Z8300 Low Power Z80®L CPU Central Processing Unit

Zilog

Product Specification

April 1985

Features

- The Z80L combines the high performance of the Z80 CPU with extremely low power consumption. It has the identical pinout and instruction set of the Z80. The result is increased reliability and lower system power requirements. This dramatic power savings makes the Z80L a natural choice for both hand-held and battery backup applications.
- The Z80L CPU is offered in two versions: Z8300-1—1.0 MHz clock, 15 mA typical current consumption Z8300-3—2.5 MHz clock, 25 mA typical current consumption
- The extensive instruction set contains 158 instructions, resulting in sophisticated data handling capabilities. The 78 instructions of the 8080A are included as a subset; 8080A and Z80 Family software compatibility is maintained.
- The Z80L microprocessors and associated family of peripheral controllers are linked by a vectored interrupt system. This system can be daisy-chained to allow implementation of a priority interrupt scheme. Little, if any, additional logic is required for daisy-chaining.
- Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of system software.
 Two 16-bit index registers facilitate program processing of tables and arrays.
- There are three modes of high-speed interrupt processing: 8080 similar, non-Z80 peripheral device, and Z80 Family peripheral with or without daisy chain.
- On-chip dynamic memory refresh counter.

Figure 1. Pin Functions

Figure 2. 40-pin Dual-In-Line Package (DIP)
Pin Assignments

2189-001, 002 249

General Description

The Z80L CPUs are fourth-generation microprocessors with exceptional computational power. They offer high system throughput and efficient memory utilization combined with extremely low power consumption. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response.

The Z80L also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5 V power

source, all output signals are fully decoded and timed to control standard memory or peripheral circuits, and it is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the Z80L processors. Subsequent text provides more detail on the Z80L I/O controller family, registers, instruction set, interrupts and daisy chaining, CPU timing, and low power requirements.

280L Low Power Feature. The Z80L Family offers state-of-the-art microprocessor performance with extremely low power consumption. Its low power requirement rivals comparable CMOS microprocessors. The Z80L Family's lower power consumption provides the ability to reduce system power requirements and enables its use in applications not previously possible. The Z80L is very well suited to battery backup applications or to systems operating primarily on batteries in hand-held or portable systems.

Figure 3. Z80L CPU Block Diagram

Z80L Microprocessor Family

The Zilog Z80L microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficient and cost-effective microcomputer-based systems.

The Z80 Family components provide extensive support for the Z80L microprocessor. These are:

■ The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be configured to interface with standard parallel

- peripheral devices such as printers, tape punches, and keyboards.
- The CTC (Counter/Timer Circuit) features four programmable 8-bit counter/timers, each of which has an 8-bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable modes for both synchronous and asynchronous communication, including Bi-Synch and SDLC.

Z80L CPU Registers

Figure 4 shows three groups of registers within the Z80L CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set (designated by '[prime], e.g., A'). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-

foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Refresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

Figure 4. CPU Registers

Z80L CPU	Re	egister	Size (Bits)	Remarks
Registers	A, A'	Accumulator	8	Stores an operand or the results of an operation.
Continued)	F, F'	Flags	8	See Instruction Set.
	B, B'	General Purpose	8	Can be used separately or as a 16-bit register with C.
	C, C'	General Purpose	8	See B, above.
	D, D'	General Purpose	8	Can be used separately or as a 16-bit register with E.
	E, E'	General Purpose	8	See D, above.
	Н, Н'	General Purpose	8	Can be used separately or as a 16-bit register with L.
	L, L'	General Purpose	8	See H, above.
				Note: The (B,C), (D,E), and (H,L) sets are combined as follows: B - High byte $C - Low$ byte D - High byte $E - Low$ byte H - High byte $L - Low$ byte
	I	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
	R	Refresh Register	8	Provides user-transparent dynamic memory refresh. Lower seven bits are automatically incremented and all eight are placed on the address bus during each instruction fetch cycle refresh time.
	IX	Index Register	16	Used for indexed addressing.
	Ι Υ	Index Register	16	Same as IX, above.
	SP	Stack Pointer	16	Holds address of the top of the stack. See Push or Pop in instruction set.
	PC	Program Counter	16	Holds address of next instruction.
	IFF ₁ -IFF ₂	Interrupt Enable	Flip-Flops	Set or reset to indicate interrupt status (see Figure 4).

Flip-Flops

Table 1. Z80L CPU Registers

Reflect Interrupt mode (see Figure 4).

Interrupts: General Operation

IMFa-IMFb

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The NMI is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

Interrupt Mode

The Z80L has a single response mode for interrupt service for the non-maskable interrupt. The maskable interrupt, $\overline{\text{INT}}$, has three programmable response modes available. These are:

■ Mode 0 — similar to the 8080 microprocessor.

- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.
- Mode 2 a vectored interrupt scheme, usually daisy-chained, for use with Z80
 Family and compatible peripheral devices.

The CPU services interrupts by sampling the NMI and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Interrupts: General Operation (Continued) Non-Maskable Interrupt (NMI). The non-maskable interrupt cannot be disabled by program control and therefore will be accepted all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the Z80L response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt processing cycle begins. This is a special fetch (MI) cycle in which IORQ becomes active rather than MREQ, as in a normal MI cycle. In addition, this special MI cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request and to place the interrupt vector on the bus.

Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus. This is normally a Restart instruction, which will initiate a call to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the Z80 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the $\overline{\text{NMI}}$. The principal difference is that the Mode 1 interrupt has a vector address of 0038H only.

Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z80L microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8-bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 bits and the contents of the I register as the upper 8 bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then calls the routine at that address. This flexibility in selecting the interrupt service routine address

allows the peripheral device to use several different types of service routines. These routines may be located at any available location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_0) must be a zero.

Interrupt Priority (Daisy Chaining and Nested Interrupts). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain configuration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEI input hardwired to a High level. The first device has highest priority, while each succeeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.

The interrupting device disables its IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.

The Z80L CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual and Z80 Assembly Language Manual.

Action	IFF ₁	IFF ₂	Comments
CPU Reset	0	0	Maskable interrupt INT disabled
DI instruction execution	0	0	Maskable interrupt INT disabled
EI instruction execution	1	1	Maskable interrupt INT enabled
LD A,I instruction execution	•	•	IFF ₂ → Parity flag
LD A,R instruction execution	•	•	IFF ₂ → Parity flag
Accept NMI	0	IFF	IFF₁ → IFF₂ (Maskable inter- rupt INT disabled)
RETN instruction execution	IFF ₂	•	IFF ₂ — IFF ₁ at completion of an NMI service routine.

Table 2. State of Flip-Flops

Instruction Set

The Z80L microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor and identical to that of the Z80. It includes such unique operations as a block move for fast, efficient data transfers within memory or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the Z80L instruction set and shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. The Z80 CPU Technical Manual (03-0029-XX) and Assembly Language Programming Manual (03-0002-XX) contain significantly more details for programming use.

The instructions in Table 2 are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- ☐ Exchanges, block transfers, and searches
- □ 8-bit arithmetic and logic operations
- □ General-purpose arithmetic and CPU control

- ☐ 16-bit arithmetic operations
- □ Rotates and shifts
- ☐ Bit set, reset, and test operations
- □ Jumps
- ☐ Calls, returns, and restarts
- ☐ Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- □ Immediate extended
- □ Modified page zero
- □ Relative
- □ Extended
- □ Indexed
- □ Register
- □ Register indirect
- □ Implied
- □ Bit

8-Bi Logo Gro

it ıd	Mnemonic	Symbolic Operation	s	z		Flo H		P/V	N	С	Opcode 76 543 210	Hex		No.of M Cycles		Co	mments
oup	LD r, r' LD r, n	r - r' r - n	:	:	X	:	X	:	:	:	01 r r' 00 r 110		1 2	1 2	4 7	000	Reg. B C
	LD r, (HL) LD r, (IX+d)	r - (HL) r - (IX + d)	:	:	X	:	X	:	:	:	01 r 110 11 011 101 01 r 110	DD	1	2 5	7 19	010 011 100	D E H L
	LD r, $(IY + d)$	$r \leftarrow (iY + d)$	•	•	х	•	x	•	•	•	+ d → 11 111 101 01 r 110 + d →	FD	3	5	19		Ā
	LD (HL), r LD (IX+d), r	(HL) - r (IX + d) - r	:	:	X	:	X	:	:	:	01 110 r 11 011 101 01 110 r - d -	DD	1 3	2 5	7 19		
	LD (IY+d), r	(IY + d) - r	•	•	х	•	X	•	•	•	11 111 101 01 110 r d	FD	3	5	19		
	LD (HL), n	(HL) - n	•	•	х	•	X	٠	٠	•	00 110 110	36	2	3	10		
	LD (I X+ d), n	$(IX + d) \leftarrow n$	•	•	х	•	X	•	•	•	- n - 11 011 101 00 110 110 - d -		4	5	19		
	LD (IY+d), n	(IY+d) - n	•	•	X	•	х	•	•	•	- n - 11 111 101 00 110 110 - d -		4	5	19		
	LD A, (BC)	A - (BC)			Х		х				- n - 00 001 010	OA.	1	2	7		
	LD A, (DE)	$A \leftarrow (DE)$	•	•		•	X	•	٠	•	00 011 010		1	2	7		
	LD A, (nn)	A - (nn)	•	•	х	•	х	•	•	•	00 111 010 - n - - n -	3A	3	4	13		
	LD (BC), A	(BC) - A	•	٠	X		X	•	٠	٠	00 000 010		1	2	7		
	LD (DE), A LD (nn), A	(DE) - A (nn) - A	:	:	X	:	X	:	:	:	00 010 010 00 110 010 - n -		1	2 4	7 13		
	LD A, I	1 - A	1	ı	X	0	X	IFF	0	•	- n - 11 101 101 01 010 111		2	2	9		
	LD A, R	A - R	1	1	Х	0	X	IFF	0	•	11 101 101 01 011 111		2	2	9		
	LD I, A	I - A	•	٠	х	٠	X	٠	•	•	11 101 101 01 000 111	ED	2	2	9		
	LD R, A	R - A	•	•	х	•	Х	•	•	•	11 101 101 01 001 111	ED	2	2	9		

NOTES: r, r' means any of the registers A, B, C, D, E, H, L.
IFF the content of the interrupt enable flip flipp, (IFF) is
copied into the PV flag.
For an explanation of flag notation and symbols for
memoria tables, see Symbolic Notation section

S-Bit Load	Mnemonic	Symbolic Operation	8	z		Flag H	• P	/¥ 1	N	С	Opcode 76 543 210 Hex	No.of Bytes	No.of M Cycles	States	Comments
roup	LD dd, nn	dd - nn	•	•	х	•	к •	•	•	•	00 dd0 001 - n -	3	3	10	dd Pair 00 BC 01 DE
	LD IX, nn	IX - nn	•	•	x	•	к •	•	•	•	11 011 101 DD 00 100 001 21 n	4	4	14	10 HL 11 SP
	LD IY, nn	lY - nn	•	•	X	•	х •	•	•	•	11 111 101 FD 00 100 001 21	4	4	14	
	LD HL, (nn)	H - (nn+1) L - (nn)	•	•	x	•	x ·	•	•	•	00 101 010 2A	3	5	16	
	LD dd, (nn)	ddH - (nn+1) ddL - (nn)	•	•	x	•	х •	•	•	•	11 101 101 ED 01 dd1 011	4	6	20	
	LD IX, (nn)	IXH - (nn+1) IXL - (nn)	•	•	X	•	х •	•	•	•	- n - 11 011 101 DD 00 101 010 2A - n -	4	6	20	
	LD IY, (nn)	IYH - (nn+1) IYL - (nn)	•	•	X	•	x ·	•	•	•	11 111 101 FD 00 101 010 2A	4	6	20	
	LD (nn), HL	(nn+1) - H (nn) - L	•	•	x	•	x ·	•	•	•	00 100 010 22 - n -	3	5	16	
	LD (nn), dd	(nn + 1) - ddH (nn) - ddL	•	•	X	•	x ·	•	•	•	11 101 101 ED 01 dd0 011	4	6	20	
	LD (nn), IX	$\begin{array}{l} (nn+1) \leftarrow IX_{\mathbf{H}} \\ (nn) \leftarrow IX_{\mathbf{L}} \end{array}$	•	•	x	•	x ·	•	•	•	- n - 11 011 101 DD 00 100 010 22 - n -	4	6	20	
	LD (nn), IY	(nn+1) - IYH (nn) - IYL	•	•	X	•	x ·	•	•	•	11 111 101 FD 00 100 010 22	4	6	20	
	LD SP, HL LD SP, IX	SP - HL SP - IX	:	:	X X	:	X X		:	:	- n 11 111 001 F9 11 011 101 DD	1 2	ì 2	6 10	
	LD SP, IY	SP - IY	•		X	•	x ·	•	٠	•	11 111 001 F9 11 111 101 FD	2	2	10	D
	PUSH qq	(SP-2) - qqL (SP-1) - qqH	•	•	x	•	x ·	•	•	•	11 111 001 F9 11 qq0 101	1	3	11	Qq Pair OO BC OI DE IO HL
	PUSH IX	SP - SP - 2 (SP - 2) - 1XL (SP - 1) - 1XH SP - SP - 2	•	•	X	•	X ·	•	•	•	11 011 101 DD 11 100 101 E5	2	4	15	11 AF
	PUSH IY	$(SP-2) - IY_L$ $(SP-1) - IY_H$ SP - SP - 2	•	•	X	•	X ·	•	•	•	11 111 101 FD 11 100 101 E5	2	4	15	
	POP qq	qqH (SP+1) qqL (SP) SP SP +2	•	•			X ·		•	•	11 qq0 001	1	3	10	
	POP IX	$IX_H \leftarrow (SP+1)$ $IX_L \leftarrow (SP)$ $SP \rightarrow SP+2$	•	•	Х		х .		•	•	11 011 101 DD 11 100 001 E1	2	4	14	
	POP IY	IYH - (SP+1) IYL - (SP) SP - SP +2	•	•	x	•	X ·	•	•	•	11 111 101 FD 11 100 001 E1	2	4	14	
	00.10.0	iny of the register pairs BC iny of the register pairs Af iH. (PAIR) refer to high of BCL = C, AFH = A.	RC I	DF HI		er eigh	bits	of the	e re	egister	pair respectively,				
Exchange. Block Transfer.	EX DE, HL EX AF, AF' EXX	DE HL AF AF' BC BC' DE DE'	:	:	X X X	•		:	:	:	11 101 011 EB 00 001 000 08 11 011 001 D9	1 1 1	1 1 1	4 4	Register bank and auxiliary register
Block Search	EX (SP), HL	HL HL' H (SP+1)			x		х				11 100 011 E3	1	5	19	bank exchange
Groups	EX (SP), IX	L - (SP) IXH - (SP+1)			x		x				11 011 101 DD	2	6	23	
	EX (SP), IY	$ \begin{array}{l} IX_L - (SP) \\ IY_H - (SP+1) \\ IY_L - (SP) \end{array} $	•	•	x	•	x	•	•	•	11 100 011 E3 11 111 101 FD 11 100 011 E3	2	6	23	
	LDI	(DE) - (HL) DE - DE+1 HL - HL+1 BC - BC-1	•	•	x				0	•	11 101 101 ED 10 100 000 A0		4	16	Load (HL) into (DE), increment the pointers and decrement the byte
	LDIR	(DE) (HL) DE DE + 1 HL HL + 1 BC BC - 1 Repeat until BC == 0	•	•	X	0	x	9°	0	•	11 101 101 ED 10 110 000 B0		5 4	21 16	counter (BC) If BC ≠ 0 If BC = 0

255

xchange. lock	Mnemonic	Symbolic Operation	_ 8	z		Fle H	igs i	P/V N	c	Opcode 78 543 210 Hex	No.of Bytes	No.of M Cycles		Comments
ransier.								<u> </u>						
lock Search	LDD	(DE) - (HL)	•	•	X	0	X	t C	•	11 101 101 ED	2	4	16	
roups		DE - DE - 1 HL - HL - 1								10 101 000 A8				
Continued)		BC - BC-1						_						
Continued)								② <u> </u>			_	_		
	LDDR	(DE) (HL) DE DE - 1	•	•	Х	0	Х	U C	•	11 101 101 ED 10 111 000 B8	2	5 4	21 16	If BC ≠ 0 If BC = 0
		HL - HL-1									-	-		20 - 0
		BC - BC-1												
		Repeat until BC = 0		_				_						
				3				Θ,		11 101 101 55				
	CPI	A - (HL) HL - HL+1	ı	ī	х	1	Х	1 1	•	11 101 101 ED 10 100 001 A1	2	4	16	
		BC - BC-1		(3)				0						
	CPIR	A - (HL)			х	1		1 1		11 101 101 ED	2	5	21	If BC ≠ 0 and
	O		•	•		•	••							$A \neq (HL)$
		HL - HL+1 BC - BC-1								10 110 001 B1	2	4	16	If $BC = 0$ or $A = (HL)$
		Repeat until												A = (DL)
		A = (HL) or												
		BC = 0		3				①						
	CPD	A - (HL)	1	:	х	1	X	1 3	•	11 101 101 ED	2	4	16	
		HL - HL - 1 BC - BC - 1								10 101 001 A9				
				3				①						
	CPDR	A - (HL)	:	3	Х	1	Х	1)	•	11 101 101 ED	2	5	21	If BC ≠ 0 and A ≠ (HL)
		HL - HL-1								10 111 001 B9	2	4	16	If BC = 0 or
		BC - BC-1												A = (HL)
		Repeat until												
		A = (HL) or												
	② P/V fl.	A = (HL) or BC = 0 ag is 0 if the result of BC ag is 0 at completion of it is 1 if $A = (HL)$, otherw	nstructi	on o		se P/\	/ = 1						 	
.Rie	② P/V flag ③ 2 flag	BC = 0 ag is 0 if the result of BC ag is 0 at completion of a is 1 if A = (HL), otherw	nstructi ise Z =	on o	aly.					10 172701 -	1			r. Rec
-Bit	② P/V flag ③ Z flag	BC = 0 ag is 0 if the result of BC ag is 0 at completion of it is 1 if A = (HL), otherw A - A + r	nstructi ise Z =	on o	niy. X	1	x	V o		10 000 r	1 2	1 2	4 7	r Reg.
rithmetic	② P/V flag ③ 2 flag	BC = 0 ag is 0 if the result of BC ag is 0 at completion of a is 1 if A = (HL), otherw	nstructi ise Z =	on o	aly.		x			10 000 r 11 000 110	1 2	1 2	4 7	000 B
rithmetic nd Logical	② P/V fl. ③ Z flag ADD A, r ADD A, n	BC = 0 ag is 0 if the result of BC ag is 0 at completion of it is 1 if A = (HL), otherw A - A + r A - A + n	nstructi ise Z =	on or	x X	1 1	x x	V 0	1	11 000 110 ← n →	2	2	7	000 B 001 C 010 D
rithmetic	② P/V II. ③ Z Rag ADD A, r ADD A, n	BC = 0 ag is 0 if the result of BC ag is 0 at completion of is 1 if $A = (HL)$, otherw $A - A + r$ $A - A + n$ $A - A + (HL)$	nstructi	on or	x x x	1 1	x x	V 0 V 0	t	11 000 110 ← n → 10 000 110	2 1	2	7	000 B 001 C 010 D 011 E
rithmetic nd Logical	② P/V II. ③ Z Rag ADD A, r ADD A, n	BC = 0 ag is 0 if the result of BC ag is 0 at completion of it is 1 if A = (HL), otherw A - A + r A - A + n	nstructi ise Z =	on or	x X	1 1	x x	V 0	1	11 000 110 - n - 10 000 110 11 011 101 DE	2 1	2	7	000 B 001 C 010 D 011 E 100 H
rithmetic nd Logical	② P/V II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (HL) ADD A, (IX + d)	BC = 0 ag is 0 at completion of it is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d)	nstructi	t t	x x x x	1 1 1	x x x	V 0 V 0	t t	11 000 110 n 10 000 110 11 011 101 DD 10 000 110 d	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E
rithmetic nd Logical	② P/V II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (HL) ADD A, (IX + d)	BC = 0 ag is 0 if the result of BC ag is 0 at completion of is 1 if $A = (HL)$, otherw $A - A + r$ $A - A + n$ $A - A + (HL)$	nstructi	on or	x x x	1 1	x x x	V 0 V 0	t	11 000 110 - n - 10 000 110 11 011 101 DD 10 000 110 - d - 11 111 101 FD	1 3	2	7	000 B 001 C 010 D 011 E 100 H
rithmetic nd Logical	② P/V II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (HL) ADD A, (IX + d)	BC = 0 ag is 0 at completion of it is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d)	nstructi	t t	x x x x	1 1 1	x x x	V 0 V 0	t t	11 000 110 - n - 10 000 110 11 011 101 DD 10 000 110 - d - 11 111 101 PD 10 000 110	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H
rithmetic nd Logical	② P/V II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (HL) ADD A, (IX + d)	BC = 0 ag is 0 at completion of it is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d)	nstructi	t t	x x x x	1 1 1	x x x	V 0 V 0	t t t	11 000 110	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A
rithmetic nd Logical	② PVV II. ③ ∠ flag ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IY+d)	BC = 0 ag is 0 if the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d)	nstructions Z =	t t	x x x x	1 1 t	x x x	V 0 V 0 V 0	t t t	11 000 110 - n - 10 000 110 11 011 101 DD 10 000 110 - d - 11 111 101 PD 10 000 110	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A
rithmetic nd Logical	② PVV II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (HL) ADD A, (IX+d) ADD A, (IY+d)	BC = 0 ag is 0 d the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d) A - A + E+CY	nstructi	t t t	X X X X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x	V 0 V 0 V 0 V 0 V 0	t t t	11 200 110 - n - 10 200 110 11 011 101 DD 10 200 110 - d - 11 111 101 FD 10 200 110 - d - 201 -	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A
rithmetic nd Logical	② PVV II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (HL) ADD A, (IX+d) ADD A, (IY+d) ADC A, a SUB s	BC = 0 ag is 0 d the result of BC ag is 0 at completion of a is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d) A - A + a + cY A - A - a	Instructions Z =	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x	1 1 t t t t t t t t t t t t t t t t t t	x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	t : :	11 200 110 - n - 10 200 110 11 011 101 DD 10 200 110 - d - 11 111 101 PD 10 200 110 - d - 200 110 - d - 300 110 - d - 300 110 - d - 300 110	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction.
rithmetic nd Logical	② PVV II. ③ ∠ Hag ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IY+d) ADC A, s SUB s SBC A, s	BC = 0 ag is 0 at the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d) A - A + (IY+d)	Instructions Z =	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 1 V 1	t : : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 11 011 101 DE 10 200 110 - d - 11 111 101 PD 10 200 110 - d - 20 110	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	② PVV II. ③ ∠ flag ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADC A, s SUB s SBC A, s AND s	BC = 0 ag is 0 d the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d) A - A + a + CY A - A - a A - a A	Instructions Z =	t : : : : : : : : : : : : : : : : : : :	X X X X X X X X X X X X X X X X X X X	1 t t t t t t t t t t t t t t t t t t t	x x x x x x x x x x x x x x x x x x x	V 00 V 00 V 00 V 00 V 10 V 10 P 00	t : : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 11 011 101 10 200 110 - d - 11 111 101 10 200 110 - d - 201 201 201 201 201 201 201 201 201 201	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction.
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (HL) ADD A, (IX+d) ADD A, (IY+d) ADC A, s SUB s SBC A, s AND s OR s	BC = 0 ag is 0 d the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (IX + d) A - A + (IX + d) A - A + s + CY A - A - s A - A - s - CY A - A - s A - A - s A - A - s A - A - s	Instructions Z =	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 0 V 0 V 0 V 0 V 0 V 1 P 0 P 0 0	t : : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 11 011 101 DE 10 200 110 - d - 11 111 101 PE 11 111 101 PE 10 200 110 - d - 201 201 201 201 201 201 201 201 201 201	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX + d) ADD A, (IX + d) ADD A, (IX + d) ADD A, S SUB s SBC A, s AND s OR s XOR s	BC = 0 ag is 0 at the result of BK ag is 0 at completion of it is 1 if A = (HL), otherwise 1 if A = (HL), otherwise 1 if A = A + r A - A + r A - A + (HL) A - A + (IX + d) A - A + (IY + d) A - A + s + CY A - A - s A - A - s - CY A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s	Instructions Z =	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 0 V 0 V 0 V 0 V 0 V 1 P 0 O P 0 O P 0	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 FD 10 200 110 - d - 2 011 10 200 110 - d - 3 011 10 200 110 - d - 1 011 10 200 110 - d - 1 011 110 110 FD	1 3	2 2 5	7 7 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	Devi II. ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d)	BC = 0 ag is 0 at the result of BC ag is 0 at completion of it is 1 if A = (HL), otherwise 1 if A = A + r A - A + r A - A + (HL) A - A + (IX + d) A - A + (IY + d) A - A + a + c + c + c + c + c + c + c + c + c	nstructi ise Z = I I I I I I I I I I I I I I I I I I	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	i i i i i i i i i i i i i i i i i i i	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	t t : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 11 011 101 101 10 200 110 - d - 11 111 101 FD 10 200 110 - d - 201 11 111 101 FD 10 200 110 - d - 301 10 301 100 1100 1100 1100 1100 1100	2 1 3	2 2 5 5	7 7 19 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADC A, a SUB a SBC A, a AND a OR a CP a INC r	BC = 0 ag is 0 at completion of is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d) A - A - S - CY A - A - S A - S A - A - S A - S A - A - S A - S A - A - S A	nstructi use Z = I I I I I I I I I I I I I I I I I I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	t t : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 11 011 101 10 200 110 - d - 11 111 101 10 200 110 - d - 201 201 201 201 201 201 201 201 201 201	2 1 3 3 3	2 2 5 5 5	7 7 19 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, S SUB s SBC A, s AND s OR s XOR s CP s INC r INC (HL)	BC = 0 ag is 0 d the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (IX + d) A - A + (IX + d) A - A + s + CY A - A - s A - B - S A	nstructi ::se Z =	0. 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	t t : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 10 011 101 101 10 000 110 11 011 101 10	2 1 3 3 3	2 5 5	7 7 19 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX + d)	BC = 0 sq. sq. d the result of BC sq. sq. sq. to at completion of a sq. sq. to at completion of a sq. to at	nstructi ::se Z =	0.	x x x x x x x x x x x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 1 V 1 V 1 V 0 V 0	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 10 200 110 - d - 2 11 11 101 10 200 110 - d - 2 11 11 101 10 200 110 110 110 100 00 110 100 110 110 100 00 110 100 00 110 100 00 110 100 00 110 100	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, S SUB s SBC A, s AND s OR s XOR s CP s INC r INC (HL)	BC = 0 ag is 0 at the result of BC ag is 0 at completion of i is 1 if A = (HL), otherwise 1 if A = A + r A - A + r A - A + (HL) A - A + (IX + d) A - A + (IX + d) A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - B -	nstructi	0.	x x x x x x x x x x x x x x x x x x x	1	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 10 200 110 10 011 101 101 10 000 110 11 011 101 10	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the €000 in
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADC A, a SUB s SBC A, s AND s OR s CP s INC r INC (HL) INC (IX+d)	BC = 0 ag is 0 at completion of a is 1 if A = (HL), otherwise A - A + r A - A + r A - A + (HL) A - A + (IX+d) A - A + (IX+d) A - A + (IY+d) A - A - S A	nstructi ise Z = I I I I I I I I I I I I I I I I I I	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	V 0 0 V 0 0 V 0 0 V 0 0 V 1 1 V 0 0 V 0 V	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 PD 10 200 110 - d - 2 10 110 10	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	000 B 001 C 010 D 011 E 100 H 101 L 111 A s is any of r, n, (HL), (IX + d), (IY + d) as shown for ADD instruction. The indicated bits replace the 200 in the ADD set above.
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX + d)	BC = 0 ag is 0 at the result of BC ag is 0 at completion of i is 1 if A = (HL), otherw A - A + r A - A + n A - A + (HL) A - A + (IX+d) A - A + (IY+d) A - A + s + CY A - A - s A - A - s A - A - s CY A - A \ s A - A \ s CY	nstructi	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	V 0 V 0 V 0 V 0 V 0 V 0 V 1 V 1 V 1 V 0 V 0	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 PD 201 110 - d - 2 11 111 101 100 100 11 011 101 00 110 100 11 011 101 00 110 100 11 011 101 00 110 100 11 010 100	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	ooo B ool C ool D ool C ool D ool E to D ool E oo
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADC A, a SUB s SBC A, s AND s OR s CP s INC r INC (HL) INC (IX+d)	BC = 0 ag is 0 at completion of a is 1 if A = (HL), otherwise A - A + r A - A + r A - A + (HL) A - A + (IX+d) A - A + (IX+d) A - A + (IY+d) A - A - S A	nstructi ise Z = I I I I I I I I I I I I I I I I I I	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	V 0 0 V 0 0 V 0 0 V 0 0 V 1 1 V 0 0 V 0 V	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 PD 10 200 110 - d - 2 10 110 10	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	m is any of r, (HL), (IX + d), (IX + d), (IX + d). m is any of r, (HL), (IX + d), (IX + d)
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADC A, a SUB s SBC A, s AND s OR s CP s INC r INC (HL) INC (IX+d)	BC = 0 ag is 0 at completion of a is 1 if A = (HL), otherwise A - A + r A - A + r A - A + (HL) A - A + (IX+d) A - A + (IX+d) A - A + (IY+d) A - A - S A	nstructi ise Z = I I I I I I I I I I I I I I I I I I	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	V 0 0 V 0 0 V 0 0 V 0 0 V 1 1 V 0 0 V 0 V	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 PD 10 200 110 - d - 2 10 110 10	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	m is any of r, (HL), (IX+d), (IX+d), (IX+d) as shown for INC. DEC same format.
rithmetic nd Logical	ADD A, r ADD A, n ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADD A, (IX+d) ADC A, a SUB s SBC A, s AND s OR s CP s INC r INC (HL) INC (IX+d)	BC = 0 ag is 0 at completion of a is 1 if A = (HL), otherwise A - A + r A - A + r A - A + (HL) A - A + (IX+d) A - A + (IX+d) A - A + (IY+d) A - A - S A	nstructi ise Z = I I I I I I I I I I I I I I I I I I	t : : : : : : : : : : : : : : : : : : :	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	V 0 0 V 0 0 V 0 0 V 0 0 V 1 1 V 0 0 V 0 V	: : : : : : : : : : : : : : : : : : :	11 200 110 - n - 1 10 200 110 11 011 101 DE 10 200 110 - d - 1 11 11 101 PD 10 200 110 - d - 2 10 110 10	2 1 3 3 1 1 1 1 3	2 5 5	7 7 19 19	m is any of r, (HL), (IX+d), (IY+d) as shown for ADD set above.

General-	Maemonic	Symbolic Operation	5	z		Flo H	ıgs	P/V	N	С	Opcode 76 543 210 Hex		No.of M Cycles		Comments
urpose trithmetic and	DAA	Converts acc. content into packed BCD following add or	1	ı	х	ı	Х	P	•	t	00 100 111 27	1	1	4	Decimal adjust accumulator.
CPU Control Froups	CPL	subtract with packed BCD operands. A — Ā	•	•	х	1	x	•	1	•	00 101 111 2F	1	1	4	Complement accumulator (one's
	NEG	A - 0 - A	t	ı	x	ı	х	v	1	ı	11 101 101 ED	2	2	8	complement). Negate acc. (two's
	CCF	CY - CY	•	•	x	x	x	•	0	1	01 000 100 44 00 111 111 3F	1	1	4	complement). Complement carry
	SCF	CY - 1	•	:	X	0	X	:	0	1	00 110 111 37 00 000 000 00	1	1 1	4	flag. Set carry flag.
	NOP HALT	No operation CPU halted	:	:	Х	•	X	:	:	:	01 110 110 76 11 110 011 F3	1	1	4	
	DI * EI *	IFF - 0 IFF - 1 Set interrupt	:	:	X X X	:	X	:	:	:	11 111 011 FB 11 101 101 ED	1 2	1 2	4 8	
	IM 0 IM 1	mode 0 Set interrupt			x		x				01 000 110 46 11 101 101 ED		2	8	
	IM 2	mode 1 Set interrupt	•		x		x				01 010 110 56 11 101 101 ED	2	2	8	
		mode 2	- 0-								01 011 110 SE				
	CY in	dicates the interrupt enable fl dicates the carry flip-flop. licates interrupts are not samp			end	of EI	or Di	I.							
l6-Bit	ADD HL, ss	HL HL+ss	•		х	х	х	•	0	1	00 ssl 001	ì	3	11	as Reg. 00 BC
Ārithmetic Group	ADC HL, ss	HL - HL+ss+CY	1	ı	X	X	х	V	0	ı	11 101 101 ED 01 ssl 010	2	4	15	OI DE 10 HL
	SBC HĹ, ss	HL - HL-ss-CY	1	:	х	x	x	v	ì	ı	11 101 101 ED	2	4	15	11 SP
	ADD IX, pp	IX - IX + pp	•	•	x	x	x	•	0	t	01 ss0 010 11 011 101 DD 01 pp1 001	2	4	15	pp Reg. 00 BC
											0. pp. 00.				01 DE 10 IX
	ADD IY, rr	IY - IY + rr	•	•	x	x	x	•	0	ı	11 i11 101 FD 00 rrl 001	2	4	15	11 SP rr Reg. 00 BC 01 DE
	INC sa	ss ss + 1			x		х				00 ss0 011	1	1	6	10 IY 11 SP
	INC IX	IX - IX + 1	•	•	X	•	x	•	•	•	11 011 101 DD 00 100 011 23	2	2	10	
	INC IY	IY - IY + 1	•	•	X	•	X	•	•	•	11 111 101 FD 00 100 011 23	2	2	10	
	DEC 88 DEC IX	ss - ss - 1 IX - IX - 1	:	:	X	:	X	:	:	:	00 ss1 011 11 011 101 DD		1 2	10 6	
	DEC IY	IY - IY - 1	•	•	X	•	x	•	•	•	00 101 011 2B 11 111 101 FD 00 101 011 2B	2	2	10	
	pp is	iny of the register pairs BC, D any of the register pairs BC, I any of the register pairs BC, D	DE, L	X, SF	٠.										
Rotate and Shift Group	RLCA	CY - 7 - 0 -	•		х	0	x		0	ı	00 000 111 0	7 1	1	4	Rotate left circular accumulator.
	RLA	CY - 7-0	•	•	x	0	x	•	0	ı	00 010 111 1	7 1	1	4	Rotate left accumulator.
	RRCA	7-0 CY		•	x	0	х	•	0	1	00 001 111 0	F 1	1	4	Rotate right circular accumulator.
	RRA	A 7 - 0 - CY	•	•	х	0	x		0	ı	00 011 111 1	F 1	1	4	Rotate right accumulator.
	RLC r	•	1	ı	х	0	x	P	0	ı		В 2	2	8	Rotate left circular register r.
	RLC (HL)		ı	ı	x	0	x	P	0	1	00 0000 r 11 001 011 C 00 0000 110	В 2	4	15	r Reg.
	RLC (IX + d)	r,(HL),(IX + d),(IY + d)	ı	ı	x	0	x	P	0	1	11 011 101 D 11 001 011 C	D 4	6	23	001 C 010 D 011 E 100 H 101 L
	RLC (IY+d)		1	ı	x	0	x	P	0	:		D 4	6	23	111 A
		CY 7 0 m = r,(HL),(IX + d),(IY + d)	,1	1	x	0	x	P	0	1	← d → 00 0000 110 010				Instruction format and states are as shown for RLC's. To form new
	RRC m	m = r, (HL), (IX + d), (IY + d)	1	1	x	0	x	P	0	ı	001				opcode replace OOO or RLC's with shown code.

Rotate and Shift Group	Mnemonic	Symbolic Operation	5	z		Flo H	ıgs	P/V	N	с	Opcode 76 543 210	Hex	No.of Bytes	No.of N Cycles		Comments
Continued)	RR m	$7 \rightarrow 0 \rightarrow CY$ m = r.(HL),(IX + d),(IY + d)	1	ı	х	0	x	P	0	ı	011					
	SLA m	CY + T = 0 - 0 $m = r, (HL), (IX + d), (IY + d)$	ı	ı	Х	0	x	P	0	ı	100					
	SRA m	m = r, (HL), (IX + d), (IY + d)	ı	1	X	0	X	P	0	٠	101					
		$0 \longrightarrow 7 \longrightarrow 0 \longrightarrow CY$ $m = r, (HL), (IX + d), (IY + d)$	t	ı	X	0	X	P	0	ı	Ш					
	RLD	7-43-0 7-43-0 A (HL)	1	1	X	0	X	P	0	•	11 101 101 01 101 111	ED 6F	2	5	18	Rotate digit left and right between the accumulator
	RRD (7 - 4 3 - 0 7 - 4 3 - 0 A (HL)	ı	1	X	0	x	P	0	•	11 101 101 01 100 111		2	5	18	and location (HL). The content of the upper half of the accumulator is unaffected.
Bit Set, Reset	BIT b, r	z – ī _b	х	1	х	1	х	х	0	•	11 001 011 01 b r	СВ	2	2	8	r Reg.
and Test	BIT b, (HL)	$Z \leftarrow (\overline{HL})_{\mathbf{b}}$	X	1	X	1	X	x	0	•	11 001 011	CB	2	3	12	001 C 010 D
Group	BIT b, (IX+d)	$b \cdot Z \leftarrow (\overline{IX + d})_b$	x	1	х	1	x	x	0	•	01 b 110		4	5	20	010 B 011 E 100 H
											01 b 110	CB				100 H 101 L 111 A b Bit Tested
	BIT b, (IY + d)	$\mathbf{z} = (\overline{\mathbf{i}\mathbf{Y}} + \mathbf{d})_{\mathbf{b}}$	X	1	X	1	X	х	0	•	11 111 101 11 001 011 - d - 01 b 110	FD CB	4	5	20	000 0 001 1 010 2 011 3 100 4 101 5 110 6
	SET b, r	r _b 1			x		x				11 001 011	СВ	2	2	8	111 7
	SET b, (HL)	(HL) _b - 1	•	•	x	•	X	•		•	11 001 011 [1] b 110	СВ	2	4	15	
	SET b, {IX+d	$(IX+d)_{\mathbf{b}}-1$	•	•	X	•	X	•	•	•	11 011 101 11 001 011 - d -		4	6	23	
	SET b, (IY+d) (IY+d) _b - 1	•	•	x	•	x	•	•	•	П b 110 11 111 101 11 001 011 — d —	FD CB	4	6	23	
	RES b, m	$m_b = 0$ $m = r, (HL),$ $(IX + d),$ $(IY + d)$	•	•	x	•	x	٠	•	•	П ь 110					To form new opcode replace op
	NOTES: The	notation mb indicates bit b (0 t	o 7)	or lo	catio	nm.										
Jump Group	JP nn	PC - nn	•		х	•	х	•	•	•	11 000 011 - n - - n -	СЗ	3	3	10	.
Group	JP cc, nn	If condition cc is true PC - nn, otherwise continue	•	•	х	•	X	•	•	•	11 cc 010 - n - - n -		3	3	10	Condition
	JR e	PC - PC+e	•	•	Х	•	X	•	•	٠	00 011 000 ← e−2 →		2	3	12	111 M sign negative
	JR C, e	If C = 0, continue If C = 1,	٠	•	X	•	X	•	•	•	00 111 000 e-2	38	2	2 3	7 12	If condition not met. If condition is met.
	JR NC, e	PC - PC+e If C = 1,			¥		x				00 110 000	30	2	2	7	If condition not met.
	JR NC, B	continue If C = 0,	-	-	_	-	•	-			- e-2 -		2	3	12	If condition is met.
	JP Z, e	PC - PC+e			x		x				00 101 000	28	2	2	7	If condition not met.
	,, <u>u,</u> v	continue If $Z = 1$,									- e-2 -		2	3	12	If condition is met.
	JR NZ, e	PC PC+e If Z = 1.			×		x				00 100 000	20	2	2	7	If condition not met.
	,11 11L, U	continue If Z = 0,	-	-							- e-2 -		2	3	12	If condition is met.
	JP (HL)	PC - PC+e PC - HL			x		x				11 101 001	E9	1	1	4	
	·· ()										11 011 101		2	2	8	

lump Group (Continued)	Mnemonic	Symbolic Operation	s	z		F1 H	ags	P/V	N	с	Opcode 76 543 210	Hex	No.of Bytes	No.of M Cycles		Comments
,,	JP (IY)	PC - IY	•	•	Х	•	Х	•	•	٠	11 111 101		2	2	8	
	DJNZ, e	B B - 1	•	•	х	•	X	•	•	•	00 010 000		2	2	8	If $B = 0$.
		If B = 0, continue									- e-2 -					
		If B ≠ 0, PC PC+e											2	3	13	If B ≠ 0.
	NOTES e repr	esents the extension in the r	elative	add	ressir	g mo	de.									
	e-2;	signed two's complement nu in the opcode provides an ef 2 prior to the addition of e.	mber i lective	n the	ranç ess o	e <	- 126 e as	PC 15	>. inci	ement	ed					
		2 prior to the addition of e.														
Call and	CALL nn	(SP-1) - PCH	•	•	X	•	X		•	•	11 001 101	CD	3	5	17	
Return Group		(SP - 2) - PC _L PC - nn									- n -					
	CALL cc, nn	If condition			х	•	х			•	11 cc 100		3	3	10	If cc is false.
		cc is false continue,									- n -		3	s	17	If cc is true.
		otherwise same as CALL nn														
	RET	PC _L = (SP)			х		х				11 001 001	C9	1	3	10	
		$PC_{H} - (SP + 1)$											-	-	••	
	RET cc	If condition cc is false	•	٠	X	•	X	•	•	•	11 cc 000		1	1	5	If cc is false.
		continue, otherwise											1	3	11	If cc is true.
		same as RET														000 NZ non-zero
	DETI				.,											001 Z zero 010 NC non-carry
	RÉTI DETN'	Return from interrupt	•	•	X	•	X	•	•	•	11 101 101 01 001 101	4D	2	4	14	011 C carry 100 PO parity odd
	RETN!	Return from non-maskable	•	•	Х	•	Х	•	•	•	11 101 101 01 000 101		2	4	14	101 PE parity even 110 P sign positive
		interrupt														111 M sign negative
	RST p	$(SP-1) \leftarrow PC_H$ $(SP-2) \leftarrow PC_L$	•	•	Х	•	Х	•	•	•	11 t 111		1	3	-11	t p 000 00H
		PCH - 0 PCL - p														001 08H 010 10H
		2 .														011 18H
																100 20H 101 28H
																110 30H 111 38H
	NOTE: RETN	oads IFF2 - IFF1														
nput and	IN A, (n)	A - (n)	•	•	x	•	x	•	•	•	11 011 011	DB	2	3	11	n to A ₀ ~ A ₇
Output Group	IN r. (C)	r - (C)	1	1	X	ı	X	P	0	•	11 101 101		2	3	12	Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
		if $r = 110$ only the flags will be affected		<u>~</u>							01 r 000	'				B to Ag - A15
	INI	(HL) - (C)	х	1	x	х	х	х	1	х	11 101 101		2	4	16	C to A ₀ ~ A ₇
		B ← B − 1 HL ← HL + 1		2							10 100 010					B to A8 ~ A15
	INIR	(HL) - (C) B - B-1	Х	1	Х	X	X	X	1	х	11 101 101 10 110 010		2	5 (If B≠0)	21	C to A ₀ ~ A ₇
		HL - HL + 1 Repeat until									010	~•	2	4	16	B to Ag ~ A ₁₅
		B = 0		①										(If $B = 0$)		
	IND	(HL) + (C) B + B - 1	х		X	X	X	X	1	х	11 101 101		2	4	16	C to A ₀ - A ₇
		$HL \leftarrow HL - 1$		2	v	v	v	v			10 101 010					B to A ₈ ~ A ₁₅
	INIDD	(HL) - (C)	Х	1	X	Х	X	Х	1	Х	11 101 101 10 111 010		2	5 (If B≠0)	21	C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	INDR	B - B-1											2	4 (If B = 0)	16	15
	INDR	B - B-1 HL - HL-1 Repeat until	•									D3	2	3	11	n to A ₀ ~ A ₇
	OUT (n), A	$B - B - 1$ $HL \leftarrow HL - 1$ $Repeat until$ $B = 0$			х		х		•		11 010 011		-			Acc. to Ag ~ A ₁₅
	OUT (n), A	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A	•		x x		X X	•	•		11 010 011 - n -	ED	2			
		$B - B - 1$ $HL \leftarrow HL - 1$ $Repeat until$ $B = 0$	•	· .	x x	•	x x	•	•	•		ED	2	3	12	C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	OUT (n), A	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r	x	• • • •	x	• •	x		• •	• x	- n - 11 101 101 01 r 001	ED	2	3	12	B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	OUT (n), A OUT (C), r	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1		2	x x		x x	• x			11 101 101 01 r 001 11 101 101 10 100 011	ED A3	2	4	16	B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	OUT (n), A	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1		2	x		x x	• x	• • 1		- n - 11 101 101 01 r 001	ED A3 ED				B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	OUT (n), A OUT (C), r	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 Repeat until		2	x x		x x	• x			- n - 11 101 101 01 r 001 11 101 101 10 100 011 11 101 101	ED A3 ED	2	4 5 (If B≠0) 4	16	B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	OUT (n), A OUT (C), r	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1		2	x x		x x	• x			- n - 11 101 101 01 r 001 11 101 101 10 100 011 11 101 101	ED A3 ED	2	4 5 (If B≠0)	16 21	B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	OUT (n), A OUT (C), r	B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 Repeat until		② 1	x x	х	x x	• x	1	x	- n - 11 101 101 01 r 001 11 101 101 10 100 011 11 101 101	ED A3 ED B3	2	4 5 (If B≠0) 4	16 21	B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇

Input and Output Group	Mnemonic	Symbolic Operation		s	z		Flo H	igs	P/V	N	С	Opcode 76 543 210 Hex		No.of M Cycles		Comments
(Continued)	OTDR	(C) - (HL) B - B - 1 HL - HL - I Repeat until B =	. 0	Х	1	х	х	х	х	1	х	11 101 101 ED 10 111 011	2	5 (Ii B≠0) 4 (Ii B=0)	16	C to $A_0 \sim A_7$ B to $A_8 \sim A_{15}$
Summary of Flag	Instruction		D ₇ S	z		н		P/V	N	D	0	Comments				
Operation	ADD A, s. AL SUB si: SBC A AND s OR s, XOR s INC s DEC s ADD DD, ss ADD DD, ss ADD HL, ss RL m; RLC m; RRC m; SL SRA m; SRI RLD; RRD DAA CPL SCF CCF INI, IND, OUI INIR; INDE; C LDI; LDD CDI; CDR CPI; CPI; CE LD A, I, LD A BIT b, s	RRA: RRCA RR m; A m; D m		: : : : : : : : : : : : : : : : : : :	X	1 1 0 1 1 X X X X 0 0 0 X X 0 0 X X 0 0 X X 0 0 1	x x x x x x x x x x x x x x x x x x x	V V P P V V • V V • P P P X X 1 0 : IFF X	010000000000000000000000000000000000000	0	}	Logical operations. 8-bit increment. 8-bit decrement. 16-bit add. 16-bit add with carry 16-bit subtract with Rotate accumulator. Rotate accumulator. Rotate adjust lett and Decimal adjust accur Complement accum Set carry. Complement accum Block input register indirection in the Block input and output and out	et with carry. ions. right. nulator. et. et. ions. I ions. Z se P/V terrupt	carry, con 0 if $B \neq 0$ 7 V = 1 if $A = 0$ = 0.	0 otherw: BC ≠ 0, = (HL), < -:flep (IF	otherwise $P/V = 0$. otherwise $Z = 0$. $P/V = 1$ F) is copied into the P/V flag.
Symbolic Notation	Z P/V F F F F F F F F F F F F F F F F F F F	Sign flag. S = Lero flag. Z = 1 Parity or overflac V) share the sa his flag with the intrihmetic operoverflow of the sift the result of the fesult is odd. If he result of the Half-carry flag. peration product 4 of the acct. Add/Subtract fl. ion was a subtract I and N flags a decimal adjust i ect the result is didition or subt	l if the lift of t	he rag. Rag. Rag. rity as af lt. It ope hole ratio a c lator N = sed uctio oack	MSI Persu Par Lo of t fect fect fect fect fect fect fect fec	3 of lt of l	the P) a special operation of the plant of t	oppand paragraphic	era ove atio hile ith rity P//V n o ubtr rro ous wi rrop t fo	tion erflo ns a the the P/ V = 1 erflo ract w fr ope th ti erly pllov	is is own iffer V: 0 if lover on the co	et 0 1 X X = V if P P N N N N N N N N N N N N N N N N N	opera The if The if The if P/V if of the P/V if the o Any allow Any allow Any Refre 8-bit	ation. lag is un lag is re lag is re lag is se lag affec operati lag affec peration one of the 8-bit loc ed for the one of the set count value in value in	fected mchangset by the by the determined action. Steed action for the particulation from the two termines the two termines are the two	cording to the overflow result of registers A, B, C, D, E, H, I or all the addressing modes icular instruction, for all the addressing modes

С

packed BCD format.

Carry/Link flag. C = 1 if the operation produced a carry from the MSB of the operand or result.

Pin Descriptions

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than \$\overline{NMI}\$ and is always recognized at the end of the current machine cycle. \$\overline{BUSREQ}\$ forces the CPU address bus, data bus, and control signals \$\overline{MREQ}\$, \$\overline{IORQ}\$, \$\overline{RD}\$, and \$\overline{WR}\$ to go to a high-impedance state so that other devices can control these lines. \$\overline{BUSREQ}\$ is normally wire-ORed and requires an external pullup for these applications. Extended \$\overline{BUSREQ}\$ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D₀-D₇ constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a non-maskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wire-ORed and requires an external pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with MI during an interrupt acknowledge cycle to indicate that an interrupt response vector can be

placed on the data bus.

MI. Machine Cycle One (output, active Low). MI, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. MI, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edge-triggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. Read (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.

wait. Wait (input, active Low). WalT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WalT periods can prevent the CPU from refreshing dynamic memory properly.

WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

CPU Timing

The CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

The CPU samples the \overline{WAIT} input with the falling edge of clock state T_2 . During clock states T_3 and T_4 of an M1 cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

*Tw = Wait cycle added when necessary for slow ancilliary devices.

Figure 5. Instruction Opcode Fetch

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch $(\overline{M1})$ cycle. The \overline{MREQ} and \overline{RD} signals function exactly as in the fetch cycle. In a memory write cycle,

 $\overline{\text{MREQ}}$ also becomes active when the address bus is stable. The $\overline{\text{WR}}$ line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

Figure 6. Memory Read or Write Cycles

2005-883 263

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically

inserts a single Wait state (T_{WA}). This extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.

 $T_{\mbox{WA}}$ = Wait cycle automatically inserted by CPU.

Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{\rm Ml}$ cycle is generated.

During this MI cycle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

 T_{LI} = Last state of any instruction cycle. T_{WA} = Wait cycle automatically inserted by CPU.

Figure 8. Interrupt Request/Acknowledge Cycle

2005-884, 885

Non-Maskable Interrupt Request Cycle.

NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to

that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the $\overline{\text{NMI}}$ service routine located at address 0066H (Figure 9).

^{*}Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (T_{LI}).

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR

lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

NOTES: 1) TLM = Last state of any M cycle.

2) T_{X} = An arbitrary clock cycle used by requesting device.

Figure 10. Z-BUS Request/Acknowledge Cycle

2005-0218, 886

Halt Acknowledge Cycle. When the CPU receives a $\overline{\text{HALT}}$ instruction, it executes NOP states until either an $\overline{\text{INT}}$ or $\overline{\text{NMI}}$ input is received.

When in the Halt state, the HALT output is active and remains so until an interrupt is processed (Figure 11). $\overline{\text{INT}}$ will also force a Halt exit.

^{*}Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

Figure 11. Halt Acknowledge Cycle

Reset Cycle. RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, two internal

T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000 (Figure 12).

Figure 12. Reset Cycle

AC Characteristics	t			Z830 (1.0 F Min	MHz) Max	Z830 (2.5 l Min	MHz) Max
	Number	Symbol	Parameter	(ns)	(ns)	(ns)	(ns)
•	1	TcC	Clock Cycle Time	1000*		400*	
	2	TwCh	Clock Pulse Width (High)	470	2000	180	2000
	3	TwCl	Clock Pulse Width (Low)	470	2000	180	2000
	4	TfC	Clock Fall Time	_	30	_	30
	5	TrC —	Clock Rise Time		 30 		 30
	6	TdCr(A)	Clock 1 to Address Valid Delay	_	380	_	145
	7	TdA(MREQf)	Address Valid to MREQ ↓ Delay	370*	_	125*	_
	8	TdCf(MREQf)	Clock I to MREQ I Delay	_	260	_	100
	9	TdCr(MREQr)	Clock 1 to MREQ 1 Delay	_	260	_	100
	10	- TwMREQh	- MREQ Pulse Width (High) ————	410*			
	11	TwMREQ1	MREQ Pulse Width (Low)	890*		360*	_
	12	TdCf(MREQr)	Clock I to MREQ Delay	_	260	_	100
	13	TdCf(RDf)	Clock ↓ to RD ↓ Delay	_	340	_	130
	14	TdCr(RDr)	Clock 1 to \overline{RD} 1 Delay		260		100
	15—	- TsD(Cr)	-Data Setup Time to Clock †	140 -			
	16	ThD(RDr)	Data Hold Time to RD †	_	0	_	0
	17	TsWAIT(Cf)	WAIT Setup Time to Clock !	190	_	70	_
	18	ThWAIT(Cf)	WAIT Hold Time after Clock !		0		0
	19	TdCr(Mlf)	Clock 1 to M1 ↓ Delay	_	340		130
	20	- TdCr(M1r)	-Clock † to Ml † Delay		 340		130
	21	TdCr(RFSHf)	Clock 1 to RFSH Delay	_	460		180
	22	TdCr(RFSHr)	Clock 1 to RFSH 1 Delay	_	390		150
	23	TdCf(RDr)	Clock I to RD 1 Delay	_	290	_	110
	24	TdCr(RDf)	Clock 1 to RD Delay	-	260	_	100
	25 —	-TsD(Cf)	-Data Setup to Clock ↓ during ———— M ₂ , M ₃ , M ₄ or M ₅ Cycles	160 -		60 -	
	26	TdA(IORQf)	Address Stable prior to IORQ 1	790,	_	320*	_
	27	TdCr(IORQf)	Clock ↑ to IORQ ↓ Delay	_	240	_	90
	28	TdCf(IORQr)	Clock I to IORQ 1 Delay	-	290	_	110
	29	TdD(WRf)	Data Stable prior to WR	470		190*	
	30 —	-TdCf(WRf)	−Clock↓to WR↓Delay −−−−		240		 90
	31	TwWR	WR Pulse Width	890	•	360*	_
	32	TdCf(WRr)	Clock ↓ to WR † Delay		260	_	100
	33	TdD(WRf)	Data Stable prior to WR	-30		30*	
	34	TdCr(WRf)	Clock ↑ to WR ↓ Delay	_	210	_	80
	35 —	— TdWRr(D) ——	—Data Stable from WR †—————	290		130*	
	36	TdCf(HALT)	Clock I to HALT 1 or I	_	760	_	300
	37	TwNMI	NMI Pulse Width	210		80	_
	38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock 1	210	_	80	_

^{*}For clock periods other than the minimums shown in the table, calculate parameters using the expressions in the table on the

following page.

Calculated values above assumed. TrC = TfC = 20 ns.

 $[\]dagger All$ timings assume equal loading on pins within 50 pf.

AC
Charac-
teristics†
(Continued)

Number	Symbol	Parameter	Z83 Min (ns)	800-1 Max (ns)	Z83 Min (ns)	00-3 Max (ns)
39	ThBUSREQ(Cr)	BUSREQ Hold Time after Clock 1	0	_	0	
40	TdCr(BUSACKf)	-Clock 1 to BUSACK Delay		— 310 ——		 120
41	TdCf(BUSACKr)	Clock ↓ to BUSACK ↑ Delay	_	290	_	110
42	TdCr(Dz)	Clock † to Data Float Delay		240	_	90
43	TdCr(CTz)	Clock † to Control Outputs Float Delay (MREQ, IORQ, RD, and WR)	_	290	_	110
44	TdCr(Az)	Clock 1 to Address Float Delay	_	290		110
45	TdCTr(A)	MREQ 1, IORQ 1, RD 1, and ——— WR 1 to Address Hold Time	400*	_ ,	160*-	
46	TsRESET(Cr)	RESET to Clock 1 Setup Time	240	_	90	_
47	ThRESET(Cr)	RESET to Clock † Hold Time	_	0	_	0
48	TsINTf(Cr)	INT to Clock † Setup Time	210	_	80	_
49	ThINTr(Cr)	INT to Clock Hold Time		0	_	0
50 —	TdM1f(IORQf)—	M1 I to IORQ I Delay ————	2300*·		920*-	
51	TdCf(IORQf)	Clock ↓ to IORQ ↓ Delay		290	_	110
52	TdCf(IORQr)	Clock 1 to IORQ 1 Delay	_	260		100
53	TdCf(D)	Clock I to Data Valid Delay	_	290	_	230

^{*}For clock periods other than the minimums shown in the table, calculate parameters using the following expressions. Calculated values above assumed TrC = TfC = 20 ns. † All timings assume equal loading on pins with 50 pF.

Footnotes to AC Characteristics

Number	Symbol	Z8300-1	Z8300-3		
1	TcC	TwCh + TwCl + TrC + TfC	TwCh + TwCl + TrC + TfC		
7	TdA(MREQf)	TwCh + TfC - 200	TwCh + TfC - 75		
10	TwMREQh	TwCh + TfC - 90	TwCh + TfC - 30		
11	TwMREQ1	TcC - 110	TcC - 30		
26	TdA(IORQI)	TcC - 210	TcC - 80		
29	TdD(WRi)	TcC - 540	TcC - 210		
31	TwWR	TcC - 110	TcC - 40		
3 3	TdD(WRf)	TwCl + TrC - 470	TwC1 + TrC - 180		
35	TdWRr(D)	TwCl + TrC - 210	TwCl + TrC - 80		
45	TdCTr(A)	TwCl + TrC - 110	TwCl + TrC - 40		
50	TdM1f(IORQf)	2TcC + TwCh + TfC - 210	2TcC + TwCh + TfC - 80		

AC Test Conditions: $V_{IH} = 2.0 \text{ V}$ $V_{IL} = 0.8 \text{ V}$ $V_{ILC} = 0.8 \text{ V}$ $V_{ILC} = 0.45 \text{ V}$ $V_{ILC} = 0.45 \text{ V}$ $V_{OH} = 2.0 \text{ V}$ $V_{OL} = 0.8 \text{ V}$ $V_{OL} = 0.8 \text{ V}$

Absolute Maximum Ratings	Voltages on all pins with respect to ground
--------------------------------	---

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any

Standard Test Conditions

The DC characteristics and capacitance sections listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature is:

■
$$S = 0$$
°C to +70°C, +4.75 $V \le V_{CC} \le$ +5.25 V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines.

condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The Ordering Information section lists package temperature ranges and product numbers. Pack-

age drawings are in the Package Information

DC	Symbol	Parameter			Min	Max	Unit	Test Condition
Charac- teristics	V _{ILC}	Clock Input Low Voltage			-0.3	0.45	v	
	v_{IHC}	Clock Input High Voltage		V	CC6	$V_{CC} + .3$	V	
	V _{II} .	Input Low Voltage			-0.3	0.8	V	
	V _{IH}	Input High Voltage			2.0	v_{cc}	v	
	V _{OL}	Output Low Voltage				0.4	v	$I_{OL} = 2.0 \text{mA}$
	v _{OH}	Output High Voltage			2.4		V	$I_{OH} = -250 \mu\text{A}$
	I_{LI}	Input Leakage Current				10	μΑ	$V_{IN} = 0 \text{ to } V_{CC}$
	I _{LO}	3-State Output Leakage				± 101	μΑ	$V_{OUT} = 0.4 \text{ to } V_{CO}$
	I _{CC}	Power Supply Current						
		Frequency	0°C Max	Temp 25°C Max	erature 25°C Typic	70°C	Unit	
		Z8300-1 (1.0 MHz)	30	25	15	20	mA	
		Z8300-3 (2.5 MHz)	45	40	25	35	mA	

 A₁₅-A₀, D₇-D₀, I 	MREQ, IORG	⊇, RD, and WR.

Capacitance Symb	ol Parameter	Min	Max	Unit	Note
C _{CLO} C _{IN} C _{OU}	Input Capacitance		35 5 15	pF pF pF	

 $T_{A} = 25$ °C, f = 1 MHz.

Unmeasured pins returned to ground.

ORDERING INFORMATION

Z80L CPU, 1.0 MHz 40-pin DIP Z8300-1 PS **Z80L CPU, 2.5 MHz 40-pin DIP** Z8300-3 PS

Codes

First letter is for package; second letter is for temperature.

C = Ceramic DIP

P = Plastic DIP

L = Ceramic LCC

V = Plastic PCC

R = Protopack

T = Low Profile Protopack

DIP = Dual-In-Line Package

LCC = Leadless Chip Carrier PCC = Plastic Chip Carrier (Leaded)

FLOW

B = 883 Class B

TEMPERATURE

S = 0°C to +70°C

E = -40 °C to +85 °C

 $M^* = -55$ °C to +125 °C

Example: PS is a plastic DIP, 0°C to +70°C.

†Available soon.

00-2189-05

^{*}For Military Orders, contact your local Zilog Sales Office for Military Electrical Specifications.