ZILOG INC L7E D

- Z28001°/Z8002°
Z8000°CPU
Central Processing Unit

B 9944043 0011479 1 mm

T- Q(’) -07

October 1988

FEATURES

Regular, easy-to-use architecture

Directly addresses 8 Mbytes
Eight user-selectable addressing modes

Seven datatypes that range from bits to 32-bit long words
and byte and word strings

System and Normal operating modes
W Separate code, data, and stack spaces
W Sophisticated interrupt structure

Instruction set more powerful than many minicomputers -

m Resource-shaping capabllmes for multlprocessmg

. systems
| Multi-programming support
m Compiler support

® Memory management and protection provided by

Z8010 Memory Management Unit

® 32-bit operations, including signed multiply and divide

® Z-BUS compatible
M 4,6, and 10 MHz clock rate

GENERAL DESCRIPTION

The Z8000 is an advanced high-end 16-bit mlcroprocessor
that spans a wide variety of applications ranging from simple
stand-alone computers to complex parallel-processing
systems. Essentially a monolithic minicomputer central
processing unit, the Z8000 CPU is characterized by an
instruction set more powerful than many minicomputers;
abundant resources in registers, data types, addressing
modes and addressing range, and a regular architecture
that enhances throughput by avoiding critical bottlenecks
such as implied or dedicated registers.

CPU resources include sixteen 16-bit general-purpose
registers, seven data types that range from bits to 32-bit fong
words and byte and word strings, and eight user-selectable
addressing modes. The 110 distinct instruction types can
be combined with the various data types and addressmg
modes to form a powerful set of 414 instructions. Moreover,

“the instruction set is regular; most instructions can use any

of the five main addressing modes and can operate on byte,
word, and long-word data types,

The CPU can operate in either the system or normal mode.
The distinction between these two modes permits privileged
operations, thereby improving operating system
organization and implementation. Multiprogramming is
supported by the “atomic” Test and Set instruction;
multiprocessing by a combination of instruction and

4—— AS
~—-4 b5
'mllnu
~«—— MREQ
~4——f READ/WRITE
~«——] NORMAL/SYSTEM
~«— BYTEWORD
sTaTUS¢ | T
B £1 71
-—]sT,
— i Z8o001
28002
CPU
—| WA
GONTRO —] 5TOF
——»1BUSAEQ
°°“TR° -«—J6USACK
—»1 NWT
INTERRUPTS{ —{ Wi
—»| Vi
MULTILMICRO] —>{Hi
conTROL) «—7p

[t

[

-

ot~

g

[—p

-

<> | ADDRESS/
|« (DATA BUS
-

—p

f—n

[t

—

[«

Tamm o

seaMENT |
NUMBER |

N

SEOT |- SEGMENT
TRAP

N
2

128

Powered by ICminer.com Electronie-Library Service CopyRight 2003

ZILOG INC

J7ED m ‘HBHDHB 0011880 6 mm

hardware features; and compilers by multiple stacks,
special instructions, and addressing modes.

The Z8000 CPU is offered in three versions: the Z8001/
Z160 segmented CPUs and the Z8002 nonsegmented
CPU (Figure 1). The main difference is in addressing
range. The Z8001 can directly address 8 megabytes of
memory; the Z160 directly addresses 2 megabytes; the
28002 directly addresses 64 kilobytes. The two operating
modes - system and normatl - and the distinction between
code, data, and stack spaces within each mode allows
memory extension up to 48 megabytes for the Z8001, 12
megabytes for the Z160 and 384 kilobytes for the Z8002.

T-49-17-07

" To meet the requirements of complex, memory-intensive

applications, acompanion memory-management device is
offered for the Z8001. The Z8010 Memory Management
Unit manages the large address space by providing fea-
tures such as segment relocation and memory protection.
The Z8001 can be used with or without the Z8010. If used
by itself, the Z8001 still provides an 8 megabyte direct ad-
dressing range, extendable to 48 megabytes. .

The Z8001, Z8002 and Z8010 are fabricated with high-den-
sity, high-performance scaled n-channel silicon-gate
depletion-load technology, and are housed in dual-in-line
packages (DIPs) and leadless chip carriers (LCC).

REGISTER ORGANIZATION

The Z8000 CPU is a register-oriented machine that offers
sixteen 16-bit general-purpose registers and a set of special
system registers. All general-purpose registers can be used
as accumulators and all but one as index registers or
memory pointers.

Register flexibility is created by grouping and overlapping

multiple registers (Figures 2 and 3). For byte operations, the
first eight 16-bit registers (RO... R7) are freated as sixteen
8-bit registers (RLO, RHO..., RL7, RH7). The sixteen 16-bit
registers are grouped in pairs (RRO... RR14) to form 32:bit
long-word registers. Similarly, the register set is grouped in
quadruples (RQO... RQ12) to form 64-bit registers.

Ro [7 RHO 0]7 RLO o] ‘ Ro[7 RHO i7 RLO o]
RRO : . RRO - 3
Rt |15 RH1 ! ALY o] ri[1s RH1] ALY 0]
ROO . " RGO
Az | RH2 i ' | l n2| RH2 1 AL2] .
RA2 RA2
R3 | RH3 i RAL3] R3[RH3 I RL3]
R4 | RH4 i ALe | { Ra| RH4 i RL4 B
RR4 aR4 :
Rs| RHS i RLS] Rs| RHS 1 ALS] .
Ra4 RG4
R | RH8 i AL8] ' Re | RHE i ALS]
ARG RRG
a7 | RH? i AL7] arf RH7 H RLY]
we [15 0] ns[%s 0
RRS [Les ! RRS { 0
Ro 1 Ra |] nos
ROB .
o —] [_
- RR10
LI] ru[1
R12] R12 |
/A12 I RR12 [I
mis[7] R13|]
R14’ SYSYEM STACK POINTER (SEG. NOJ RQ12 Ri4}]] RQi2
4 .)
- R NORMAL STACK POINTER (SEG. NO.) l_"—l LUTH QP SRS TN
R15’ [SYSTEM STACK FOINTER (OFFSEN) ais[NORMAL STACK POINTER
ms| NORMAL STACK POINTER (OFFSET) g g
Figure 2, 28001 General-Purpose Reglsters Figure 3. Z8002 General-Purpose Registers
P g N
129

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

L7E D

M 9984043 0011881 T m

STACKS

The 28001, Z8002 and Z160 - can use stacks located
anywhere in memory. Call and Return instructions as well as
interrupts and traps use implied stacks. The distinction
between normal and system stacks separates system
Information from the application program information. Two
stack pointers are available: the system stack pointer and
the normal stack pointer. Because they are part of the
general-purpose register group, the user can manipulate the

T-49-17-07

stack pointers with any instruction available for register
operations.

In the Z8001, register pair RR14 is the implied stack
pointer. Register R14 contains the 7-bit segment number
and R15 contains the 16-bit offset. In the Z8002, register
R15 is the implied 16-bit stack pointer.

REFRESH

The Z8000 CPU contains a counter that can be used to
automatically refresh dynamic memory. The refresh counter
register consists of a 9-bit row counter, a 6-bit rate counter,
and an enable bit (Figure 4). The 9-bit row counter can
address. up to 256 rows and is incremented by two each
time the rate counter reaches end-of-count. Thé rate counter
determines the time between successive refreshes, It
consists of a programmable 6-bit modulo-n prescaler (n = 1
to 64), driven at one-fourth the CPU clock rate. The refresh

period can be programmed by 1 to 64 us with a 4 MHz
clock. Refresh can be disabled by programming the refresh
enable/disable bit.

14 |] []

16
el M

Figure 4. Refresh Counter

PROGRAM STATUS INFORMATION

This group of status registers contains the program counter,
flags, and control bits. When an interrupt or trap occurs, the
entire group is saved and a new program status group is
loaded.

Figure 5 illustrates how the program status groups of the
Z8001 and Z8002 differ. In the. nonsegmented 28002, the
program status group consists of two words: the program
counter (PC), and the flag and control word (FCW). In the
segmented Z8001, the program status group consists of

15 - 0
o . RESERVED
l'|°| 1 90,0, |°|°|°|°|°|°|°.°J]wonn

ISEG]ENJEPAIVIEINV‘IEI [\ L]) ¢ I c | z] s [FNIDAF] OJ 01}5'6:?‘:70:&??
I°| PR i i A I°|°|°|“|°|°|°|T|

I SEOMENT OFFSET
I L) | I DN S | | T S | | I |

PROGRAM
COUNTER

78001 Program Status Registers

SEGMENT NUMBER I
o] | sequenyhom Lo 1°y°

5 UPPER OFF5ET
l VO T A i] '°|°l°l°I°|°I°J°—l

78001 Program Status Area Pointer -

four words: atwo-word pragram counter, the flag and con-
trol word, and an unused word reserved for future use.
Seven bits of the first PC word designate one of the 128
memory segments. The second word supplies the 16-bit
offset that designates a memory location within the seg-
ment.

With the exception of the segment enable bit in the Z8001
program status group, the flags and contro! bits are the
same for both CPUs.

15
°
lﬂ IS.'NIEPAIVIE'NVIE|0|OIOIGIZIS I'NIDAIH|°|°| &Aﬂal'l‘gf

WORD
l._L | I O T |

28002 Program Status Registers

ADORESS PROGRAM
Lol L1 0) 1 i] fcounter

I UPPER POINTER
| I I N |

1 °|°|°1°|°1°I°J“|

28002 Program Status Area Pointer

Figure 5. Z8000 CPU Special Registers

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D MW 9984043 0011882] m

INTERRUPT AND TRAP STRUCTURE

The Z8000 provides a very flexible and powerful interrupt
and trap structure. Interrupts are external asynchronous
events requiring CPU attention, and are generally triggered
by peripherals needing service. Traps are synchronous

events resulting from the execution of certain instructions, .

Both are processed in a similar manner by the CPU.
The CPU supports three types of interrupts (non-maskable,

vectored, and non-vectored) and four traps [system call,”

Extended Process Architecture (EPA) instruction, privileged
instructions, and segmentation trap]. The vectored and
non-vectored interrupts are maskable. Of the four traps, the
only external one is the segmentation trap, which is
generated by the Z8010,

The remaining traps occur when instructions limited to the
system mode are used in the normal mode, or as a result of
the System Call instruction, or for an EPA instruction. The

T-49-17-07

descending order of priority for traps and interrupts is:
internal traps, nonmaskable interrupt, segmentation trap,
vectored interrupt, and non-vectored interrupt.

Whenaninterruptor trap occurs, the current program status
is automatically pushed on the system stack. The program
status consists of the processor status (PC and FCW) plus a
16-bit identifier. The identifier contains the reason or source
of the trap or interrupt. For internal traps, the identifier is the
first word of the trapped instruction. For external traps or
interrupts, the identifier is the vector on the data bus read by
the CPU during the interrupt-acknowledge or trap-
acknowledge cycle. i

After saving the current program status, the new program
status is automatically loaded from the program status area
in system memory. This area is designated by the program
status area pointer (PSAP).

DATA TYPES

Z8000 instructions can operate on bits, BCD digits (4 bits),
bytes (8 bits), words (16 bits), long words (32 bits), and byte
strings and word strings (up to 64 kilobytes long). Bits can be
set, reset, and tested; digits are used in BCD arithmetic
operations; bytes are used for characters or small integer
values; words are used for integer values, instructions and
nonsegmented addresses; long words are used for long
integer values and segmented addresses. All data elements

except strings can reside either in registers or memory.
Strings are stored in memory only.

" The basic data slement is the byte. The number of bytes

used when manipulating a data element is either implied by
the operation or—for strings and multiple register
operations—explicitly specified in the instruction.

SEGMENTATION AND MEMORY
MANAGEMENT

High-level languages, sophisticated operating systems,
large programs and data bases, and decreasing memory
prices are all accelerating the trend toward larger memory
requirements in microcomputer systems, The Z8001 meets
this requirement with an eight megabyte addressing space.
This large address space is directly accessed by the CPU
using a segmented addressing scheme and can be
managed by the Z8010 Memory Management Unit.

Segmented Addressing

A segmented addressing space—compared with linear
addressing—is closer to the way a programmer uses
memory because each procedure and data space resides

in its own segment. The 8 megabytes of Z8001 addressing -

space is divided into 128 relocatable segments up to 64
kilobytes each. A 23-bit segmented address uses a 7-bit
segment address to point to the segment, and a 16-bit offset
to address any location relative to the beginning of the
segment. The two paris of the segmented address may be
manipulated separately. The segmented Z8001 can run any
code written for the nonsegmented Z8002 in any one of its
128 segments, provided it is set to the nonsegmented
mode. .

6 0 15 87 0
LOGICALADDRESSI SEGMENT NO. I | OFF:SE‘I‘ I
[memony
| MANAGMENT
j UNIT
[BASE

ADDRESS
REGISTER
FILE

i3

|
[
{ 24-BIT PHYSICAL Ann:ness «—— |

Figure 6. Logical-to-Physlical Address
Translation

131

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ore rv ot 4t e

ZILOG INC

I7E D

B 9984043 0011883 3>-

in hardware, segmented addresses are contained in &
register pair or long-word memotry location. The segment
number and offset can be manipulated separately or
together by all the available word and long-word operations.

When contained in aninstruction, a segmented address has
two different representations: long offset and short offset.
The long offset occupies two words, whereas the short offset
requires only one and combines in one word the 7-bit
segment number with an 8-bit offset (range 0-256). The
short offset mode allows very dense encoding of addresses
and minimizes the need for long addresses required by
direct accessing of this large address space.

Memory Management

The addresses manipulated by the programmer, used by
instructions and output by the Z8001, are called /ogical
addresses. The Memory Management Unit takes the logical
addresses and transforms them into the physical addresses
required for accessing the memory (Figure 6). This address
transformation process is called relocation, Segment
relocation makes user software addresses independent of
the physical memory so the user is freed from specifying

where information is actually focated in the physical
memory.

The relocation process is transparent to user software. A
translation table in the Memory Management Unit
associates the 7-bit segment number with the base address
of the physical memory segment. The 16-bit offset is added
to the physical base address to obtain the actual physical
address. The system may dynamically reload translation
tables as tasks are created, suspended, or changed.

In addition to supporting dynamic segment relocation, the
Memory Management Unit also provides segment
protection and other segment management features, The
protection features prevent illegal uses of segments, such as
writing into a write-protected zone.

Each Memory Management Unit stores 64 segment entries
that consist of the segment base address, its attributes, size,
and status. Segments are variable in size from 256 bytes to
64 kilobytes in increments of 256 bytes. Pairs of
Management Units support the 128 segment numbers
available for each of the six CPU address spaces. Within an
address space, several Management Units can be used to

“create multiple translation tables.

EXTENDED PROCESSING ARCHITECTURE

The Zilog Extended Processing Architecture (EPA) provides
an extremely flexible and modular approach to expanding
both the hardware and software capabilities of the Z8000
CPU, Features of the EPA include:

m Specialized instructions for external processors or
software traps may be added to CPU instruction set.

= Increases throughput of the system by using up to four
specialized external processors in parallel with the CPU.

® Permits modular design of Z8000-based systems.

m Provides easy management of multiple microprocessor
configurations via “single instruction stream”
communication.

m Simple interconnection between extended processing
units and Z8000 CPU requires no additional external
supporting logic.

m Supporis debugging of suspect hardware against
proven software. -

m Standard features on all Zilog Z8000 CPUs.

Specific benefits include:

® EPUs can be added as the system grows and as EPUs
with specialized functions are developed.

m Control of EPUs is accomplished via a “single instruction
stream” in the Z8000 CPU, eliminating many significant
system software and bus contention management
obstacles that occur in other multiprocessor (e.g..
master-slave) organization schemes.

The processing power of the Zilog Z8000 16-bit
microprocessor can be boosted beyond its intrinsic
capability by Extended Processing Architecture, Simply
stated, EPA allows the Z8000 CPU to accommodate up to
four Extended Processing Units (EPUs), which perform
specialized functions “in parallel with the CPU's main
instruction execution stream (Figure 7).

The use of extended processors to boost the main CPU's
performance capability has been proven with large
mainframe computers and minicomputers. In these
systems, specialized functions such as array processing,
special input/output processing, and data communications
processing are typically assigned to extended processor
hardware. These extended processors are complex
computers in their own right.

The Zilog Extended Processing Architecture combines the
best concepts of these proven performance boosters with
the latest in high-density MOS integrated-circuit design. The
result is an elegant expansion of design capability—a
powerful microprocessor architecture capable of
connecting single-chip EPUs that permits very effective
parallel processing and makes for a smoothly integrated
instruction stream from the Z8000 programmer’s point of
view. A typical addition to the current Z8000 instruction set is
a set of Floating Point Instructions.

The Extended Processing Units connect directly to the
Z8000 Bus (Z-BUS) and continuously monitor the CPU
instruction stream. When an extended instruction is
detected, the appropriate EPU responds, obtaining or

132

Powered by ICminer.com Electronic-Library Service CopyRight 2003

T-49-17-07

ZILOG INC

17E D ME 9944043 001684 5 WA
T-49-17-07

placing data or status information on the Z-BUS using the
Z8000-generated control signals and performing its
function as directed. .

The Z8000 CPU is responsible for instructing the EPU and
delivering operands and data to it. The EPU recognizes
instructions intended for it and executes them, using data
supplied with the instruction and/or data within its internal
registers. There are four classes of EPU instructions:

u Datatransfers between main memory and EPU registers
m Datatransfers between CPU registers and EPU registers
m EPU internal operations

| Status transfers between the EPUs and the Z8000 CPU
Flag and Control Word register (FCW)

Four Z8000 addressing modes may be utilized with
transfers between EPU registers and the CPU and main
memory: -

u Register

m Indirect Register
m Direct Address
® Index

In addition to the hardware-implemented capabilities of the
Extended Processing Architecture, there is an extended
instruction trap mechanism to permit software simulation of
EPU functions. A control bit in the Z8000 FCW register
indicates whether actual EPUs are present or not. If not,
when an extended instruction is deteéted, the Z8000 traps
on the instruction, so that a software “trap handler" can
emulate the desired EPU function—a very useful

development tool. The EPA software trap routine supports
the debugging of suspect hardware against proven
software. This feature will increase in significance as
designers become familiar with the EPA capability . of the
78000 CPU,

This software trap mechanism facilitates the design of
systems for later addition of EPUs: initially, the extended
function is executed as a trap subroutine; when the EPU is
finally aftached, the trap subroutine is eliminated and the
EPA control bit is set. Application software is unaware of the
change. ’

Extended Processing Architecture also offers protection
against extended instruction overlapping. Each EPU
connects to the Z8000 CPU via the STOP line so that if an
EPU is requested to perform a second extended instruction
function before it has completed the previous one, it can put
the CPU into the Stop/Refresh state until execution of the
previous extended instruction is complete.

EPA and CPU instruction execution are shown in Figure 8.
The CPU begins operation by fetching an instruction and
determining whether it is a CPU or an EPU command. The
EPU meanwhile monitors the Z-BUS for its own instructions.
If the CPU encounters an EPU command, it checks to see
whether an EPU is present; if not, the EPU may be simulated
by an EPU instruction trap software routine; if an EPU is
present, the necessary data and/or address is placed on the
Z-BUS. If the EPU is free when the instruction and data for it
appear, the extended instruction is executed. If the EPU is
still processing a previous instruction, it activates the CPU’s
STOP line to lock the CPU off at the Z-BUS until execution is
complete. After the instruction is finished, the EPU
deactivates the STOP line and CPU transactions continue.

STOP LINE

I

EPU D—' DEDICATED

1 EPY
E:q MEMORY

EPU
2

DEDICATED
EPY

~

28000
cry

D—J DEDICATED
EI;U EPU

@ MEMORY

M DEDICATED
EPU]

2.8US COMPONENT INTERFACE

4 Euﬂ«mv
m\

10

PERIPHERAL

1 [i

PERIPHERAL .

q

MEMORY °
MANAGEMENT
UNIT

(=

MEMORY

Figure 7. Typical Extended Processor Configuration

Powered by ICminer.com Electronic-Library Service CopyRight 2003

133

L?PE D

M 9984043

A set of /O instructions performs 8-bit or 16-bit transfers
between the CPU and 1/O devices. /O devices are
addressed with a 16-bit /O port address. The /O port
address is similar to a memory address; however, /O
address space need not be part of the memory address
space. |/O port and memory addresses coexist on the same
bus lines and they are distinguished by the status outputs.

CPU MONITOR 2-BUS
IDLES IN §T0P INSTRUCTION
STOP! LINE ACTIVE STREAM
REFRESH ?
STATE
NO
FETCH EPU
NEXT INSTRUCTION
- INSTRUCTION :
l_ _—_——f— = T _——="
CPU GENERATES
DATA/ADDRESS EXEQUTES
AND PLACES ON INSTRUCTION
A
______ e e =
SET STOP
cPy EPA TRAP
- EXECUTES SERVICE LINE AT orY
INSTRUCTION ROUTINE i
t
A\ DATA OR ADDRESSES ARE PLACED ON THE BUS AND USED BY THE EPU IN THE
EXECUTION OF AN INSTRUCTION.
Figure 8. EPA and Z8000 CPU Instruction Execution
INPUT/OUTPUT

Two types of O instructions are available: standard and
special. Each has its own address space. The I/O
instructions include a comprehensive set of In, Out, and
Block I/O instructions for both bytes and words. Special I/O
instructions are used for ioading and unloading the Memory
Management Unit. The status information distinguishes
between standard and special I/O references.

MULTI-MICROPROCESSOR SUPPORT

Multi-microprocessor systems are supported in hardware
and software. A pair of CPU pins is used in conjunction with
certain instructions to coordinate multiple microprocessors.
The Multi-Micro Out pin issues a request for the resoyrce,
while the Multi-Micro In pin is used to recognize the state of
the resource. Thus, any CPU in a multiple microprocessor
system can exclude all other asynchronous CPUs from a
critical shared resource. M

Multi-microprocessor systems are supported in software by
the instructions Multi-Micro Request, Test Multi-Micro In, Set
Multi-Micro Out, and Reset Mutti-Micro Out. In addition, the
eight megabyte CPU address space is beneficial in multiple
microprocessor systems that have large memory
requirements.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E

D WM 9984043 001168L 9 W

ADDRESSING MODES

The information included in Z8000 instructions consists of
the function to be performed, the type and size of data
slements to be manipulated, and the location of the data
elements. Locations are designated by register addresses,
memory addresses, or I/O addresses. The addressing
mode of a given instruction defines the address space it
references and the method used to compute the address
itself. Addressing modes are explicitly specified or implied
by the instruction.

T-49-17-07

Figure 9 illustrates the eight addressing modes: Register
(R), Immediate (IM), Indirect Register (IR), Direct Address
(DA}, Index (X), Relative Address (RA), Base Address (BA),
and Base Index (BX). In general, an addressing mode
explicitly specifies either register address space or memory
address space. Program memory address space and I/O
address space are usually implied by the instruction.

Operand Value

Addressing Mode Operand Addressing
In the Instruction In o Register In Memo!
TY
R
n The content of the
Register REGISTER ADDREQ—PLOPERAND—I teglster
M
Immediate In the instruction
*IR
irect) The of the locatt
Indirect s |— I
. | REGISTER ADDRESS ADDRES?I“—D OPERAND whose address is in the
Register o lg register
DA
The content of the location
Direct I ADDRESS } ‘,]' OPERAND I whose address Is in the
- Address instruction
‘X
The content of the loca-
Ind REGISTER ADDRESS inoex e tion whose address Is the
ndaex N address in the instruction
BASE —(+ OPERAND
_ plus the content of the
working register,
RA The content of the location
whose address is the
Relative FOvALE content of the program
Rddress [meruscmmew }—— Sounter, offset by the
displacement in the
instruction
.
BA - The content of the location
Base REGISTER ADDRESS —»hAseAuunEss '—3\‘ whose address is the
DISPL ” OPERAND address in the register,
Address - - offsel by the displacement
- . in the instruction
*
BX . The content of the loca-
Base REQISTER ADDRESS BASE ADDRESS tion whose address is
Index REGISTER ADDRESS INDEX n the address in a register

Plus the index value in
another register.

* *Do not use RO or RRO as indirect, index, or base registers,

Figure 9. Addressing Modes

135

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D MR 9984043 0011887 O mm
INSTRUCTION SET SUMMARY ' ' T-49-17-07
The Z8000 provides the following types of instructions; m Bit Manipulation
& Load and Exchange) | Rotate and Shift i
| Arithmetic & Block Transfer and String Manipulation :
® lLogical T o | Input/Output
u Program Control : . m CPU Control i
LOAD AND EXCHANGE
Clock Cycles*
Addr. Word, Byte Long Word -
Mnemonics Operands Modes NS SsS SL NS S8 SL Operation
CLR dst R 7 7 7 : Clear
CLRB IR 8 8 8 dst+<0
DA 11 12 14
X 12 12 15
EX R, src R 6 6 6 Exchange
EXB . IR 12 12 12 - R« sic
DA 15 16 18
. X 16 16 19
LD R, src R 3 3 3 5 5 5 Load into Register
LDB M 7 7 7 11 11 1 R« src
L . M 5 (byte only)
IR 7 7 7 11 11 13
DA - 9 10 12 12 13 15
X 10 10 13 13 13 16 i
" BA 14 14 14 17 17 a7 \
BX 14 14 14 17 17 17 i
LD dst, R IR 8 8 8 11 11 1 Load into Memory (Store)
LDB ’ DA 11 12 14 14 15 17 dst<+R
LDL X 12 . 12 15 15 15 18
BA 14 14 14 17 17 17
BX 14 14 14 17 17 11 :
LD dst, IM IR 111t Load Immediate into Memory
LoB DA 14 15 17 dst < IM
X 15 15 18
LDA R, s1c DA 12 13 . 15 Load Address |
X 13 13 16 ’ R <« source address
BA 15 15 15
BX 15 15 15
LDAR R, src RA 15 15 15 . Load Address Relative
)) R < source address
LDK R, stc M 5 5 5 _Load Constant
R<n(n=0..15 ;
LDM _ R, stc,n 138 11 i1 11 +3n Load Multiple .
DA 14 15 17 +3n : R« src (n consecutive words)] i
X 16 15 , 18+3n (n=1..16)
*NS = Non-segmented SS = Segmenied Short Offset ~ SL = Segmented Long Offset
136
Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC L7E D MM 9984043 0011888 2 M
LOAD AND EXCHANGE (Continued) ' T-49-17-07
Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS S5 SL NS SS SL Operation .
LDM dst, R, n IR 11 11 11 +3n Load Multiple (Store Multiple)
DA 14 16 17 + 3n dst < R (n consecutive words)
X 15 15 18 + 3n n=1..16)
LDR R, sric RA 14 14 14 17 17 17 LoadRelative
LORB) R<src
LDRL (range —32768... +32767)
LDR dst, R RA 14 14 14 17 17 17 Load Relative (Store Relative) '
LDRB N dst<R ’
LDRL (range —32768... +32767)
POP dst, IR R 8 8 8 12 12 ‘12 Pop
POPL IR 12 12 12 19 19 19 dst<IR
- DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26
PUSH Rsc = R 9 9 9 12 12 12 Push
PUSHL M 12 12 12 19 19 19 Autodecrement contents of R
IR 13 13 13 20 20 20 IR«src
DA - 14 14 16 21 21 23
X 14 14 17 21 21 24
ARITHMETIC
ADC R, src R 5 5 5 Add with Carry
ADCB R<R + sic + carry
ADD R, src R 4 4 4 8 8 8 Add
ADDB - IM 7 7 7 14 14 14 R+R + src
ADDL - IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP - R, src R 4 . 4 4 8 8 8 Compare with Register
CPB M 7 7 7 14 14 14 R - src
CPL " IR 7 7 7 14 14 14
DA 9 10 i2 15 16 18
X 10 10 13 16 16 19
cpP dst, IM IR 11 11 11 Compare with Immediate
CPB DA 14 15 17 dst - IM
X 15 15 18 .
DAB dst R 5 5 5 Decimal Adjust
'DEC dst,n R 4 4 4 Decremented by n
DECB IR 11 11 11 dst<dst - n
DA 13 14 16 {(n=1..16)
X 14 14 17
*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offsst
137
Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

17E D WM 9984043 0011889 4 mm

ARITHMETIC (Continued) T-49-17-07
Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands "Modes NS SS SL NS SS SL Operation
Div R, src R 107 107 107 744 744 744 Divide (signed))
DIVL. M 107 107 107 744 744 744 Word: Ryy.1 < Rpnst + src
IR 107 107 107 744 744 744 Ry, < remainder
DA 108 109 111 745 746 748 Long Word: By.+.2,0+3+Rn... n+3+8C
X 109 109 112 746 746 749 Rn,n+2 + remainder
EXTS dst R 11 11 11 11 11 11. Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst
iNC dst,n R 4 4 4 Incrementby n
INCB IR 11 11 11 dst < dsf + n
DA 13 14 16 (n=1..16)
X 14 14 17)
MULT R, src R 70 70 70 282t 282t 282t Multiply (signed)
MULTL - M 70 70 70 282t 282t 282t Word: Rnn+1<Rntqesre
IR 70 70 70 282t 282t 282t LongWord:Rn. n+3* Rn+2n+3
DA 71 72 74 283t 284t 2867 - tPlus seven cyclesforeach 1inthe
- X 72 72 75 284t 284t 287t rultiplicand
NEG dst R 7 7 7 Negate
NEGB IR 12 12 -12 dst <0 — dst
DA 15 16 18
X 16 16 19
SBC R, src R 5 5 5 Subtract with Carry
SBCB R<+<R -~ src — carry
SUB R, src R 4 4 4 8 8 8 Subtract
SuBB M 7 7 7 14 14 14 R<+R -src
suBL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 © 16 19
LOGICAL
. AND R, src R 4 4 4 AND
ANDB IM 7 7 7 R+ RANDsrc -
IR 7 7 7
DA 9 10 12
X 10 10 13
COM dst R 7 7 7 Complement
CcOoMB IR 12 12 12 dst < NOT dst
DA 15 16 18
X 16 16 19
OR R, src R 4. 4 4 ~ OR
ORB M 7 7 7 R < RORsrc
IR 7 7 7
DA 9 10 12
X 10 10 - 13

*NS = Non-segmented

88 = Segmented Short Offset -

SL = Segmented Long Offset

138

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D MW 9984043 0011890 0 =
' LOGICAL (Continued) . | _ T-49-17-07
Clock Cycles* A
- Addr. Word, Byte . Long Word
Mnemonics Operands Modes NS SS SL NS sS SL Operation
TCC . cc, dst R 5 5 5 - Test Condition Code
TCCB . " " SetLSBifccistrue
TEST dst . R 7 7 7 13 RK} 13 Test
TESTB IR 8 8 8 13 13 13 dstORO
TESTL DA 11 12 14 16 17 19
X 12 12 15 17 17 20
XOR "R, st R 4 4 a4 Exclusive OR
XORB M 7 77 R<+RXORsfc
IR 7 7.7 :
DA 9 10 12
X 10 10 13 H
i
. l
PROGRAM CONTROL
CALL dst IR 10 15 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13- 18 21 . @SP+PC
’ PC «dst
CALR dst RA 10 10 16 R Call Relative
Autodecrement SP
@SP+~PC
PC+PC+dst range ~4094 to +4096)
DJINZ R, dst RA 11 11 11 Decrement and Jump if Non-Zero
DBJNZ R<R-1
IfR # 0: PG<-PC + dsl(range - 254 10 9)
IRETt — — 13 13 16 Interrupt Return
PS @ SP
Autoincrement SP
JP : cc, dst iR 10 10 15 (taken) ' Jump Conditional
IR 7 7 7 (not taken) Ifceistrue: PC « dsf
DA 7 8 10
X 8 8 11
JR ce, dst RA 6 6 6 Jump Conditional Relative
lfecistrue: PC <+ PC + dst
(range - 266 to +254)
RET cc - 10 10 13 (taken) Return Conditional
7 7 7 (not taken) lfccistrue: PC < @ SP i
Autoincrement SP ;
sc st M 33 a3 ag System Call _
Autodecrerment SP
@ SP < old PS

Push instruction
P§ < System Call PS

*NS = Non-segmented - SS = Segmented Short Offset ~ SL = Segmented Long Offset
tPrivileged instruction. Executed in system mode only.

139

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

17 D WM 9984043 0011891 2 mm

BIT MANIPULATION ' T-49-17-07
Clock Cycles*
~ Addr. Word, Byte Long Word
Mnemonics Operands Modes ' NS SS SL NS SS SL Operation
BIT dst,b 'R 4 4 a4 Test Bit Static
BITB) IR 8 8 8 Z flag < NOT dst bit specified by b
DA 10 11 13
X 1. M 14
BIT dst, R R 10 10 10 Test Bit Dynamic
BITB Z flag < NOT dst bit specified by
contents of R
RES dst,b R 4 4 4 Reset Bit Static
RESB IR 11 11 11 Reset dst bit specified by b ,
DA 13 14 16 -
X 14 14 17
RES dst,R) R 10 10 10 Reset Bit Dynamic
RESB Reset dst bit specified by contents R
SET dst, b R 4 4 4) Set Bit Static
SETB IR 11 11 11 Set dst bit specified by b
DA 13 14 16 -
X 14 14 17
SET dst, R R 10 10 10 Set Bit Dynamic
SETB ’ Set dst bit specified by contents of R
TSET | dst R 7 7 7 Test and Set
TSETB IR 11 11 11 Sflag < MSB of dst
DA 14 15 17 " dst<all1s
X 15 15 18
ROTATE AND SHIFT
RL dst, n R 6forn=1 Rotate Left
RLB R 7forn=2 bynbifs(n =1,2)
RLC dst,n R 6forn=1 Rotate Left through Carry
RLCB R 7forn=2 bynbits(n = 1,2) :
RLDB R, src R 9 9 9 Rotate Digit Left
RR dst,n R 6forn=1 Rotate Right
RRB R 7forn=2 bynbits(n = 1,2)
RRC dst,n R 6forn=1 Rotafe Right through Carry
RRACB R - 7forn=2 bynbits(n = 1,2)
RRDB R, src R 9 9 9 Rotate Digit Right
SDA dst, R R 15+ 3n) (15+3n) Shift Dynamic Arithmetic
SDAB - Shift dst left or right by
SDAL contents of R
SDL dst, R R, (15 + 3n) (156 + 3n) Shift Dynamic Logical
sDLB ’ Shift dst left or right by
.SDLL contentsof R -

*NS = Non-segmented

88 = Segmented Short Offset

SL = Segmented Long Offset

140

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC L7E D WM 9984043 0011852 4 M

ROTATE AND SHIFT (Continued) T-49-17-07
i Clock Cycles*
R) Addr. * Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
SLA dst, n "R (13 +3n) (13+3n) Shift Left Arithmetic
SLAB ' : by n bits
SLAL : ’
‘SLL dst,n R (13 + 3n) (13+3 n) ' Shift Left Logical
Sl -) » by n bits
- SLLL ’ : .
SRA . ds,n R (13+3n) (13 +3n) Shift Right Arithmetic
SRAB by n bits
SRAL - '
SRAL dst,n R (13 + 3n) (13+3n) " Shift Right Logical
SRLB . by n bits
SRLL ’

BLOCK TRANSFER AND STRING MANIPULATION
CPD Ry.src,Ryice IR 20 20 20 Compare and Decrement
CPDB Rx ~ src

Autodecrement src address

Ry<Ry - 1
CPDR Rx.srcRyee - IR (11 +9n) Compare, Decrement, and Repeat
CPDRB Ry - src

Autodecrement src address

- Ry<Ry -1
Repeatuntilccistrue orRy = 0

CPI Ry.src,Ry.co IR 20 20 20 Compare and Increment
CPiB . Ry ~ src
: : Autoincrement src address .
Ry <Ry — 1

CPIR Rx.src,Ry,cc R (11 +9n) Compare, Increment, and Repeat
CPIRB Ry - src
Autoincrement src address
Ry <Ry -1
RepeatuntiiccistrueorRy = 0 -

CPSD dst,src,R,cc IR 25 25 25 Compare String and Decrement
CPSDB g ' - . dst ~ stc
. Autodecrement dst and src addresses
R<R -1

1

CPSDR dst,src,R,cc IR (11 + 14n) Compare String, Decrement, and
CPSDRB Repeat
: dst - src .
Autodecrement dst and src addresses
_ R<R -1
s : Repeat untilccistrue or R = 0

*NS = Non-segmented SS = Segmented Short Offset ~ SL = Segmented Long Offset

141

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

LJ7E D MHE 9984043 00116893 L M

BLOCK TRANSFER AND STRING MANIPULATION (Continued)

T-49-17-07

. Addr.

Mnemonics Operands Modes NS

Word, Byte

Clock Cycles*

8§ SL NS SS

Long Word

SL

Operation

CPSI dst,src,R,cc IR 25
CPSiB

25 25

Compare String and Increment
dst — stc

' Autoincrement dst and src addresses

R<R -1

CPSIR dst,src,R,cc IR
CPSIRB

(11 + 14n)

Compare String, Increment and
Repeat

dst - src .
Autoincrement dst and sic addresses
R<R-1

RepeatuntiiccistrueorR = 0

LDD dst,src,R R 20
LODB

20 20

Load and Decrement

dst+src

Autodecrement dst and src addresses
R<R-1

LDDR dst,src,R IR
LDDRB . -

(11 +9n)

Load, Decrement and Repeat

dst «src

Autodecrement dst and src addresses
R+<R-1

Repeatuntii R = 0

LD dst,src,R IR 20
LDIB

20 20

Load and Increment

dst < src

Autoincrement dst and src addresses
R«<R-1

LDIR dst,src,R IR
. LDIRB

(i1 +9n)

Load, Increment and Repeat

dst < src

Autoincrement dst and src addresses
R+<R-1

RepeatuntiR = 0

TRDB dst,sre,R IR 25

25 25

Translate and Decrement

‘dst < src (dst)

Autodecrement dst address
R<R-1

TRDRB dst,src,R IR

(11 + 14n)

Translate, Decrement and Repeat
dst < sre (dst)

Autodecrement dst address

R<R -1

RepeatuntiiR = 0

TRIB dst,src,R IR 25

25 26

Translate and Increment
dst < src (dst)
Autoincrement dst address
R+<R-1

*NS = Non-segmented S8 = Segmented Short Offset
*Privileged instruction. Executed in system mode only.

SL = Segmented Long Offset

142

Powered by ICminer.com Electronic-Library Service CopyRight 2003

A AR

J7E D WM 9944043 0011894 & mm

ZILOG INC
. T-49-17-07
BLOCK TRANSFER AND STRING MANIPULATION (Continued) .
Clock Cycles* .
Addr. Word, Byte Long Word ’
Mnemonics Operands Modes NS SS SL NS SS§ SL Operation
. TRIRB dst,sre,R IR (11 +14n)- Translate, Increment and Repeat

dst < src (dst)
Autoincrement dst address
R+<R-1
Repeat untitR = 0

TRTDB src1,src2,R IR 25 25 25 Translate and Test, Decrement
RH1 «src2 (srct)
Autodecrement src 1 address
R+<R-1

TRTDRB src1,sr62,R IR (11 + 14n) Translate and Test, Decrement, and

’ Repeat
RH1 < src2 (srci)
' Autodecrement src1 address

R«<R -1
RepeatuntiR = OorRH1 = 0

TRTIB sre1,src2,R IR 25 25 25 Translate and Test, Increment
RH1 < src2 (stc1)
Autoincrement src1 address
R+<R-1

TRTIRB src1,src2,R IR (11 + 14n) Trénslate and Test, Increment and
Repeat
RH1 « src2 (srct)
Autoincrement src 1 address
R<R-1
RepeatuntiiR = QorRH1 = 0

INPUT/OUTPUT

INt R.src R 10 10 10 Input

INBt DA 12 12 12 R<+src

INDT dst,src,R R 21 21 21 Input and Decrement

INDBT dst < sro
Autodecrement dst address
R+<R-1

INDRT dst,sre,R IR (11 + 10n) Input, Decreﬁ\ent and Repeat

INDRBT dst < sic .
Autodecrement dst address
R+R -1
RepeatuntiR = 0

INIt dst,src,R IR 21 21 21 input and Increment

INIBt dst < src
Autoincrement dst address
R«<R-1

*NS = Non-segmented SS = Segmented Short Offset
tPrivileged instruction. Executed in system mode only.

SL = Segmented Long Offset

143

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

L7E D WE 9984043 0011895 T mm

Vs

INPUT/OUTPUT (Continued) T-49-17-07
. Clock Cycles*® :
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
INIRt dst,src,R IR (11 + 10n) Input, Increment and Repeat
INIRBT . dst<src
Autoincrement dst address
R+<R -1
RepeatuntiiR = 0
outt dst,R IR 10 10 10 Output
ouTst DA 12 12 12 dst<R
ouTpt dst,src,R IR 21 21 21 Output and Decrement
ouTtpst dst +src
Autodecrement src address
R+<R-1
OTDRt dst,src,R R (11 +10n) Output, Decrement and Repeat
OTDRBt dst < src
Autodecrement src address
R<R-1
RepeatuntitR = 0
ouTIt dst,src,R IR 21 21 21 Output and Increment
ouTBt dst < src
Autoincrement src address
R<R-1
OTIRT dst,src,R IR (11 4+ 10n) Output, Increment, and Repeat
OTIRBT dst +src
Autoincrement src address
R<R-1
RepeatuntiR = 0
SINt R.src DA 12 12 12 Special Input
SINBT R<src
SINDT dst,src,R IR 21 21 21 Special Input and Decrement
SINDBt dst < sre
Autodecrement dst address
R<R-1
SINDRT dstsre,R IR 11+ 10n) Special Input, Decrement, and
SINDRBT Repeat
) dst < stc
- Autodecrement dst address
R<R-1
RepeatuntiR = 0
sinNit dst,sre,R iR 2t 21 21 Special Input and Increment
siNIBt dst + src

Autoincrement dst address
R«<R -1

*NS = Non-segmented

tPrivileged instruction. Executed in system mode only,

SS = Segmented Short Offset SL = Segmented Long Offset

144

Powered by ICminer.com Electronic-Library Service CopyRight 2003

e e e i

ZILOG INC J7ED MR 9984043 001189 1 mm

INPUT/OUTPUT (Continued) T-49-17-07
Clock Cycles*
Addr. Word, Byte Long Word i
Mnemonics Operands Modes NS SS SL NS Ss sL Operation
SINIRT dst,sre,R IR (11 +10n) Special Input, Increment, and
SINIRBT - Repeat
dst < src
Autoincrement dst address
R«<R -1
RepeatuntiR = 0
SOUTT ~ dst.src DA 12 12 12 Special Qutput
sourBt dst + sic
souTDt dst,src,R IR 21 21 21 Special Output and Decrement
SOuUTDBT dst +src
! Autodecrement src address
R<R -1
SOTDR?T dst,src,R IR (11 +10n) : Speclal Qutput, Decrement;and
SOTDRBY Repeat
dst < sre
Autodecrement src address
R<R -1
RepeatuntiR = 0
souTit dst,sre,R IR 21 21 21 Special Output and Increment
souTiBt dst +src
Autoincrement src address
R<R-1 l
SOTIRt dst,src,R R (11 + 10n) Special Output, Increment, and [
SOTIRBt Repeat §
dst < src :
Autoincrement src address !
R<R-1

RepeatuntiR = 0

CPU CONTROL
COMFLG flags — 7 7 7 - Complement Fiag
- 4] (Any combination of C, Z, S, P/V)
DIt it 0 - 7 7 7 Disable Interrupt
(Any combination of NVI, VI
Eit int — 7 7 7 Enable Interrupt
(Any combination of NVI, VI)
HALTT R - 8+3n) HALT
LDCTLT CTLR.src R . 7 7 7 - Load into Control Register
i ’ CTLR «src*
LDCTLT dst,CTLR R 7 7 7 Load from Control Register

dst < CTLR

*NS = Non-segmented SS =~Segmented Short Offset SL = Segmented Long Offset
tPriviteged instruction, Executed insystem mode only.

145

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D WM 9984043 0DO116897 3 |

CPU CONTROL (Continued) . T-49-17-07 '
Clock Cycles* ,
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS §S SL Ns ss sL Operation
LDCTLB FLGR,stc R -7 7 7 Load into Filag Byte Register
: FLGR < src
LDCTLB dstFLGR ~ R 7 7 7 Load from Flag Byte Register
' dst+—FLGR
Lopst sIc R 12 16 16 Load Program Status
’ DA 16 20 . 22 . PS<src
X 17 20 23)
mBITH - - 7 1T 1 - . Test Multi-Micro Bit
Set Sif Ml is Low; reset S if Ml is High
MREQT dst R (12 + n) Multi-Micro Request
MRESt —_ — 5 5 5 Multi-Micro Reset
MSET? - - 5 7 7 Multi-Micro Set
NOP — - 7 7 7 No Operation
RESFLG flag - 7 7 7 Reset Flag
- (Any combination.of G, Z, S, P\V)
SETFLG flag- - 7 1 7 SetFlag |

(Any combination of C, Z, S, P/V)

*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset
tPriviteged instruction. Executed in system mode only.

146 » ‘ o 19

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

17E D EE 9984043 0011898 5 mm

T-49-17-07
CONDITION CODES
Code Meaning Flag Settings CC Field
F Always false — —- 0000
T ' Always true —_ 1000
4 Zero Z=1 0110
NZ Not zero Z=0 11107
C Carry C=1 o111
NC No Carry C=0 1111
PL Plus S=0 1101
Ml Minus S=1 0101
NE Not equal Z=0 1110
EQ Equal Z=1 0110
ov Overflow PN =1 0100
NOV No overflow PN =0 1100
PE Parity is even PV =1 ¥ 0100
PO Parity is odd PV =0 1100
GE Greater than or equal (signed) (SXORPV) =0 1001
LT Less than (signed) (SXORPNV) = 1 0001
ar Greater than (signed) [ZOR(SXORP/V)] = 1010.
LE Less than or equal (signed) [ZOR(SXORPNV)] = 1 0010
UGE Unsigned greater than or equal C=0 111
ULT Unsigned less than C=1 0111
UGT Unsigned greater than [(C=0)AND(@Z = 0)] =1 1011
ULE Unsigned less than or equal (CORZ) =1 0011
Note that some condition cades have identical flag setlings and binary fields in the instruction:
Z = EQ,NZ = NE, C = ULT, NC = UGE, OV = PE, NOV = PO
STATUS CODE LINES
STg-ST3 Definltion
0000 Internal operation
0001 Memory refresh
0010 1/0 reference
0011 Special /O reference (e.g., to an MMU)
0100 Segment trap acknowledge
. 0101 Non-maskable interrupt acknowledge
0110 Non-vectored interrupt acknowledge
0111 Vectored interrupt acknowledge
1000 Data memory request
1001 Stack memory request
1010 Data memory request (EPU)
1011 Stack memory request (EPU)
1100 Program reference, nth word
1101 Instruction fetch, first word
1110 Extension processor transfer
1111 Reserved i
147

Powered by ICminer.com Electronic-Library Service CopyRight 2003

e

ZILOG INC 17E D

M 9984043 00lled9 7 ma

PIN DESCRIPTION

ADg-AD4s. Address/Data {inputs/outppts, active High,
3-state). These multiplexed address and data lines are used
for /O and fo address memory.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of AS indicates addresses are valid.

BUSACK. Bus Acknowledge (output active Low). Alowon
this line indicates the CPU has relinquished control of the
bus.

BUSREQ. Bus Request (input, active Low). This line must
be driven Low to request the bus from the CPU.

B/W. Byte/Word (output, Low = Word, 3-state). This signal
defines the type of memory reference on the 16-bit
address/data bus.

CLK. System Clock (input).. CLK ds a 5V single-phase
time-base input.

_B-S'. Data Strobe (output, active Low, 3-state). This line times
the data in and out of the CPU,

MREQ. Memory Request (output, active Low, 3-state), A
Low on this line indicates that the address/data bus holds a
memory address.

Mi, MO. Muiti-Micro In, Multi-Micro Out (input and output,
active Low). These two lines form a resource-request daisy
chain that allows one CPU in a multi-microprocessor system
to access a shared resource.

NMI. Non-Maskable Interrupt (edge triggered, input, active
Low). A high-tolow transiton on NMi requests a

ap, I 48] Ap,
apy [2 47 [sNg
ang [3 46] sNs
aoy e . 5] Ao,
Ao, s 4[] an,
_ apy [6 43[] Ap,
stor[]7 42] sn,
mide a7 aos
aps e - 40 an,
Aoy [10 39 [ao,
+5V E " 38 g AD,
il 37 SN,
Wikl 28001 4] ano
sear [J 1 35}] crock
i [5 u{las
AESET] 18 a3[Jne
wo 7 2[1eW
MREQ [} 18 AN
[Wt 0]aw
st f 20 23 [7] ausack
st [2t 28 {1 war
sty [22 27] sushea
st [28 26 [] s,
SN, [24 25{ T sn,

Figure 10a. 48-pin Dual-In-Line Package (DIP),
’ Pin Assignments

T-49-17-07

non-maskable interrupt, The NMi interrupt has the highest
priority of tHe three types of interrupts.

N/S. Normal/System Mode (output Low = Systern Mode,
3-state), N/S indicates the _GPU is in the normal. or system
mode.

NVI. Non-Vectored Interrupt (input, active Low). A Low on
this line requests a non-vectored interrupt.

RESET. Reset (input, active Low). A Low on this line resets
the CPU.

RIW. Read/Write (output, Low = Write, 3-state). R/W
indicates that the CPU is reading from or writing to memory
orl/O.

SEGT. Segment Trap (input, active Low). The Memory
Management Unit interrupts the CPU with a Low on this line
when the MMU detects a segmentation trap. Input on
Z8001 only.

SNg-SNg. Segment Number (outputs, active High, 3-state).
These lines provide the 7-bit segment number used to

“address one of 128 segments by the Z8010 memory

Management Unit. Output by the Z8001 only.
8T-ST3. Status (outputs, active High, 3-state). These lines
specify the CPU status (see Status Code Lines).

STOP. Stop (input, active Low). This input can be used to
single-step instruction execution.

VI, Vectored Interrupt (input, active Low). A Low on this line
requests a vectored interrupt,

WAIT. Wait (input, active Low). This line indicates to the CPU
that the memory or /O device is not ready for data transfer,

an,] 1 40
ADwE 2 39 :l AD,
apy 19 38 [7] ap,
ap] 4 37 1] Apg
A 6 381 an,
STop[J 6 35 [] aos
midr 34[] An,
aps] 8 a3[] Ao,
avy [e 327 Ao,
+sv[j10 31{] anp
VIE y 28002, ::|l cLock
Rvi[] 12 .29[] A8
NMI[] 13 28] NC
RESET [14 7] e
wo [15 6N
MREG [] 18 25 [rRW
sQw . 24 |] BUSACK
st [18 23 [7] WA
ST [] 19 22 [} BUSREG
st [20 21] 5Ts

Figure 11a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments

148

Powered by ICminer.com Electronic-Library Service CopyRight 2003

L?7E D WE 9984043 0011900 T mm

T-49-17-07
‘\0 p@pﬁpx“g-sﬁq&ops'}t‘?b‘g\’otp\
(7 6 5 4 3 2 1 5261 50 49 48 47
STOF |8 48 I 5Ny
Mile 45 JADs
AD¢s |10 44 J ADy
AD1 11 43 §AD;
+5v §12 42 | aDy
it b z8001 o b
Vif14 CPU 40 fanD
NVl |18 39 [oLk
SEGT |16 3s [AS
i J17 37 | REseRVED ABORT
RESET J 18 a6 koW
Mo §19 stng)
, MREQ |20 M IRW
\21 22 23 24 25 26 27 28 29 30 31 32 y
S SRR GO O %%\ f;‘,i- & ¢
i Q\fa S
NC = No connection
52-pin Chip Carrler, Pin Assignments
& ‘9\19{”?9\‘ é)-& Ygo, v°° vg& v.o« vgb ?0\
6 5 4 3 2 1 4443424140 N\
§70P |7 39 | ADg
wls aa | Ap,
ADys |9 a7 | ab.
ADy |10 36 | ADy
5V |11 as | GND
o zggaz se | ok
Vi 33| &S
NI |14 32 | RESERVED
wwi |15 31 | BW
RESET |16 30 [NS
MO {17 28 | RIW

\ 1819202122232425262728/

a
/@@éﬁé\wé\‘;\o \\O%Oé/{vé-
& & E

Figure 11b.

44-pin Chip Carrier, Pin Assignments

28000 CPU TIMING

The Z8000 CPU executes instructions by stepping through
sequences of basic machine cycles, such as memory read
or write, /O device read or write, inferrupt acknowledge,
and internal execution. Each of these basic cycles requires
three to ten clock cycles to execute. Instructions that require
more clock cycles to execute are broken up into several
machine cycles. Thus no machine cycle is longer than ten
clock cycles and fast response to a Bus Request is
guaranteed.

The instruction opcode is fetched by a normal memory read
operation. A memory refresh cycle can be inserted just after
the completion of any first instruction fetch (IFy) cycle and
can also be inserted while the following instructions are
being executed: MULT, MULTL, DIV, DIVL, HALT, all Shift

instructions, all Block Move instructions, and the Multi-Micro .

Request instruction (MREQ).

The following timing diagrams show the relative timing
relationships of all CPU signals during each of the basic
operations. When a machine cycle requires additional clock
cycles for CPU internal operation, one to five clock cycles
are added. Memory and I/O read and write, as well as
interrupt acknowledge cycles, can be extended by
activating the WAIT input. For exact timing information, refer
fo the composite timing diagram.

Note that the WAIT input is not synchronized in the Z8000
and that the setup and hold times for WATT, relative to the
clock, must be met. If asyrichronous WAIT signals are
generated, they must be synchronized with the CPU ¢lock
before entering the Z8000. ’ ’

149

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

17E

D NN 9984043 0011901 1 mm

MEMORY READ AND WRITE

Memory read and instruction fetch cycles are identical, ex-
cept for the status information on the STo-STs outputs.
During a memory read cycle, a 16-bit address is placed on
the AD¢-AD1s outputs early in the first clock period, as
shown in Figure 12. In the Z8001, the 7-bit segment num-
ber is output on SNo-SNg one clock period earlier than the
16-bit address offset.

A valid address Is indicated by the rising edge of Address
Strobe. Status and mode information become valid early in
the memory access cycle and remain stable throughout.
The state of the WAIT input is sampled in the middle of the
second clock cycle by the falling edge of Clock. {f WAIT is

T-49-17-07

Low, an additional clock period is added between To and Ta.
WAIT is sampled again in the middle of this wait cycle, and
additional wait states can be inserted: this allows interfacing

“slow memories, No control outputs change during wait

states, .
Although Z8000 memory is word organized, memory is

_ addressed as bytes. Allinstructions are word-aligned, using

even addresses. Within a 16-bit word, the most significant
byte (Dg-Dys) is addressed by the low-order address (Ag =
Low), and the least significant byte (Do-D7) is addressed by
the high-order address (Ag = High). -

CLOCK |
—_—

ki bl Tz T
| i? 121—_ DATA SAMPLED
FOR READ
- :’AA},IqTPLEn WAIT CYCLES ADDED

WAIT

STATUS
(B8IW, NS, x
8T9-5Ty)

X

SEGMENT NUMBER

Y

- -\ /

_l

f

)
_—

REfADD XEMORY ADDRESS} |

N\ /|

H

/

AD
WRITE XTRY ADDRESS|

x DATA OUT

DS
WRITE

RIW
WRITE

Nl /]

‘iz

Figure 12. Memory Read and Write Timing

150

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

L7E D

INPUT/OUTPUT

110 timing Is similar to memory read/write timing, except
that one wait state is automatically (Twa) inserted between

B 9984043 0011902 3 mm
T-49-17-07

T2 and T3 (Figure 13). Both the segmented Z8001/Z8005 and
the nonsegmented Z8002 use-16-bit I/0 addresses.

Tt ,

T2 Twa

Ts

CLOCK

f S

- DATA SAMPLED
OR READ

1T
SAMPLED

\wm GYCLES ADDED

|

k3
»)
=

—
XX

_STATUS
(BIW, STo-STy)

X

NIS

LOwW

A
__/

HIGH

AD
iNPUT

X;om ADDRESS

DS
INPUT

RIW
INPUT

-/

AD
ouTPUT

X PORYT ADDRESS

X DATA OUT

DS
OUTPUT

RIW
oUTPUT

-\

N N

s

Figure 13. Input/Output Timing

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

L7E D

B 9984043 0011903 5 |

INTERRUPT AND SEGMENT TRAP
REQUEST AND ACKNOWLEDGE

The Z8000 CPU recognizes .three interrupt inputs
(non-maskable, vectored, and nonvectored) and a
segmentation trap input. Any High-to-Low transition on the
NMi input is asynchronously edge detected and sets the
internal NMi latch. The Vi, NV, and SEGT inputs, as well as
the state of the internal NMI latch, are sampled at the end of
To inthe last machine cycle of any instruction.

In response to an interrupt or trap, the subsequent IF; cycle
is exercised, butignored. The internal state of the CPU is not
altered and the instruction will be refetched and executed
after the return from the interrupt routine. The program
counter is not updated, but the system stack pointer is
decrementedin preparauon for pushing starting information
onto the system stack.

The next machine cycle is the interrupt acknowledge cycle.

L. LAST WACHIRE - 1 INSTAUCTION

T-49-17-07

1

This cycle has five automatic wait states, with additional wait
states possible, as shown in Figure 14.

After the last wait state, the CPU reads the information on
ADq-AD;5 and temiporarily stores it, to be saved on the stack
later in the acknowledge sequence. This word identifies the
source of the interrupt or trap. For the nonvectored and
nonmaskable interrupts, all 16 bits can represent peripheral
device status information. For the vectored interrupt, the low
byte is the jump vector, and the high byte can be extra user
status. For the segmentation trap, the high byte is the
Memory Management Unit identifier and the low byte is
undefined.

After the acknowledge cycle, the N/S output indicates the
automatic change to system mode.

Acknomsno 3 STATUS

CICLE QP ANY
I INSTRUC)

SAVING
AU‘TOIMTIC \VHT S'Aﬁ!

e N s /

ACKNOWLEDGE

DX

’ WREG

Figure 14. Interrupt and Segment Trap Request/Acknowledge Timing

STATUS SAVING SEQUENCE

The machine cycles, following the interrupt acknowledge or
segmentation trap acknowledge cycle, push the old status
information on the system stack in the following order: the
_16-bit program counter; the 7-bit segment number

(28001/Z8005 only); the flag control word; and finally the
interrupt/trap identifier. Subsequent machine cycles fetch
the new program status from the program status area, and
then branch to the interrupt/trap service routine.

162

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC L7E D WM 9984043 0011904 7 mA

BUS REQUEST ACKNOWLEDGE TIMING

A Low on the BUSREQ input indicates to the CPU that
-another device is requesting the Address/Data and control
buses. The asynchronous BUSREQ input is synchronized
atthe beginning of any machine cycle (Figure 15). BUSREQ
takes priority over WAIT. If BUSREQ is Low, an internal
synchronous BUSREQ signal is generated, which—after
completion of the current machine cycle—causes the
BUSACK output to go Low and all bus outputs to go into the

T T2 Ts Tx

-

cLOoCK q — e q

T-49-17-07

high-impedance state. The requesting device—typically a
DMA—can then control the bus.

When BUSREQ is released, itis synchronized with the rising
clock edge; the BUSACK output goes High one clock
period later, indicating that the CPU will again take control of
the bus.

[-————ANY M CYCLE—— a——————BUS AVAILABLE— i

Tx T Tx Tx Tx -

/

INTERNAL
BUSREQ

BUSACK) \

sN) S SR ----;—-----(

- .
AD ——bm——— o e e e e e i e —<
. y 4 .
MREQ, DS,
_ STo-STy, D il il T S —(SAME AS PREVIOUS cvcv.EX
BIW, RIW, NIS J . .

Figure 15. Bus Request/Acknowledge Timing

153

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D I 9944043 0011905 9 M

STOP

The STOP input is sampled by the last falling clock edge
immediately preceding any IF cycle (Figure 16) and before
the second word of an EPA instruction is fetched. It STOP is
found Low during the IF4 cycle, a stream of memory refresh
cyclesisinserted after T3, again sampling the STOP input on
each falling clock edge in the middle of the T3 states. During
the EPA instruction, both EPA instruction words are fetched
but any data transfer or subsequent instruction fetch is

T-49-17-07

postponed until STOP is sampled High. This refresh
operation does not use the refresh prescaler or its
divide-by-four clock prescaler; rather, it double-increments
the refresh counter every three clock cycles. When STOP is
found High again, the next refresh cycle is completed, any
remaining T states of the IFy cycle are then executed, and
the CPU continues its operation.

= _/ N/ XX
o (o - (O ~oma--

INSTAUCTION

AN

AEFRESH -
ADDRESS

N/

w—__/___/

—__/

MEMORY REFRESH

o >

W HigH

Figure 16. Stop Timing

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D MR 9984043 001190t O W

INTERNAL OPERATION

Certain extended instructions, such as Multiply and Divide,
and some spegcial instructions need additional time for the
execution of internal operations. In these cases, the CPU
goes through a sequence of internal operation machine

T-49-17-07

cycles, each of which is three to eight clock cycles long
(Figure 17). This allows fast response to Bus Request and
Refresh Request, because bus request or refresh cycles
can be inserted at the end of any internal machine cycle.

Ts

- WAIT
S$To-STs X INTERNAL OPERATION
As —_/ ’
)
AD x UNDEFINED r-
K i
WREQ, DS, RIW HIGH
BIW UNDEFINED

RIS SAME AS PREVIOUS CYCLE

Figure 17. Internal Operation Timing

HALT

A HALT instruction executes an unlimited number of 3-cycle
internal operations, interspersed with memory refresh
cycles whenever requested. An interrupt, segmentation
trap, or reset are the only exits from a HALT instruction.

The CPU samples the Vi, NV, NMI, and SEGT inputs at the
beginning of every T3 cycle. If an input is found active during
two consecutive samples, the subsequent IFy cycle is
exercised, but ignored, and the normal interrupt
acknowledge cycle is started.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

o e M—— e

ZILOG INC 176 D WM 9984043 0011907 2 MR

MEMORY REFRESH

When the 6-bit prescaler in the refresh counter has been
decremented to zero, a refresh cycle consisting of three
T-states is started as soon as possible (that is, after the next
IF4 cycle or Internal Operation cycle).

The 9-bit refresh counter value is put on the low-order side of
the address bus (ADg-ADg); ADg-AD¢5 are undefined
(Figure 18). Since the memory is word-organized, Ag is
always Low during refresh and the refresh counter is always

T-49-17-07

incremented by two, thus stepping through 256 consecutive
refresh addresses on-AD4-ADg. Unless disabled, the
presettable prescaler runs continuously and the delay in
starting a refresh cycle is therefore not cumulative.

Whilethe STOP inputis Low, a continuous stream of memory
refresh cycles, each three Tstates long, is executed without
using the refresh prescaler.

CLOCK

H3
>
=

STo-8T;

REFRESH

»
AD —XREFHESH ADDRESS Y=
/

RIW, BIW, NIE}

SAME AS PREVIOUS CYCLE

-

Figure 18. Memory Refresh Timing

RESET

A Low onthe RESET input causes the following results within
five clock cycles (Figure 19):

m ADg-ADj5 are 3-stated

m AS, DS, MREQ, STy-STs, BUSACK, and MO are forced
High .

® SNg-SNg are forced Low
m Refresh is disabled
m R/W, BW, and N/3 are not affected

When RESET has been High for three clock periods, three
consecutive memory read cycles are executed in the system
mode for the Z8001.The Z8002 has two consecutive
read cycles. In the Z8001 , the first cycle reads the
flag and control word from location 0002, the next reads the
7-bit program counter segment number from location 0004,
the next reads the 16-bit PC offset from location 0006, and
the following IF{ cycle starts the program. In the 28002, the
first cycle reads the flag and control word from location
0002, the next reads the PC from location 0004, and the
following IF4 cycle starts the program.

156

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ot vkl e e Aty inr e+

ZILOG IN‘C L7 D WM 9934043 0011908 4 WM

T-49-17-07

-

.
r)
IF,

(-
\/
A

IFy

- ' /

>

Xy

D

H

N

)-(Fow
IF,

N
)

ALL HIGH
Figure 19. Reset Timing

e O
4

= Q 12 4 " o n iz Iz s o
el L] a = - S 2
3 < I @ z & E 2 =
& = ° H

& 2

157

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

L7E D WM 9984043 0011909 & A

COMPOSITE AC TIMING DIAGRAM

T-49-17-07

RESEY > ‘:<
o G
i d
52 This cgmposite l'i]ming dia- |
= e gram does not show actual
- Vi, NV) EC timing sequences. Refer to
@ @ this diagram only for the
detailed timing refationships
SEGT e =;<: of individual edges. Use the
preceding illusirations as an
=1 ‘@’ explanation of the various
[t timing sequences.
g — T~ Ttod
59 ’ Timing mehasrremen!s are
made al the following
STOP voltages:
a 5 High Low
WAIT Clock 4.0V 0.8v
Oulput 2.0V 0.8V
,@, Input 20V 0.8v
§2 pu
L = Float V205V .
sUsnEa X
@l) i«
BUSATK v A 7
X
- —D
“e_/ | /B
w0 le=al (7
SHo~SNs = -
ADDRESS >< TN = _*'
) @
N
ADo~AD1s{ DATAIN @ >§ o
—& A - -
12 @~ b j
|
DATA OUT ®@ <l
® e <
——(15)
© &)) ‘_®*| 4
MREG @ P A
() __@ /2-,\ /
— ——)]
As 1~ Le@e] — <—®-—j fom e e
e— 2 @1 y
®
4 *hl
mewony s A B - j ==
—® @ -l
MEMORY WRITE _/ ; I L o (O
58 Er
.—@_. !
INPUTIOUTPUT _/ \ p Pq e ot e
rj
fe—— 0
) P v — mcal
INTERRUPT & T
ACKNOWLEDGE _/‘ — :
o 1 ¢ e
STo-ST3,
REC’DI RITE,
NORMALISYSTEM,
BYTE/WORD

158

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 1?E D W 9984043 0011910 2 mm
AC CHARACTERISTICSt . T-49-17-07
28001/2 28001/2 Z8001/2
4MHz - 6 MHz 10 MHz
Number Symbol Parameter Min Max Min Max Min Max
1 TeC ClockCycle Time 250 2000 165 2000 100 2000
2 TwCh Clock Width (High) 105 1895 70 1930 40 1960
3 e Clock Width (Low) 105 1895 70 1930 40 1960
4 TC ‘Clock Fall Time 20 - 10 10
5 TC Clock Rise Time ' 20 15 10
6 TdC(SNv) Clock t to Segment Number Valid (50 pfload) 130 110 90
7 TdC(SNn) Clock t fo Segment Number Not Valid 20 10 0
8 TdC(B2) Clock # to Bus Float 65 ’ 65 50
9 TdC(A) Clock to Address Valid 100 75 55
10 TdC(Az) Clock t to Address Float 65 55 ’ 50
11 TJA(DR) Address Valid to Read Data Required Valid 475* © 305* 180*
27 sDR(C) Read Data to Clock ¥ Setup time 30 20 10
13 TdDS(A) DS 1 to Address Active ’ 80* 45* 20*
14 TdC(DW) Clock to Write Data Valid 100 7% 60
15 ThDR(DS) Read Data to DS t Hold Time - 0 0 0
16 TdDW(DS) Write Data Valid to DS t Delay 205* 195* 110*
17 TdA(MR) Address Valid to MREQ ¢ Delay 55* 35* 20*
18 TdC(MR) Clock + to MREQ ¢ Delay 80 70 50
19 TwMRh MREQ Width (High) 210* 135* 80*
20 TdMR(A) MREQ 1o Address Not Active 70* 35* 20* .
21 TdDW(DSW) Write Data Valid to DS 4 (Writs) Delay 55* - 35* 15* é
22 TdMR(DR) MREQ ¢ to Read Data Required Valid 370* - 230* 140*
23 TdC(MR) Clock § MREQ 1 Delay 80 60 50
24 TdC(ASH) Clock 1 to AS 4 Delay 80 60 45
25 TOA(AS) Address Valid to AS 4 Delay 55* 35* 20*
26 TdC(ASr) Clock } to AS t Delay 90 80 45
27 TdAS(DR)- AS tto Read Data Requited Valid 360* 220* : 140*
28 TdDS(AS) DS110AS 4 Delay 70* 35* 15*
29 TwAS AS Width (Low) 85* 56* 30*
30 TAAS(A) AS t to Address Not Active Délay 70* 45* 20*
81 TdAzDSR) Address Floatto DS (Read) ! Delay 0] 0
32 TdAS(DSR) AS tto DS (Read) ¢ Delay ' 80* " B5* : 30*
33 TdDSR(DR) DS(Read)+to Read Data Required Valid 205* 130* 70*
34 TdC(DSr) Clock ¢ to DS t Delay 70 65 50
- 35 TdDS(DW) DS $ to Write Data Not Valid 75* 45* 25*
36 TdA(DSR) Address Valid to DS (Read) ¢ Delay 180* 110* 65*
37 TdC(DSR) Clock t to DS (Read) ¢ Delay 120 85 65
38 TwDSR DS (Read) Width (Low) 275* 185* 110*
39 TdC(DSW) Clock { to DS (Write) 4 Delay 95 80 65
40" TwDSW DS (Write) Width (Low) 185* 110* 75* i
*Clock-cycle time-dependent characteristics. See Footnotes to AC Characleristics. i
TUnits in nanoseconds (ns).
159 j
i
Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC D mM 9984043 0011911 4 mm

AC CHARACTERISTICS} (Continusd) T-49-17-07
28001/2 28001/2 28001/2
4 MHz 6 MHz 10 MHz

Number Symbol Parameter - Min Max Min Max Min Max
41 TdDSI(DR) DS (/04 to Read Data Required Valid 330* 210* 120*
42 TdC(DS) - Clock 1o DS (0} 4 Delay - 120 80 65
43 TwDS DS (1/0) Width (Low) 410* 255* 160*
44 TdAS(DSA) AStio DS (Acknowledge) + Delay 1065* 690* 410*
45 TdC(DSA) - Clockfto DS (Acknowledge) ¢ Delay 120 8 - 70
46 TdDSA(DR) DS (Acknowledge)+ to Read Data Required

. Delay - 455* 295* 165"

47 TdC(S) Clock 1 o Status Valid Delay 110 85 65
48 TdS(AS) Status Valid to AS t Delay 50* 30* 20*
49 TsR(C) °* RESET to Clock t Setup Time 180 70 50
50 ThR(C) RESET to Clock t Hold Time 0 0 0 i
51 TwNMI | NMIWidth (Low) . 100 70 50 g
52 TsNMI(C) NMi to Clock f Setup Time 140 70 50
83 TsVI(C) Vi, NVT'to Clock * Setup Time 110 50 40
54 ThVIC) VI, NWWTto Clock t Hold Time 20 20 10
55 TsSGT(C) SEGT to Clock # Setup Time 70 . 55 40
56 ThSGT(C) 8EGTto Clock t Hold Time 0 0 0 .
57 TsMIC) - MI to Clock Setup Time 180 140 . 80
58 ThMIC) Mi to Clock Hold Time 0 0 0
59 TdC(MO) Clock tto MO Delay ~ 120 85 80
80 TsSTP(C) STOP to Clack + Setup Time 140 100 50
61 ThSTP(C) STOP to Ciock ¢ Hold Time o . 0 0
62 TsW(C) WAIT to Clock + Setup Time 50 30 20
63 ThW(C) WAIT to Clock ¢ Hold Time 10 10 5
64 TsBRQ(C) BUSREQ to Clack t Seiup Time 90 80 60
65 ThBRQ(C) BUSREQ to Clock + Hold Time 10 10 5
66 TdC(BAKN Clock t to BUSACK t Delay 100 75 65
67 TdC(BAKf) Clock t to BUSACK ¢ Delay 100 75 65
68 TwA Address Valid Width 150* 95* 50*
69 TdDS(S) D3 1 to STATUS Not Valid 80* 55* 30*

*Clock-cycle time-dependent characteristics. See Footnoles to AC Characteristics.
tUnits in nanoseconds (ns).

160

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

176 D M 9984043 0011912 L WM

T-49-17-07

44 TdAS(DSA)
46 TdDSA(DR)

4TcC + TwCl — 40 ns
2TcC + TwCh — 150 ns

4TcC + T™WCl — 40 ns
27cC + ™WCh ~ 105 ns

FOOTNOTES TO AC CHARACTERISTICS
28001/2 Z28001/2 28001/2
4 MHz 6 MHz 10 MHz
Number Symbol Equation Equation Equation
" TdA(DR) ' 2TcC + TwCh — 130 ns 2TcC + TwCh - 95ns 2TcC + TwCh - 60 ns
13 TdDS(A) TwCl - 25ns TwCl - 25ns TwCl ~ 20 ns
16 TdDW(DS) TcC + TwCh — 60ns TcC + ™WCh — 40ns TcC + ™WCh ~ 30ns
17 TdA(MR) TwCh - 50ns TwCh - 35ns - TWwCh - 20 ns
19 TwMBh TcC - 40ns ~ TeC - 30ns TcC - 20ns
20 TdMR(A) TwCl - 35ns TwCt - 35ns WCl - 20 ns
21 TdDW(DSW) TwCh - 50ns TwCh - 35ns TwCh — 25ns
22 TdMR(DR) 2TcC - 130ns 2TcC - 100ns 2T¢C - 60ns
25 TdA(AS) TwCh —~ 50 ns TwCh - 35ns TwCh - 20ns
27 TAAS(DR) 2TcC - 140ns 2TcC - 110ns 2TcC - 60ns
28 . TdDS(AS) TwCl - 35ns TwCl - 35ns TwCl — 25ns
29 TwAS TwCh - 20 ns TwCh - 15ns TwCh - 10ns
30 TdAS(A) TwCl — 35ns TwCl - 25ns _TwCl - 20ns
32 TdAS(DSR) TwCl ~ 25ns TWCl — 15ns TwCl — 10ns
33 TdDSR(DR) TeC + TwCh — 150 ns TcC + TwCh - 105ns TeC + TWCh — 70ns
35 TdDS(DW) TwCl ~ 30ns ™WCl - 25ns TwCl - 15ns
36 TdA(DSR) TeC - 70ns TcC - 55ns TeC - 35ns
38 TwDSR TcC + T™wCh — 80ns TeC + TwCh — 50ns TeC + TwCh — 30ns
40 TwDSW TcC - 65ns TcC - 55ns TeC - 26ns
4 TdDSI(DR) 2TcC - 170ns 2TcC - 120 ns 2TcC - 80ns
43 TwDS 2TcC - 90 ns 2'I:cC - 75ns 2TcC — 40ns

4TcC + TwCl - 30ns
2TcC + TwCh — 75ns

Vine = Vgg— 0.4V

48 TdS(AS) TwCh - 55ns " TwCh —~ 40ns TwCh - 30ns
68 * TwA TcC - 90ns TeC - 70ns TeC - 50ns
69 TdDS(s) TwCl - 25ns TWCl - 15ns TwCl ~ 10ns
AC Timing Test Conditions

VoL =08V

VoH = 2.0V

Vi =08V

Vig =24V

Vg = 0.45V

161

Powered by ICminer.com Electronie-Library Service CopyRight 2003

=

ZILOG INC L 17E

D EE 9984043 0011913 & mm

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

toGND. ... ~-0.3Vtio +7.0V
Operating Ambient
Temperature, See Ordering Information

Storage Temperature -65°Cto +150°C

T-49-17-07

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage.to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics below apply for the following test
conditions, unless otherwise noted. All voltages are
referenced to GND (0V). Positive current flows into the
referenced pin.

Available operating temperature ranges are:
® 8 =0°Cto +70°C, +4.75V & Vo < +5.25V
| E=-40'Cto +100°C, +4.75V < Vce < +5.25V

All ac parameters assume a total load capacitance
(including parasitic capacitances) or 100 pfmax, except for
parameter 6 (50 pf max). Timing references between two
output signals assume a load difference of 50 pf max.

+6V

21K
FROM OUTPUT
UNDER TEST

250

100pl:[Yy

The Ordering Information section lists package temperature
ranges and product numbers.

DC CHARACTERISTICS
Symbo! Parameter Min Max Unit Condition
VCH Clock Input High Voltage Veg-04 Veg+0.3 A Driven by External Clock Generator
Veu Clock Input Low Voltage -0.3 0.45 v Driven by External Clock Generator
ViH Input High Voltage . . 20 Vpc+03 v
ViHRESET Input High Voltage on RESET pin 24 Vgc+03 v
ViHnmi Input High Voltage on NMI pin 24 Vgo+0.3 \%
viL Input Low Voltage -0.3 0.8 v
VoH Output High Voltage 2.4 \ loH = —250pA
VoL - Output Low Voltage 04 \ loL = +2.0mA
TR " Input Leakage . +10 uA 0.4<VINS +2.4V
liLsear Input Leakage on SEGT pin -100 100 A
oL Output Leakage +£10 uA 0.4<VINS +2.4V
Icc Vice Power Supply Current 300 mA 4 MHz and 6 MHz commercial
400 mA Extended temperature range
400 mA 10 MHz speed range
162

Powered by ICminer.com Electronic-Library Service CopyRight 2003

e e

ZILOG INC

17E D

M 9544043 0012311 7 mA

PACKAGE INFORMATION

T-a40-20

LEAD NO. 1
INDENT
0.185__
MAX

G
t

0125 ™™
MIN -

0.010
2002

fo—

0.300 0.018
REF +.003
0.100
=.010

. 0.045
2.015 2.008

SOTH ENDS

18-Pin Ceramic Package

10
arm e ersrmern

Lo e v iy e e v oy e
1 0.920
MAX

it}

18-Pin Plastic Package

0.100
0.200

—

I-—

NOTE: Package dimensions are given in-inches. To convert to millimeters, multiply by 25.4

ANAAANAAAAAANRA

t
(177}
b
O_NI/
Mo
\!VVVVVVVVWVV\‘{
1470 o
max 1
P o s N sl
-) 0.8
] & "
—{-—&% J et
flg: - sl T
W M = -
28-Pin Ploxtic Package

HOTE: Pachage dimenaiona are given in inches. To convert to millimeters, mulliply by 25.4.

561

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D EW 9984043 0012312 9 mm
PACKAGE INFORMATION (Continued) B T-90-206
‘ eﬁ_‘

40 21
PR WA T AT Wk Wk Wt W W W Wi O s e T Tt W Bk Bt

A

5
J

?UUU\HUUQUUV\HUUJUJ-}\J;&’

2.080
MAX

0.058
: SEALING GLASS %.003 = le--
ey R /- -

Saipskigs & sasaean X = ; : 4
i h [: SEE UL
f i%l- ?'ﬁ?hﬁhhﬁ
TYP K SR S N
i 0. AX

0.650 i : 100 M
—2.026 %% -l = goTHENDS
0.040
£.020

40-Pin Dual-in-Line Package (DIP),
Cerdip

AAMNAANANAANAANAANAAR

D

YVVVVVVVVVVUVVVUVVV\QG’

g ——]

=]
o

-1
2
o

—

2,070
MAX
leo 0620 0.050 0.180
. 0.600 —lb—5ve MAX
h
= T 002
L POtMIN
1 t
R | [
X iR
0.650 0.080 0110 1|, 0.021 1" 0060
0.610 - 0.060 0.030 _’ll“o. 6 i Fas0 0.125

40-Pin Dual-in-Line Package (DIP),
Plastic

NQTE: Package dimensions are given ininches. To convert to millimeters, multiply by 25.4.

562

e

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D WM 9984043 0012313 0 mm
T=q0-
'PACKAGE INFORMATION (Continued) q '2 0

PINY
IDENTIFICATION

b oo MAX >
0.040
0.185 0.085 .sso ~007
- ?ﬂ:’f — MAx MAX ,__o e el e02
L__,__* TYP
— t
1 .
0.010 [
- oog-— o 1 | I
. T i
0.600 0.125 i, 0.018
= REF - MIN - "": 015 BOTH ENDS s mo TR T 2.003TYP
0.060
0.0

40-Pin Dual-in-Line Package (DIP),

Ceramic

0.050 PIN1)
j t : 45° x 0.45 MAX
45 X 0,045 MAX~ TYPICAL / IDENTIFICATION \
s 14 “© —

v.026 _4_§7 =p
KOMINAL ¢~ 3
B 0.650
i *002 ;o0 8
] ' *:008 :
b
] y
7” »p , g 2
1 L ' _ Yy
45° x 0.010 MAX X a A
™ I PLaces ’I” Qo8 008 ’
0.074 2005 :
VIEW TOWARD PC SOARD BOTTOM VIEW
44-Pin Plastic Chip Carrier (PCC)

563

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC

17E D MW 9984043

0012314 2 =

PACKAGE INFORMATION (Continued)

PiN 1
IDENTIFICATION

Wi

W W_]

TN _E_W_W_W__1

T-90-206

o

R m—a—p—m—a—a—a—m— e a R R R

= —

2.425
MAX N "
[
0.5% 0.185 0.095 0.5%0 +.007
r-— 7% S MAX WA r—um—’l -.002
_ | TP
LJ T
0.010 X
2.010—wjle— Il
i L JL e
0.600 0.125 0.050 0.100 0.018
AEF MIN oeo—. =.025 BOTH ENDS =.010 TYP 2.003 TYP
o "
6020 -)

48-Pin Dual-in-Line Package (DIP),
Ceramic

150 |
4 PLACES
0.0180.015 RAD. TYP.

" 0.560

0.50
0.062
RADIUS

BAAAAAAAAAAAAAANAANAAAAN

2.470

Y (VAVAVAVAVAVAVAVAVAVAVAPAVAVAVAPAVAVAVAAVATAY/

MAX

0.285
o015\, PE
0.009
0.650 0125 ~1._0080 A
0.610 MIN. 0.060 TYP,

48-Pin Dual-in-Line Package (DIP),
Plastic

564

Powered by ICminer.com Electronic-Library Service CopyRight 2003

ZILOG INC 17E D ER 9984043 0012315 4 Em

PACKAGE INFORMATION (Continued) 7-490-2 o]
5 x 0,045 MAX ; 0.050TvP O riFICATION *~ X 0.64MAX
0.026 4 L : O/ pe b
NOHINALT: ;
g 1)
; :
g P 0.9525Q 0.928
: | ossosa
: h
: :
g -
" lJ
a5° x o.mog:t :) ° .l-{ ::::;
“E 0.470

68-Pin Plastic Chip Carrier (PCC)

1385 o _fo1es|
1.340 0.175
ﬁ sa - «—0.050 MAX
Pl B el
N13 CORNER (" 4PL] — A13 N13
10J0J020JOXOXOXOXOXORT RS 1 =
10X XOXOZOXOXOROJOROXOY o XL =
10J O] (0JO) ==
0J0] 0JO) e
10JO) 0JO) =
0XO) OO 100 =
@ @ @ @ 20.010 ;
[oJ0) oJo) £60% o=t
10JO] [oJ©; ==
2™\ ® oW —
' ® oo+t —f
()@@@@@@@@@@@JT =
l0JoYoloJoJoXoJoJoJoR:s .
0.030x45*REF . At /N1
. 3PL - 1010 g.oﬂzsxu —lle—0.008 REF .
0.30 A1CORNER
. 1210
1.190
84-Pin Grid Array (PGA), . View toward PC Board
- : . Bottom View) '
|
‘NOTE: Package dimensions are given in inches. To conver! to millimeters, mulliply by 25.4.
565

Powered by ICminer.com Electronic-Library Service CopyRight 2003

	btnStamp:
	copyright2:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	P1:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P2:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P3:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P4:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P5:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P6:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P7:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P8:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P9:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P10:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P11:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P12:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P13:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P14:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P15:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P16:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P17:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P18:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P19:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P20:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P21:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P22:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P23:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P24:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P25:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P26:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P27:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P28:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P29:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P30:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P31:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P32:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P33:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P34:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P35:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P36:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P37:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P38:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P39:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P40:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

