog timer enable flag (WEF)	\times (Note 4)	\times (Note 4)

Notes 1: "O" represents that the function can be retained, and " X " represents that the function is initialized. Registers and flags other than the above are undefined at power down, and set an initial value after returning.
2: The stack pointer (SP) points the level of the stack register and is initialized to " 7 " at power down.
3: The state of the timer is undefined.
4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then go into the power down state.
5: LCD is turned off.
6: When the SVDE instruction is executed and the " H " level is applied to the VDCE pin, this function is valid at power down.
7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

Table 2.9.2 Return source and return condition

Return source		Return condition	Remarks
	Ports $\mathrm{PO} 0-\mathrm{PO} 0$ Ports P10-P13	Return by an external "L" level input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the power down state.
	INTO pin INT1 pin	Return by an external "H" level or "L" level input, or rising edge $(" L " \rightarrow$ "H") or falling edge ("H" \rightarrow "L"). When the return signal is input, the interrupt request flag (EXF0, EXF1) is not set to "1".	Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
Timer 5 interrupt request flag (T5F)		Return by timer 5 underflow or by setting T5F to " 1 ". It can be used in the clock operating mode.	Clear T5F to "0" with the SNZT5 instruction before system goes into the power down state. When system goes into the power down state while T5F is "1", system returns from the state immediately because it is recognized as return condition.

(3) Start condition identification

When system returns from both power down mode and reset, program is started from address 0 in page 0.
The start condition (warm start or cold start) can be identified by examining the state of the power down flag (P) with the SNZP instruction.
The warm start condition (Timer 5 or external wakeup signal) can be identified by examining the state of T5F flag with the SNZT5 instruction.

Table 2.9.3 Start condition identification

	Start condition	P flag	Timer 5 interrupt request flag
Warm start	External wakeup signal input	1	0
	Timer 5 underflow	1	1
Cold start (Reset)	Reset pulse input to RESET pin	0	0
	Reset by watchdog timer		
	Reset by voltage drop detection circuit		

Fig. 2.9.2 Start condition identified example

2.9.2 Related registers

(1) Interrupt control register I1

Table 2.9.4 shows the interrupt control register 11 .
Set the contents of this register through register A with the TI1A instruction.
In addition, the TAl1 instruction can be used to transfer the contents of register 11 to register A .

Table 2.9.4 Interrupt control register 11

| Interrupt control register I1 | | at reset : 00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of 112 and 113 are changed, the external interrupt request flag EXFO may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to " 0 ". In this time, set the NOP instruction after the SNZO instruction, for the case when a skip is performed with the SNZO instruction.
3: When setting the power down, I11-I10 are not used.
(2) Interrupt control register I2

Table 2.9.5 shows the interrupt control register 12 .
Set the contents of this register through register A with the TI2A instruction.
In addition, the TAI2 instruction can be used to transfer the contents of register 12 to register A.

Table 2.9.5 Interrupt control register 12

| Interrupt control register I2 | | at reset : 00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of $I 22$ and $I 23$ are changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction when the bit 1 (V11) of register V1 to " 0 ". In this time, set the NOP instruction after the SNZ1 instruction, for the case when a skip is performed with the SNZ1 instruction.
3: When setting the power down, I21-I20 are not used.

(3) Clock control register MR

Table 2.9.6 shows the clock control register MR.
Set the contents of this register through register A with the TMRA instruction.
The contents of register MR is transferred to register A with the TAMR instruction.
Table 2.9.6 Clock control register MR

Clock control register MR		at reset : 11002			at power down : state retained	R/W
MR3	Operation mode selection bits	MR3			Operation mode	
		0	0	Through	de (frequency not divided)	
		0	1	Frequency	ivided by 2 mode	
MR2		1	0	Frequency	divided by 4 mode	
		1	1	Frequency	ivided by 8 mode	
MR1	Main clock oscillation circuit control bit	0	0	Main clock	scillation enabled	
		1	1	Main clock	scillation stop	
MRo	System clock selection bit	0	0	Main clock	$f($ XIN) or f(RING))	
		1	1	Sub-clock	(XCIN))	

Note: "R" represents read enabled, and "W" represents write enabled.
(4) Pull-up control register PUO

Table 2.9.7 shows the pull-up control register PUO.
Set the contents of this register through register A with the TPUOA instruction.
The contents of register PUO is transferred to register A with the TAPUO instruction.
Table 2.9.7 Pull-up control register PUO

Pull-up control register PU0		at reset :00002		at power down : state retained	R/W
PU03	Port P03 pull-up transistor control bit	1	Pull-up transistor ON		
	Port P02 pull-up transistor control bit	1	Pull-up transistor ON		
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor OFF		
	Port P00 pull-up transistor control bit	1	Pull-up transistor ON		

Note: "R" represents read enabled, and "W" represents write enabled.

(5) Pull-up control register PU1

Table 2.9.8 shows the pull-up control register PU1.
Set the contents of this register through register A with the TPU1A instruction.
The contents of register PU1 is transferred to register A with the TAPU1 instruction.
Table 2.9.8 Pull-up control register PU1

| Pull-up control register PU1 | | at reset : 00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

(6) Key-on wakeup control register K0

Table 2.9 .9 shows the key-on wakeup control register K0.
Set the contents of this register through register A with the TKOA instruction.
The contents of register KO is transferred to register A with the TAKO instruction.
Table 2.9.9 Key-on wakeup control register K0

| Key-on wakeup control register K0 | | at reset:00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Key-on wakeup control register K1

Table 2.9.10 shows the key-on wakeup control register K1.
Set the contents of this register through register A with the TK1A instruction.
The contents of register K1 is transferred to register A with the TAK1 instruction.

Table 2.9.10 Key-on wakeup control register K1

| Key-on wakeup control register K1 | | at reset :00002 | | at power down : state retained |
| :---: | :--- | :---: | :--- | :--- | R/W

Note: "R" represents read enabled, and "W" represents write enabled.
(8) Key-on wakeup control register K2

Table 2.9.11 shows the key-on wakeup control register K2.
Set the contents of this register through register A with the TK2A instruction.
The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.9.11 Key-on wakeup control register K2

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W
K23	INT1 pin return condition selection bit	0	Return by		
		1	Return by	dge	
K22	INT1 pin key-on wakeup control bit	0	Key-on wa	up invalid	
		1	Key-on wa	up valid	
K21	INTO pin return condition selection bit	0	Returned	level	
		1	Returned	edge	
K20	INT0 pin key-on wakeup control bit	0	Key-on wa	up invalid	
		1	Key-on wa	up valid	

Note: "R" represents read enabled, and "W" represents write enabled.

2.9.3 Power down function application example

(1) Clock display

A clock which is high-accuracy and low-power dissipation can be set up by using a 32.768 kHz quartz-crystal oscillator as a sub-clock and executing the POF instruction.

Outline: The power dissipation can be reduced by using the POF instruction.
Specifications: Time is displayed by the LCD and a 32.768 kHz quartz-crystal oscillator. The main routine is executed by key input.

Figure 2.9 .3 shows the software setting example.

Fig. 2.9.3 Software setting example

2.9.4 Notes on use

(1) POF instruction, POF2 instruction

Execute the POF or POF2 instruction immediately after executing the EPOF instruction to enter the power down state.
Note that system cannot enter the power down state when executing only the POF or POF2 instruction. Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction.
(2) Key-on wakeup function

After checking none of the return condition for ports (P0, P1, INT0 and INT1 specified with register K0-K2) with valid key-on wakeup function is satisfied, execute the POF or POF2 instruction.
If at least one of return condition for ports with valid key-on wakeup function is satisfied, system returns from the power downn state immediately after the POF or POF2 instruction is executed.
(3) Timer 5 interrupt request flag

When POF or POF2 instruction is executed while T5F is " 1 ", system returns from the power down state immediately.
(4) Return from power down mode

After system returns from power down mode, set the undefined registers and flags.
The initial value of the following registers are undefined at power down. After system is returned from power down mode, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)
(5) Watchdog timer
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function with the DWDT instruction and the WRST instruction continuously every system is returned from the power down.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the WRST instruction before system goes into the power down state.
(6) Port D8/INTO pin

When the power down mode is used by clearing the bit 3 of register 11 to " 0 " and setting the input of INT0 pin to be disabled, be careful about the following note.

- When the input of INTO pin is disabled (register $113=$ " 0 "), clear bit 0 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.

(7) Port D9/INT1 pin

When the power down mode is used by clearing the bit 3 of register 12 to " 0 " and setting the input of INT1 pin to be disabled, be careful about the following note.

- When the input of INT1 pin is disabled (register $\mathrm{I} 23=$ " 0 "), clear bit 2 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.
(8) External clock

When the external clock signal is used as the main clock ($f(X I N)$), note that the power down mode (POF or POF2 instruction) cannot be used.

2.10 Oscillation circuit

The 4524 Group has an internal oscillation circuit to produce the clock required for microcomputer operation. The ceramic resonator or the RC oscillation can be used for the main clock ($f(\mathrm{XIN})$).
After system is released from reset, the 4524 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

2.10.1 Oscillation circuit

(1) Main clock generating circuit (f(XIN)) The ceramic resonator or RC oscillation can be used for the main clock ($f(\mathrm{XIN})$).
After system is released from reset, the 4524 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.
When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The selection of oscillation circuit by the CMCK or CRCK instruction is valid only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Another oscillation circuit and the on-chip oscillator stop.
Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, the 4524 Group operates by the on-chip oscillator.
(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock ($f(\mathrm{XIN})$) without using the ceramic resonator or the RC oscillation, connect Xin pin to Vss and leave Xout pin open (Figure 2.10.2).
The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that margin of frequencies when designing application products.

Fig. 2.10.1 Switch to ceramic oscillation/RC oscillation

Fig. 2.10.2 Handling of XIN and Xout when operating on-chip oscillator

(3) Ceramic resonator

When the ceramic resonator is used as the main clock ($f(\mathrm{XIN})$), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and Xout (Figure 2.10.3).

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave Xout pin open. Then, execute the CRCK instruction (Figure 2.10.4).

The frequency is affected by a capacitor, a resistor and a microcomputer.
So, set the constants within the range of the frequency limits.
(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave Xout pin open. Then, execute the CMCK instruction (Figure 2.10.5). Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to section "3.1 Electrical characteristics").
Also, note that the power down function (POF or POF2 instruction) cannot be used when using the external clock.
(6) Sub-clock generating circuit $f(X \operatorname{CIN})$

The quartz-crystal oscillator can be used for the sub-clock $f(X C I N)$. Connect a quartz-crystal oscillator and this external circuit to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and Xcout (Figure 2.10.6).

Fig. 2.10.3 Ceramic resonator external circuit

Fig. 2.10.4 External RC oscillation circuit

Fig. 2.10.5 External clock input circuit

Fig. 2.10.6 External quartz-crystal circuit

2.10.2 Oscillation operation

System clock is supplied to CPU and peripheral device as the base clock for the microcomputer operation.
For the 4524 Group, the clock supplied is selected from the following;

- on-chip oscillator (internal oscillator),
- the ceramic oscillation circuit, and
- divided clock supplied from RC oscillation circuit. Its division ratio is selected from the following with the register MR;
- through mode (f(XIN)) (not divided),
- frequency divided by 2 mode (f(XIN)/2),
- frequency divided by 4 mode (f(XIN)/4) or
- frequency divided by 8 mode (f(Xin)/8).

Figure 2.10 .7 shows the structure of the clock control circuit.

Fig. 2.10.7 Structure of clock control circuit

2.10.3 Related register

(1) Clock control register MR

Table 2.10.1 shows the clock control register MR.
Set the contents of this register through register A with the TMRA instruction.
The contents of register MR is transferred to register A with the TAMR instruction.
Table 2.10.1 Clock control register MR

Clock control register MR		at reset : 11002			at power down : state retained	R/W
MR3	Operation mode selection bits				Operation mode	
		0	0	Through	de (frequency not divided)	
		0	1	Frequency	divided by 2 mode	
MR2		1	0	Frequency	divided by 4 mode	
		1	1	Frequency	divided by 8 mode	
MR1	Main clock oscillation circuit control bit	0	0	Main clock	oscillation enabled	
		1	1	Main clock	oscillation stop	
MRo	System clock selection bit	0	0	Main clock	$\mathrm{f}(\mathrm{XIN})$ or f(RING))	
		1	1	Sub-clock	(XCIN))	

Note: "R" represents read enabled, and "W" represents write enabled.

2.10.4 Notes on use

(1) Clock control

Execute the CMCK or the CRCK instruction to select the main clock ($f(\operatorname{XIN})$) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).
The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Another oscillation circuits and the on-chip oscillator stop.
(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that margin of frequencies when designing application products.
Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the margin of frequencies of the on-chip oscillator clock.
(3) External clock

When the external clock signal is used as the main clock ($f(\mathrm{XIN})$), note that the power down mode (POF or POF2 instruction) cannot be used.
(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

CHAPTER 3

APPENDIX

3.1 Electrical characteristics
 3.2 Typical characteristics
 3.3 List of precautions
 3.4 Notes on noise
 3.5 Package outline

3.1 Electrical characteristics

3.1.1 Absolute maximum ratings

Table 3.1.1 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, P3, P4, D0-D7, $\overline{R E S E T}$, XIN, XcIn, VDCE		-0.3 to VDD +0.3	V
VI	Input voltage Sck, SIn, CNTR0, CNTR1, INT0, INT1		-0.3 to VDD +0.3	V
VI	Input voltage AIN0-AIN7		-0.3 to VDD +0.3	V
Vo	Output voltage P0, P1, P2, P3, P4, D0-D9, $\overline{\text { RESET, SCK, Sout, CNTR0, CNTR1 }}$	Output transistors in cut-off state	-0.3 to VDD +0.3	V
Vo	Output voltage C, Xout, Xcout		-0.3 to VDD +0.3	V
Vo	Output voltage SEG0-SEG19, COM0-COM3		-0.3 to VDD +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature range		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature range		-40 to 125	${ }^{\circ} \mathrm{C}$

3.1.2 Recommended operating conditions

Table 3.1.2 Recommended operating conditions 1
(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
				Min.	Typ.	Max.	
VDD	Supply voltage (when ceramic resonator is used)	Mask ROM version	$\mathrm{f}(\mathrm{STCK}) \leq 6 \mathrm{MHz}$	4		5.5	V
			f (STCK) $\leq 4.4 \mathrm{MHz}$	2.7		5.5	
			$\mathrm{f}(\mathrm{STCK}) \leq 2.2 \mathrm{MHz}$	2		5.5	
		One Time PROM version	$\mathrm{f}(\mathrm{STCK}) \leq 6 \mathrm{MHz}$	4		5.5	
			$\mathrm{f}($ STCK $) \leq 4.4 \mathrm{MHz}$	2.7		5.5	
			$\mathrm{f}($ STCK $) \leq 2.2 \mathrm{MHz}$	2.5		5.5	
VDD	Supply voltage (when RC oscillation is used)	$\mathrm{f}(\mathrm{STCK}) \leq 4.4 \mathrm{MHz}$		2.7		5.5	V
VRAM	RAM back-up voltage	at RAM back-up mode		1.8			V
Vss	Supply voltage				0		V
VLC3	LCD power supply (Note 1)	Mask ROM version		2		VDD	V
		One Time PROM version		2.5		VDD	
VIH	"H" level input voltage	P0, P1, P2, P3, P4, D0-D7, VDCE		0.8Vdd		VDD	V
VIH	"H" level input voltage	XIN, XCIn		0.7Vdd		VDD	V
VIH	"H" level input voltage	RESET		0.85VDD		VDD	V
VIH	"H" level input voltage	Sck, SIN, CNTR0, CNTR1, INT0, INT1		0.8VDD		VDD	V
VIL	"L" level input voltage	P0, P1, P2, P3, P4, D0-D7, VDCE		0		0.2VDD	V
VIL	"L" level input voltage	XIn, XCIN		0		0.3VDD	V
VIL	"L" level input voltage	$\overline{\text { RESET }}$		0		0.3VDD	V
VIL	"L" level input voltage	Sck, SIn, CNTR0, CNTR1, INT0, INT1		0		0.15 VDD	V
IOH (peak)	"H" level peak output current	P0, P1, P4, D0-D6 SCK, SOUT	$\mathrm{VDD}=5 \mathrm{~V}$			-20	mA
			VDD $=3 \mathrm{~V}$			-10	
IOH (peak)	"H" level peak output current	D7, C CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$			-30	mA
			VDD $=3 \mathrm{~V}$			-15	
$\mathrm{IOH}(\mathrm{avg})$	"H" level average output current (Note 2)	P0, P1, P4, D0-D6 Sck, Sout	VDD $=5 \mathrm{~V}$			-10	mA
			VDD $=3 \mathrm{~V}$			-5	
$\mathrm{IOH}(\mathrm{avg})$	"H" level average output current (Note 2)	D7, C CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$			-20	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			-10	
IOL(peak)	"L" level peak output current	P0, P1, P4	$\mathrm{VDD}=5 \mathrm{~V}$			24	mA
			VDD $=3 \mathrm{~V}$			12	
IOL(peak)	"L" level peak output current	Do-D9, C, Sck, Sout, CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$			24	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			12	
IOL(peak)	"L" level peak output current	P2, P3, RESET	$\mathrm{VDD}=5 \mathrm{~V}$			10	mA
			VDD $=3 \mathrm{~V}$			4	
IoL(avg)	"L" level average output current (Note 2)	P0, P1, P4	$\mathrm{VDD}=5 \mathrm{~V}$			12	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			6	
IOL(avg)	"L" level average output current (Note 2)	D0-D9, C, Sck, Sout, CNTR0, CNTR1	$\mathrm{VDD}=5 \mathrm{~V}$			15	mA
			VDD $=3 \mathrm{~V}$			7	
IOL(avg)	"L" level average output current (Note 2)	P2, P3, $\overline{\text { RESET }}$	$\mathrm{VDD}=5 \mathrm{~V}$			5	mA
			$\mathrm{VDD}=3 \mathrm{~V}$			2	
ElOH(avg)	"H" level total average current	P0, P1, D0-D6, Sck, Sout				-60	mA
		P4, D7, C, CNTR0, CNTR1				-60	
\loL(avg)	"L" level total average current	P0, P1, D0-D6, ScK, Sout				80	mA
		P2, P3, P4, D7-D9, C, RESET, CNTR0, CNTR1				80	

Notes 1: At $1 / 2$ bias: VLC1 $=$ VLC2 $=(1 / 2) \cdot$ VLC3
At $1 / 3$ bias: VLC1 $=(1 / 3) \cdot$ VLC3, VLC2 $=(2 / 3) \cdot$ VLC 3
2: The average output current is the average value during 100 ms .

Table 3.1.3 Recommended operating conditions 2
(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions			Limits			Unit
					Min.	Typ.	Max.	
f (XIN)	Oscillation frequency (with a ceramic resonator)	Mask ROM version	Through mode	V DD $=4$ to 5.5 V			6	MHz
				$\mathrm{VDD}=2.7$ to 5.5 V			4.4	
				VDD $=2$ to 5.5 V			2.2	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			6	
				VDD $=2$ to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD $=2$ to 5.5 V			6	
		One Time PROM version	Through mode	VDD $=4$ to 5.5 V			6	
				VDD $=2.7$ to 5.5 V			4.4	
				VDD $=2.5$ to 5.5 V			2.2	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			6	
				VDD $=2.5$ to 5.5 V			4.4	
			Frequency/4, 8 mode	$\mathrm{VDD}=2.5$ to 5.5 V			6	
f(XIN)	Oscillation frequency (at RC oscillation) (Note)	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V					4.4	MHz
f (XIN)	Oscillation frequency (with a ceramic resonator selected, external clock input)	Mask ROM version	Through mode	$\mathrm{V} D \mathrm{D}=4$ to 5.5 V			4.8	MHz
				VDD $=2.7$ to 5.5 V			3.2	
				VDD $=2$ to 5.5 V			1.6	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			4.8	
				VDD $=2$ to 5.5 V			3.2	
			Frequency/4, 8 mode	VDD $=2$ to 5.5 V			4.8	
		One Time PROM version	Through mode	VDD $=4$ to 5.5 V			4.8	
				VDD $=2.7$ to 5.5 V			3.2	
				$\mathrm{VDD}=2.5$ to 5.5 V			1.6	
			Frequency/2 mode	$\mathrm{VDD}=2.7$ to 5.5 V			4.8	
				$\mathrm{VDD}=2.5$ to 5.5 V			3.2	
			Frequency/4, 8 mode	$\mathrm{VDD}=2.5$ to 5.5 V			4.8	
f (XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal oscillator					50	kHz
f(CNTR)	Timer external input frequency	CNTR0, CNTR1					f(STCK)/6	Hz
tw(CNIR)	Timer external input period ("H" and "L" pulse width)	CNTR0, CNTR1			3/f(STCK)			s
f(Sck)	Serial I/O external input frequency	Sck					f(STCK)/6	Hz
tw(Sck)	Serial I/O external input frequency ("H" and "L" pulse width)	Sck			3/f(STCK)			s
TPON	Power-on reset circuit valid supply voltage rising time			$\mathrm{VDD}=0 \rightarrow 2 \mathrm{~V}$			100	$\mu \mathrm{s}$
				$\mathrm{VDD}=0 \rightarrow 2.5 \mathrm{~V}$			100	

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.1.3 Electrical characteristics

Table 3.1.4 Electrical characteristics 1

(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VdD}=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, VDD $=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
VOH	$\begin{aligned} & \text { "H" level output voltage } \\ & \text { P0, P1, P4, D0-D6, Sck, Sout } \end{aligned}$	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	4.1			
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$	$\mathrm{IOH}=-5 \mathrm{~mA}$	2.1			
			$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4			
VOH	"H" level output voltage D7, C, CNTR0, CNTR1	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOH}=-20 \mathrm{~mA}$	3			V
			$\mathrm{IOH}=-6 \mathrm{~mA}$	4.1			
		$\mathrm{VDD}=3 \mathrm{~V}$	$\mathrm{IOH}=-10 \mathrm{~mA}$	2.1			
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4			
VoL	"L" level output voltage P0, P1, P4	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=4 \mathrm{~mA}$			0.9	
		VDD $=3 \mathrm{~V}$	$\mathrm{IOL}=6 \mathrm{~mA}$			0.9	
			$\mathrm{IOL}=2 \mathrm{~mA}$			0.6	
VoL	"L" level output voltage D0-D9, C, Sck, Sout, CNTR0, CNTR1	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{IOL}=15 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=5 \mathrm{~mA}$			0.9	
		VDD $=3 \mathrm{~V}$	$\mathrm{IOL}=9 \mathrm{~mA}$			1.4	
			$\mathrm{IOL}=3 \mathrm{~mA}$			0.9	
VoL	"L" level output voltage P2, P3, RESET	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{IOL}=5 \mathrm{~mA}$			2	V
			$\mathrm{IOL}=1 \mathrm{~mA}$			0.6	
		$\mathrm{VDD}=3 \mathrm{~V}$	$\mathrm{IOL}=2 \mathrm{~mA}$			0.9	
IIH	" H " level input current P0, P1, P2, P3, P4, D0-D7, VDCE, RESET, CNTR0, CNTR1, INT0, INT1	$\mathrm{VI}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
IIL	"L" level input current P0, P1, P2, P3, P4, D0-D7, VDCE, Sck, Sin, CNTR0, CNTR1, INT0, INT1	VI $=0$ V P0, P1 No pull-up				-1	$\mu \mathrm{A}$

Table 3.1.5 Electrical characteristics 2
(Mask ROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2$ to 5.5 V , unless otherwise noted)
(One Time PROM version: $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2.5$ to 5.5 V , unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			Unit		
			Min.	Typ.	Max.					
IDD	Supply current	at active mode (with a ceramic resonator)			$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		1.4	2.8	mA
			$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$			1.6	3.2			
			$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN}) / 2$			2	4			
			$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN})$			2.8	5.6			
			$\begin{aligned} & \hline \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 8$		1.1	2.2	mA		
				$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 4$		1.2	2.4			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		1.5	3			
				f (STCK) $=\mathrm{f}(\mathrm{XIN})$		2	4			
			$\begin{aligned} & \text { VDD }=3 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		0.4	0.8	mA		
				$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 4$		0.5	1			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN}) / 2$		0.6	1.2			
				f (STCK) $=\mathrm{f}(\mathrm{XIN})$		0.8	1.6			
		at active mode(with a quartz-crystaloscillator)	$\begin{aligned} & \hline \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		55	110	$\mu \mathrm{A}$		
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$		60	120			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		65	130			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN})$		70	140			
			$\begin{aligned} & \hline \mathrm{VDD}=3 \mathrm{~V} \\ & \mathrm{f}(\mathrm{XIN})=\text { stop } \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz} \end{aligned}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$		12	24	$\mu \mathrm{A}$		
				$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 4$		13	26			
				$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$		14	28			
				$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN})$		15	30			
		at clock operation mode (POF instruction execution)	$\mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}$	$\mathrm{VDD}=5 \mathrm{~V}$		20	60	$\mu \mathrm{A}$		
				$\mathrm{VDD}=3 \mathrm{~V}$		5	15			
		at RAM back-up mode (POF2 instruction execution)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			0.1	1	$\mu \mathrm{A}$		
			VDD $=5 \mathrm{~V}$				10			
			$\mathrm{VDD}=3 \mathrm{~V}$				6			
Rpu	Pull-up resistor value P0, P1, $\overline{\text { RESET }}$		$\mathrm{V}=0 \mathrm{~V}$	$\mathrm{VDD}=5 \mathrm{~V}$	30	60	125	k Ω		
			$\mathrm{VDD}=3 \mathrm{~V}$	50	120	250				
$\mathrm{V}_{\text {+ }+ \text { - }} \mathrm{V}_{\text {T- }}$	Hysteresis Sck, Sin, CNTR0, CNTR1, INT0, INT1			$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$			0.2		V	
			$\mathrm{VDD}=3 \mathrm{~V}$			0.2				
$\mathrm{V}_{\text {+ }+ \text { - }} \mathrm{V}_{\text {T- }}$	Hysteresis RESET		$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$			1		V		
			$\mathrm{VDD}=3 \mathrm{~V}$			0.4				
f(RING)	On-chip oscillator clock frequency		$\mathrm{VDD}=5 \mathrm{~V}$		1	2	3	MHz		
			$\mathrm{VDD}=3 \mathrm{~V}$		0.5	1	1.8			
$\Delta \mathrm{f}$ (XIN)	```Frequency error (with RC oscillation, error of external R, C not included) (Note)```		$\mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}$				± 17	\%		
			$\mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}$				± 17			
Rcom	COM output impedance		$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$			1.5	7.5	$\mathrm{k} \Omega$		
			$\mathrm{VDD}=3 \mathrm{~V}$			2	10			
RSEG	SEG output impedance		$\mathrm{VDD}=5 \mathrm{~V}$			1.5	7.5	k Ω		
			$\mathrm{VDD}=3 \mathrm{~V}$			2	10			
RvLC	Internal resistor for LCD power supply		When dividing resistor $2 \mathrm{r} \times 3$ selected		300	480	960	k Ω		
			When dividing resistor $2 \mathrm{r} \times 2$ selected		200	320	640			
			When dividing resistor $r \times 3$ selected		150	240	480			
			When dividing resistor $\mathrm{r} \times 2$ selected		100	160	320			

Note: When RC oscillation is used, use the external 33 pF capacitor (C).

3.1.4 A/D converter recommended operating conditions

Table 3.1.6 A/D converter recommended operating conditions
(Comparator mode selected, $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
				Min.	Typ.	Max.	
VDD	Supply voltage	$\begin{aligned} & \hline \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{Ta}=-20 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		2.7		5.5	V
				3		5.5	
VIA	Analog input voltage			0		VDD	V
f (XIN)	Oscillation frequency	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	$\mathrm{f}(\mathrm{STCK})=\mathrm{f}(\mathrm{XIN}) / 8$	0.8			MHz
			$\mathrm{f}($ STCK $)=\mathrm{f}($ XIN $) / 4$	0.4			
			$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 2$	0.2			
			$f($ STCK $)=f($ XIN $)$	0.1			

Table 3.1.7 A/D converter characteristics
($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
-	Resolution					10	bits
-	Linearity error	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VdD}=2.7 \mathrm{~V}$ to 5.5 V				± 2	LSB
		$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$, VDD $=3 \mathrm{~V}$ to 5.5 V					
-	Differential non-linearity error	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V				± 0.9	LSB
		$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=3 \mathrm{~V}$ to 5.5 V					
Vot	Zero transition voltage	VDD $=5.12 \mathrm{~V}$		0	10	20	mV
		VDD $=3.072 \mathrm{~V}$		0	6	12	
VFST	Full-scale transition voltage	$\mathrm{VDD}=5.12 \mathrm{~V}$		5110	5120	5130	mV
		VDD $=3.072 \mathrm{~V}$		3063	3069	3075	
IADD	A/D operating current (Note 1)	VDD $=5 \mathrm{~V}$			0.3	0.9	mA
		VDD $=3 \mathrm{~V}$			0.1	0.3	
Tconv	A/D conversion time	$\mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}$	$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 8$			248	$\mu \mathrm{S}$
			$f($ STCK $)=\mathrm{f}(\mathrm{XIN}) / 4$			124	
			$f($ STCK $)=f($ XIN $) / 2$			62	
			$\mathrm{f}($ STCK $)=\mathrm{f}(\mathrm{XIN})$			31	
-	Comparator resolution					8	bits
-	Comparator error (Note 2)	$\mathrm{VDD}=5.12 \mathrm{~V}$				± 20	mV
		VDD $=3.072 \mathrm{~V}$				± 15	
-	Comparator comparison time	$\mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}$	$f($ STCK $)=f($ XIN $) / 8$			32	$\mu \mathrm{S}$
			$f($ STCK $)=f($ XIN $) / 4$			16	
			$f($ STCK $)=f($ XIN $) / 2$			8	
			$f($ STCK $)=f($ XIN $)$			4	

Notes 1: When the A/D converter is used, IADD is added to IDD (supply current).
2: As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n , the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

- Logic value of comparison voltage Vref

$$
\text { Vref }=\frac{\text { VDD }}{256} \times n
$$

$\mathrm{n}=$ Value of register $A D(\mathrm{n}=0$ to 255)

3.1.5 Voltage drop detection circuit characteristics

Table 3.1.8 Voltage drop detection circuit characteristics
($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
VRST	Detection voltage (Note 1)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		3.3	3.5	3.7	V
				2.7		4.2	
IRST	Operation current	at power down (Note 2)	Vdd $=5 \mathrm{~V}$		50	100	$\mu \mathrm{A}$
			VDD $=3 \mathrm{~V}$		30	60	
TRST	Detection time	VDD \rightarrow (VRST-0.1 V) (Note 3)			0.2	1.2	ms

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.
2: After the SVDE instruction is executed, the voltage drop detection circuit is valid at power down mode.
3: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST-0.1 V].

3.1.6 Basic timing diagram

3.2 Typical characteristics

The data described below are characteristic examples for the 4524 Group.
Unless otherwise noted, the characteristics for Mask ROM version are shown here.
The data shown here are just characteristics examples and are not guaranteed.
For rated values, refer to "3.1 Electrical characteristics".
Standard characteristics are different between Mask ROM version and One Time PROM version, due to the difference in the manufacturing processes.
Even in the MCUs which have the same memory type, standard characteristics are different in each sample, too.

3.2.1 VDD-IdD characteristics

(1) High-speed mode (ceramic resonance): VDD-ldD

Measurement condition: $\mathrm{f}(\mathrm{XIIN})=6 \mathrm{MHz}, \mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(2) High-speed mode (ceramic resonance): Vod-ldd

Measurement condition: $\mathrm{f}\left(\mathrm{Xin}_{\mathrm{IN}}\right)=4 \mathrm{MHz}, \mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(3) High-speed mode (ceramic resonance): VDD-ldD

Measurement condition: $f\left(X_{\text {IN }}\right)=2 \mathrm{MHz}, \mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(4) High-speed mode (ceramic resonance): VDD-ldD Measurement condition: $f\left(X_{\text {IN }}\right)=1 \mathrm{MHz}, \mathrm{f}\left(\mathrm{X}_{\mathrm{CIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(5) High-speed mode (ceramic resonance): VDD-ldD

Measurement condition: $f\left(X_{\text {IN }}\right)=400 \mathrm{kHz}, f\left(\mathrm{X}_{\mathrm{cIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(6) High-speed mode (on-chip oscillator): VDD-ldD Measurement condition: $f\left(X_{\text {in }}\right)=$ stop $f\left(X_{\text {cin }}\right)=$ stop, $T a=25^{\circ} \mathrm{C}$

Vdd [V]
(7) High-speed mode (RC oscillation): R-Ido

Measurement condition: $f\left(\mathrm{X}_{\mathrm{CIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

(8) High-speed mode (RC oscillation): R-Ido

Measurement condition: $f\left(\mathrm{X}_{\mathrm{CIN}}\right)=$ stop, $\mathrm{f}(\mathrm{RING})=$ stop, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

(9) Low-speed mode (quartz-crystal oscillation): VDD-ldD

Measurement condition: $f\left(X_{i N}\right)=$ stop, $f\left(X_{\text {cin }}\right)=32 \mathrm{kHz}, \mathrm{f}($ RING $)=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(10) Clock operating mode (POF instruction execution): VDD-IDD

Measurement condition: $f\left(X_{\text {in }}\right)=$ stop, $f\left(X_{\text {CIN }}\right)=32 \mathrm{kHz}, \mathrm{f}($ RING $)=$ stop, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

VDD [V]
(11) RAM back-up mode (POF2 instruction execution): VdD-IDD Measurement condition: $f\left(X_{I N}\right)=$ stop, $f\left(X_{\text {cIN }}\right)=$ stop, $f(R I N G)=$ stop, $T a=25^{\circ} \mathrm{C}$

3.2.2 Frequency characteristics

(1) On-chip oscillator frequency characteristics: $\mathrm{V}_{\mathrm{DD}-\mathrm{f}}(\mathrm{RING})$

(2) On-chip oscillator frequency characteristics: $\mathrm{Ta}-\mathrm{f}(\mathrm{RING})$

$\mathrm{Ta}\left[{ }^{\circ} \mathrm{C}\right]$
(3) RC oscillation frequency characteristics: $\mathbf{R}-\mathrm{f}\left(\mathrm{X}_{\mathrm{IN}}\right)$

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Resistor R [k Ω]
(4) RC oscillation frequency characteristics ($\mathrm{Ta}-\mathrm{f}\left(\mathrm{X}_{\mathrm{I}}\right)$)

Measurement condition: $\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF}$

(5) RC oscillation frequency characteristics: $\mathrm{R}-\mathrm{f}\left(\mathrm{X}_{\mathrm{I}}\right)$

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Resistor $\mathrm{R}[\mathrm{k} \Omega$]
(6) RC oscillation frequency characteristics (Ta-f(Xis))

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{C}=33 \mathrm{pF}$

$\mathrm{Ta}\left[{ }^{\circ} \mathrm{C}\right]$

3.2.3 Port typical characteristics ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

(1) Ports P0, P1, P4, $\mathrm{D}_{0}-\mathrm{D}_{6}$: Vон-Іон

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

(2) Ports $\mathrm{D}_{7}, \mathrm{C}:$ Vон-Іон

Measurement condition: $V_{D D}=5.0 \mathrm{~V}$

(3) Ports P0, P1, P4: Vol-lol

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

Vol [V]
(4) Ports Do-D9, C: Vol-lol

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

(5) Ports P2, P3, $\overline{R E S E T: ~ V o l-l o l ~}$

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$

Vol [V]

3.2.4 Port typical characteristics ($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)

(1) Ports P0, P1, P4, $\mathrm{D}_{0}-\mathrm{D}_{6}$: Vон-Іон

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$

(2) Ports $\mathrm{D}_{7}, \mathrm{C}: \mathrm{V}_{\text {он-Іон }}$

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$

(3) Ports P0, P1, P4: Vol-Iol

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$

(4) Ports Do-D9, C: Vol-Iol

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$

(5) Ports P2, P3, $\overline{R E S E T: ~ V o l-l o l ~}$

Measurement condition: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$

3.2.5 Input threshold characteristics

(1) Ports P0-P4, Do-D7, VDCE: Vdd-Vif, $\mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{IL}}$

(2) $X_{I N}: V_{d d}-V_{I H}, V_{d d}-V_{I L}$

Measurement condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(3) $\mathrm{X}_{\mathrm{CIN}}$: $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{dD}}-\mathrm{V}_{\mathrm{IL}}$

Measurement condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(4) RESET: $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{I L}$

Measurement condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(5) Sck, Sin, CNTR0, CNTR1, INT0, INT1: Vdd-VIH, Vdd-VIL

Measurement condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Vdd [V]

3.2.6 Pull-up resistor: Vob-RPU characteristics example

(1) Ports P0, P1, RESET: Vdo-Rpu

Measurement condition: $\mathrm{V}_{1}=0 \mathrm{~V}$

3.2.7 Internal resistor for LCD power: Ta-Rvic

(1) $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}:$ Ta-Rvlc

(2) $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$: Ta-RvLc

3.2.8 A/D converter typical characteristics

Fig. 3.2.1 A/D conversion characteristics data
Figure 3.2.1 shows the A/D accuracy measurement data.
(1) Non-linearity error \qquad This means a deviation from the ideal characteristics between V_{0} to V1022 of actual A/D conversion characteristics. In Figure 3.2.1, it is (4)-(1)/ 1 LSB .
(2) Differential non-linearity error . This means a deviation from the ideal characteristics between the input voltages V_{0} to V_{1022} necessary to change the output data to "1." In Figure 3.2.1, this is (2/1LSB.
(3) Zero transition error \qquad This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from " 0 " to " 1 ." In Figure 3.2.1, this is the value of (1).
(4) Full-scale transition error. \qquad This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "1022" to "1023." In Figure 3.2.1, this is the value of © 5 .
(5) Absolute accuracy \qquad This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics. In Figure 3.2.1, this is the value of ERROR in each of (1), (3), (4) and (5).

For the A/D converter characteristics, refer to the section 3.1 Electrical characteristics.
(1) $\mathrm{VDD}=5.12 \mathrm{~V}$

Measurement condition: $\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (high-speed through mode), $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(2) $\mathrm{VDD}=3.072 \mathrm{~V}$

Measurement condition: $\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (high-speed through mode), $\mathrm{Ta}=25^{\circ} \mathrm{C}$

3.2.9 Analog input current characteristics example

(1) $f\left(X_{\text {In }}\right)=6 \mathrm{MHz}, \mathrm{V}_{\mathrm{dD}}=5.0 \mathrm{~V}: \mathrm{V}_{\text {AIN }}-\mathrm{I}_{\text {AIN }}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(2) $f\left(X_{I N}\right)=4 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}: \mathrm{V}_{\text {AIN }} \mathrm{I}_{\mathrm{AIN}}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(3) $f\left(X_{I N}\right)=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{dD}}=5.0 \mathrm{~V}: \mathrm{V}_{\text {AIN }} \mathrm{I}_{\mathrm{AIN}}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(4) $f\left(X_{\text {In }}\right)=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{dd}}=5.0 \mathrm{~V}$: $\mathrm{V}_{\text {AIN-I }}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(5) $f(X I N)=6 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}: \mathrm{V}_{\mathrm{AIN}-\mathrm{I}_{\mathrm{AIN}}}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(6) $f\left(X_{\text {in }}\right)=4 \mathrm{MHz}, \mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}: \mathrm{V}_{\text {AIN-}} \mathrm{I}_{\text {AIN }}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(7) $f\left(X_{I N}\right)=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}: \mathrm{V}_{\text {AIN }}-\mathrm{I}_{\text {AIN }}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

(8) $f\left(X_{\text {In }}\right)=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}: \mathrm{V}_{\text {AIN-I }}$

Measurement condition: High-speed through mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

3.2.10 A/D converter operation current (VDD-IADD) characteristics

Measurement condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

3.2.11 Voltage drop detection circuit characteristics
(1) Detection voltage (Mask ROM version): Ta-V ${ }_{\text {rst }}$

(2) Detection voltage (One Time PROM version): Ta-V ${ }_{\text {rSt }}$

$\mathrm{Ta}\left[{ }^{\circ} \mathrm{C}\right]$
(3) Operation current: Vdd-Irst

Measurement condition: $\mathrm{Ta}=25^{\circ} \mathrm{C}$

3.3 List of precautions

3.3.1 Program counter

Make sure that the PC_{H} does not specify after the last page of the built-in ROM.

3.3.2 Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

3.3.3 Notes on I/O port

(1) Note when ports $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 4$ and $\mathrm{D}_{0}-\mathrm{D}_{7}$ are used as an input port

In the following conditions, the pin state of port P0, P1, P4 or $\mathrm{D}_{0}-\mathrm{D}_{7}$ is transferred as input data to register A when the corresponding input instruction is executed.

- Set bit i ($\mathrm{i}=0,1,2$ or 3) of register FR0, FR1, FR2 or FR3 to " 0 " according to the port to be used.
- Set the output latch of the specified port to " 1 " with the corresponding output instruction.

If bit i of FR0, FR1, FR2 or FR3 is " 0 " and the output latch is set to " 0 ," " 0 " is output to specified port.
If bit i of FR0, FR1, FR2 or FR3 is "1", the output latch value is output to specified port.
(2) Note when ports P2 and P3 are used as an input port

In the following condition, the pin state of port P2 or P3 is transferred as input data to register A when the IAP2 or IAP3 instruction is executed.

- Set the output latch of specified port P2i or P3i ($\mathrm{i}=0,1,2$ or 3) to " 1 " with the OP2A or OP3A instruction.

If the output latch is "0", "0" is output to specified port P2 or P3.
(3) Noise and latch-up prevention

Connect an approximate $0.1 \mu \mathrm{~F}$ bypass capacitor directly to the $\mathrm{V}_{\text {ss }}$ line and the Vod line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.
The CNVss pin is also used as the VPp pin (programming voltage $=12.5 \mathrm{~V}$) at the One Time PROM version.
Connect the $\mathrm{CNV}_{\text {ss }} / \mathrm{V}_{\mathrm{PP}}$ pin to $\mathrm{V}_{\text {ss }}$ through an approximate $5 \mathrm{k} \Omega$ resistor which is connected to the CNVss/Vpp pin at the shortest distance.

(4) Multifunction

- Be careful that the output of ports D_{8} and D_{9} can be used even when INT0 and INT1 pins are selected.
- Be careful that the input of ports $D_{4}-D_{6}$ can be used even when $S_{i n}$, Sout and Sck pins are selected.
- Be careful that the input/output of port D_{7} can be used even when input of CNTR0 pin is selected.
- Be careful that the input of port D_{7} can be used even when output of CNTR0 pin is selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin is selected.
(5) Connection of unused pins

Table 3.3.1 shows the connections of unused pins.
(6) SD, RD, SZD instructions

When the SD and RD instructions are used, do not set "10102" or more to register Y.
When the SZD instructions is used, do not set " 1000_{2} " or more to register Y.

(7) Port $\mathrm{D}_{8} /$ INTO pin

When the power down mode is used by clearing the bit 3 of register 11 to " 0 " and setting the input of INTO pin to be disabled, be careful about the following note.

- When the input of INTO pin is disabled (register $11_{3}=$ " 0 "), clear bit 0 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.
(8) Port $\mathrm{D}_{9} / \mathrm{INT}_{1}$ pin

When the power down mode is used by clearing the bit 3 of register 12 to " 0 " and setting the input of INT1 pin to be disabled, be careful about the following note.

- When the input of INT1 pin is disabled (register $\mathrm{I} 2_{3}=$ " 0 "), clear bit 2 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.

Table 3.3.1 Connections of unused pins

Pin	Connection	Usage condition
\bar{X} In	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) (Note 1) Sub-clock input is selected for system clock ($\mathrm{MR}_{0}=1$).
Xout	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.) (Note 1) RC oscillator is selected (CRCK instruction is executed) External clock input is selected for main clock (CMCK instruction is executed). (Note 3) Sub-clock input is selected for system clock ($\mathrm{MR}_{0}=1$).
$\overline{X_{\text {CIN }}}$	Connect to Vss.	Sub-clock is not used.
X ${ }_{\text {cout }}$	Open.	Sub-clock is not used.
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 4)
$\mathrm{D}_{4} / \mathrm{Sin}^{\text {a }}$	Open.	Sin pin is not selected.
	Connect to Vss.	N -channel open-drain is selected for the output structure.
D $5 /$ Sout	Open.	
	Connect to Vss.	N -channel open-drain is selected for the output structure.
$\overline{\mathrm{D}_{6} / \mathrm{Sck}}$	Open.	Scк pin is not selected.
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.
	Connect to Vss.	N -channel open-drain is selected for the output structure.
D8/INT0	Open.	"0" is set to output latch.
	Connect to Vss.	
D9/INT1	Open.	"0" is set to output latch.
	Connect to Vss.	
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.
$\mathrm{PO}_{0}-\mathrm{P} 0_{3}$	Open.	The key-on wakeup function is not selected. (Note 4)
	Connect to Vss.	N-channel open-drain is selected for the output structure. The pull-up function is not selected. The key-on wakeup function is not selected.
P10-P13	Open.	The key-on wakeup function is not selected. (Note 4)
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5) The pull-up function is not selected. (Note 4) The key-on wakeup function is not selected.
$\begin{aligned} & \hline \text { P20/Aıno- } \\ & \text { P2/Aın3 } \\ & \hline \end{aligned}$	Open.	
	Connect to Vss.	
$\begin{aligned} & \hline \mathrm{P} 3_{0} / \mathrm{AlN}_{1-} \\ & \mathrm{P3}_{3} / \mathrm{Alin7}^{2} \\ & \hline \end{aligned}$	Open.	
	Connect to Vss.	
P40-P43	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 4)
$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	Open.	
VLc3/SEG0	Open.	SEGo pin is selected.
$\mathrm{V}_{\text {LC2/ } / S E G 1}$	Open.	SEG1 pin is selected.
$\mathrm{VLCl}^{\text {/ }}$ SEG 2	Open.	SEG2 pin is selected.
$\mathrm{SEG}_{3}-\mathrm{SEG}_{19}$	Open.	

Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.
2: When sub-clock $\left(\mathrm{X}_{\mathrm{cIN}}\right)$ input is selected $\left(M R_{0}=1\right)$ for the system clock by setting " 1 " to bit 1 (MR_{1}) of clock control register MR, main clock is stopped.
3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.
4: Be sure to select the output structure of ports $D_{0}-D_{3}$ and $P 4_{0}-P 4_{3}$ and the pull-up function and keyon wakeup function of $\mathrm{PO}_{0}-\mathrm{PO}_{3}$ and $\mathrm{P} 1_{0}-\mathrm{P} 1_{3}$ with every one port. Set the corresponding bits of registers for each port.
5: Be sure to select the output structure of ports $\mathrm{P} 0_{0}-\mathrm{P} 0_{3}$ and $\mathrm{P} 1_{0}-\mathrm{P} 1_{3}$ with every two ports. If only one of the two pins is used, leave another one open.
(Note when connecting unused pins to $\mathrm{V}_{\text {ss }}$ or V_{DD})

- Connect the unused pins to $\mathrm{V}_{\text {ss }}$ or V_{DD} using the thickest wire at the shortest distance against noise.

3.3.4 Notes on interrupt

(1) Setting of INTO interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction.
Depending on the input state of $\mathrm{D}_{8} / \mathrm{INTO}$ pin, the external interrupt request flag (EXFO) may be set to " 1 " when the bit 2 of register 11 is changed.
(2) Setting of INTO pin input control

Set a value to the bit 3 of register I1, and execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction.
Depending on the input state of $\mathrm{D}_{8} / \mathrm{INTO}$ pin, the external interrupt request flag (EXFO) may be set to " 1 " when the bit 3 of register 11 is changed.
(3) Setting of INT1 interrupt valid waveform

Set a value to the bit 2 of register I2, and execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction.
Depending on the input state of $\mathrm{D}_{9} / \mathrm{INT} 1$ pin, the external interrupt request flag (EXF1) may be set to " 1 " when the bit 2 of register 12 is changed.
(4) Setting of INT1 pin input control

Set a value to the bit 3 of register I2, and execute the SNZ1 instruction to clear the EXF1 flag to " 0 " after executing at least one instruction.
Depending on the input state of $\mathrm{D}_{9} / \mathrm{INT} 1$ pin, the external interrupt request flag (EXF1) may be set to " 1 " when the bit 3 of register 12 is changed.
(5) Multiple interrupts

Multiple interrupts cannot be used in the 4524 Group.
(6) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write EI and RTI instructions continuously.
(7) $\mathrm{D}_{8} / \mathrm{INTO}$ pin

When the external interrupt input pin INTO is used, set the bit 3 of register 11 to " 1 ".
Even in this case, port D_{8} output function is valid.
Also, the EXF0 flag is set to "1" when bit 3 of register 11 is set to " 1 " by input of a valid waveform (valid waveform causing external 0 interrupt) even if it is used as an output port D8.
(8) $\mathrm{D}_{9} / \mathrm{INT} 1$ pin

When the external interrupt input pin INT1 is used, set the bit 3 of register 12 to " 1 ".
Even in this case, port D_{9} output function is valid.
Also, the EXF1 flag is set to "1" when bit 3 of register I 2 is set to " 1 " by input of a valid waveform (valid waveform causing external 1 interrupt) even if it is used as an output port D_{9}.
(9) POF instruction, POF2 instruction

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.
Note that system cannot enter the power down state when executing only the POF or POF2 instruction. Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

3.3.5 Notes on timer

(1) Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.
Stop counting and then execute the TPSAB instruction to set prescaler data.
(2) Count source

Stop timer 1, 2, 3, 4 or LC counting to change its count source.
(3) Reading the count values

Stop timer 1, 2, 3 or 4 counting and then execute the TAB1, TAB2, TAB3 or TAB4 instruction to read its data.
(4) Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the T1AB, T2AB, T3AB, T4AB or TLCA instruction to write its data.
(5) Writing to reload register R 1 , reload register R 3 and reload register R 4 H

When writing data to reload register R1 while timer 1 is operating respectively, avoid a timing when timer 1 underflows.
When writing data to reload register R3 while timer 3 is operating respectively, avoid a timing when timer 3 underflows.
When writing data to reload register R 4 H while timer 4 is operating respectively, avoid a timing when timer 4 underflows.
(6) Timer 4

- Avoid a timing when timer 4 underflows to stop timer 4.
- When "H" interval extension function of the PWM signal is set to be "valid", set " 01_{16} " or more to reload register R4H.
(7) Timer 5

Stop timer 5 counting to change its count source.
(8) Timer input/output pin

- Set the port C output latch to " 0 " to output the PWM signal from C/CNTR1 pin.
(9) Watchdog timer
- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction, the WRST instruction continuously, and clear the WEF flag to " 0 ".
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function and execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the WRST instruction before system enters into the power down state.
(10) Pulse width input to CNTR0 pin, CNTR1 pin

Refer to section "3.1 Electrical characteristics" for rating value of pulse width input to CNTR0 pin, CNTR1 pin.

3.3.6 Notes on A/D conversion

(1) Note when the A/D conversion starts again

When the A/D conversion starts again with the ADST instruction during A/D conversion, the previous input data is invalidated and the A / D conversion starts again.
(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor ($0.01 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$) to analog input pins.
Figure 3.3.1 shows the analog input external circuit example-1.
When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 3.3.2. In addition, test the application products sufficiently.

Apply the voltage withiin the specifications to an analog input pin.

Fig. 3.3.1 Analog input external circuit example-1

Fig. 3.3.2 Analog input external circuit example-2

(3) Notes for the use of A/D conversion 2

Do not change the operating mode of the A/D converter by bit 3 of register Q1 during A/D conversion (A/D conversion mode and comparator mode).
(4) Notes for the use of A/D conversion 3

When the operating mode of the A / D converter is changed from the comparator mode to the A / D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to " 0 " to change the operating mode of the A / D converter from the comparator mode to the A/D conversion mode (refer to Figure 3.3.3(1).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag to "0".

Clear bit 2 of register V2 to " 0 ".......(1)
Change of the operating mode of the A/D converter from the comparator mode to the A/D conversion mode \downarrow
Clear the ADF flag to "0" with the SNZAD instruction Execute the NOP instruction for the case when a skip is performed with the SNZAD instruction

Fig. 3.3.3 A/D converter operating mode program example
(5) A / D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains " 0 ," not set to "1."
In this case, the A/D interrupt does not occur even when the usage of the A / D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.
(6) Analog input pins

When P2o/Ain0-P23/Ain3, P3o/AIN4-P33/Ain7 are set to pins for analog input, they cannot be used as I/O ports P2 and P3.
(7) TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the highorder 2 bits of register A, and simultaneously, the low-order 2 bits of register A is " 0 ."
(8) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/ D converter are different from those when not using A/D converter.
Table 3.3.2 shows the recommended operating conditions when using A/D converter.
Table 3.3.2 Recommended operating conditions (when using A/D converter)

Parameter	Condition	Limits			Unit
		Min.	Typ.	Max.	
System clock frequency (at ceramic resonance) (Note 2)	$\mathrm{VDD}=4.0$ to 5.5 V (through mode)	0.1		6.0	MHz
	$\mathrm{VDD}=2.7$ to 5.5 V (through mode)	0.1		4.4	
	VDD $=2.7$ to 5.5 V (Frequency/2 mode)	0.1		3.0	
	VDD $=2.7$ to 5.5 V (Frequency/4 mode)	0.1		1.5	
	VDD $=2.7$ to 5.5 V (Frequency/8 mode)	0.1		0.7	
System clock frequency (at RC oscillation) (Note 2)	$\mathrm{VDD}=2.7$ to 5.5 V (through mode)	0.1		4.4	MHz
	VDD $=2.7$ to 5.5 V (Frequency/2 mode)	0.1		2.2	
	$\mathrm{VDD}=2.7$ to 5.5 V (Frequency/4 mode)	0.1		1.1	
	VDD $=2.7$ to 5.5 V (Frequency/8 mode)	0.1		0.5	
System clock frequency (ceramic resonance selected, at external clock input)	$\mathrm{VDD}=4.0$ to 5.5 V (through mode)	0.1		4.8	MHz
	$\mathrm{VDD}=2.7$ to 5.5 V (through mode)	0.1		3.2	
	VDD $=2.7$ to 5.5 V (Frequency/2 mode)	0.1		2.4	
	VDD $=2.7$ to 5.5 V (Frequency/4 mode)	0.1		1.2	
	VDD $=2.7$ to 5.5 V (Frequency/8 mode)	0.1		0.6	

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.3.7 Notes on serial I/O

(1) Note when an external clock is used as a synchronous clock:

- An external clock is selected as the synchronous clock, the clock is not controlled internally.
- Serial transmit/receive is continued as long as an external clock is input. If an external clock is input 9 times or more and serial transmit/receive is continued, the receive data is transferred directly as transmit data, so that be sure to control the clock externally. Note also that the SIOF flag is set to " 1 " when a clock is counted 8 times.
- Be sure to set the initial input level on the external clock pin to "H" level.
- Refer to section "3.1 Electrical characteristics" when using serial I/O with an external clock.

3.3.8 Notes on LCD function

(1) Timer LC count source

Stop timer LC counting to change timer LC count source.
(2) Writing to timer LC

Stop timer LC counting and then execute the data write instruction (TLCA).
(3) $\mathrm{V}_{\mathrm{Lc} 3} / \mathrm{SEG}_{0} \mathrm{pin}$

When the $\mathrm{V}_{\mathrm{LC} 3}$ pin function is selected, apply voltage of $\mathrm{V}_{\mathrm{LC} 3}<\mathrm{V}_{\mathrm{DD}}$ to the pin externally.
(4) $\mathrm{V}_{\mathrm{Lc} 2} / \mathrm{SEG}_{1}$ pin, $\mathrm{V}_{\mathrm{Lc}} / \mathrm{SEG}_{2}$ pin

- When the $\mathrm{V}_{\mathrm{Lc} 2}$ pin and $\mathrm{V}_{\mathrm{LC1}}$ pin functions are selected and the internal dividing resistor is not used; Apply voltage of $0<V_{\text {LC1 }}<V_{\text {LC } 2<}<\mathrm{V}_{\text {LC3 }}$ to these pins.
Short the Vlc2 pin and Vlc1 pin at $1 / 2$ bias.
- When SEG $_{1}$ and SEG $_{2}$ pin function is selected; Use the internal dividing resistor.
(5) LCD power circuit

Select the LCD power circuit suitable for LCD panel and evaluate the display state on the actual system.

3.3.9 Notes on reset

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)
(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the minimum rating value of the recommended operating conditions must be set to $100 \mu \mathrm{~s}$ or less. If the rising time exceeds $100 \mu \mathrm{~s}$, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum rating value of the recommended operating conditions.

3.3.10 Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and re-goes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 3.3.4);

- supply voltage does not fall below to $\mathrm{V}_{\text {rst }}$, and
- its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to $\mathrm{V}_{\text {RST }}$ and re-goes up after that.

Fig. 3.3.4 V_{dD} and $\mathrm{V}_{\mathrm{RST}}$

3.3.11 Notes on power down

(1) POF instruction, POF2 instruction

Execute the POF or POF2 instruction immediately after executing the EPOF instruction to enter the power down state.
Note that system cannot enter the power down state when executing only the POF or POF2 instruction. Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction.
(2) Key-on wakeup function

After checking none of the return condition for ports (P0, P1, INT0 and INT1 specified with register K0-K2) with valid key-on wakeup function is satisfied, execute the POF or POF2 instruction.
If at least one of return condition for ports with valid key-on wakeup function is satisfied, system returns from the power downn state immediately after the POF or POF2 instruction is executed.
(3) Timer 5 interrupt request flag

When POF or POF2 instruction is executed while T5F is " 1 ", system returns from the power down state immediately.
(4) Return from power down mode

After system returns from power down mode, set the undefined registers and flags.
The initial value of the following registers are undefined at power down. After system is returned from power down mode, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)
(5) Watchdog timer
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, stop the watchdog timer function with the DWDT instruction and the WRST instruction continuously every system is returned from the power down.
- When the watchdog timer function and power down function are used at the same time, initialize the flag WDF1 with the WRST instruction before system goes into the power down state.
(6) Port $\mathrm{D}_{8} /$ INTO pin

When the power down mode is used by clearing the bit 3 of register 11 to " 0 " and setting the input of INTO pin to be disabled, be careful about the following note.

- When the input of INT0 pin is disabled (register $11_{3}=$ " 0 "), clear bit 0 of register K2 to " 0 " to invalidate the key-on wakeup before system goes into the power down mode.

(7) Port D9/INT1 pin

When the power down mode is used by clearing the bit 3 of register 12 to " 0 " and setting the input of INT1 pin to be disabled, be careful about the following note.

- When the input of INT1 pin is disabled (register $\mathrm{I} 2_{3}=$ " 0 "), clear bit 2 of register K2 to "0" to invalidate the key-on wakeup before system goes into the power down mode.
(8) External clock

When the external clock signal is used as the main clock ($f\left(X_{i n}\right)$), note that the power down mode (POF or POF2 instruction) cannot be used.

3.3.12 Notes on oscillation circuit

(1) Clock control

Execute the CMCK or the CRCK instruction to select the main clock ($f\left(X_{\text {IN }}\right)$) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).
The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Another oscillation circuits and the on-chip oscillator stop.
(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that margin of frequencies when designing application products.
Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the margin of frequencies of the on-chip oscillator clock.

(3) External clock

When the external clock signal is used as the main clock $\left(f\left(X_{i n}\right)\right.$), note that the power down mode (POF or POF2 instructions) cannot be used.
(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

3.3.13 Electric characteristic differences between Mask ROM and One Time PROM version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.
When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

3.3.14 Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.
In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

3.4 Notes on noise

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

3.4.1 Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer.
The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

(1) Package

Select the smallest possible package to make the total wiring length short.

- Reason

The wiring length depends on a microcomputer package. Use of a small package, for example QFP and not DIP, makes the total wiring length short to reduce influence of noise.

Fig. 3.4.1 Selection of packages
(2) Wiring for RESET input pin

Make the length of wiring which is connected to the $\overline{\text { RESET }}$ input pin as short as possible. Especially, connect a capacitor across the RESET input pin and the Vss pin with the shortest possible wiring.

- Reason

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the RESET pin is required. If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.

Fig. 3.4.2 Wiring for the RESET input pin
(3) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

Fig. 3.4.3 Wiring for clock I/O pins

- Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.
(4) Wiring to CNVss pin

Connect the CNVss pin to the Vss pin with the shortest possible wiring.

- Reason

The operation mode of a microcomputer is influenced by a potential at the CNVss pin. If a potential difference is caused by the noise between pins CNVss and Vss, the operation mode may become unstable. This may cause a microcomputer malfunction or a program runaway.

Fig. 3.4.4 Wiring for CNVss pin
(5) Wiring to VPP pin of built-in PROM version In the built-in PROM version of the 4524 Group, the CNVss pin is also used as the built-in PROM power supply input pin VPP.

- When the VPP pin is also used as the CNVss pin
Connect an approximately $5 \mathrm{k} \Omega$ resistor to the VPP pin the shortest possible in series and also to the Vss pin. When not connecting the resistor, make the length of wiring between the VPP pin and the VSs pin the shortest possible (refer to Figure 3.4.5)

Note: Even when a circuit which included an approximately $5 \mathrm{k} \Omega$ resistor is used in the Mask ROM version, the microcomputer operates correctly.

- Reason

The VPP pin of the built-in PROM version is the power source input pin for the builtin PROM. When programming in the builtin PROM, the impedance of the VPP pin is low to allow the electric current for writing flow into the PROM. Because of this, noise can enter easily. If noise enters the Vpp pin, abnormal instruction codes or data are read from the built-in PROM, which may cause a program runaway.

When the Vpp pin is also used as the CNVss pin

In the shortest distance
Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version

3.4.2 Connection of bypass capacitor across Vss line and Vdd line

Connect an approximately $0.1 \mu \mathrm{~F}$ bypass capacitor across the VSS line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and Vdd line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VdD pin.

Fig. 3.4.6 Bypass capacitor across the Vss line and the VDD line

3.4.3 Wiring to analog input pins

- Connect an approximately 100Ω to $1 \mathrm{k} \Omega$ resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

- Reason

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

Fig. 3.4.7 Analog signal line and a resistor and a capacitor

3.4.4 Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.
(1) Keeping oscillator away from large current signal lines
Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

- Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

Fig. 3.4.8 Wiring for a large current signal line
(2) Installing oscillator away from signal lines where potential levels change frequently Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

- Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

Fig. 3.4.9 Wiring to a signal line where potential levels change frequently
(3) Oscillator protection using Vss pattern As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.
Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

Separate the Vss line for oscillation from other Vss lines

Fig. 3.4.10 Vss pattern on the underside of an oscillator

3.4.5 Setup for I/O ports

Setup I/O ports using hardware and software as follows:
<Hardware>

- Connect a resistor of 100Ω or more to an I/O port in series.
<Software>
- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its output latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

3.4.6 Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.
In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine. This example assumes that interrupt processing is repeated multiple times in a single main routine processing.
<The main routine>

- Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:
$\mathrm{N}+1 \geq$ (Counts of interrupt processing executed in each main routine)

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:
If the SWDT contents do not change after interrupt processing.
<The interrupt processing routine>
- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:
If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

Fig. 3.4.11 Watchdog timer by software

3.5 Package outline

64P6N-A

Plastic 64pin $14 \times 14 m m$ body QFP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	3.05
A1	0	0.1	0.2
A2	-	2.8	-
b	0.3	0.35	0.45
c	0.13	0.15	0.2
D	13.8	14.0	14.2
E	13.8	14.0	14.2
e	-	0.8	-
HD	16.5	16.8	17.1
HE	16.5	16.8	17.1
L	0.4	0.6	0.8
L1	-	1.4	-
x	-	-	0.2
y	-	-	0.1
θ	0°	-	10°
b2	-	0.5	-
I2	1.3	-	-
MD	-	14.6	-
ME	-	14.6	-

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER USER'S MANUAL
4524 Group
Publication Data : Rev.1.00 Dec 19, 2003
Rev.2.00 Aug 06, 2004
Published by : Sales Strategic Planning Div. Renesas Technology Corp.

[^2]
4524 Group
 User's Manual

[^0]: Note: "R" represents read enabled, and "W" represents write enabled.

[^1]: Note: * (SBK, RBK) cannot be used in the M34524M8.
 The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34524MC.

[^2]: © 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.

