- Member of Texas Instruments' Widebus ${ }^{\text {TM }}$ Family

- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)

description

This 12-bit to 24 -bit bus exchanger is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74ALVCH16271 is intended for applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. This device is particularly suitable as an interface between conventional DRAMs and high-speed microprocessors.

A data is stored in the internal A -to- B registers on the low-to-high transition of the clock (CLK) input, provided that the clock-enable (CLKENA) inputs are low. Proper control of these inputs allows two sequential 12-bit words to be presented as a 24-bit word on the B port.
Transparent latches in the B-to-A path allow asynchronous operation to maximize memory access throughput. These latches transfer data when the latch-enable ($\overline{\mathrm{LE}}$) inputs are low. The select ($\overline{\mathrm{SEL}}$) line selects 1B or 2B data for the A outputs. Data flow is controlled by the active-low output enables ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$).
To ensure the high-impedance state during power up or power down, the output enables should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DL	Tube	SN74ALVCH16271DL	
		SN74ALVCH16271DLR		
	TSSOP - DGG	Tape and reel	SN74ALVCH16271DGGR	ALVCH16271

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables
output enable

INPUTS		OUTPUTS	
$\overline{\mathrm{OEA}}$	$\overline{\mathrm{OEB}}$	A	1B, 2B
H	H	Z	Z
H	L	Z	Active
L	H	Active	Z
L	L	Active	Active

A-TO-B StORAGE ($\overline{O E B}=\mathrm{L}$)					
INPUTS				OUTPUTS	
$\overline{\text { CLKENA1 }}$	$\overline{\text { CLKENA2 }}$	CLK	A	1B	2B
H	H	X	X	$1 \mathrm{~B}_{0} \ddagger$	$2 \mathrm{~B}_{0} \ddagger$
L	x	\uparrow	L	L	x
L	X	\uparrow	H	H	X
X	L	\uparrow	L	X	L
x	L	\uparrow	H	A_{0}	H

\ddagger Output level before the indicated steady-state input conditions were established

INPUTS				OUTPUT A
$\overline{\text { LE }}$	$\overline{\text { SEL }}$	1B	2B	
H	X	X	X	$\mathrm{A}_{0} \ddagger$
H	X	X	X	$\mathrm{A}_{0} \ddagger$
L	H	L	X	L
L	H	H	X	H
L	L	X	L	L
L	L	X	H	H

\ddagger Output level before the indicated steady-state input conditions were established
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 4)

NOTE 4: All unused control inputs of the device must be held at V_{CC} or $G N D$ to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{CC}	MIN	TYP \dagger MAX	UNIT
V OH	$\mathrm{I} \mathrm{OH}=-100 \mu \mathrm{~A}$	1.65 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
	$\mathrm{IOH}=-4 \mathrm{~mA}$	1.65 V	1.2		
	$\mathrm{IOH}=-6 \mathrm{~mA}$	2.3 V	2		
	$\mathrm{IOH}=-12 \mathrm{~mA}$	2.3 V	1.7		
		2.7 V	2.2		
		3 V	2.4		
	$\mathrm{I} \mathrm{OH}=-24 \mathrm{~mA}$	3 V	2		
VOL	$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$	1.65 V to 3.6 V		0.2	V
	$\mathrm{IOL}=4 \mathrm{~mA}$	1.65 V		0.45	
	$\mathrm{IOL}=6 \mathrm{~mA}$	2.3 V		0.4	
	$\mathrm{IOL}=12 \mathrm{~mA}$	2.3 V		0.7	
		2.7 V		0.4	
	$\mathrm{IOL}=24 \mathrm{~mA}$	3 V		0.55	
1	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	3.6 V		± 5	$\mu \mathrm{A}$
${ }^{1}$ (hold)	$\mathrm{V}_{1}=0.58 \mathrm{~V}$	1.65 V	25		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{I}}=1.07 \mathrm{~V}$	1.65 V	-25		
	$\mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$	2.3 V	45		
	$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	2.3 V	-45		
	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	3 V	75		
	$\mathrm{V}_{1}=2 \mathrm{~V}$	3 V	-75		
	$\mathrm{V}_{\text {I }}=0$ to $3.6 \mathrm{~V} \ddagger$	3.6 V		± 500	
$\mathrm{l}^{\text {O }}$ §	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.6 V		± 10	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\quad \mathrm{I}$ O $=0$	3.6 V		40	$\mu \mathrm{A}$
${ }^{\text {II }} \mathrm{CC}$	One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND	3 V to 3.6 V		750	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{i}} \quad$ Control inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.3 V		3.5	pF
$\mathrm{C}_{\text {io }}$ A or B ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	3.3 V		9	pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ For I/O ports, the parameter IOZ includes the input leakage current.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$				130		130		130		MHz
$t_{\text {t }}$	CLK	B	8	1	6.2		5	1	4.3	ns
	B	A	7	1	5.3		4.7	1.4	4	
	$\overline{\overline{L E}}$		7	1	6		5.9	1.4	4.8	
	$\overline{\text { SEL }}$		7	1.1	6.4		6.2	1.3	5.2	
ten	$\overline{\mathrm{OEB}}$ or $\overline{\mathrm{OEA}}$	B or A	8	1	6		6.1	1	5.1	ns
$t_{\text {dis }}$	$\overline{\mathrm{OEB}}$ or $\overline{\mathrm{OEA}}$	B or A	7	1.4	5.4		4.6	1.7	4.2	ns

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER				TEST CONDITIONS		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT		
				TYP	TYP					
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance	A to B	Outputs enabled			$C_{L}=0, \quad f=10 \mathrm{MHz}$		92	105	pF
			Outputs disabled	61	76					
		to A	Outputs enabled	39	43					
		B to A	Outputs disabled	11	13					

PARAMETER MEASUREMENT INFORMATION
 $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $\quad t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION
 $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

TEST	S1
${ }^{\text {t }}$ d	Open
tPLZ/tPZL	$2 \times \mathrm{V}$ C
${ }^{\text {tPHZ }}$ / ${ }^{\text {PRZH }}$	GND

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
PULSE DURATION

> VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. $t P L H$ and $t P H L$ are the same as $t_{p d}$.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION
 $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ AND 3.3 $\mathrm{V} \pm 0.3 \mathrm{~V}$

TEST	S1
$t_{p d}$ tpLz/tpZL tPHZ/tPZH	$\begin{aligned} & \hline \text { Open } \\ & 6 \mathrm{~V} \\ & \text { GND } \end{aligned}$

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES:
A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $\quad t P Z L$ and $t P Z H$ are the same as ten.
G. $\quad \mathrm{t} P L H$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

