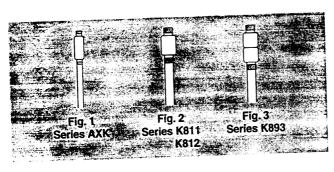
701-8848

Thrust Roller Bearings

NTN Thrust Roller Bearings incorporate a roller and cage thrust assembly, which has needle rollers or cylindrical rollers radially arranged in a cage, and a disc-shaped bearing washer. It can carry an axial load in one direction.


A shaft and housing can be used directly as a raceway, without the use of a bearing washer. This arrangement contributes to the design of compact, lightweight machinery featuring a low profile.

Theoretically, a perfect rolling motion is impossible with this type of thrust roller bearing because slippage occurs on the raceway surface. However, this phenomenon poses no problem in most practical bearing applications, and the bearing is capable of relatively high-speed operation.

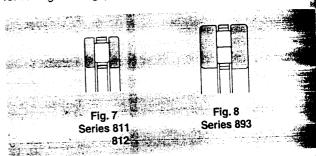
Types and designs

NTN Roller and Cage Thrust Assemblies are available in the series AXK, which has needle rollers; and in series K811, K812, and K893, each of which incorporates cylindrical rollers. Each pocket of the series K811 and K812 has a single row of cylindrical rollers, while those of series K893 have two rows of cylindrical rollers.

Series AXK bearings, which have needle rollers, use a pressed-steel cage. Series K811, K812 and K893 bearings have an aluminum alloy cage as standard; they can optionally employ a pressed-steel cage (suffix ${\bf J}$) or a cage of molded polyamide reinforced with glass fiber or carbon fiber (suffix T2). The T2 cage features a maximum allowable operating temperature of 120°C and maximum allowable continuous operating temperature of 100°C.

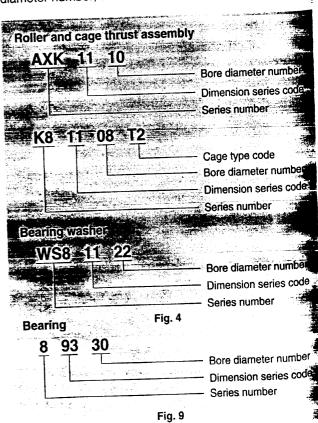
The bearing washers for NTN Thrust Roller Bearings are available in an AS model made of surface-hardened 1 mm-thick steel plate, and in WS and GS models, which are machined types.

The AS model can be used on either the shaft or housing side. This bearing washer, however, requires that the adjacent mechanical components have sufficient rigidity and good form accuracy. Before being mounted, the bearing washer may remain somewhat warped. This phenomenon should not be regarded as a problem because the warpage will be eliminated once a predetermined level of thrust load is exerted on the


The bore of the WS model is fitted to a shaft, and the outside surface of the GS model is fitted to a housing. Both models therefore provide the bearings with greater rigidity and higher running accuracy.

washer.

Fig. 6 👼 Fig. 5 Fig. 4 Series GS811 Series WS811 Series AS11


NTN

Bearing models 811, 812, and 893 are formed by respectively combining the roller and cage thrust assemblies of models K811, K812, and K893 with the associated model WS or GS bearing washer. They are standard series bearings whose dimension series, specified in JIS B 1512 (ISO 104) (Boundary dimensions for rolling bearings), are 11, 12, and 93, respectively.

Interpreting bearing numbers

The bearing numbers of NTN Roller and Cage Thrust Assemblies, Bearing Rings, and Thrust Roller Bearings comprise a series number, dimension series code, bore diameter number, and suffix.

The dimensional accuracy, form accuracy, and running accuracy of series 811, 812, and 893 thrust cylindrical roller bearings are given in Sec. 6 "Bearing Tolerances," Table 6.3, page A-30.

The bore (Dc1) of roller and cage thrust assemblies (**series AXK**, **K811**, **K812**, and **K893**) is machined to a tolerance of E11 (or E12 for bearings having a suffix **T2**). The outside surface (Dc) of the **series AXK** is machined to a tolerance of c12, while those of the **series K811**, **K812**, and **K893** are machined to a tolerance of a13.

Raceway surface requirements

When the shaft and housing are used as a raceway for a roller and cage thrust assembly, the raceway should satisfy the requirements in **Table 1**.

Table 1 Raceway requirements

Table 1 Haceway requirements	the same and the s
Characteristics	Requirement
Squareness (max.)	IT6 (IT4)
Surface roughness	0.4a
Surface hardness	HRC58~64
Effective depth of hardness penetration	See formula (14.1) on page A-59.
Ellective dopar of the	cations requiring greater running

Remarks: Data in parentheses are for applications requiring greater running accuracy.

Guiding of cages

To respond to the centering phenomenon during running, the roller and cage thrust assemblies (series AXK, K811, K812, and K893) must be guided with their bore (shaft side) or outside surface (housing side).

Generally, the bore is often employed for guiding because of lower velocity relative to the cage. In particular, guiding with the bore should be selected for high-speed applications. To guide a cage, the dimensional tolerances for the shaft and housing should be h8 with the shaft diameter (bore guide) and H9 with the housing bore diameter (outside surface guide). The guide surface must be finish-ground.

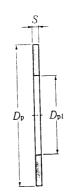
Bearing washer fits

The fits of the shafts and housing that mount the thrust bearing washers (AS, WS, and GS models) are given in Table 2 below.

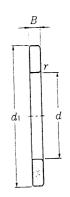
Table 2 Fit to shaft and housing

Bearing Washer	Shaft	Housing
Series AS	h10	H11
Series WS	h6	
Series GS		H7

Mounting dimensions


The mounting dimensions for a shaft and housing to which model **WS** and **GS** bearing washers are installed are summarized in the associated bearing tables.

The surface to which an **AS** model bearing ring is mounted must be uniformly flat and rigid enough to support the whole bearing ring face.


Type AXK11 Type AS11 Type WS811 Type GS811

Type AXK (Thrust needle roller and cage assembly)

Type AS race rings (Washer)

Type WS race rings (Inner ring)

Del 10~140mm

D_{cl} 10	J~ 140	ווווווו													
. + t ./*							ensions				:	dynamic	Basic load static	dynamic	static 57
	origin. Althoris	an sa Santsia							D_1	. В	$r_{\rm s min}$ 1)		Nas car	. kgf	I
Dc1	<i>D</i> c c12	$D_{\mathbf{w}}$	<i>D</i> _p de13	<i>D</i> p1 F12 ³	S 2): ±0.05	.d.′ , ;,,,1,	<i>d</i> 1 -0.2 -0.5	D D	+0.5 +0.2	<i>D</i>		C _a	Coa	Ca	Coa
E11	24	0 -0.01 2	24	10	1	10	24	24	10	2.75	0 0.060 0.3	9 150	25 300	935	2 580 -
10		2	26	12	1	12:	26	26	12		0.060 0.3	9 850	28 900	1 010	2 940
12	26			15	<u> </u>	15	28	28	16		0 0.060 0.3	11 300	36 000	1 150	3 700
15	28	2	28	17	<u>'</u> 1	17	30	30	18		0.060 0.3	11 900	39 500	1 220	4 050
17	30	2	30		_ <u>'</u>	20	35	35	21		0.060 0.3	13 200	46 500	1 340	4 750-3
	35	2	35	20	1	25	42	42	26		0.060 0.6	14 600	58 000	1 490	5 900
25		2	42	25	1	30	47	47	32		0.060 0.6	16 300	69 500	1 660	7 100
	47	2	47	30	1	35	52	52	37		0-0.075 0.6	17 800	<u>,</u> 81 500	1 820	8 300
35	52	2	52	40	1	40	60	60	42		0 -0.075 0.6		=110 000 ⁻	2 790	11 300
40	60	3 3	60		<u> </u>	45	65	65	47	4	0.075 -0.075 0.6		128 000	3 050	13 100
45				45		50		70	52	4	0 -0.075 0.6	SE 180 AVS	143 000	3 250	14 500
50		3	70	50	1		78	78	57	5	0 -0.075 0.6	38 000	186 000	3 850	19 000
55		3	78	55	1		85	85	 62		0 5-0.075 1	44 500	234 000	4 550	23 900
60			85	60	1	60 65	90	90	67		0 0 0 0 0 0 0 1	46 500	254 000	4 750	25 900
65			90		1	70	95	95			5-0.075	53 500	253 000	5 500	25 800
			95		1	75	100	100	77		5-0.075	55 000	266 000	5 650	27 100
75			100		1 1	80	105	105	82		5 0.075	56 500	279 000	5 750	28 400
80			105	energia in energia en		85	110	110	87		5 -0.075	57 500	291 000	5 900	29 700
85			110				120	120	92	6.5	0	71 000	390 000	7 250	39 500
90			120			90		135	102		0.090	90 500	550 000	9 200	56 500
100			135				135	145	112	7	0 1	93 500	590 000	9 550	60 500
110							145	155	122	' 7	0 1	99 000		10 100	66 500
120							155	170	132		0 -0.090 1	140 000		14 300	92 000
130							170		142			145 000			97 500
140	0 180	0 5	180) 140) 1	140	178	180	142	9.0	· -0.090 '	1.000			

Type GS race rings (Outer ring)

Limiting speeds			Bearing no	umbers	Referer dimensi mm	ons	Mass kg (approx.)		WS811		
rpr grease	n oil	thrust needle roller and cage assembly (*consistant with cylindrical)	washer	inner ring	outer ring	Eь	Ea	AXK11	AS11	GS811	
0.500	14 000	AXK1100	AS1100	WS81100	GS81100	11	21	0.0028	0.003	800.0	
3 500	13 000	AXK1101	AS1101	WS81101	GS81101	13	23	0.003	0.0033	0.009	
3 300	11 000	AXK1102	AS1102	WS81102	GS81102	17	27	0.0035	0.0035	0.01	
2 800	10 000	AXK1103	AS1103	WS81103	GS81103	19	29	0.004	0.0038	0.011	
2 500		AXK1104	AS1104	WS81104	GS81104	22	34	0.005	0.0051	0.014	
2 100	8 500	AXK1105	AS1105	WS81105	GS81105	29	41	0.007	0.007	0.021	
1 800	7 000	AXK1105	AS1106	WS81106	GS81106	35	46	0.008	800.0	0.025	
1 500	6 000	ļ	AS1107	WS81107	GS81107	40	51	0.001	0.0091	0.033	
1 400	5 500	AXK1107	AS1108	WS81108	GS81108	45	58	0.0185	0.0123	0.044	
1 200	4 700	AXK1108	AS1100	WS81109	GS81109	50	63	0.0205	0.0136	0.055	
1 100	4 300	AXK1109	AS1110	WS81110	GS81110	55	68	0.0235	0.0148	0.06	
1 000	3 900	AXK1110		WS81111	GS81111	60	76	0.0308	0.0189	0.095	
900	3 500	AXK1111	AS1111	WS81112	GS81112	65	83	0.0390	0.0223	0.101	
800	3 200	AXK1112	AS1112	WS81113	GS81113	70	88	0.04	0.0239	0.125	
750	3 000	AXK1113	AS1113	WS81114	GS81114	74	93	0.06	0.0254	0.134	
750	2 900	AXK1114	AS1114		GS81115	79	98	0.061	0.027	0.15	
700	2 700	AXK1115	AS1115	WS81115	GS81116	84	103	0.063	0.0284	0.16	
650	2 600	AXK1116	AS1116	WS81116	GS81117	89	108	0.0668		1 0.17	
600	2 400	AXK1117	AS1117	WS81117		94	118	0.086	0.038		
600	2 300	AXK1118	AS1118	WS81118	GS81118	105	133	0.112	0.050	5 0.35	
500	2 000	AXK1120	AS1120	WS81120	GS81120	115	143	0.122	0.054	9 0.38	
480	1 900	AXK1122	AS1122	WS81122	GS81122		153	0.131	0.059		
430	1 700	AXK1124	AS1124	WS81124	GS81124	125	167	0.205	0.074		
400	1 600	AXK1126	AS1126	WS81126	GS81126	136		0.219	0.079		
380	1 500	AXK1128	AS1128	WS81128	GS81128	146	177	0.219	0.070		