10-, 12-, 14-, OR 16-BIT INDUSTRIAL RESOLVER-TO-DIGITAL CONVERTERS

DESCRIPTION

The RDC-19200 Monobrid Series are versatile state-of-the-art resolver-todigital converters featuring programmable resolution and bandwidth and a velocity output voltage.

Resolution programming allows selection of 10-, 12-, 14- or 16-bits and are available with commensurate accuracies up to 2 minutes +1 LSB. Resolution programming combines the high tracking rate of a 10-bit converter with the precision of a 16-bit device in one package.

The velocity output (VEL) from the RDC-19200 is a ground-based voltage of 0 to ± 10 VDC with a linearity of 2.0\%. VEL may be scaled up by a sin-
gle external resistor to provide up to ± 10 VDC for the required maximum tracking rate.

APPLICATIONS

The RDC-19200 Series converters are designed for use in modern high performance commercial and industrial control systems. Applications include motor control, theodolite, radar antenna position information, CNC machine tooling, robot axis control, and process control. With their low cost and superior performance, the RDC-19200 Series converters are ideal for motion control and position monitoring applications.

FEATURES

- Low Cost

- Ideal for Motor Control
- Built-In-Test ($\overline{\mathrm{BIT}}$) and Loss-ofSignal (LOS) Outputs
- Velocity Output Eliminates Tachometer
- Programmable Resolution
- Programmable Bandwidth
- Accuracy to ± 2.3 ARC Min.

Note:
A "/" through input or output lines indicates additional functions not shown. See text.

FIGURE 1. RDC-19200 BLOCK DIAGRAM

TABLE 1. RDC-19200 SPECIFICATIONS

These specifications apply over temperature range, power supply range, reference frequency and amplitude range; $\pm 10 \%$ signal amplitude variation and up to10\% harmonic distortion in the reference

PARAMETER	VALUE	DESCRIPTION
RESOLUTION	$10,12,14$ or 16 bits	Programmable
ACCURACY GRADES	$8^{(1)}, 4,3,2^{(1)}$ minutes	Max +1 LSB of selected resolution, see Ordering Information.
DIFFERENTIAL LINEARITY	12,8 or 4	LSBs in the 16th bit, see Ordering Information.
REPEATABILITY	1 LSB max	
REF INPUT CHARACTERISTICS Voltage Range Single Ended Input Impedance Frequency Range	4-50 Vrms 100k Ohm min, 110k Ohm nom 360 Hz to 6 k Hz	See TABLE 4, Dynamic Characteristics.
SIGNAL INPUT CHARACTERISTICS Resolver Zin Single Ended Zin Differential Zin Each line-ground Common Mode Range Max Voltage w/o damage Direct Input Signal Type Sin / Cos Voltage Range Max Voltage w/o Damage Zin	11.8 Vrms L-L 70 k Ohm 140 k Ohm 80 k Ohm 26 V peak 100 V transient $2.0 \mathrm{Vrms} \mathrm{L-L}$ 2 Vrms nom, 2.3 Vrms max 15 V continuous, 110 V peak transient >20M Ohm//10 pf voltage follower	Voltage options and minimum input impedance, balanced. Sin and Cos resolver signal referenced to converter's internal DC ref voltage of +5.5 V .
DIGITAL INPUT/OUTPUT Logic Type Inputs Max Voltage w/o Damage Loading INH (Inhibit) $\overline{\mathrm{EM}}$ (Enable bits1-8) EL (Enable bits 9-16) $\overline{\mathrm{S}}$ (Control Transformer) BW (Bandwidth) Resolution Control 10-Bit 12-Bit 14-Bit 16-Bit	Logic $0=0.8 \mathrm{~V}$ max Logic $1=2.0 \mathrm{~V}$ min -0.3 to 11 V -10 $\mu \mathrm{A}$ max	TTL / CMOS compatible. Pull-up current source to $+5 \mathrm{~V} / / 5 \mathrm{pf}$ max CMOS transient protected. Logic 0 inhibits, Logic 1 enables, Data stable within $0.3 \mu \mathrm{~s}$. Logic 0 enables, data valid within 150 ns . Logic 1 high Z within 100 ns . Logic 0 for control Transformer, Logic 1 for normal tracking. Logic 1 = High BW (530 Hz); Logic $0=$ Low BW $(130 \mathrm{~Hz})$.
OUTPUTS Parallel Data CB (Converter Busy) U (Direction) $\overline{M C}$ (Major Carry) BIT (Built-in-Test) LOS (Loss-of-Signal) Drive Capability	$10,12,14$, or 16 bits Logic 0: 1 TTL Load Logic 1: 10 TTL Loads High Z: $10 \mu \mathrm{~A} / 5 \mathrm{pf}$ max	Natural binary angle, positive logic. $0.4 \mu \mathrm{~s}$ to $0.7 \mu \mathrm{~s}$ positive pulse; leading edge initiates counter update. Logic 1 counts up, Logic 0 counts down. Logic 0 at $\overline{M C}$. Logic 0 for BIT condition. Logic 1 for LOS ($1-3 \mu \mathrm{~A}$ pull-up to +5 V). -1.6 mA at 0.4 V max 0.4 mA at 2.8 V min.
ANALOG OUTPUTS V (Internal DC ref) VEL (Velocity) e (AC error) Dynamic Characteristics	$+5.5 \mathrm{~V} \text { nom }$ 50 mVrms per LSB of error 25 mVrms per LSB of error 12.5 mVrms per LSB of error 6.3 mVrms per LSB of error	See TABLE 5, Velocity Characteristics. 10-bit mode. 12-bit mode. 14-bit mode. 16-bit mode. See TABLE 4, Dynamic Characteristics.

Note 1: Available for RDC-19202 (2V unit) only.

INTRODUCTION

The RDC-19200 Series are small, 40-pin TDIP resolver-to-digital hybrid converters. As shown in the block diagram (FIGURE 1), the RDC-19200 can be broken down into the following functional parts: Signal Input Option, Converter, Analog Conditioner, Power Supply Conditioner, and Digital Interface.

SIGNAL INPUT OPTIONS

In a resolver, shaft angle data is transmitted as the ratio of carrier amplitudes across the terminals. The converter terminal to the RDC-19200 operates with the signals in the resolver format, $\operatorname{Sin} \theta \operatorname{Cos} \omega \mathrm{t}$. FIGURE 2 shows the resolver signals as a function of the angle θ. The RDC-19200 accepts solid state resolver (11.8 Vrms) and direct (2 Vrms) inputs. The reference is a singleended input with 100k ohm impedance.

2 V DIRECT INPUT OPTION (RDC-19202)

The direct inputs are transient protected voltage followers which accept 2 Vrms resolver inputs. as shown in FIGURE 3. A 2 V input from a resolver allows use of a lower reference voltage.

Standard Resolver Control Transmitter (RX) outputs as a function of CCW Rotation from Electrical Zero (EZ) with R2-R4 excited.

FIGURE 2. RESOLVER SIGNALS

This lowers oscillator cost and allows a lower power reference oscillator.

INTERNAL DC REFERENCE VOLTAGE (V).

This internal voltage is not required externally for normal operation of the converter. It is used as the internal DC reference common with the direct input option. It is nominally +5.5 V and is proportional to the +15 VDC supply.

11.8 V RESOLVER INPUT OPTION (RDC-19200)

The 11.8 V resolver inputs are true differential inputs with high AC and DC common mode rejection (see FIGURE 4). Input impedance is maintained with power off. The recurrent AC peak + DC common mode voltage should not exceed 26 V peak; maximum transient peak voltage should not exceed 100 V .

FIGURE 3. RDC-19202 DIRECT INPUT OPTION -(2 V)

RESISTOR PROGRAMMING FOR NON-STANDARD INPUT VOLTAGES

When applying voltages greater than 2 Vrms, a simple voltage divider can be used to attenuate both the sin and the cos inputs. Since the converter inputs are voltage followers, there will be no loading on the resistor dividers (see FIGURE 5).

The 11.8 V resolver input conditioner consists of two differential amplifiers. The 11.8 V input is scaled down to 2 V . When applying resolver inputs greater than 11.8 V , four resistors, one in series with each input line, can be used to scale down the voltage (see FIGURE 6).

FIGURE 4. RESOLVER INPUT OPTION - (11.8 V)

CONVERTER OPERATION

As shown in FIGURE 1, the converter section of the RDC-19200 contains a high accuracy control transformer, demodulator, error processor, voltage-controlled oscillator (VCO), up-down counter, zero-set timing, and reference conditioner. The converter produces a digital angle ϕ which tracks the analog input angle θ to within the specified accuracy of the converter.

The control transformer performs the following trigonometric computation:

$$
\sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi
$$

where:
θ is angle theta, representing the resolver shaft position ϕ is digital angle phi, contained in the up/down counter.

The tracking process consists of continually adjusting ϕ to make $(\theta-\phi) \rightarrow 0$, so that ϕ will repeat the shaft position θ.

The output of the demodulator is an analog DC level proportional to $\sin (\theta-\phi)$. The error processor receives its input from the demodulator and integrates this $\sin (\theta-\phi)$ error signal which then drives the VCO. The VCOs clock pulses are accumulated by the up/down counter. The velocity voltage accuracy, linearity and offset are determined by the quality of the VCO. Functionally, there are two stages of integration which makes the converter a Type II tracking servo.

In a Type II servo, the VCO always settles to a counting rate which makes the d ϕ / dt equal to $\mathrm{d} \theta / \mathrm{dt}$ without lag. The output data will always be fresh and available as long as the maximum tracking rate of the converter is not exceeded.

The reference conditioner is a comparator that produces the square wave reference voltage which drives the demodulator. It is single-ended ground-based with an input of Z of 100 k ohms min, 110k ohms nom, resistive.

$\frac{\text { Input Voltage L-L }}{2 \mathrm{~V}}=\frac{\mathrm{R} 1+\mathrm{R} 3}{\mathrm{R} 3}$
Notes:
(1) R1 = R2; R3 = R4 to 0.1% match.
(2) R1 + R3 and R2 + R4 should be as high as possible to minimize resolver loading.
FIGURE 5. INPUT RESISTOR SCALING - (2 V)

$$
\frac{\mathrm{R}+70.8 \mathrm{k}}{70.8 \mathrm{k}}=\frac{\text { Input Voltage L-L }}{11.8 \mathrm{~V}}
$$

Notes:
(1) Input Voltage L-L is greater than 11.8 V .
(2) $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4$ to 0.1% match.

FIGURE 6. INPUT RESISTOR SCALING - (11.8 V)

MINIMIZING ERRORS DUE TO QUADRATURE

In those applications where highest accuracy is needed, the REF input can be phase shifted by adding a capacitor in series with the REF input (pin 40) to add a phase lead equal to the nominal phase lead of the resolver input. To determine the capacitor's value, see FIGURE 7.

Note: Choose C such that the V_{a} to REF phase lead is equal to the resolver to REF phase lead plus $9 \mu \mathrm{~s}$.

FIGURE 7. PHASE SHIFTING THE REF INPUT

QUADRATURE VOLTAGES

In a resolver, quadrature voltages are by definition the resulting 90° fundamental signal in the nulled out error voltage (e) in the converter. A digital position error will result due to the interaction of this quadrature voltage and a reference phase shift between the converter signal and reference inputs. The magnitude of this error is given by the following formula:

Magnitude of Error $=($ Quadrature Voltage/F.S. signal) * $\tan (\alpha)$ Where:

Magnitude of Error is in radians.
Quadrature Voltage is in volts.
Full Scale signal is in volts.
$\alpha=$ signal to REF phase shift.
An example of the magnitude of error is as follows:
Let: Quadrature Voltage $=11.8 \mathrm{mV}$
Let: F.S. signal $=11.8 \mathrm{mV}$
Let: $a=6^{\circ}$
Then: Magnitude of Error $=0.35 \mathrm{~min} \cdot 1 \mathrm{LSB}$ in the 16 bit .
Note: Quadrature is composed of static quadrature which is specified by the resolver supplier plus the speed voltage which is determined by the following formula:

Speed Voltage $=\left(\right.$ rotational speed/carrier freq) ${ }^{*}$ F.S. signal Where:

Speed Voltage is the quadrature due to rotation. Rotational speed is the RPS (rotations per second) of the resolver.
Carrier Frequency is the REF in Hz .

ANALOG CONDITIONER

The Analog Conditioner section performs three functions. It converts analog ground from 5.5 V to 0 V , provides a gain of 2 for AC Error (e) and a gain of 2.2 for Velocity (VEL) The velocity scaling sensitivity can be increased with an external resistor. Refer to VEL PROGRAMMING section for more information.

POWER SUPPLY CONDITIONER

The power supply conditioner lowers the internal power supply voltage to the custom CMOS chip to +11 V from the +15 V supply. The +11 V will track the +15 V . Internal analog ground is one half of 11 V or +5.5 V , nom.

DIGITAL INTERFACE

The digital Interface circuitry performs three main functions:

1. Latches the output bits during an Inhibit (INH) command allowing stable data to be read out of the RDC-19200.
2. Furnishes parallel tri-state data formats.
3. Acts as a buffer between the internal CMOS logic and the external TTL logic.

In the RDC-19200, applying an inhibit ($\overline{\mathrm{NH}}$) command will lock the data in the output transparent latch without interfering with the continuous tracking of the converter's feedback loop. Therefore, the digital angle ϕ is always updated, and the $\overline{\mathrm{NH}}$ can be applied for an arbitrary amount of time. The Inhibit Transparent Latch and the 50 ns delay are part of the inhibit circuitry. For further information, see the INHIBIT (INH, pin 9) paragraph.

The BIT detect circuitry monitors the error level (D) from the demodulator and the LOS (loss-of-signal) detector senses disconnected resolver inputs.

LOGIC INPUT/OUTPUT

The digital angle outputs are buffered and provided in a two-byte format. The first byte contains the MSBs bits (1-8) and is enabled by placing EM (pin 10) to a logic 0 . Depending on the user-programmed resolution, the second byte contains the LSBs and is enabled by placing $\overline{E L}$ (pin 11) to a logic 0 . The second byte will contain either bits 9-10 (10-bit resolution), bits 9-12 (12-bit resolution), bits 9-14 (14-bit resolution) or bits 9-16 (16-bit resolution). All unused LSBs will be at logic 0. TABLE 2 lists the angular weight for the digital angle outputs.

The digital angle outputs are valid 150 ns after $\overline{\mathrm{EM}}$ or $\overline{\mathrm{EL}}$ are activated with a logic 0 , and are high impedance within 100 ns , max,

TABLE 2. DIGITAL ANGLE OUTPUTS		
BIT	DEG/BIT	MIN/BIT
1 (MSB ALL MODES)	180	10,800
2	90	5,400
3	45	2,700
4	22.5	1,350
5	11.25	675
6	5.625	387.5
7	2.813	168.5
8	1.405	84.38
9	0.7031	42.19
10 (LSB 10-BIT MODE)	0.3516	21.09
11	0.1758	10.55
12 (LSB 12-BIT MODE)	0.879	5.27
13	0.439	2.64
14 (LSB 14-BIT MODE)	0.0220	1.32
15	0.0110	0.66
16 (LSB 16-BIT MODE)	0.0055	0.33
Note: $\overline{\text { EM }}$ enables the 8 MSBs and EL enables the LSBs.		

after $\overline{\mathrm{EL}}$ and $\overline{\mathrm{EM}}$ are set to logic 1 . Both enables are internally pulled up to +5 V by $-10 \mu \mathrm{~A}$ max current sources.

DIGITAL ANGLE OUTPUT TIMING

The digital angle output is $10,12,14$ or 16 parallel data bits. All logic outputs are short-circuit proof to ground and +5 V . The CB output is a positive, 0.4 to $0.7 \mu \mathrm{~s}$ pulse.

The digital output data changes approximately 50 ns after the leading edge of the CB pulse because of an internal delay (shown in FIGURE 1). Data is valid $0.2 \mu \mathrm{~s}$ after the leading edge of CB (see FIGURE 8). The angle is determined by the sum of the bits at logic 1.

FIGURE 8. CB TIMING

INHIBIT (INH, PIN 9)

When an Inhibit (INH) input is applied to the RDC-19200, the Output Transparent Latch is locked, causing the output data bits to remain stable while data is being transferred (see FIGURE 9). The output data bits are stable 0.3μ s after the $\overline{\mathrm{INH}}$ is driven to logic 0 .

A logic 0 at the T input of the Inhibit Transparent Latch latches the data, and a logic 1 applied to T allows the bits to change. This latch also prevents the transmission of invalid data when there is an overlap between CB and $\overline{\mathrm{INH}}$. While the counter is not being updated, CB is at logic 0 and the INH latch is transparent; when CB goes to logic 1, the $\overline{\mathrm{INH}}$ latch is locked. If CB occurs after $\overline{\mathrm{INH}}$ has been applied, the latch will remain locked and its data will not change until CB returns to logic 0; if INH is applied during CB,
the latch will not lock until the CB pulse is over. The purpose of the 50 ns delay is to prevent a race condition between CB and $\overline{\mathrm{INH}}$ where the up-down counter begins to change as an $\overline{\mathrm{INH}}$ is applied.
An $\overline{\mathrm{NH}}$ input, regardless of its duration, does not affect the converter update. A simple method of interfacing to a computer asynchronous to CB is:
(1) Apply $\overline{\mathrm{INH}}$
(2) Wait $0.3 \mu \mathrm{~s}, \mathrm{~min}$
(3) Transfer the data
(4) Release $\overline{\mathrm{INH}}$

As long as the converter maximum tracking rate is not exceeded there will be no velocity lag in the converter output, although momentary acceleration errors remain. If a step input occurs, as when the power is initially applied, the response will be critically damped. FIGURE 10 shows the response to a step input. After initial slewing at the maximum tracking rate of the converter, there is one overshoot (which is inherent in a Type II servo). The overshoot settling to a final value is a function of the small signal settling time.

DATA TRANSFERS

Digital output data from the RDC-19200 can be transferred to 8bit and 16-bit bus systems. For 8 -bit systems, the MSB and LSB bytes are transferred sequentially (see FIGURES 11 and 12). For 16-bit systems, all bits are transferred at the same time (see FIGURES 13 and 14).

FIGURE 9. INHIBIT TIMING

FIGURE 10. RESPONSE TO STEP INPUT

FIGURE 11. 8-BIT DATA TRANSFER

FIGURE 12. 8-BIT DATA TRANSFER TIMING

FIGURE 13. 16-BIT DATA TRANSFER

FIGURE 14. 16-BIT DATA TRANSFER TIMING

PROGRAMMABLE RESOLUTION

Resolution is controlled by two logic inputs, A and B (see TABLE 3). The resolution can be changed during converter operations so the appropriate resolution and velocity dynamics can be changed as needed. To ensure that a race condition does not exist between counting and changing the resolution, inputs A and B are transferred through the latch internally on the trailing edge of CB (see FIGURE 15).

TABLE 3. RESOLUTION CONTROL		
B (PIN 8)	A (PIN 7)	RESOLUTION
0	0	$10-\mathrm{BIT}$
0	1	$12-\mathrm{BIT}$
1	0	$14-\mathrm{BIT}$
1	1	$16-\mathrm{BIT}$
Note: All unused digital output data bits are at logic 0		

FASTER SETTLING TIME USING BIT TO REDUCE RESOLUTION

Since the RDC-19200 has higher precision in the higher resolution mode and faster settling in the lower resolution modes, the $\overline{B I T}$ output can be used to program the RDC-19200 for lower resolution, allowing the converter to settle faster for step inputs. High precision, faster settling can therefore be obtained simultaneously and automatically in one unit.

When the resolution is changed, the VEL scaling is also changed. Since the VEL output is from an integrator with a capacitor feedback, the VEL voltage cannot change instantaneously. Therefore, when changing resolution while moving, there will be a transient with a magnitude proportional to the velocity and a duration determined by the converter bandwidth (see FIGURE 22.)

MAJOR CARRY ($\overline{M C}$, PIN 32)

Major Carry is used with Direction Output (U) for multi-turn applications. This signal is similar to the popular MSI four bit up-down counter CO (Carry Out), that is, it is normally high and goes low for all 1's when counting up or all 0's when counting down. See FIGURE 16 for a typical interconnection.

DIRECTION OUTPUT (U, PIN 31)

Direction Output (U) timing is shown in FIGURE 17. It is a logic 1 to count up and logic 0 for down. The logic level at (U) is valid at least $0.5 \mu \mathrm{~s}$ before and at least 20 ns after leading edge of CB.

Notes:
(1) For the 4 bit up/down counter, use 74LS169B (TTL) or 4516 (CMOS).
(2) $U=u p / d o w n$ line, logic 1 counts up.
(3) T = toggle line, counts on positive edge.

FIGURE 16.TURNS COUNTING CONNECTION DIAGRAM

FIGURE 17. DIRECTION OUTPUT (U) TIMING

SYSTEM SELF-TEST

The RDC-19200 provides two useful logic outputs for systems self-test, $\overline{\text { BIT }}$ and LOS.

BUILT-IN-TEST (BIT, PIN 29)

The Built-in-Test output ($\overline{\mathrm{BIT}}$) monitors the level of error from the demodulator (D). D represents the difference in the input and output angles and ideally should be zero. If it exceeds approximately 65 LSBs (of the selected resolution), the logic level at BIT will change from a logic 1 to logic 0 . This condition will occur during a large step and reset after the converter settles out. BIT will also change to logic 0 for an over-velocity condition because the converter loop cannot maintain input-output sync, or if the converter malfunctions where it cannot maintain the loop at a null.

LOSS OF SIGNAL (LOS, PIN 28)

The Loss of Signal (LOS) output is used for system safety. The LOS output changes from logic 0 to 1 if both resolver inputs are disconnected. With disconnected resolver inputs unpredictable converter performance occurs.

If the LOS signal is used with the 2 V Direct Input option, connect a 10 M ohm resistor from $+S$ to V and from +C to V . This will insure that if the input resolver signal opens, the input pin will go to V volts.

PROGRAMMABLE BANDWIDTH (BW, PIN 5)

Either low or high bandwidth can be selected by using the BW logic input. A logic 0 applied to BW selects low bandwidth (130 Hz nom), while a logic 1 selects high bandwidth (530 Hz nom). Bandwidth can be changed during converter operation.

Bandwidth and the acceleration constant (Ka) can be determined from the following formulas:

$$
\begin{aligned}
\text { Closed Loop Bandwidth }(\mathrm{Hz}) & =\sqrt{2} \mathrm{~A} / \pi \\
\mathrm{Ka} & =\mathrm{A}^{2}
\end{aligned}
$$

See Dynamic Characteristics TABLE 4 and FIGURES 25 to 27 for values.

TABLE 4. DYNAMIC CHARACTERISTICS									
PARAMETER	UNITS	BANDWIDTH							
		HIGH				LOW			
RESOLUTION	BITS	10	12	14	16	10	12	14	16
Input Frequency	kHz	1-6	*	2-6	NR	.36-6	*	*	2-6
Tracking Rate	RPS \dagger	800	200	50	12.5	200	50	12.5	3.2
Bandwidth, CL	Hz	530		*		130	*	*	*
Ka	$1 / \mathrm{sec}^{2}$	1.4M	*	*		90k	*	*	
A_{1} **	1/sec	8	*	*	*	2	*	*	
$\mathrm{A}_{2}{ }^{* *}$	1/sec	178	*	*	*	45k	*	*	
$\mathrm{A}^{\star *}$	1/sec	1200	*	*	*	300	*	*	
B**	$1 / \mathrm{sec}$	600	*	*	*	150	*	*	*
acc-1 LSB lag	$\% \mathrm{sec}^{2}$	512k	128k	32k	8k	32k	500	2k	500
Settling Time	msec	10	15	30	75	40	300	120	300

\dagger RPS (Revolutions per Second) maximum

* Same as value to left
** See Figure 25 for definition of A_{1}, A_{2}, A, and B

CONTROL TRANSFORMER MODE ($\overline{\mathrm{S}}, \mathrm{PIN}$ 6)

The converter will function as a Control Transformer (CT) by placing \bar{S} (pin 6) to logic 0 . In the CT mode the digital inputs are double buffered, $\overline{E M}$ is redefined as LM, $\overline{E L}$ is redefined as LL and $\overline{\mathrm{INH}}$ becomes LA (see FIGURES 19 and 28). FIGURE 18 shows CT mode timing for a two byte transfer.

The CT mode is used when the AC error (e) is needed to drive an external control loop by the difference angle of the resolver input and the digital input. It is also used for presettling the converter to a specific angle to reduce the step response time.

Notes:
(1) tw $=100 \mathrm{~ns}$ min (pulse width) 1 - data held in latch th $=50 \mathrm{~ns} \min$ (hold time) thui $=0 \mathrm{~ns} \min$ (hold time inhibit) tsu $=0 \mathrm{~ns}$ min (setup time)
tsui $=300 \mathrm{~ns}$ min (setup inhibit)
(2) When \bar{S} is low:
(LL) $\overline{\mathrm{EL}}$ is latch control for LSB byte,
FIGURE 18. CT MODE TIMING - TWO BYTE TRANSFER, DOUBLE BUFFERED

FIGURE 19. CONTROL TRANSFORMER BLOCK DIAGRAM

ANALOG OUTPUTS

The analog outputs are AC error (e) and velocity (VEL). If the analog outputs are not required, ground -15 V (pin 36).

AC ERROR (e, PIN 39)

AC Error Out (e) is used in CT mode. The AC error is proportional to the difference between the resolver input angle θ and the digital angle $\phi,(\theta-\phi)$, with a scaling of:

$$
\begin{aligned}
& 50 \mathrm{mVrms} / \mathrm{LSB} \text { (10-bit mode) } \\
& 25 \mathrm{mVrms} / \mathrm{LSB} \text { (12-bit mode) } \\
& 12.5 \mathrm{mVrms} / \mathrm{LSB} \text { (14-bit mode) } \\
& 6.3 \mathrm{mVrms} / \mathrm{LSB} \text { (16-bit mode) }
\end{aligned}
$$

The error is positive if it is in phase with the reference and negative if it is out of phase with the reference.

The e output can swing $\pm 10 \mathrm{~V}$ peak min with respect to ground when the voltage level of the $\pm 15 \mathrm{~V}$ power supplies are 15 V . The output level range changes proportionally with the power supply level.

VELOCITY (VEL, PIN 38)

The velocity output (VEL, pin 38) is a DC voltage proportional to angular velocity $\mathrm{d} \theta / \mathrm{dt}$. The velocity is the input to the voltagecontrolled oscillator (VCO), as shown in FIGURE 1. Its linearity and accuracy is dependent solely on the linearity and accuracy of the VCO.

The maximum VEL output can swing $\pm 10 \mathrm{~V}$ min with respect to ground when the voltage level of the $\pm 15 \mathrm{~V}$ power supplies are 15 V . The output level range changes proportionally with the power supply level. The analog output VEL characteristics are listed in TABLE 5.

The VEL output has the DC tachometer quality specifications such that it can be used as the velocity feedback in servo applications.

VELOCITY PROGRAMMING (VEL PROG, PIN 37)

The velocity output scale factor can be increased by connecting an external resistor (R) from VEL PROG, pin 37, to ground. By scaling up the output, the noise and offset will increase proportionally. The value of R can be determined by the following formula:

$$
R=\frac{10 \times B / A}{1-B / A}
$$

Where:
$R=$ external resistor in k Ohms
$A=$ specified voltage scaling (RPS/VOLT)
$B=$ desired voltage scaling (RPS/VOLT)
To determine A refer to TABLE 6, Voltage Scaling.

TABLE 5. VELOCITY OUTPUT CHARACTERISTICS			
PARAMETER	UNIT	TYP	MAX
Polarity	Positive for increasing angle		
Voltage scaling	RPS/V	See Table 6	
Scale factor	\%	10	15
Scale factor TC	PPM $/{ }^{\circ} \mathrm{C}$	100	200
Reversal error	5	1	2
Linearity	\% output	1	2
Zero offset	mV	15	40
Zero Offset TC	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	25	50
Load	k Ohms	-	3
Output voltage	V	± 13	± 10

TABLE 6. VELOCITY OUTPUT VOLTAGE SCALING (RPS/VOLT)				
BW	$\mathbf{1 0 - B I T}$	$\mathbf{1 2 - B I T}$	$\mathbf{1 4 - B I T}$	$\mathbf{1 6 - B I T}$
HIGH	80	20	5	1.25
LOW	20	5	1.25	0.32

DYNAMIC PERFORMANCE

A Type II servo loop ($\mathrm{Kv}=¥$) and very high acceleration constants give the RDC-19200 superior dynamic performance as listed in TABLE 1.

SMALL SIGNAL STEP RESPONSE

FIGURE 20 illustrates the Small Signal Step Response (100 LSB step) for low and high bandwidth for the four resolutions.

LARGE SIGNAL STEP RESPONSE

FIGURE 21 illustrates the Large Signal Step Response (179 step) for low and high bandwidth for the four resolutions.

BIT OUTPUT REDUCES SETTLING TIME

By using the $\overline{\mathrm{BIT}}$ output together with the A and B inputs, the Large Signal Settling Time may be significantly reduced. FIGURE 22 shows the connections required for $\overline{\mathrm{BIT}}, \mathrm{A}$, and B and the resultant settling for the different resolution modes.

VELOCITY RESPONSE

A filter on the VEL output will, for a step input in velocity, eliminate the velocity overshoot (normally critically damped) and filter carrier frequency ripple. FIGURE 23 shows the VEL output with and without a filter for low and high bandwidths. The VEL filter is shown in FIGURE 24.

LOW BANDWIDTH - 10-BIT MODE

LOW BANDWIDTH - 12-BIT MODE

LOW BANDWIDTH - 14-BIT MODE

LOW BANDWIDTH - 16-BIT MODE

HIGH BANDWIDTH - 10-BIT MODE

HIGH BANDWIDTH - 12-BIT MODE

HIGH BANDWIDTH - 14-BIT MODE

HIGH BANDWIDTH - 16-BIT MODE

FIGURE 20. SMALL SIGNAL STEP RESPONSE (100 LSB STEP)

LOW BANDWIDTH - 10-BIT MODE

LOW BANDWIDTH - 12-BIT MODE

LOW BANDWIDTH - 14-BIT MODE

LOW BANDWIDTH - 16-BIT MODE

HIGH BANDWIDTH - 10-BIT MODE

HIGH BANDWIDTH - 12-BIT MODE

HIGH BANDWIDTH - 14-BIT MODE

HIGH BANDWIDTH - 16-BIT MODE

FIGURE 21. LARGE SIGNAL STEP RESPONSE (179${ }^{\circ}$ STEP)

LOW BANDWIDTH - 12-TO 10-BIT MODE

LOW BANDWIDTH - 14-TO 10-BIT MODE

LOW BANDWIDTH - 16-TO 10-BIT MODE

HIGH BANDWIDTH - 12- TO 10-BIT MODE

HIGH BANDWIDTH - 14-TO 10-BIT MODE

FIGURE 22. USING BIT TO REDUCE SETTLING TIME (179${ }^{\circ}$ STEP)

FIGURE 23. VEL OUTPUT WITH AND WITHOUT FILTER

FIGURE 24. VEL OUTPUT FILTERS

TRANSFER FUNCTIONS

The dynamic performance of the converter can be determined from its transfer function block diagram (FIGURE 25) and open and closed loop Bode plots (FIGURES 26 and 27). TABLE 4 lists the parameters relating to the RDC-19200's dynamic characteristics for different resolution and bandwidth modes.

ACCURACY AND RESOLUTION

TABLE 7 lists the total accuracy including quantization for the various resolution and accuracy grades.

TABLE 7. ACCURACY/RESOLUTION					
RDC-19200 SERIES	ACCURACY	10	12	14	16
MODEL NO.		BIT	BIT	BIT	BIT
RDC-19202-304	2' 1 LSB	23.1	7.3	3.3	2.3
RDC-1920X-303	3' +1 LSB	24.1	8.3	4.3	3.3
RDC-1920X-302	4'+1 LSB	25.1	9.3	5.3	4.3
RDC-19202-301	8' +1 LSB	29.1	13.3	9.3	8.3

RDC-19200 APPLICATIONS

USING THE RDC-19200 IN THE CT MODE

The CT mode can be applied in servo systems, as shown in FIGURE 28. In this application, changes in position are commanded by the computer through signals fed to the CT. The CT then drives the motors through DC power amplifiers.

MULTI-TURN APPLICATIONS - USE OF MAJOR CARRY (MC, PIN 32)

Refer to Major Carry paragraph on page 8 for details.

USING THE RDC-19200 AS AN R/D WITH VEL TO STABILIZE POSITION LOOP

FIGURE 29 illustrates a typical use of an RDC-19200 connected as an R/D using the VEL output to stabilize the position loop.

Note: See TABLE 4 for values of A1, A2, and B.

FIGURE 25. TRANSFER FUNCTION BLOCK DIAGRAM

FIGURE 26. OPEN LOOP BODE PLOT

FIGURE 27. CLOSED LOOP BODE PLOT

INTERFACING THE RDC-19200 WITH AN IBM PC/XT/AT ${ }^{\circledR}$

The RDC-19200 can be connected to an IBM PC/XT/AT through the IBM PC Bus located at address HEX 300 through 303. This location is reserved by the PC for prototype cards. FIGURE 31 illustrates the connection to the IBM PC Bus; FIGURE 30 illustrates the timing considerations for the interface.

FIGURE 28. CT MODE APPLICATION

FIGURE 29. R/D WITH VEL TO STABILIZE POSITION

RDC-19200 TO IBM PC/XT/AT THEORY OF OPERATION

1. The port address where the RDC-19200 is located is hard wired with jumpers into the 74LS688 address decoder. This address is HEX 300 through 303 and is reserved for prototype cards.
2. Address line A1 selects the upper or lower of the RDC-19200 to be placed on the Bus. When A1 is high, bits 1-8 are selected.
3. Address line A0 sets and resets the RDC-19200 INHIBIT line. When A0 is low, the INHIBIT command INH is invoked.
4. To read the output of the RDC-19200, perform the following:
a. Send address HEX 302 to INHIBIT the RDC-19200 (hold data stable) and place bits 1-8 on the Bus. Read and store data on D0 to D7.
b. Send address 300 HEX to keep the RDC-19200 in the INHIBIT mode and place bits 9-14 on the Bus. Read and store data on D0 and D7.
c. Read address 301 HEX or 303 HEX to release the RDC-19200 from the INHIBIT mode and prepare for the next measurement. No valid data will be on the bus during this command.
5. Since the output data is not valid until $0.5 \mu \mathrm{~s}$ after the INHIBIT command is invoked, the I/O READY line is held low for this period of time. When I/O READY returns to the high level, the data on the bus reads on the next negative clock edge.

FIGURE 30. PC APPLICATION - I/O READ CYCLE TIMING

FIGURE 31. RDC-19200 TO PC CONNECTION DIAGRAM

TABLE 8. RDC-19200 PIN FUNCTIONS			
PIN NO	TITLE	$1 / 0$	FUNCTION
1	S1(R)V(X)	1	$(\mathrm{R})=11.8 \mathrm{~V}$ Resolver input; (X$)=\mathrm{V}$ Return (DO NOT GND).
2	S2(R)+C(X)	1	$(\mathrm{R})=11.8 \mathrm{~V}$ Resolver input; $(\mathrm{X})=2 \mathrm{~V}$ cos input.
3	S3(R)+S(X)	I	$(\mathrm{R})=11.8 \mathrm{~V}$ Resolver input; $(\mathrm{X})=2 \mathrm{~V}$ sin input.
4	S4(R)	1	$(\mathrm{R})=11.8 \mathrm{~V}$ Resolver input.
5	BW	1	Bandwidth. Logic 1 for high BW (530 Hz); logic 0 for low BW (130 Hz).
6	\bar{s}	1	Control Transformer Set. Logic 1 for normal tracking; logic 0 for CT operation. Used when AC error (e) is needed to drive external control loop by the difference angle of the resolver input and the digital input and for presetting the converter to a specific angle to reduce the step response time.
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	1	Resolution Control. Changes resolution during converter operation to $10,12,14$ or 16 bit, depending on logic level.
9	$\overline{\mathrm{INH}}$	I	Inhibit. Logic 0 prevents digital output bits from changing.
10	EM	I	Enable MSB's Logic 0 enables digital output bits 1-8. Logic 1 disables these bits.
11	EL	1	Enable LSB's Logic 0 enables digital output bits 9-16. Logic 1 disables these bits.
12	1	0	Digital Output Bit 1 (MSB all modes).
13	2	0	Digital Output Bit 2.
14	3	0	Digital Output Bit 3.
15	4	0	Digital Output Bit 4.
16	5	0	Digital Output Bit 5.
17	6	0	Digital Output Bit 6.
18	7	0	Digital Output Bit 7.
19	8	0	Digital Output Bit 8.
20	9	0	Digital Output Bit 9.
21	10	0	Digital output Bit 10 (LSB- 10-bit MODE).
22	11	0	Digital output Bit 11.
23	12	0	Digital output Bit 12 (LSB - 12-bit MODE).
24	13	0	Digital output Bit 13.
25	14	0	Digital output Bit 14 (LSB - 14-BIT MODE).
26	15	0	Digital output Bit 15.
27	16	0	Digital output Bit 16 (LSB - 16-BIT MODE).
28	LOS	0	Loss of signal. Used for system safety, the LOS output changes from logic 0 to 1 if both resolver inputs are disconnected.
29	BIT	0	Built-in-Test. Monitors level of error (D) and will change to logic if it exceeds 65 bits, approx. Also logic 0 for an over velocity condition.
30	CB	0	Converter Busy Indicates digital output update.
31	U	0	Direction. Logic 1 to count up; logic 0 to count down.
32	$\overline{\mathrm{MC}}$	0	Major Carry. Used for turns counting applications; normally high; goes low for all 1's when counting up or all O's when counting down.
33	+5 V	I	Supply Voltage.
34	+15 V	I	Supply Voltage.
35	GND	-	Ground.
36	-15 V	I	Supply Voltage.
37	VEL PROG	1	Velocity Programming. Increases output scale factor with external resistor (R) from VEL PROG, pin 37 to ground.
38	VEL	0	Velocity. DC voltage proportional to angular velocity.
39	e	0	AC Error. Used in CT mode; e is proportional to the difference between the resolver input angle θ and the digital output angle $\phi(\theta-\phi)$.
40	REF	1	AC Reference Input. Used to drive internal demodulator.

FIGURE 32. RDC-19200 RESOLVER CONNECTION - (11.8 V)

FIGURE 33. RDC-19202 DIRECT CONNECTION - (2 V)

SOURCES OF SOCKETS FOR THE RDC-19200

The following companies are sources of sockets for use with the RDC-19200 Series. Consult them for more information.

Aries Electronics, Inc.
P.O. Box 130

Trenton Avenue
Frenchtown, NJ 08825-0130
Tel: 1-908-996-6841
http://www.arieselec.com
Circuit Assembly Corp.
18 Thomas Street
Irvine, CA 92618-2777
Tel: 714-855-7887
http://www.ca-online.com

ORDERING INFORMATION

RDC-1920X-30X

$$
\begin{aligned}
& \stackrel{\text { L Accuracy: }}{ } \\
& 1=8 \mathrm{~min}+1 \mathrm{LSB}^{(1)} \\
& \text { (12 LSB's Differential Linearity) } \\
& 2=4 \mathrm{~min}+1 \mathrm{LSB} \\
& \text { (8 LSB's Differential Linearity) } \\
& 3 \text { = } 3 \text { min }+1 \text { LSB } \\
& \text { (4 LSB's Differential Linearity) } \\
& 4=2 \min +1 \operatorname{LSB}^{(1)} \\
& \text { (4 LSB's Differential Linearity) } \\
& \text { Configuration: } \\
& 0=11.8 \mathrm{~V}, 2 \% \text { Linearity } \\
& 2=2 \mathrm{~V}, 2 \% \text { Linearity }
\end{aligned}
$$

Note 1. Available for RDC-19202 only.
Note 2. Differential Linearity is x LSB in the 16 th bit.

FIGURE 34.RDC-19200 MECHANICAL OUTLINE

CONNECTING THE RDC-19200

The RDC-19200 can be attached to a PC Board using hand solder or wave soldering techniques. Limit exposure to $300^{\circ} \mathrm{C}$ ($572^{\circ} \mathrm{F}$) max, for 10 seconds maximum.

Do not use vapor phase soldering as this product contains SN60 or SN62 solder which melts at $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$. Since the RDC-19200 Series converters contain a CMOS device, standard CMOS handling procedures should be followed.

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

105 Wilbur Place, Bohemia, New York 11716-2482
For Technical Support - 1-800-DDC-5757 ext. 7389 or 7413
Headquarters - Tel: (631) 567-5600 ext. 7389 or 7413, Fax: (631) 567-7358
Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610
West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988
Europe - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
Asia/Pacific - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
World Wide Web - http://www.ddc-web.com

K-08/99-500
PRINTED IN THE U.S.A.

