XDASM is a powerful, MS-DOS
based Cross-Disassembler which is
used to reconstruct or debug source
level code for various processor
types. Its unique table-driven
structure and output format
adaptibility, makes XDASM the
most universal program disassembler
available.

XDASM’s disassembly process can
be directly controlled by a user
generated TAG file. The output
source file is created from an
Intel/ Motorola Hex or Binary
coded input file of up to 65K bytes.

XDASM is very easy to use and
produces an “Assembler-ready”
source file that can be immediately
re-assembled with little or no editing.

Optional comment fields are
attached to each disassembled line
which show the current Program
Counter, Instruction HEX bytes
and ASCII character translations.

XDASM automatically inserts
Origin, Define Byte and Equate
directives when required. Labels are
assigned to every instruction address
that is referenced. De-blocking is
used in the output listing to allow
easier program interpretation.

Cross-Reference lists can be
optionally appended to the output
file to provide further program
detail. The sorted reference lists are
maintained as comment fields which
are ignored by the assembler. Based
on the processor type, up to four
cross-reference lists may be
generated. Label name address
references are always provided.
Other reference lists may include,
Immediate Values, 1/O Addresses
and Special Address Registers.
XDASM is capable of producing
up to 130K of sorted references.

Q20932

XDASM Cross-Disassembler

* PC/MS-DOS based

* Table-driven disassembly

* Hex or Binary input files

* Creates assembly source

* Direct disassembly control

* Manufacturers Mnemonics

* Assigns Label names

A * Inserts assembler directives
* Deblocks output listing

* Generates Cross-References

Command Line

XDASM filename,type /options

filename = Hex/ Binary input file
type = Processor name

Options:

B Binary file input

C Include line comments
L Lower-ase output
M Mask 7-bit ASCII
R Append cross-references
T Use TAG file control
X Cross-references only
Tables Included

* 1802 1805 1806

* 64180 Z180

* 6502 65C02

* 6800 6802 6808

* 6801 6803

* 6301 6303

* 6805

* 6809

* 68HCI1

* 8048

* 8051

* 8085 8080

* 8096

* COP400

* COP800

* 78

* Z80

* .. call for others

Output Format Control
Format file = type. FMT
{Current default setting)

: Insert directive, line |

: Insert directive, line 2
DFB Define Hex byte directive
DFB Define Text directive
DWH Define Word, MSB first
DWL Define Word, LSB first
ORG Origin directive

EQU Equate directive

END End directive

SRC Output file extension

L Start of label character
End-of-label character
End-of-equate character
Comment field delimiter
Text string delimiters

0 Hex notation format

e e e

Tag File Control
Tag file = filename. TAG
Disassembly commands:

aaaa=B Define Byte
aaaa=H Hex load addr offset
aaaa=I Instruction

aaaa=S Skip byte

aaaa=T Text byte

aaaa=> Define Word, LSB
aaaa=< Define Word, MSB

(aaaa = starting address)

successful disassembly is to
eliminate all unresolved references.
If the address 1s valid, it can be
manually equated by using the
“G™” command 1n the TAG file.
This removes that address from
the unresolved list.

Condensed Sample Listing

Disassembled Using XDASM == (C)1990 Data Sync Engineering ;

1

Unresolved Address Reference list

e wmp wo wme wme wa

LOOCD: EQU 0OOCDH Line Comments

LOOEF: EQU OOOEFH
LOOFS: EQU OOOF5E

Line comments are enabled by
using the “C™ option in the
command line. Each disassembled

-

ORG 00000H line will contain a comment field
H showing the Instruction Address,
L0000: LD HL,08000H 0000 21 G0 80 . the HEX bytes that made up the
H instruction and the ASCII
L0003: DEC HL ;0003 2B + character equivalent of the Hex
LD AH :0004 7C | bytes. This is very useful for
R L ;0005 BS . distinguishing between code and

JP NZ,L0003 ;0006 C2 03 00

L0000= 1D18
L0003= 0006

~e mo “o we w5 ne ~o

Cross-references to LABEL Addresses

L0009= 01E1 OIFC 02A3 O02BE 0506 0524 O06E4 O6FF 085B OAA3
0BOA 0BS1 0CCS ODC1 1172

Automatic Directives

ORG - Origin directives are used
to specify the memory location of
where the program resides.
XDASM inserts origin directives
in accordance with the input files
specifications. Any time the Hex
load address changes, XDASM
will insert a new origin statement.
An address offset can be added by
using the “H™ command in the
TAG file.

DFB - Define Byte directives are
inserted whenever an Unassigned
Opcode or an Incomplete
Instruction is encountered from
the input file. The “B” command
in the TAG file will also cause
Define Byte statements.

EQU - If an address is referenced
and is not found within the
program, XDASM will equate a
label to that address and will show
it in the Unresolved Address
Reference list. The key to a

Your local sales representative is:

text. In some cases the high bit
may be set as a flag or to disguise
text. The “M™ option will mask
the high bit for ASCII character
display.

The TAG File

The TAG file is a separate ASCI1
character file that may be
generated using a standard text
editor. It is used to control the
disassembly process by switching
to various modes at specified
addresses. Byte, Word, Text, Skip
and Instruction modes are easily
selected by entering the start
address followed by a command
character.

System Requirements

MS-DOS version 2.0 or later.
512 Kilobytes RAM.
5.257 | 3.50" floppy drive.

Available From:
MicroProcessor Engineering Ltd

133 Hill Lane * Ask about the companion Cross-Assembler.
Southampton
SO15AF MS-DOS is a registered trademark of Microsoft Corporation.

Tel: 0703 631441
Fax: 0703 339691

I-. DATA SYNC ENGINEERING
P.O. Box 146, East Stroudsburg, PA 18301 (717) 421-1977

