

ST27C256FN ST27C256P

S G S-THOMSON 3DE D 256K (32K×8) CMOS ONE TIME PROGRAMMABLE ROM

- COMPATIBLE TO ST27C256 EPROM (ELECTRICAL PARAMETER, PROGRAMMING)
- PROGRAMMING VOLTAGE 12.5V.
- HIGH SPEED PROGRAMMING
- 28-PIN JEDEC APPROVED PIN-OUT
- 32-PIN JEDEC APPROVED PIN OUT
- IDEAL FOR AUTOMATIC INSERTION

(Ordering Information at the end of the datasheet)

PIN CONNECTIONS

DESCRIPTION

The ST27C256P and ST27C256FN are high speed 262,144K bit One Time Programmable (OTP) CMOS ROM ideally suited for applications where fast turn-around is an important requirement.

The ST27C256P is packaged in a 28-pin dual-inline plastic package, the ST27C256FN in a 32-pin PLCC plastic package, and therefore can not be re-written. Programming is performed according to standard SGS-THOMSON 256K EPROM procedure.

be g to oro-

PIN CONNECTIONS
V _{PP} (1 28) V _{CC}
A12 [2 27] A14
A7 [] 3 26 [] A13
A6 [4 25] A8
A5 (5 24) A9
A4 (6 23) A11
A3 [7 ST27C256P 22] OE
A2 [8 21] A10
A1 (9 20) CE
A0 [10 19] 07
00 (11 18) 06
01 [12 17]] 05
02 (13 16) 04
GND (14 15) 03
S- 1576
A6

PIN NAMES

A0—A14	ADDRESS
CE	CHIP ENABLE
ŌĒ	OUTPUT ENABLE
O ₀ -O ₇	OUTPUTS
NC	NON CONNECTED
DU	DO NOT USE

5 - 7577

S G S-THOMSON 30E D **BLOCK DIAGRAM** T-46-13-25 VCC O-OATA OUTPUTS 00 - 07 VPP O ÖĒ, ČĒ AND PROGRAM OUTPUT BUFFERS DECODER GATING A0-A14 ADDRESS INPUTS 262,144BIT CELL MATRIX DECODER

MAXIMUM RATINGS (Note 1)

Symbol	Rating	Value	Unit
T _{amb}	Operating temperature range ST27C256-C ST27C256-V ST27C256-T	T _L to T _H 0 to + 70 - 40 to + 85 - 40 to + 105	
T _{stg}	Storage temperature range	+ 65 to + 125	°C
V _{PP} (2)	Supply voltage	-0.6 to +14	V
V _{in} (2)	Input voltages A9 Except V _{PP} , A9	- 0.6 to + 13.5 - 0.6 to + 6.25	٧
PD	Max power dissipation	1.5	W
	Lead temperature (Soldering: 10 seconds)	+ 300	°C

Notes: 1. "Maximum ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating temperature range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical characteristics" provides conditions for actual device operation.
 With respect to V_{SS}

OPERATING MODES

PINS	CE	ŌĒ	A9	V _{PP}	v _{cc}	OUTPUTS
READ	V _{IL}	V _{IL}	Х	V _{CC}	V _{CC}	D _{OUT}
OUTPUT DISABLE	V _{IL}	VjH	Х	Vcc	Vcc	Hi-Z
STANDBY	V _{IH}	Х	Х	Vcc	V _{CC}	Hi-Z
HIGH SPEED PROGRAMMING	V _{IL}	V _{IH}	Х	V _{PP}	V _{CC}	D _{IN}
PROGRAM VERIFY	V _{IH}	V _{IL}	Х	V _{PP}	V _{CC}	Pout
PROGRAM INHIBIT	V _{IH}	V _{IH}	Х	Vpp	V _{CC}	Hi-Z
ELECTRONIC SIGNATURE(3)	VIL	V _{IL}	V _H (2)	Vcc	V _{cc}	CODE

Notes: 1. X can be either V_{IL} or V_{IH} — 2 - V_H = 12.0V ±0.5V 3. All address lines at V_{IL} except A9 and A0 that is toggled from V_{IL} (manufacturer code: 9B) to V_{IH} (type code: 04).

READ OPERATION

NOZMOHT-Z D Z

30E D

DC CHARACTERISTICS (Tamb=TL to TH, VCC=5V±10%, VSS=0V; Unless otherwise specified)

Symbol	Parameter	Test Conditions			1	
	raiallietei	rest conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
ILI	Input Load Current	V _{IN} =V _{CC} or GND			10	μΑ
lLO	Output Leakage Current	V _{OUT} =V _{CC} or V _{SS} , CE=V _{IH}			10	μΑ
Vpp	V _{PP} Read Voltage		V _{CC} -0.7		V _{CC}	V
VIL	Input Low Voltage		-0.1		0.8	v
V _{IH}	Input High Voltage	·	2.0		V _{CC} +1	V
V _{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$ $I_{OL} = 0 \mu \text{A}$			0.45 0.1	٧
V _{OH}	Output High Voltage	I _{OH} = -400 μA I _{OH} = 0 μA	2.4 V _{CC} -0.1			٧
lcc2	V _{CC} Supply Active Current TTL Levels	CE = OE = V _{IL} , Inputs = V _{IH} or V _{IL} , f = 5 MHz, I/O = 0 mA		10	30	mA
I _{CCSB1}	V _{CC} Supply Standby Current	CE = V _{IH} OE = Inputs		0.05	1	mA
I _{CCSB2}	V _{CC} Supply Standby Current	CE=V _{CC} -0.1V, OE=Inputs		1	10	μA
I _{PP1}	V _{PP} Read Current	$V_{PP} = V_{CC} = 5.5V$			100	μA

Note: 1. Typical conditions are for operation at: Tamb = +25°C, VCC = 5V, VPP = VCC, and VSS = 0V

AC CHARACTERISTICS(1,2,3)($T_{amb} = T_L$ to T_H)

Symbol	Parameter	Test Conditions		256 17		256 20		256 25	l	256 30	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
tACC	Address to Output Delay	CE = OE = VIL		170		200		250		300	ns
t _{CE}	CE to Output Delay	ŌË≃V _{IL}		170		200		250		300	ns
tOE	Output Enable to Output Delay	CE=V _{IL}		75		75		100		120	ns
t _{DF} (2)(4)	OE or CE High to	CE=VIL	0	50	0	55	0	60	0	75	ns
toH	Output Hold from addresses, CE or OE whichever occured first	CE = OE = V _{IL}	0		0		0		0		ns

CAPACITANCE Tamb = +25°C, f = 1 MHz

	anib					
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Cin	Input Capacitance	V _{IN} = 0V		4	6	pF
Cout	Output Capacitance	V _{OUT} =0V		8	12	ρF

Notes: 1. V_{CC} must be applied at the same time or before Vpp and removed after or at the same time as Vpp Vpp may be connected to V_{CC} except during program.

2. The tpp compare level is determined as follows:
High to THREE-STATE, the measured V_{OH}(DC) -0.1V
Low to THREE-STATE the measured V_{OL}(DC) +0.1V.

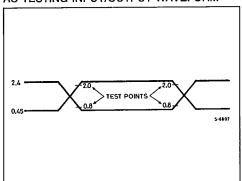
3. Capacitance is guaranteed By periodic testing. T_{amb} = +25°C, f=1MHz.

4. T_{DF}, is specified from OE or CE whichever occurs first. This parameter is only sampled and not 100% tested.

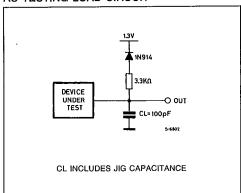
S G Z-THOMSON

0.8V and 2V

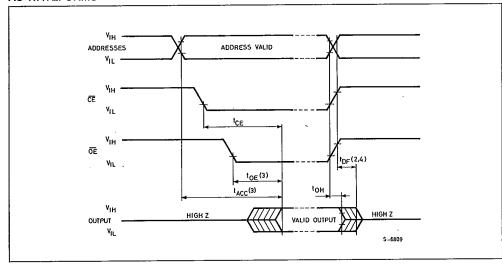
30E D


AC TEST CONDITIONS

Inputs, Outputs


1 TTL gate and CL = 100 pF Output Load: ≤20 ns Input Rise and Fall Times Input pulse levels: 0.45V to 2.4V Timing Measurement Reference Level

T-46-13-25


AC TESTING INPUT/OUTPUT WAVEFORM

AC TESTING LOAD CIRCUIT

AC WAVEFORMS

Notes:

- 1. Typical values are for T_{amb}=25°C and nominal supply voltage
 2. This parameter is only sampled and not 100% tested.
 3. OE may be delayed up to tACC toe after the falling edge CE without impact on tACC
 4. Upris specified form OE or CE whichever occurs first.

NOZMOHT-Z D Z

DEVICE OPERATION

The seven modes of operation of the ST27C256 are listed in the Operating Modes table. A single 5V power supply is required in the read mode. All inputs are TTL levels except for V_{DD}.

READ MODE

The ST27C256 has two control functions, both of wich must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from CE to Output (t_{CE}). Data is available at the outputs after a delay of toe from the falling edge of OE, assuming that CE has been low and addresses have been stable for at least t_{ACC}-t_{OE}.

STANDBY MODE

The ST27C256 has a standby mode which reduces the maximum power dissipation to 5.25 mW. The ST27C256 is placed in the standby mode by applying a TTL high signal to the CE input. When in standby mode, the outputs are in a high impedance state, independent of the OE input.

OUTPUT OR-TYING

Because OTPs are usually used in larger memory arrays, we have provided two control lines which accomodate this multiple memory connection. The two control lines allow for:

a) the lowest possible memory power dissipation, and

 b) complete assurance that output bus contention will not occur.

To use these control lines most efficiently, $\overline{\text{CE}}$ should be decoded and used as the primary device selecting function, while $\overline{\text{OE}}$ should be made a common connection to all devices in the array and connected to the $\overline{\text{READ}}$ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

PROGRAMMING MODES

Caution: Exceeding 14V on V_{pp} pin will damage the ST27C256.

Initially, all bits of the ST27C256 are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be presented in the data word.

30E D T-46-13-25

The ST27C256 is in the programming mode when the V_{pp} input is at 12.5 V and CE and PGM are both at TTL Low. It is required that a 0.1 μ F capacitor be placed across V_{pp} , V_{CC} and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

Programming of multiple ST27C256s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled ST27C256s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the CE input programs the paralleled ST27C256s.

HIGH SPEED PROGRAMMING

The high speed programming algorithm described in the flow chart rapidly programs ST27C256 using an efficient and reliable method particularly suited to the production programming environment. Typical programming times for individual devices are on the order of 5 minute.

PROGRAM INHIBIT

PROGRAWI INTIBILI

Programming of multiple ST27C256s in parallel with different data is also easily accomplished by using the program inhibit mode. A high level on CE inputs inhibits the other ST27C256s from being programmed. Except for CE, all like inputs (including OE) of the parallel ST27C256s may be common. A TTL low-level pulse applied to a ST27C256 CE input with V_{pp} at 12.5V will program that ST27C256.

PROGRAM VERIFY

A verify may be performed on the programmed bits to determine that they were correctly programmed. The verify is performed with \overline{OE} at VIL, \overline{CE} at V $_{IH}$, and V $_{PP}$ at 12.5 V.

Electronic signature mode allows the reading out

ELECTRONIC SIGNATURE MODE

of a binary code that will indentify the EPROMs manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the 25°C \pm 5°C ambient temperature range that is required when programming the ST27C256. To activate this mode the programming equipment must force 11.5V to 12.5V on address line A9 of the ST27C256. Two bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during electonic signature mode.

PROGRAMMING CHARACTERISTICS ($T_{amb} = 25 \pm 5$ °C, $V_{CC} = 6.0V \pm 0.25V$, $V_{PP} = 12.5V \pm 0.3V$)

DC AND OPERATING CHARACTERISTICS

T-46-13-25

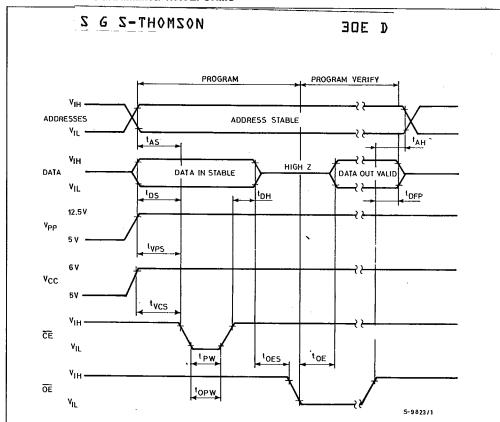
				1-4)-IO-EO	
Symbol	Parameter	Test Conditions]		
Syllibol	Parameter	rest Conditions	Min.	Тур.	Max.	Unit
lį	Input Current (all inputs)	V _I =V _{IL} or V _{IH}			10	μA
VIL	Input Low Level (all inputs)		-0.1		0.8	٧
V _{IH}	Input High Level		2.0		V _{CC} +1	٧
V_{OL}	Output low voltage during verify	I _{OL} = 2.1 mA			0.45	٧
V _{OH}	Output high voltage during verify	$I_{OH} = -400 \ \mu A$	2.4			٧
I _{CC3}	V _{CC} Supply current (Program & Verify)				40	mA
I _{PP2}	V _{PP} supply current (Program)	CE = V _{IL}		-	30	mA

S G S-THOMSON

30E D

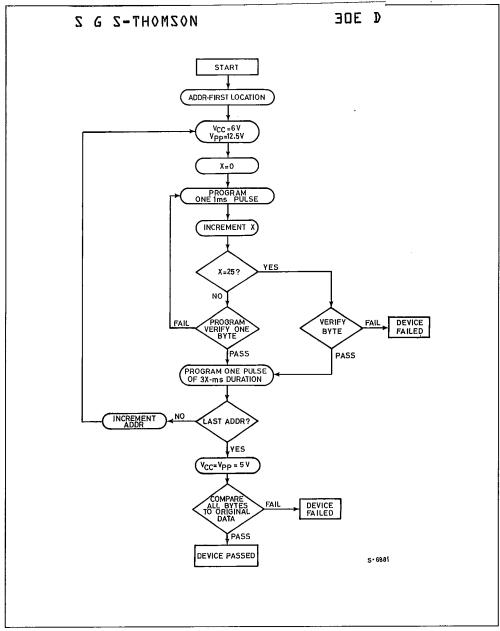
AC CHARACTERISTICS

Symbol	Parameter	Test Conditions				
Эушьы	raiameter	rest Conditions	Min.	Тур.	Max.	Unit
t _{AS}	Address Set-up Time		2			μS
toes	OE Set-up Time		2			μS
t _{DS}	Data Set-up Time		2			μs
t _{AH}	Address Hold Time		0			μS
t_{DH}	Data Hold Time		2			μS
t _{DFP}	Output enable to output float delay		0		130	ns
t _{VPS}	V _{PP} set-up time		2			μS
t _{VCS}	V _{CC} set-up time		2			μS
t _{PW}	PGM initial program pulse width		0.95	1.0	1.05	ms
t _{OPW} (2)	CE overprogram pulse width		2.85		78.75	ms
toe	Data valid from OE				150	ns


Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}. 2. topw is defined in flow chart.

AC TEST CONDITIONS

Input rise and fail times (10% to 90%) ≤20ns Input puise ievels 0.45V to 2.4V Input timing reference level 0.8V and 2.0V 0.8V and 2.0V Output timing reference level

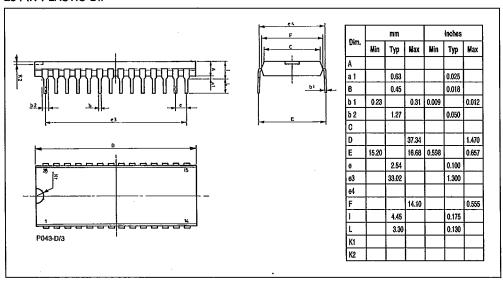

T-46-13-25

HIGH SPEED PROGRAMMING WAVEFORMS

The input timing reference level is 0.8V for V_{II} and 2.0V for V_{II}, t_{OE} and t_{DFP} are characteristics of the device but must be be accommodated by the programmer. When programming the ST27C256, a 0.1 _µF capacitor is required across V_{PP} and ground to suppress spurious voltage transiens which can damage the device.

HIGH SPEED PROGRAMMING FLOW CHART

S G S-THOMSON ORDERING INFORMATION (ST27C256P)


30E D/

T-46-13-25

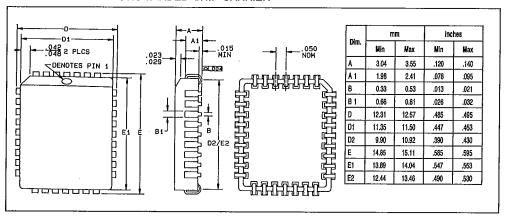
Part Number	Access Time	Supply Voltage	Temp. Range	Package
ST27C256-17CP	170 ns	5V ± 10%	0 to + 70°C	DIP-28
ST27C256-20CP	200 ns	5V ± 10%	0 to + 70°C	DIP-28
ST27C256-25CP	250 ns	5V ± 10%	0 to + 70°C	DIP-28
ST27C256-30CP	300 ns	5V±10%	0 to + 70°C	DIP-28
ST27C256-17VP	170 ns	5V±10%	-40 to + 85°C	DIP-28
ST27C256-20VP	200 ns	5V±10%	-40 to + 85°C	DIP-28
ST27C256-25VP	250 ns	5V ± 10%	-40 to + 85°C	DIP-28
ST27C256-30VP	300 ns	5V±10%	-40 to + 85°C	DIP-28
ST27C256-17TP	170 ns	5V±10%	-40 to +105°C	DIP-28
ST27C256-20TP	200 ns	5V ± 10%	-40 to +105°C	DIP-28
ST27C256-25TP	250 ns	5V±10%	-40 to +105°C	DIP-28
ST27C256-30TP	300 ns	5V±10%	-40 to +105°C	DIP-28

PACKAGE MECHANICAL DATA

28-PIN PLASTIC DIP

T-46-13-25

ORDERING INFORMATION (ST27C256FN)


Part Number	Access Time	Supply Voltage	Temp. Range	Package
ST27C256-17CFN	170 ns	5V±10%	0 to + 70°C	PLCC32
ST27C256-20CFN	200 ns	5V±10%	0 to + 70°C	PLCC32
ST27C256-25CFN	250 ns	5V±10%	0 to + 70°C	PLCC32
ST27C256-30CFN	300 ns	5V±10%	0 to + 70°C	PLCC32
ST27C256-17VFN	170 ns	5V ± 10%	-40 to + 85°C	PLCC32
ST27C256-20VFN	200 ns	5V ± 10%	-40 to + 85°C	PLCC32
ST27C256-25VFN	250 ns	5V±10%	-40 to + 85°C	PLCC32
ST27C256-30VFN	300 ns	5V±10%	-40 to + 85°C	PLCC32
ST27C256-17TFN	170 ns	5V ± 10%	-40 to +105°C	PLCC32
ST27C256-20TFN	200 ns	5V ± 10%	-40 to +105°C	PLCC32
ST27C256-25TFN	250 ns	5V ± 10%	-40 to +105°C	PLCC32
ST27C256-30TFN	300 ns	5V ± 10%	-40 to +105°C	PLCC32

S G S-THOMSON

30E D

PACKAGE MECHANICAL DATA

PLCC32-32-LEAD PLASTIC LEADED CHIP CARRIER

