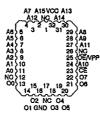

T-46-13-29

Features

- Low Power CMOS Operation 100 µA max. Standby 40 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 28 -Lead 600 mil Cerdip and OTP Plastic DIP 32-Pad LCC and OTP PLCC
- 5V±10% Supply High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Fast Programming 4ms/byte (typical)
- Two-line Control
- **CMOS and TTL Compatible Inputs and Outputs**
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

Block Diagram

Description


The AT27C512 chip is a low-power, high performance 524,288 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 64K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

Atmel's 1.5 micron CMOS technology provides optimum speed, low power and high noise immunity. Power consumption is typically only 15mA in Active Mode and less than 10µA in Standby. In addition to the speed, power and reliability advantages of the CMOS process, the CMOS technology is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

Pin Configurations

Pin Name	Function
A0-A15	Addresses
00-07	Outputs
CE	Chip Enable
OE NPP	Output Enable
NC	No Connect

A18 0 A12 0 A8 0 A8 0 A3 0 A1 0 A1 0 O1 0 O2 0 GND 0	1 2 3 4 5 6 7 8 9 10 11 12 13	28 27 26 25 24 23 22 21 20 19 18 17 16 15	VCC A14 A13 A8 A9 A11 OE/NFP A10 CE O5 O5 O4 O3

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

512K (64K x 8) UV **Erasable CMOS**

EPROM

ATMEL CORP

Description (Continued)

The AT27C512 comes in a choice of industry standard JEDEC-approved packages including; 28-pin DIP in ceramic or one time programmable (OTP) plastic, and 32-pad ceramic leadless chip carrier (LCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control (CE, OE) to give designers the flexibility to prevent bus contention.

With high density 64K byte storage capability, the AT27C512 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C512 has additional features to ensure high quality and efficient production use. The Fast Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 4ms/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer, This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C512 is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W-sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

29E D Absolute Maximum Ratings*

Temperature Under Blas	55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin with Respect to Ground	2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground	2.0V to +14.0V ⁽¹⁾
VPP Supply Voltage with Respect to Ground	2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose	7258 w•sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is Vcc+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	OE/Vpp	Ai	Vcc	Outputs
Read	VIL	ViL	Al	Vcc	Роит
Output Disable	VIL	ViH	X ⁽¹⁾	Vcc	High Z
Standby	ViH	X	X	Vcc	High Z
Fast Program ⁽²⁾	VIL	Vpp	Ai	Vcc	DIN
PGM Verify	VIL	VIL	Ai	Vcc	Dout
PGM Inhibit	ViH	VPP	X	Vcc	High Z
Product Identification ⁽⁴⁾	V _{IL}	ViL	A9=V _H ⁽³⁾ A0=V _{IH} or V _{IL} A1-A15=V _{IL}	Vcc	Identification Code

- Notes: 1. X can be VIL or VIH.
 - 2. Refer to Programming characteristics.
 - 3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer's Identification byte and high (VIH) to select the Device Code byte.

AT27C512

ATOTOGRA

AT27C512

C. and A.C. Operating Conditions for Read Operation

T-46-13-29

		AT27C512							
		-12	-15	-20	-25				
	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C				
Operating Temperature	Ind.		-40°C - 85°C	-40°C - 85°C	-40°C - 85°C				
(Case)	MII.	 	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C				
Vcc Power Supply		5V ± 5%	5V ± 10%	5V ± 10%	5V ± 10%				

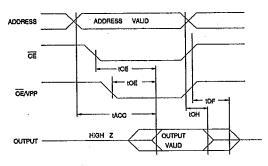
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	Vout = -0.1V to Vcc + 0.1V			10	μΑ
		ISB1 (CMOS)	Com.		100	μΑ
	V. (1) Orangitus Ourrent	CE = Vcc-0.3 to Vcc + 1.0V	Ind.,Mil.		200	μΑ
ISB	VCC Standby Current	ISB2 (TTL)	Com.		2	mA
	Input Load Current	3	mΑ			
		f=5MHz.lout=0mA.	Com.		40	mΑ
fcc	Vcc Active Current		Ind.,Mil.		10 10 100 200 2 3	mA
VIL	Input Low Voltage			-0.6	0.8	V
ViH	 - ' 			2.0	Vcc+1	V
VOL		loL=2.1mA			.45	٧
		I _{OH} = -100μA		Vcc-0.3		V
Vон	Output High Voltage	loH = -2.5mA		3.5		<u> </u>
		IOH = -400μ A		2,4		٧

Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} , and removed simultaneously or after \overline{OE}/V_{PP} .

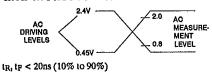
A.C. Characteristics for Read Operation

				AT27C512								
				-1	-12		-15		20	-25		
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
	Address to	CE = OE/VPP	Com.		120		150		200		250	ns
tacc (4)	Output Delay	=VIL	Ind., Mil.				150		200	Ĺ	250	ns
tce ⁽³⁾	CE to Output Delay	OE/V _{PP} = V _{IL}			120		150		200		250	ns
toE (3,4)	OE/Vpp to Output Delay	CE = VIL			65		70		75		100	ns
tor ^(2,5)	OE/Vpp or CE High to Output Float	CE=VIL	;		50		50		55		60	ns
tон	Output Hold from Address, CE or OE/Vpp, which- ever occurred first	CE = OE/Vpp = VIL			0		0		0		0	ns


Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

ATMEL CORP

A.C. Waveforms for Read Operation (1)


Notes:

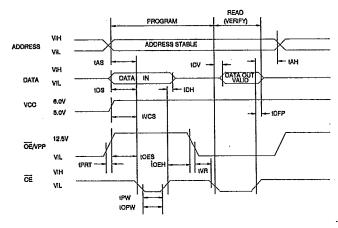
- 1. Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and
- 2.4V, unless otherwise specified.

 2. top is specified from OE /Vpp or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- OE/VPP may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
 OE/VPP may be delayed up to t_{ACC}-t_{OE} after the
- address is valid without impact on tACC.

 5. This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load


Note: CL=100pF including jig capacitance.

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
Cin	4	6	pF	VIN = 0V	
Cour	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- The Input Timing Reference is 0.8V for VIL and 2.0V for VIH.
- 2. $t_{\mbox{\scriptsize OE}}$ and $t_{\mbox{\scriptsize DFP}}$ are characteristics of the device but must be accommodated by the programmer.

4-58

AT27C512

AT27C512

T-46-13-29

D.C. Programming Characteristics

TA=25±5°C, Vcc=6.0±0.25V, OE/Vpp=12.5±0.5V

Sym-		Test	Li		
bol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	$V_{iN} = V_{iL_i}V_{iH}$		10	μΑ
ViL	Input Low Level	(All Inputs)	-0.6	0.8	٧
VIH.	Input High Level		2.0	Vcc+1	V
Vol	Output Low Volt.	loL=2.1mA		.45	٧
Vон	Output High Volt.	юн=-400µА	2.4		٧
ICC2	Vcc Supply Current (Program and Veri	t fy)		40	mA
IPP2	OE/Vpp Current	CE=VIL		25	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

TA=25±5°C, Vcc=6.0±0.25V, OE/Vpp=12.5+0.5V

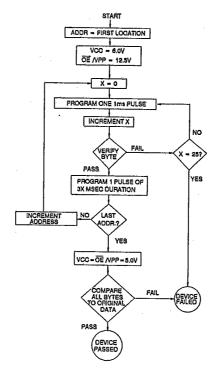
Sym- bol	Parameter	Test Conditions (see Note 1)	► LI			
tas	Address Setup Time)	2		μS	
toes	OE/Vpp Setup Time		2		μS	
tOEH	OE/V _{PP} Hold Time		2		μS	
tos	Data Setup Time		2		μS	
tah	Address Hold Time		Ó		μS	
toH	Data Hold Time		2		μS	
tDFP	CE High to Out- put Float Delay	(Note 2)	0	130	ns	
tvcs	Vcc Setup Time		2		μS	
tpw	CE Initial Program Pulse Width	(Note 3)	0.95	1.05	ms	
topw	CE Overprogram Pulse Width	(Note 4)	2.85	78.75	ms	
tov	Data Valld from CE	(Note 2)		1	μS	
t∨r	OE/Vpp Recovery Tir	ne	2		μS	
tPRT	OE/V _{PP} Pulse Rise Time During Progran	nming	50		ns	

*A.C. Conditions of Test:

Input Rise and Fall Times (10%)	to 90%) 20ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level .	0.8V to 2.0V

Notes:

- Vcc must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after OE/Vpp.
- This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven - see timing diagram.
- Initial Program Pulse width tolerance is 1msec±5%.
- The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.


Atmel's 27C512 Integrated **Product Identification Code:**

	Pins								Hex	
Codes	AO	07	06	O 5	04	OЗ	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	1	1F
Device Type	1	0	0	0	0	t	1	0	1	ΟD

Fast Programming Algorithm

Two CE pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. VCC is raised to 6.0V. The first CE pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram \overline{CE} pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then Vcc is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

Ordering Information

tacc	loc	; (mA)	Ordering Code	Dackage	Operation Range
(ns)	Active	Standby	Ordering Code	Package	Operation hange
120	40	0.1	AT27C512-12DC AT27C512-12LC	28DW6 32LW	Commercial (0°C to 70°C)
150	40	0.1	AT27C512-15DC AT27C512-15LC AT27C512-15PC AT27C512-15JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
150	50	0.2	AT27C512-15DI AT27C512-15LI AT27C512-15PI AT27C512-15JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C512-15DM AT27C512-15LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512-15DM/883 AT27C512-15LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
170	50	0.2	AT27C512-17DM/883 AT27C512-17LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	40	0,1	AT27C512-20DC AT27C512-20LC AT27C512-20PC AT27C512-20JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
200	50	0.2	AT27C512-20DI AT27C512-20LI AT27C512-20PI AT27C512-20JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C512-20DM AT27C512-20LM	28DW6 32LW	Military (-55°C to 125°C)
÷			AT27C512-20DM/883 AT27C512-20LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	40	0.1	AT27C512-25DC AT27C512-25LC AT27C512-25PC AT27C512-25JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
250	50	0,2	AT27C512-25DI AT27C512-25LI AT27C512-25PI AT27C512-25JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C512-25DM AT27C512-25LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512-25DM/883 AT27C512-25LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

AT27C512

T-46-13-29

Ordering Information

	Package Type	
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)	
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)	
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)	
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)	

4

