Features - · Fast Read Access Time 100 ns - Low Power 35 mA Maximum (Active) 100 uA Maximum (Standby) - 2-V Data Retention - · Fully Static: No Clock Required - Three Control Inputs (CE₁, CE₂, and OE) - TTL Compatible Inputs and Outputs - 5 V ± 10% Supply - 28-Lead Dual in-line and Surface Mount Packages - JEDEC Pinout - Commercial and industrial Temperature Ranges #### **Block Diagram** #### Description The AT3864L is a high performance CMOS static Random Access Memory. Its 64K of memory is organized as 8192 words by 8 bits. Manufactured with an advanced CMOS technology, the AT3864L offers access times down to 100 ns with power dissipation of under 200 mW. When the AT3864L is deselected, the standby current is just 100 μA . In addition, the AT3864L offers a data retention capability of only 100 μW power dissipation when operated on a 2-volt power supply. The AT3864L powers down to the standby mode when deselected (\overline{CE}_1) is HIGH or \underline{CE}_2 is LOW). The I/O pins remain in the high impedance state unless the chip is selected (\overline{CE}_1) is LOW and CE₂ is HIGH), the outputs are enabled (\overline{OE}) is LOW), and Write Enable is not active (\overline{WE}) is HIGH). The AT3864L is completely TTL compatible and requires a single 5-volt power supply. The device is fully static and does not need any clocks or refresh control signals for operation. ## **Pin Configurations** | Pin Name | Function | |------------------------------------|---------------| | A ₀ -A ₁₂ | Addresses | | I/O ₁ -I/O ₈ | Outputs | | CE ₁ , CE ₂ | Chip Enables | | ŌĒ | Output Enable | | WE | Write Enable | | Vcc, GND | Power, Ground | | NC | No Connect | 1074177 0005381 045 CMOS SRAM 64K (8K x 8) 6-3 #### **Absolute Maximum Ratings*** | Temperature Under Bias40° C to 85° C | |---| | Storage Temperature55° C to 125° C | | All Input Voltages (including NC Pins) with Respect to Ground0.3 V to Vcc+0.3 V | | All Output Voltages with Respect to Ground0.3 V to Vcc+0.3 V | | Maximum Supply Voltage+7.0 V | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **Device Operation** <u>READ</u>: When \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH, \overline{OE} is LOW, and \overline{WE} is HIGH, the eight bits of data stored at the memory location determined by the address input (pins A_0 through A_{12}) are inserted on the data outputs (pins I/O₁ through I/O₈). WRITE: When \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH, and \overline{WE} is LOW, the eight bits of data placed on the input pins (I/O₁ through I/O₈) are stored at the memory location determined by the address input (pins A_0 through A_{12}). DATA RETENTION: When the chip is in standby mode, Vcc can be reduced to as low as two volts without impacting data integrity. Power dissipation will be reduced to 100 μ W maximum. #### **Operating Modes** | MODE\PIN | CE ₁ | CE ₂ | ŌĒ | WE | I/O | |----------------------|-----------------|-----------------|------------------|-----|--------| | Read | L | н | L | Н . | Dout | | Write | L | Н | X ⁽¹⁾ | L | DIN | | Standby ₁ | H | X | X | Х | High Z | | Standby ₂ | X | L | X | X | High Z | | Output Disable | х | X | Н | . X | High Z | Note: 1. X can be L (Low) or H (High) ## D.C. and A.C. Operating Range | | | AT3864L-10 | AT3864L-12 | AT3864L-15 | |--------------------|------------|--------------|--------------|--------------| | Operating | Commercial | 0°C - 70°C | 0°C - 70°C | 0°C - 70°C | | Temperature (Case) | Industrial | -40°C - 85°C | -40°C - 85°C | -40°C - 85°C | | Vcc Power Supply | | 5 V ± 10% | 5 V± 10% | 5 V± 10% | AT3864L | 1074177 0005382 T81 **|** ### **D.C. and Operating Characteristics** | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |--------|-----------------------------|--|-------|-----|---------|-------| | ILI | Input Load Current | V _{IN} = 0 to V _{CC} | -1.0 | | 1.0 | μА | | ILO | Output Leakage
Current | $\overline{CE}_1 = 2.2 \text{ V to V}_{CC} + 0.3 \text{ V or}$
$\underline{CE}_2 = -0.3 \text{ V to } 0.8 \text{ V or}$
$\underline{OE} = 2.2 \text{ V to V}_{CC} + 0.3 \text{ V or}$
$\overline{WE} = -0.3 \text{ V to } 0.8 \text{ V}$
$\overline{VI}_{O} = 0 \text{ to V}_{CC}$ | -1.0 | | 1.0 | μА | | ISB1 | Standby Current
(CMOS) | $\begin{array}{l} \underline{CE_2} \leq 0.2 \text{ V or} \\ \overline{CE_1} \geq V_{CC} - 0.2 \text{ V,} \\ CE_2 \geq V_{CC} - 0.2 \text{ V or } CE_2 \leq 0.2 \text{ V} \\ V_{IN} = 0 \text{ to } V_{CC} \end{array}$ | | 2 | 100 | μА | | ISB2 | Standby Current
(TTL) | \underline{CE}_2 = -0.3 V to 0.8 V or
\overline{CE}_1 = 2.2 V to V _{CC} +0.3 V,
V _{IN} = 0 to V _{CC} | | | 3 | mA | | Icc | Vcc Active Current
(TTL) | \overline{CE}_1 = -0.3 V to 0.8 V,
CE_2 = 2.2 V to V _{CC} + 0.3 V,
I_{OUT} = 0 mA, min cycle | | 20 | 35 | mA | | ViL | Input Low Voltage | | -0.3 | | 0.8 | ٧ | | ViH | Input High Voltage | | 2.2 V | | Vcc+0.3 | ٧ | | VoL | Output Low Voltage | I _{OL} = 2.0 mA | | | 0.4 | V | | Vон | Output High Voltage | I _{OH} = -1.0 mA | 2.4 | | | ٧ | # **Pin Capacitance** $(f = 1 \text{ MHz}, T = 25^{\circ}\text{C})^{(1)}$ | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |--------|--------------------------|------------|-----|-----|-----|-------| | Cout | Input/Output Capacitance | Vout = 0 V | | 6 | 10 | pF | | CIN | Input Capacitance | VIN = 0 V | | 6 | 10 | pF | Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. ## Input Test Waveforms and Measurement Levels Notes: 1. Input rise and fall time 5 ns. 2. Output load: 1TTL gate + 10 0pF. 6-5 1074177 0005383 918 ### A.C. Characteristics for Read | | | AT3864L-10 | | AT3864L-12 | | AT3864L-15 | | | |-----------|---|------------|-----|------------|------|------------|-------|-------| | Symbol | Parameter | Min | Max | Min | Мах | Min | Max . | UnitS | | trc | Read Cycle Time | 100 | | 120 | | 150 | | ns | | tacc | Address Access Time | | 100 | | 120 | | 150 | ns | | tCE1,tCE2 | CE ₁ ,CE ₂ Access Time | | 100 | | 120 | | 150 | ns | | tOE · | OE Access Time | | 50 | | 60 | | 70 | ns | | тон | Output Hold Time | 15 | | 15 | | 15 | | ns | | tcoE1,2 | CE1, CE2 Output Enable Time | 10 | | 10 | | 10 | | ns | | tooe | OE Output Enable Time | 5 | | 5 | • | 5 | | ns | | tcop1,2 | CE ₁ , CE ₂ Output Disable Time | | 45 | | 45 | | 60 | ns | | toop | OE Output Disable Time | | 40 | | . 40 | | 50 | ns | # A.C. Characteristics for Write | Symbol | | AT38 | 64L-10 | AT3864L-12 | | AT3864L-15 | | | |-----------------|---|------|--------|------------|-----|------------|-----|-------| | | Parameter | Min | Мах | Min | Max | Min | Max | Units | | twc | Write Cycle Time | 100 | | 120 | | 150 | | ns | | tas | Address Setup Time | 0 | | 0 | | 0 | | ns | | .twp | Write Pulse Width | 60 | | 70 | | 90 | | ns | | tcw1,2 | CE ₁ , CE ₂ Setup Time | 80 | | , 80 | | 90 | | ns | | twn | Write Recovery Time | 0 | | 0 | | 0 | | ns | | twR1,2 | CE ₁ , CE ₂ Write Recovery Time | 0 | | 0 | | 0 | | ns | | tos | Data Setup Time | 40 | | 50 | | 60 | | ns | | t _{DH} | Data Hold Time | 0 | | 0 | | 0 | | ns | | tDH1,2 | CE ₁ , CE ₂ Data Hold Time | 0 | | 0 | | 0 | | ns | | twoE | WE Output Enable Time | 5 | | 5 | | 5 | | ns | | twop | WE Output Disable Time | | 40 | | 40 | | 50 | ns | AT3864L 1074177 0005384 854 6-6 ### A.C. Waveforms for Read Cycle (1) # A.C. Waveforms for Write Cycle 1 (WE Write) (6) 6-7 **1**074177 0005385 790 **1** ## A.C. Waveforms for Write Cycle 2 (WE Write) (6) #### Notes: - 1. During a Read Cycle, WE should be HIGH. - 2. During this period, I/O pins are in the output state. - 3. A Write occurs when \overline{CE}_1 , CE_2 and \overline{WE} are all active at the A Write begins at the latest transition among \overline{CE}_1 going LOW, CE₂ going HIGH and \overline{WE} going LOW. A Write ends at the earliest transition among \overline{CE}_1 going HIGH, CE2 going LOW and \overline{WE} going HIGH. twp is measured from the beginning of Write to the end of Write. - 4. t_{CW} is measured from the later of \overline{CE}_1 going LOW or CE_2 - going HIGH to the end of Write. 5. If \overrightarrow{OE} or \overrightarrow{CE}_1 is HIGH, or \overrightarrow{CE}_2 or \overrightarrow{WE} is LOW, Dour goes to a HIGH impedance state. - 6. During a write cycle, $\overline{OE} = V_{IH}$ or V_{IL} . - 7. Dour is equal to the Input Data written during the same cycle. - 8. Parameter is sampled and not 100% tested. AT3864L 6-8 1074177 0005386 627 ■ #### **Data Retention Characteristics** | Parameter | Symbol | Conditions | Min | Тур | Max | Units | |--|------------------|--|--------------------|-----|-----|-------| | Data Retention
Power Supply Voltage | VDR1 | $\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V}$ $CE_2 \ge V_{CC} - 0.2 \text{ V or}$ $CE_2 \le 0.2 \text{ V}$ | 2.0 | | 5.5 | ٧ | | | V _{DR2} | CE ₂ ≤ 0.2 V | 2.0 | | 5.5 | | | Data Retention
Current | ICCDR1 | $\begin{array}{l} V_{CC} = 3.0 \text{ V} \\ \hline CE_1 \ge V_{CC} - 0.2 \text{ V} \\ CE_2 \ge V_{CC} - 0.2 \text{ V} \\ CE_2 \le 0.2 \text{ V} \end{array}$ | | 1 | 50 | μА | | | ICCDR2 | $V_{CC} = 3.0 \text{ V},$
$CE_2 \le 0.2 \text{ V}$ | | 1 | 50 | μА | | Chip Enable Setup Time | toda | | 0 | | | ns | | Chip Enable Hold Time | tR | | tac ⁽¹⁾ | | | ns | Note: 1. t_{RC} = Read Cycle Time # Data Retention Waveform 1 (CE₁ Control) # Data Retention Waveform 2 (CE 2 Control) 6-9 1074177 0005387 563 # **Ordering Information** | tace | lcc | (mA) | Onderdon Onde | | | | |------|--------|---------|---------------------------------------|------------------------------|------------------------------|----------------------------| | (ns) | Active | Standby | Ordering Code | Package | Operation Range | | | 100 | 35 | 0.1 | AT3864L-10PC
AT3864L-10RC | 28P6
28R | Commercial
(0° to 70°C) | | | | | | AT3864L-10PI 28P6
AT3864L-10RI 28R | | Industrial
(-40° to 85°C) | | | 120 | 35 | 35 | 0.1 | AT3864L-12PC
AT3864L-12RC | 28P6
28R | Commercial
(0° to 70°C) | | | | | AT3864L-12PI
AT3864L-12RI | 28P6
28R | Industrial
(-40° to 85°C) | | | 150 | 35 | 0.1 | AT3864L-15PC
AT3864L-15RC | 28P6
28R | Commercial
(0° to 70°C) | | | | | | AT3864L-15PI
AT3864L-15RI | 28P6
28R | Industrial
(-40° to 85°C) | | | Package Type | | | | | | |--------------|---|--|--|--|--| | 28P6 | 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) | | | | | | 28R | 28 Lead, 0.330" Wide Plastic Gull Wing Small Outline (SOIC) | | | | | 6-10 AT3864L ____ ■ 1074177 0005388 4TT ■