SN74CBTLV16292 LOW-VOLTAGE 12-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER WITH INTERNAL PULLDOWN RESISTORS

SCDS055G - MARCH 1998 - REVISED APRIL 1999

- 4-Ω Switch Connection Between Two Ports
- Isolation Under Power-Off Conditions
- Make-Before-Break Feature
- Internal 500-Ω Pulldown Resistors to Ground
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV), and 300-mil Shrink Small-Outline (DL) Packages

description

The SN74CBTLV16292 is a 12-bit 1-of-2 high-speed FET multiplexer/demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

When the select (S) input is low, port A is connected to port B1 and R_{INT} is connected to port B2. When S is high, port A is connected to port B2 and R_{INT} is connected to port B1.

The SN74CBTLV16292 is characterized for operation from –40°C to 85°C.

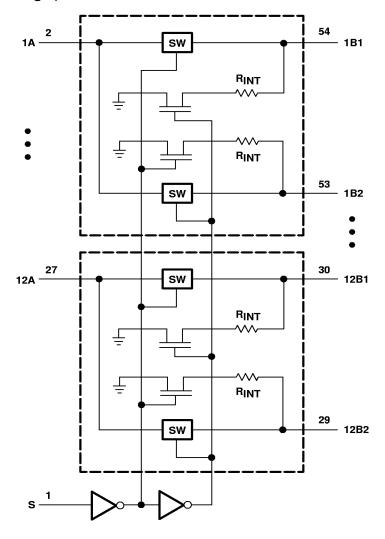
FUNCTION TABLE

INPUT S	FUNCTION				
L	A port = B1 port R _{INT} = B2 port				
н	A port = B2 port R _{INT} = B1 port				

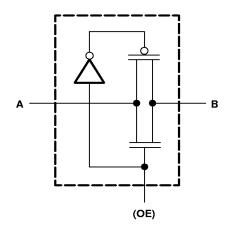
DGG, DGV, OR DL PACKAGE (TOP VIEW)

		$\overline{}$	1
s	[1	56	NC
1A	2	55	NC
NC	[]3	54] 1B1
2A	4	53] 1B2
NC	[]5	52	2B1
зА	[]6	51] 2B2
NC	[]7	50	3B1
GND	[]8	49	GND
4A	9	48	3B2
NC] 10	47] 4B1
5A] 11	46] 4B2
NC	12	45] 5B1
6A	[] 13	44] 5B2
NC		43] 6B1
7 A	[] 15	42] 6B2
NC	[] 16	41] 7B1
V_{CC}] 17	40	7B2
A8] 18	39	8B1
GND	19	38	GND
NC] 20	37	8B2
9A	21	36	9B1
NC] 22	35	9B2
10A] 23	34	0 10B1
NC	24	33	0 10B2
11A	[] 25	32] 11B1
NC] 26	31	11B2
12A] 27	30] 12B1
NC	28	29	12B2

NC - No internal connection



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCDS055G - MARCH 1998 - REVISED APRIL 1999

logic diagram (positive logic)

simplified schematic, each FET switch

SN74CBTLV16292 LOW-VOLTAGE 12-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER WITH INTERNAL PULLDOWN RESISTORS

SCDS055G - MARCH 1998 - REVISED APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)		. -0.5 V to 4.6 V
Continuous channel current		128 mA
Input clamp current, I_{IK} ($V_I < 0$)		–50 mA
Package thermal impedance, θ _{JA} (see Note 2):	: DGG package	81°C/W
	DGV package	86°C/W
	DL package	74°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
V _{CC} Supply voltage			2.3	3.6	٧
V	$V_{CC} = 2.3 \text{ V to } 2.7$		1.7		V
V _{IH}	High-level control input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V	
\(\frac{1}{2}\).	Low-level control input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
VIL	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$			0.8	٧
T _A Operating free-air temperature		-40	85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER		TEST CONDITIONS			TYP‡	MAX	UNIT
٧ _{IK}		V _{CC} = 3 V,	l _l = −18 mA				-1.2	٧
Ц		V _{CC} = 3.6 V,	V _I = V _{CC} or GND				±1	μА
l _{off}		$V_{CC} = 0$,	$V_{ }$ or $V_{ } = 0$ to 3.6	S V			10	μΑ
Icc		V _{CC} = 3.6 V,	I _O = 0,	V _I = V _{CC} or GND			10	μА
ΔICC§	Control input	V _{CC} = 3.6 V,	One input at 3 V,	Other inputs at V _{CC} or GND			300	μА
Ci	Control input	V _I = 3.3 V or 0				3.5		pF
C _{io}	A or B port	V _O = 3.3 V or 0				22.5		pF
		v 20V	V _I = 0	I _I = 64 mA		5	8	
		$V_{CC} = 2.3 \text{ V},$ TYP at $V_{CC} = 2.5 \text{ V}$		I _I = 24 mA		5	8	
•		4. 700 = 2.0 1	V _I = 1.7 V,	I _I = 15 mA		11	40	Ω
ron [¶]		VCC = 3 V	V _I = 0	I _I = 64 mA		3	7	52
				I _I = 24 mA		3	7	
			V _I = 2.4 V,	I _I = 15 mA		7	15	

 $[\]ddagger$ All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

[§] This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SN74CBTLV16292 LOW-VOLTAGE 12-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER WITH INTERNAL PULLDOWN RESISTORS

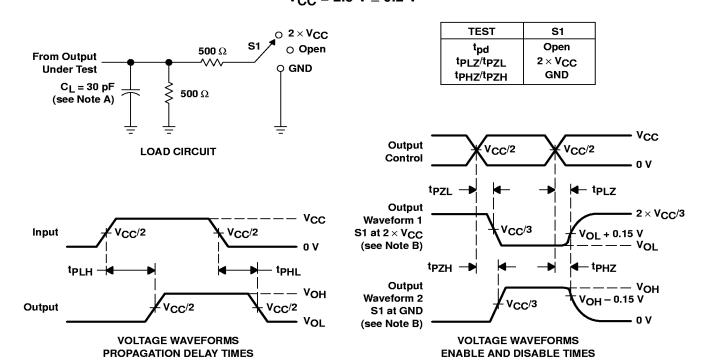
SCDS055G - MARCH 1998 - REVISED APRIL 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)			V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V	
	(INFOT)	(001701)	MIN	MAX	MIN	MAX	
_{tpd} †	A or B	B or A		0.15		0.15	ns
t _{pd} ‡	s	Α	2.5	7.1	2.5	6.7	ns
t _{en}	S	В	1	5.6	1	5	ns
^t dis	S	В	1	5	1	4.5	ns

[†] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)

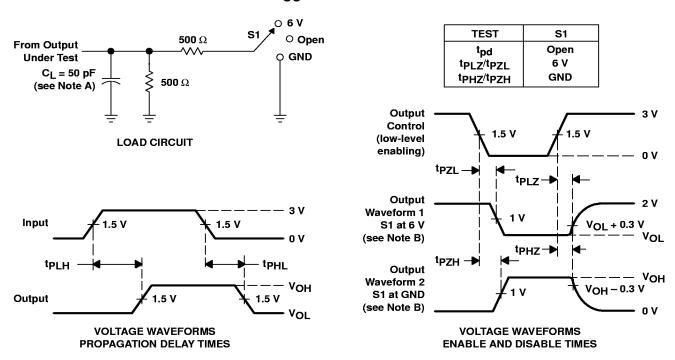

PARAMETER	DESCRIPTION	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	
t _{mbb} §	Make-before-break time	0	2	0	2	ns

^{\$} The make-before-break time is the time interval between make and break, during the transition from one selected port to the other.

[‡] This propagation delay was measured by observing the change of voltage on the A output introduced by static levels equal to 3-V or 0 for 3.3 V ± 0.3 V or V_{CC} or 0 for 2.5 V ± 0.2 V on B1 and B2 to achieve the desired transition.

SCDS055G - MARCH 1998 - REVISED APRIL 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{r} \leq$ 2 ns, $t_{f} \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCDS055G - MARCH 1998 - REVISED APRIL 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \, \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis-
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

