

REF12Z/REF12D

1.26V MICROPOWER PRECISION REFERENCE

The REF12Z and REF12D are integrated circuits using the bandgap principle to provide a precise stable reference voltage of 1.26V. There are two package options available: REF12Z in a plastic 3-pin TO-92 and REF12D in a miniature surface mount package (MP8).

These references feature a recommended operating current of 90µA to 2.5mA which make them ideal for all low power and battery applications.

FEATURES

- Low Knee Current typically 80 microamps
- Ideal for Battery Operation 113 microwatts
- REF12Z 3 lead TO-92 Plastic Package
- REF12D Miniature Plastic Surface Mount Package (MP8)
- Tight Initial V_{RFF} Tolerance ±1%
- Low Temperature Coefficient
- Low Slope Resistance
- Low Cost

Fig.2 Internal connections

Fig. 1 Pin connection

ORDERING INFORMATION

Device Type	Operating Temperature	Package
REF12Z	-40°C to +85°C	TO-92
REF12D	-40°C to +85°C	MP8

ABSOLUTE MAXIMUM RATINGS

Reference current

2.5mA

Operating temperature range: REF12Ž

-40 to +85°C

REF12D

-40 to +85°C

Storage temperature

-55 to +125°C

Storage temperature for a max, time of 10ns:

within 1.59mm of the seating plane

300°C

within 0.80mm of the seating plane

265°C

147

REF12Z/12D

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions (unless otherwise stated) $T_{amb} = 25^{\circ}C$, $C_s = 470$ nF (see Fig.3)

Characteristic	Symbol	Value			Units	Conditions
		Min.	Тур.	Max.	OIII.3	
Output voltage	V _{BEF}	1.247	1.26	1.273	V	
Slope resistance (Note 1)	R _{REF}		2.5	4.0	Ω	I _{REF} = 150μA to 2.5mA Note 1
Turn-on (knee) current	l _{on}		80	90	μА	
Recommended operating current range	I _{REF}	0.09		2.5	mA	
Temperature coefficient	TC V _{REF}		40	80	ppm/°C	REF12Z Note 2
(Note 2)	AEF		30	80	ppm/°C	REF12D } Note 2
RMS noise voltage	E _N		1.0		μV/√Hz	0.1Hz to 25kHz
Turn-on time	Ton		0.4		ms	} I _{REF} = 1.5mA
Turn-off time	T _{OFF}	-	15		ms	S IREF = 1.3IIIA
Turn-on time	Ton		5		ms	} I _{REF} = 1.5mA
Turn-off time	T_{OFF}	-	110		ms	I J REF

NOTES

1. Slope resistance (R_{REF})

Slope resistance is defined as

R_{REF} = Change in V_{REF} over a specified current range
The change in reference current

2. Reference voltage temperature coefficient (TC V_{nes})

This is the normalised reference voltage change over temperature, divided by the change in temperature. It is expressed in ppm/°C

$$TC V_{REF} = \frac{\Delta V_{REF} \times 10^6}{V_{REF} \times \Delta T} ppm/°C$$

ΔT = temperature change in °C

 $\Delta V_{\rm BFF}$ = change in reference voltage over temperature change ΔT

148

■ 3768522 0022924 3T0 **■**

Fig.3 Connection diagram

Fig.4 Typical reference characterics

Fig.5 Typical temperature characteristic

150

3768522 0022926 173

Fig.6 Typical response time

Fig.7 Typical derating curve

152