
Radio Servo Controller

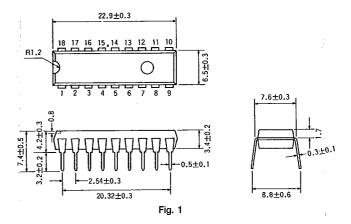
ROHM CORP 98

The BA2266A is a monolithic radio servo controller designed for use in radiocontrolled model cars.

With an internal channel divider, the device allows simultaneous control over the steering and motor speed including forward/reverse control. Since the BA2266A directly supplies control signals, energy loss is minimized and battery life is extended. The steering servo is linked to the turning lights. Also when the driving motor is switched to the reverse position, the reverse lights are automatically lit.

Combined with a receiver chip, the BA2266A provides all the functions required for radio-controlled model cars.

Features


- 1. Internal channel divider.
- 2. Internal steering servo motor driver and driving motor servo.
- 3. Turning lights are linked to the steering.
- 4. Reverse lights are linked to the driving motor.
- 5. Turning light flashing interval can be varied by an external capacitor.

Applications

THE PROPERTY OF THE PROPERTY O

Radio-controlled model cars Radio-controlled model motorcycles Radio-controlled model boats

Dimensions (Unit: mm)

Block Diagram

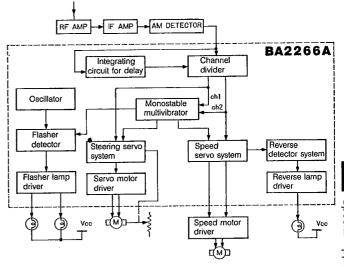
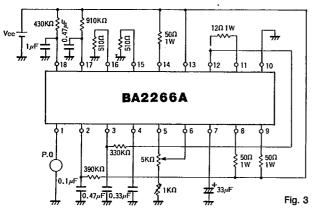
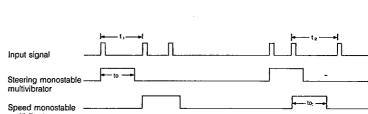


Fig. 2

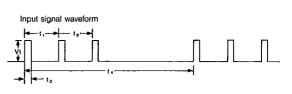
Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit	
Supply voltage	V _{cc}	10	V	
Power dissipation	Pd	1100*	mW	
Operating temperature range	Topr	-25~75	°C	
Storage temperature range	Tstg	-55~125	°C	


^{*}Derating is done at 11mW/°C for operation above Ta=25°C.


Floatrical Characteristics (Ta-259C Vac-6\/)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Test circuit
Operating supply voltage	V _{cc}	3.8	6.0	9.5	V		Fig. 3
Input threshold voltage	V _{IN}		0.7	1.0	V		Fig. 3
Quiescent current	lo		7.0	20	mA		Fig. 3
Flasher drive current	lwi			100	mA		Fig. 3
Flasher drive current	l _{W2}			100	mA		Fig. 3
Steering drive current 1	I _{S1-2}			370	mA	t ₁ >to ₁	Fig. 3
Steering drive current 2	I _{S2-1}			370	mA	t ₁ < to ₁	Fig. 3
Reverse lamp drive current	16		<u> </u>	100	mA	t ₂ >t0 ₂	Fig. 3


ROHM CORP 98

Test Circuit

Application Example Steering servo motor t(M)ν -€W)⊐ Transmitter \$ R₅ \$ 910K 十 lamp ٥1 p ф 17 φ16 **615 ф14 þ** 13 φ 12 φIJ 0 **BA2266A** RF AMP IF AMP AM DETECTOR R₂ 330K Fig. 4

Vt:1.0~5.0V

t₁: Steering control signal 1.4ms ± 500 μs variable

t₂: Speed control signal 1.4ms ± 500μs variable

t₃: 10μs ~ 500μs set

t4: 14ms ~ 20ms set

Description of External Components

R₁/C₁

R₁ and C₁ provide a time constant for the delay integration circuit. C1 is charged when the input signal is high, and is dischaged when it is low. R1 and C₁ values should be selected so that the C₁ potential does not drop below that before discharging between t1 and t2, but returns to it in t4.

 C_2

This capacitor determines the reference pulse width for the steering servo. An internal constant current source is provided for this capacitor. Set the pulse width using the formula, T=C·V/I, where $I=100 \mu A$ (typ.) and V is the potential at pin 6. C₃

Capacitor C₃ determines the reference pulse width for the driving motor. An internal constant current source is provided for this capacitor. Set the pulse width using the formula, T=C·V/I, where $I=120 \mu A$ (typ.) and V is the potential at pin 5.

 R_2

Feedback resistor for the driving motor. Select the value of this resistor so that hunting is minimized.

VR₃

Steering servo motor position sensing variable resistor.

VR₄

An internal constant current source is provided at pin 5. This variable resistor is used to adjust the potential at pin 5.

Capacitor C₄ determines the turning light flashing interval.

R₅/C₅

This RC time constant is used to set the steering servo's stretcher gain.

This RC time constant is used to set the driving motor's stretcher gain.

Precautions

The device may malfunction due to motor noise. If the device malfunctions because pin 1, 5, or 6 is affected by motor noise, connect a noise bypassing capacitor to these pins. Also the device may malfunction because the supply line or its return line is affected by the

large load current to the motors or lights. In such a case, it is recommended that the power supply for the device be separated from that for the motors and lights. Also use a single-point ground in the vicinity of the power supply so that the return line will not be affected by

large load currents.

The device may be subject to damage if its lamp or motor driving output is shorted to the supply line. Take special handling care to avoide such an accident.