
Mapping a Boot ROM on
Alchemy™ Au1000™
Processor from AMD

Application Note
1.2Revision:
January 2002Issue Date:

© 2002 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license,
whether express, implied, arising by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or
implied warranty, relating to its products including, but not limited to, the implied warranty
of merchantability, fitness for a particular purpose, or infringement of any intellectual prop-
erty right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.

Contacts

www.amd.com pcs.support@amd.com

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and Au1000, Au1100, Au1500, and Alchemy are trademarks of
Advanced Micro Devices, Inc.

MIPS32 is a trademark of MIPS Technologies.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Mapping a Boot ROM on the Au1000™ ProcessorRev. 1.2 January 2002
1. Introduction

The Au1000™ processor contains integrated memory controllers for connecting RAM, ROM, and other peripherals to the
Au1000 processor. This document describes how to map a boot ROM in a system based on the Au1000, and focuses on
the use of the static memory controller for booting.

2. MIPS Architecture

The basic principles of where to map in a boot ROM are rooted in the MIPS architecture itself. Specifically, the MIPS
architecture specifies that upon reset, a MIPS processor must fetch from address 0xBFC00000, the Reset exception vector.
[1]

In the MIPS architecture, all addresses (instruction fetches, data loads and data stores) are virtual addresses. As a result,
address translation is always performed on program instruction fetches and data accesses. The type of address translation
depends upon the upper bits of the program address. The MIPS architecture defines the KUSEG, KSEG0 and KSEG1
regions according to these upper bits of the program’s virtual address. The program’s 32-bit memory space is thus
divided:

Figure 1: MIPS 32-bit Memory Map

The KUSEG region extends from 0x00000000 to 0x7FFFFFFF, a 2GB space which uses translation look-a-side buffers,
TLBs, to determine the corresponding physical address. The KUSEG region is accessible while the CPU is in either user
mode or kernel mode.

The KSEG0 region extends from 0x80000000 to 0x9FFFFFFF, a 512MB space which has a direct correlation to a physi-
cal address. In addition, the KSEG0 region is inherently cacheable; meaning that both instruction and data caching is
occuring for references to this area. The KSEG0 region is only accessible while the CPU is in kernel mode.

The KSEG1 region extends from 0xA0000000 to 0xBFFFFFFF, a 512MB space which also has a direct correlation to a
physical address. However, the KSEG1 region is inherently non-cacheable; meaning that any instruction or data reference
will bypass the cache and directly access physical memory. The KSEG1 region is only accessible while the CPU is in ker-
nel mode.

For the KSEG0 and KSEG1 regions, the corresponding physical address is bits 28:0 of the virtual address with address
bits 31:29 zero. That is, KSEG0 and KSEG1 map directly onto the first 512MB of physical memory. For example,
KSEG0 address 0x80000000 and KSEG1 address 0xA0000000 both map directly onto physical address 0x00000000. The
KSEG0 and KSEG1 regions provide two views of physical memory; one cacheable and one non-cacheable.

Reserved

KSEG1

KSEG0

KUSEG

Reserved

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000
Application Note 3

Rev. 1.2 January 2002Mapping a Boot ROM on the Au1000™ Processor
Thus, the MIPS architecture Reset exception vector address 0xBFC00000 lies in the KSEG1 region. This provides the
MIPS processor a non-cacheable memory space in which to run while memory controllers, caches, TLBs and other sys-
tem resources can be initialized properly before use.

The address translation mechanism of the MIPS architecture always presents a physical address to the memory controllers
(and other address decode logic). Thus in the case of the Reset exception vector address 0xBFC00000, the physical
address 0x1FC00000 is generated for the first instruction fetch from the boot ROM.

3. Mapping the Boot ROM on the Au1000

Au1000 processor-based systems typically use ROM and/or Flash memory connected to the static memory controller for
booting the system. In the discussion that follows, the phrase “Flash memory” can be substituted “ROM” as appropriate.
The examples below focus on booting the Au1000 from ROM on the static memory controller.

NOTE: The Au1000 processor can be configured to boot from either the static memory controller (via
RCE0) or the synchronous memory controller (via SDCS0). The choice is determined by the signals
ROMSEL and ROMSIZE at reset. Most of the following discussion is applicable when booting from
synchronous memory devices connected to the synchronous memory controller. [2]

3.1 Reset Conditions

On the Au1000 processor, the static memory controller chip-select RCE0 is initialized at power-up to respond to physical
address 0x1FC00000. More specifically, the mem_staddr0[E] is 0b1, mem_staddr0[CSBA] is 0b00011111110000, and
mem_staddr0[CSMASK] is 0b11111111111111.

The mem_staddr0[E] bit enables the chip-select to respond if the physical address generated by the Au1 core is positively
decoded by the CSBA/CSMASK criteria.

The mem_staddr0[CSBA] value establishes the base decode address of 0x1FC00000.

The mem_staddr0[CSMASK] value establishes a mask that permits a 256KB range off the base decode address.

Thus, out of reset, RCE0 responds to 256KB of physical addresses in the range 0x1FC00000 thru 0x1FC3FFFF.

NOTE: If the processor performs a jump or branch to an address outside this initial 256K, the boot
sequence will not succeed since RCE0 will not respond. It is important to configure the static memory
controller very early in the boot sequence to avoid this situation.

3.2 Mapping the Boot ROM

Once the Au1 core begins to fetch instructions out of reset, it must configure the memory controllers to establish the mem-
ory map of the entire system. In particular, RCE0 must be tailored for the appropriate boot ROM size installed in the sys-
tem (see note above).

If the boot ROM is 256KB or less in size, then the mem_staddr0 register need not be changed. If the boot ROM is larger,
then mem_staddr0 register must be changed accordingly, otherwise the entire boot ROM will not be visible to the Au1
core.

The MIPS architecture Reset exception vector is address 0xBFC00000 and is located in the last 4 Megabyte of the KSEG1
region. Thus the boot ROM effectively occupies the entire 4MB of space from 0x1FC00000 thru 0x1FFFFFFF.
4 Application Note

Mapping a Boot ROM on the Au1000™ ProcessorRev. 1.2 January 2002
3.2.1 Small Boot ROMs

For boot ROMs up to 4MB in size, the mem_staddr0[CSMASK] field must be updated to reflect the size of the boot
ROM. The table below shows the value to use for CSMASK depending upon the boot ROM size.

For the small boot ROM, the Reset exception vector is at offset zero in the boot ROM and the entire boot ROM is mapped
starting at physical address 0x1FC00000.

3.2.2 Large Boot ROMs

On the Au1000, however, it is possible to utilize boot ROMs much larger than 4MB. The technique for mapping boot
ROMs larger than 4MB is this: rather than align the boot ROM to start at physical address 0x1FC00000, align the boot
ROM to end at physical address 0x1FFFFFFF. This technique is depicted below:

Figure 2: Large Boot ROMs

Table 1: Small Boot ROM CSMASK Values

Boot ROM Size CSMASK Encoding CSMASK Value

<= 256KB 0b11111111111111 0x3FFF

512KB 0b11111111111110 0x3FFE

1024KB (1MB) 0b11111111111100 0x3FFC

2048KB (2MB) 0b11111111111000 0x3FF8

4096KB (4MB) 0b11111111110000 0x3FF0

0x1FC00000

0x1F800000

0x00000000

0x1FC00000

0x00000000

0x1F000000

0x1E000000

0x1FC00000

0x00000000

8MB Boot ROM 16MB Boot ROM 32MB Boot ROM
0x1FFFFFFF 0x1FFFFFFF 0x1FFFFFFF
Application Note 5

Rev. 1.2 January 2002Mapping a Boot ROM on the Au1000™ Processor
To accomodate larger boot ROMs, mem_staddr0[CSBA] must change in addition to mem_staddr[CSMASK]. The table
below shows the appropriate values to use for CSBA and CSMASK:

For the larger boot ROM, the Reset exception vector is no longer at offset zero in the boot ROM; rather the offset is at
(boot ROM size - 4MB).

NOTE: When programming the boot code into the ROM using a part programmer, the size of the ROM
changes the offset at which the Reset exception vector, and thus the boot code, must exist. For exam-
ple, the exception vector for a 16MB boot ROM is located at offset 12MB into the boot ROM.

The maximum size boot ROM size is 128MB since the next larger size overlaps with the internal peripherals.

3.2.3 mem_staddr0 Values

Combining the information from the small and large boot ROM tables, the table below gives the correct value to use for
mem_staddr0 for the most common boot ROM sizes.:

Table 2: Large Boot ROM CSBA and CSMASK Values

Boot ROM Size CSBA Encoding CSMASK Encoding

4MB 0b00011111110000 0b11111111110000

8MB 0b00011111100000 0b11111111100000

16MB 0b00011111000000 0b11111111000000

32MB 0b00011110000000 0b11111110000000

64MB 0b00011100000000 0b11111100000000

128MB 0b00011000000000 0b11111000000000

Table 3: Boot ROM mem_staddr0 Values

Boot ROM Size CSBA Encoding CSMASK Encoding Boot ROM Physical
Base Address mem_staddr0

<=256KB 0b00011111110000 0b11111111111111 0x1FC00000 0x11FC3FFF

512KB 0b00011111110000 0b11111111111110 0x1FC00000 0x11FC3FFE

1MB 0b00011111110000 0b11111111111100 0x1FC00000 0x11FC3FFC

2MB 0b00011111110000 0b11111111111000 0x1FC00000 0x11FC3FF8

4MB 0b00011111110000 0b11111111110000 0x1FC00000 0x11FC3FF0

8MB 0b00011111100000 0b11111111100000 0x1F800000 0x11F83FE0

16MB 0b00011111000000 0b11111111000000 0x1F000000 0x11F03FC0

32MB 0b00011110000000 0b11111110000000 0x1E000000 0x11E03F80

64MB 0b00011100000000 0b11111100000000 0x1C000000 0x11C03F00

128MB 0b00011000000000 0b11111000000000 0x18000000 0x11803E00
6 Application Note

Mapping a Boot ROM on the Au1000™ ProcessorRev. 1.2 January 2002
Of course, all registers in the static memory controller must be initialized upon boot to establish proper timings for periph-
erals, and to establish the memory map for the system.

4. References

[1] “MIPS32TM Architecture for Programmers”, MIPS Technologies, Inc., 2001.

[2] “The Alchemy Au1000TM Internet Edge Processor Data Book”, Alchemy Semiconductor, 2001.
Application Note 7

	1. Introduction
	2. MIPS Architecture
	Figure 1: MIPS 32-bit Memory Map

	3. Mapping the Boot ROM on the Au1000
	3.1 Reset Conditions
	3.2 Mapping the Boot ROM
	3.2.1 Small Boot ROMs
	Table 1: Small Boot ROM CSMASK Values
	3.2.2 Large Boot ROMs
	Figure 2: Large Boot ROMs

	Table 2: Large Boot ROM CSBA and CSMASK Values
	3.2.3 mem_staddr0 Values
	Table 3: Boot ROM mem_staddr0 Values

	4. References

