# Zilog

## Product Specification

#### April 1985

#### **Features**

- The Z80L combines the high performance of the Z80 CPU with extremely low power consumption. It has the identical pinout and instruction set of the Z80. The result is increased reliability and lower system power requirements. This dramatic power savings makes the Z80L a natural choice for both hand-held and battery backup applications.
- The Z80L CPU is offered in two versions: Z8300-1—1.0 MHz clock, 15 mA typical current consumption Z8300-3—2.5 MHz clock, 25 mA typical current consumption
- The extensive instruction set contains 158 instructions, resulting in sophisticated data handling capabilities. The 78 instructions of the 8080A are included as a subset; 8080A and Z80 Family software compatibility is maintained.
- The Z80L microprocessors and associated family of peripheral controllers are linked by a vectored interrupt system. This system can be daisy-chained to allow implementation of a priority interrupt scheme. Little, if any, additional logic is required for daisy-chaining.
- Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of system software.

  Two 16-bit index registers facilitate program processing of tables and arrays.
- There are three modes of high-speed interrupt processing: 8080 similar, non-Z80 peripheral device, and Z80 Family peripheral with or without daisy chain.
- On-chip dynamic memory refresh counter.

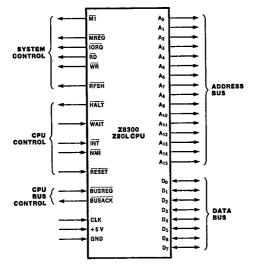



Figure 1. Pin Functions



Figure 2. 40-pin Dual-In-Line Package (DIP)
Pin Assignments

General Description

The Z80L CPUs are fourth-generation microprocessors with exceptional computational power. They offer high system throughput and efficient memory utilization combined with extremely low power consumption. The internal registers contain 208 bits of read/write memory that are accessible to the programmer. These registers include two sets of six general-purpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers. A group of "Exchange" instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may be reserved for very fast interrupt response.

ZILOG INC

The Z80L also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5 V power

source, all output signals are fully decoded and timed to control standard memory or peripheral circuits, and it is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the Z80L processors. Subsequent text provides more detail on the Z80L I/O controller family, registers, instruction set, interrupts and daisy chaining, CPU timing, and low power requirements.

Z80L Low Power Feature. The Z80L Family offers state-of-the-art microprocessor performance with extremely low power consumption. Its low power requirement rivals comparable CMOS microprocessors. The Z80L Family's lower power consumption provides the ability to reduce system power requirements and enables its use in applications not previously possible. The Z80L is very well suited to battery backup applications or to systems operating primarily on batteries in hand-held or portable systems.

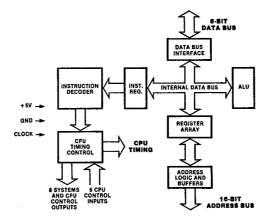



Figure 3. Z80L CPU Block Diagram

#### Z80L Microprocessor Family

The Zilog Z80L microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficient and cost-effective microcomputer-based systems.

The Z80 Family components provide extensive support for the Z80L microprocessor. These are:

- The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be configured to interface with standard parallel
- peripheral devices such as printers, tape punches, and keyboards.
- The CTC (Counter/Timer Circuit) features four programmable 8-bit counter/timers, each of which has an 8-bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable modes for both synchronous and asynchronous communication, including Bi-Synch and SDLC.

#### Z80L CPU Registers

Figure 4 shows three groups of registers within the Z80L CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set (designated by '[prime], e.g., A'). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-

foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Refresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

#### MAIN REGISTER SET

#### ALTERNATE REGISTER SET

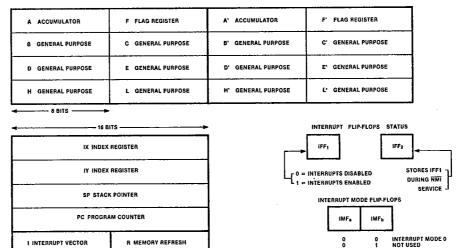



Figure 4. CPU Registers

| Z80L CPU    | Re                                 | gister             | Size (Bits) | Remarks                                                                                                                                                                                              |
|-------------|------------------------------------|--------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Registers   | A, A'                              | Accumulator        | 8           | Stores an operand or the results of an operation.                                                                                                                                                    |
| (Continued) | F, F'                              | Flags              | 8           | See Instruction Set.                                                                                                                                                                                 |
|             | B, B'                              | General Purpose    | 8           | Can be used separately or as a 16-bit register with C.                                                                                                                                               |
|             | C, C'                              | General Purpose    | 8           | See B, above.                                                                                                                                                                                        |
|             | D, D'                              | General Purpose    | 8           | Can be used separately or as a 16-bit register with E.                                                                                                                                               |
|             | E, E'                              | General Purpose    | 8           | See D, above,                                                                                                                                                                                        |
|             | н, н'                              | General Purpose    | 8           | Can be used separately or as a 16-bit register with L.                                                                                                                                               |
|             | L, L'                              | General Purpose    | 8           | See H, above.                                                                                                                                                                                        |
|             |                                    |                    |             | Note: The (B,C), (D,E), and (H,L) sets are combined as follows:  B — High byte C — Low byte D — High byte E — Low byte H — High byte L — Low byte                                                    |
|             | 1                                  | Interrupt Register | 8           | Stores upper eight bits of memory address for vectored interrupt processing.                                                                                                                         |
| •           | R                                  | Refresh Register   | 8           | Provides user-transparent dynamic memory refresh. Lower seven<br>bits are automatically incremented and all eight are placed on<br>the address bus during each instruction fetch cycle refresh time. |
|             | IX                                 | Index Register     | 16          | Used for indexed addressing.                                                                                                                                                                         |
|             | IY                                 | Index Register     | 16          | Same as IX, above.                                                                                                                                                                                   |
|             | SP                                 | Stack Pointer      | 16          | Holds address of the top of the stack. See Push or Pop in instruction set.                                                                                                                           |
|             | PC                                 | Program Counter    | 16          | Holds address of next instruction.                                                                                                                                                                   |
|             | IFF <sub>1</sub> -IFF <sub>2</sub> | Interrupt Enable   | Flip-Flops  | Set or reset to indicate interrupt status (see Figure 4).                                                                                                                                            |
|             | IMFa-IMFb                          | Interrupt Mode     | Flip-Flops  | Reflect Interrupt mode (see Figure 4).                                                                                                                                                               |

Table 1. Z80L CPU Registers

#### Interrupts: General Operation

The CPU accepts two interrupt input signals: NMI and INT. The NMI is a non-maskable interrupt and has the highest priority. INT is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate. INT can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80L has a single response mode for interrupt service for the non-maskable interrupt. The maskable interrupt, INT, has three programmable response modes available. These are:

■ Mode 0 — similar to the 8080 microprocessor.

- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.
- Mode 2 a vectored interrupt scheme, usually daisy-chained, for use with Z80 Family and compatible peripheral devices.

The CPU services interrupts by sampling the  $\overline{\text{NMI}}$  and  $\overline{\text{INT}}$  signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

allows the peripheral device to use several dif-

ferent types of service routines. These routines

Interrupts: General Operation (Continued)

Non-Maskable Interrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the Z80L response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt processing cycle begins. This is a special fetch  $(\overline{M1})$  cycle in which IORQ becomes active rather than MREQ, as in a normal M1 cycle. In addition, this special MI cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request and to place the interrupt vector on the bus.

Mode 0 Interrupt Operation. This mode is similar to the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus. This is normally a Restart instruction, which will initiate a call to the selected one of eight restart locations in page zero of memory. Unlike the 8080, the Z80 CPU responds to the Call instruction with only one interrupt acknowledge cycle followed by two memory read cycles.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has a vector address of 0038H only.

Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z80L microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8-bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8 bits and the contents of the I register as the upper 8 bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then calls the routine at that address. This flexibility in selecting the interrupt service routine address

Nested Interrupts). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain configuration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEI input hardwired to a High level. The first device has highest priority, while each succeeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.

The interrupting device disables its IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.

The Z80L CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.

Interrupt Enable/Disable Operation. Two flip-flops, IFF1 and IFF2, referred to in the register description are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual and Z80 Assembly Language Manual.

| Action                          | IFF <sub>1</sub> | IFF <sub>2</sub> | Comments                                                                      |
|---------------------------------|------------------|------------------|-------------------------------------------------------------------------------|
| CPU Reset                       | 0                | 0                | Maskable interrupt<br>INT disabled                                            |
| DI instruction execution        | . 0              | 0                | Maskable interrupt<br>INT disabled                                            |
| El instruction<br>execution     | 1                | 1:               | Maskable interrupt<br>INT enabled                                             |
| LD A,I instruction<br>execution | •                | •                | IFF <sub>2</sub> → Parity flag                                                |
| LD A,R instruction<br>execution | •                | •                | IFF <sub>2</sub> → Parity flag                                                |
| Accept NMI                      | 0                | IFF <sub>1</sub> | IFF <sub>1</sub> — IFF <sub>2</sub><br>(Maskable inter-<br>rupt INT disabled) |
| RETN instruction execution      | IFF <sub>2</sub> | •                | IFF <sub>2</sub> - IFF <sub>1</sub> at completion of an NMI service routine.  |

Table 2. State of Flip-Flops

#### Instruction Set

The Z80L microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor and identical to that of the Z80. It includes such unique operations as a block move for fast, efficient data transfers within memory or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the Z80L instruction set and shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. The Z80 CPU Technical Manual (03-0029-XX) and Assembly Language Programming Manual (03-0002-XX) contain significantly more details for programming use.

The instructions in Table 2 are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- □ Exchanges, block transfers, and searches
- □ 8-bit arithmetic and logic operations
- ☐ General-purpose arithmetic and CPU control

- ☐ 16-bit arithmetic operations
- ☐ Rotates and shifts
- ☐ Bit set, reset, and test operations
- □ Jumps
- □ Calls, returns, and restarts
- ☐ Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- ☐ Immediate extended
- □ Modified page zero
- □ Relative
- □ Extended
- □ Indexed
- □ Register
- ☐ Register indirect
- □ Implied
- □ Bit

| 8-Bit |
|-------|
| Load  |
| Group |
|       |

| Mnemonic                               | Symbolic<br>Operation            | 8 | z |             | Flo<br>H |             | P/V | N | С | Opcode<br>78 543 210                            | Hex  |             | No.of M<br>Cycles |              | Comments                     |
|----------------------------------------|----------------------------------|---|---|-------------|----------|-------------|-----|---|---|-------------------------------------------------|------|-------------|-------------------|--------------|------------------------------|
| LD r, r'<br>LD r, n                    | r - r'<br>r - n                  | • |   | X           | :        | X           | :   | : | : | 01 r r'<br>00 r 110<br>- n →                    |      | 1<br>2      | l.<br>2           | 4 7          | r, r' Reg.<br>000 B<br>001 C |
| LD r. (HL)<br>LD r. (IX+d)             | r - (HL)<br>r - (IX + d)         | : | : | X           | :        | X           | :   | : | : | 01 r 110<br>11 011 101<br>01 r 110              | DD   | 3           | 5                 | 7<br>19      | 010 D<br>011 E<br>100 H      |
| LD r, (IY+d)                           | $r \leftarrow (iY + d)$          | • | • | x           | •        | X           | •   | • | • | - d → 11 111 101 01 r 110 - d -                 | FD   | 3           | 5                 | 19           | 101 L<br>111 Å               |
| LD (HL), r<br>LD (IX+d), r             | (HL) - r<br>(IX+d) - r           | : | : | X           | :        | X           | :   | : | : | 01 110 r<br>11 011 101<br>01 110 r              | DD   | 1<br>3      | 2<br>5            | 7<br>19      |                              |
| LD (IY+d), r                           | $(lY+d) \leftarrow r$            | • | • | x           | •        | X           | •   | • | • | - d -<br>11 111 101<br>01 110 r                 | FD   | 3           | . 5               | 19           |                              |
| LD (HL), n                             | (HL) - n                         | • | • | X           | •        | x           | •   | • | • | 00 110 110                                      | 36   | 2           | 3                 | 10           |                              |
| LD (IX+d), n                           | (IX + d) - n                     |   | • | x           | •        | x           | •   | • | • | - n -<br>11 011 101<br>00 110 110<br>- d -      |      | 4           | 5                 | 19           |                              |
| LD (IY+d), n                           | (IY+d) - n                       | • | • | x           | •        | x           | •   | • | • | - n -<br>11 111 101<br>00 110 110<br>- d -      |      | 4           | 5                 | 19           |                              |
| LD A, (BC)<br>LD A, (DE)<br>LD A, (nn) | A - (BC)<br>A - (DE)<br>A - (nn) | : | : | X<br>X<br>X | :        | X<br>X      | :   | : | : | 00 001 010<br>00 011 010<br>00 111 010          | 1A   | 1<br>1<br>3 | 2<br>2<br>4       | 7<br>7<br>13 | •                            |
| LD (BC), A<br>LD (DE), A<br>LD (nn), A | (BC) - A<br>(DE) - A<br>(nn) - A | : | : | X<br>X<br>X | :        | X<br>X<br>X | :   | : | : | - n -<br>00 000 010<br>00 010 010<br>00 110 010 | 12   | 1<br>1<br>3 | 2<br>2<br>4       | 7<br>7<br>13 |                              |
| LD A, I                                | A - I                            | : | ı | x           | 0        | x           | IFF | 0 |   | - n -<br>- n -<br>11 101 101<br>01 010 111      |      | 2           | 2                 | 9            |                              |
| LD A, R                                | A - R                            |   | 1 | x           | 0        | X.          | IFF | 0 | • | 11 101 101                                      | ED   | 2           | 2                 | 9            |                              |
| LD I, A                                | I - A                            | • | • | X           | •        | x           | •   | • | • | 11 101 101                                      | · ED | 2           | 2                 | 9            |                              |
| LD R, A                                | R A                              | • |   | X           | •        | X           | •   | • |   | 01 000 111<br>11 101 101<br>01 001 111          | ED   | 2           | 2                 | 9            |                              |

NOTES: r, r' means any of the registers A, B, C, D, E, H, L.

IFF the content of the interrupt enable flip-flop, (IFF) is

copied into the P/V flag.

For the organization of flag potation and symbols for

ror an explanation of flag notation and symbols for mnemonic tables, see Symbolic Notation section

Z80L CPU

| 16-Bit Load<br>Group      | Mnemonic .                    | Symbolic<br>Operation                                                                                            | 8                             | z                       |                   | Flag<br>H | P.      | /₹     | H    | c       | Opcode<br>78 543 210 Hex                         | Bytes | No.of M<br>Cycles | States    |                | Comments                                               |          |
|---------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-------------------|-----------|---------|--------|------|---------|--------------------------------------------------|-------|-------------------|-----------|----------------|--------------------------------------------------------|----------|
| a. oup                    | LD dd, nn                     | dd nn                                                                                                            | •;                            | •                       | Х                 | • 3       | X ·     | •      | •    | •       | 00 dd0 001                                       | 3     | 3                 | 10        | <u>dd</u>      | Pair<br>BC                                             |          |
|                           | LD IX, nn                     | IX nn                                                                                                            | •                             | •                       | x                 | • 1       | X ·     | •      | •    | •       | - n -<br>11 011 101 DD<br>00 100 001 21<br>- n - | 4     | 4                 | 14        | 01<br>10<br>11 | DE<br>HL<br>SP                                         |          |
| -                         | LD IY, nn                     | IY ← nn                                                                                                          | •                             | •                       | X                 | • ;       | X ·     | •      | •    | •       | 11. 111 101 FD<br>00 100 001. 21                 | 4     | 4                 | - 14      |                |                                                        | -        |
|                           | LD HL, (nn)                   | H - (nn+1)<br>L - (nn)                                                                                           | •                             | •                       | x                 | • ;       | X ·     | •      | •    | •       | 00 101 010 2A<br>- n -<br>- n -                  | 3     | 5                 | 16        |                |                                                        |          |
|                           | LD dd, (nn)                   | ddL - (nn+1)                                                                                                     | •                             | •                       | <b>X</b>          | • ]       | X ·     | •      | •    | •       | 11 101 101 ED<br>01 ddl 011<br>- n -             | 4     | 6                 | 20        |                |                                                        |          |
|                           | LD IX, (nn)                   | $1X_{H} - (nn+1)$ $1X_{L} - (nn)$                                                                                | •                             | •                       | X                 | •         | X       | •      | • .  | •       | 11 011 101 DD<br>00 101 010 2A                   | 4     | 6                 | 20        |                |                                                        |          |
|                           | LD IY, (nn)                   | IYH - (nn+1) IYL - (nn)                                                                                          | •                             | ٠                       | <b>x</b>          | • *       | x       | •      | •    | •       | 11 111 101 FD<br>00 101 010 2A                   | 4     | 6                 | 20        |                |                                                        |          |
|                           | LD (nn), HL                   | (nn+1) - H<br>(nn) - L                                                                                           | .•                            | •                       | X                 | •         | X       | •      | •    | •       | 00 100 010 22<br>- n -<br>- n -                  | 3     | . 5               | 16        |                |                                                        |          |
|                           | LD (nn), dd                   | (nn + 1) - ddH<br>(nn) - ddL                                                                                     | •                             | •                       | X                 | •         | x       | •      | •    | •       | 11 101 101 ED<br>01 dd0 011<br>- n -             | 4.    | 6                 | <b>20</b> |                | -                                                      |          |
|                           | LD (nn), 1X.                  | (nn+1) - 1XH<br>(nn) - 1XL                                                                                       | •                             | •                       | X                 | •         | X       | •      | •    | •       | 11 011 101 DD<br>00 100 010 22                   | 4     | 6                 | 20        |                |                                                        |          |
|                           | LD (nn), 1Y                   | (nn) - 1YL                                                                                                       | •                             | •                       | X                 | •         | X       | • .    | •    | •       | 11 111 101 FD<br>00 100 010 22                   | 4     | 6                 | 20        |                |                                                        |          |
|                           | LD SP, HL<br>LD SP, IX        | SP - HL<br>SP - IX                                                                                               | •                             | :                       | X                 | •         | X<br>X  | :      | :    | :       | 11 111 001 F9<br>11 011 101 DD<br>11 111 001 F9  | 1 2   | 1. 2              | 6<br>10   |                |                                                        |          |
|                           | LD SP, IY                     | SP - IY                                                                                                          | •                             | •                       | X                 | ٠         | X       | •      | •    | •       | 11 111 101 FD<br>11 111 001 F9                   | 2     | 2                 | 10        | 99             | Pair                                                   |          |
|                           | PUSH qq                       | (SP-2) - qqL<br>(SP-1) - qqH<br>SP - SP -2                                                                       | •                             | •                       | X                 |           | -       | •      | •    | •       | 11 qq0 101                                       | 1     | 3                 | 11        | 00<br>01<br>10 | BC<br>DE<br>HL                                         |          |
|                           | PUSH IX                       | (SP-2) - IXL<br>(SP-1) - IXH<br>SP - SP -2                                                                       | •                             | •                       |                   | •         |         | •      | •    | •       | 11 011 101 DD<br>11 100 101 E5<br>11 111 101 FD  | 2     | 4                 | 15<br>15  | 11             | AF                                                     |          |
|                           | PUSH IY                       | (SP-2) - IYL<br>(SP-1) - IYH<br>SP - SP -2                                                                       | •                             | ٠                       | х                 |           |         | •      | •    | •       | 11 100 101 E5                                    |       |                   |           |                |                                                        |          |
|                           | POP qq                        | qqH - (SP+1)<br>qqL - (SP)<br>SP - SP +2                                                                         | •                             | ٠                       | X                 | •         | X       | •      | •    | •       | 11 qq0 001                                       | 1     | 3                 | 10        | •              |                                                        |          |
|                           | POP IX                        | IXH - (SP+1)<br>IXL - (SP)<br>SP - SP +2                                                                         | •                             | •                       | X                 | •         | X       | •      | •    | •       | 11 011 101 DD<br>11 100 001 E1                   | 2     | 4                 | 14        |                |                                                        |          |
|                           | POP IY                        | IY <sub>H</sub> - (SP+1)<br>IY <sub>L</sub> - (SP)<br>SP - SP +2                                                 | •                             | •                       | X<br>             | •         | X       | •      | •    | •       | 11 111 101 FD<br>11 100 001 E1                   | 2     |                   | 14        |                |                                                        | <u>,</u> |
|                           | qq is<br>(PAIF                | any of the register pairs B<br>any of the register pairs A<br>tig. (PAIR), refer to high<br>., BCL = C, AFH = A. | C, DE, I<br>F, BC,<br>order a | HL, S<br>DE, I<br>ad lo | P.<br>IL.<br>rord | er eigi   | yt bili | s of t | he r | egister | r pair respectively,                             |       |                   |           |                | · · · · · · · · · · · · · · · · · · ·                  |          |
| Exchange.<br>Block        | EX DE, HL<br>EX AF, AF<br>EXX | DE HL<br>AF AF<br>BC BC                                                                                          |                               |                         | X                 | :         | X       | :      | •    | :       | 11 101 011 EE<br>00 001 000 00<br>11 011 001 DS  | 3 1   | . 1<br>1<br>1     | 4 4       | ·R             | egister bank and                                       |          |
| Transfer.<br>Block Search |                               | DE - DE<br>HL - HL'                                                                                              |                               |                         |                   |           | v       |        |      |         | 11 100 011 E                                     | 3 1   | 5                 | . 19      |                | auxiliary register<br>bank exchange                    |          |
| Groups                    | EX (SP), HL                   | H - (SP+1)<br>L - (SP)                                                                                           | •                             |                         |                   | •         | X       | •      |      |         |                                                  |       | 6                 | 23        |                |                                                        |          |
|                           | EX (SP), IX<br>EX (SP), IY    | $IX_H - (SP+1)$<br>$IX_L - (SP)$<br>$IY_H - (SP+1)$                                                              |                               | , ,                     | , ,               | •         | x       |        | •    | •       | 11 011 101 DI<br>11 100 011 E<br>11 111 101 FI   | 3     |                   | 23        |                | ÷                                                      |          |
|                           | LDI                           | $IY_L \leftarrow (SP)$<br>$(DE) \leftarrow (HL)$                                                                 |                               | <b>.</b> .              | . ,               |           | x       | 0      |      | ) •     | 11 100 011 E<br>11 101 101 E<br>10 100 000 A     | D 2   | 4                 | 16        | L              | oad (HL) into<br>(DE), increment                       |          |
|                           |                               | DE - DE+1<br>HL - HL+1<br>BC - BC-1                                                                              |                               |                         |                   |           |         | Œ      | )    |         |                                                  |       |                   |           |                | the pointers and<br>decrement the byte<br>counter (BC) |          |
|                           | LDIR                          | (DE) - (HL)<br>DE - DE+1<br>HL - HL+1<br>BC - BC-1                                                               |                               | •                       | • ;               | 0         | X       | Ö      | (    | •       | 11 101 101 E<br>10 110 000 B                     |       | 5. 4              | 21<br>16  | 1<br>I         | iBC ≠ 0<br>iBC =0                                      |          |
|                           |                               | Repeat until<br>BC = 0                                                                                           |                               |                         |                   |           |         |        |      |         |                                                  |       |                   |           |                |                                                        |          |

NOTE: OP/V flag is 0 if the result of BC-1 = 0, otherwise P/V = 1.

| Exchange,<br>Block        | Mnemonic                                                                                                                                                               | Symbolic<br>Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8            | z                                        |                                       | Fla<br>H                              | egs                                   | P/V                                     | N                                       | c                                     | Opco<br>78 543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | Hex      | No.of<br>Bytes   | No.of M<br>Cycles |                    | Comments                                                                                                                                                                                                      |   |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|------------------|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Transier.                 |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                          |                                       |                                       |                                       | Φ                                       |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    | •                                                                                                                                                                                                             |   |
| Block Search              | LDD                                                                                                                                                                    | (DE) (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •            | •                                        | X                                     | 0                                     | X                                     | 1                                       | 0                                       | •                                     | 11 101<br>10 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |          | 2                | 4                 | 16                 |                                                                                                                                                                                                               |   |
| Groups                    |                                                                                                                                                                        | DE - DE-1<br>HL - HL-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       | 10 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                         | 7.0      |                  |                   |                    |                                                                                                                                                                                                               |   |
| (Continued)               |                                                                                                                                                                        | BC - BC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                          |                                       | •                                     |                                       | 0                                       |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           | LDDR                                                                                                                                                                   | (DĒ) (HL)<br>DE DE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •            | •                                        | X                                     | 0                                     | X                                     | U                                       | 0                                       | •                                     | 11 101<br>10 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101                                                                         | ED<br>BS | 2 2              | 5<br>4            | 21<br>16           | If BC = 0<br>If BC = 0                                                                                                                                                                                        |   |
|                           |                                                                                                                                                                        | HL HL-1<br>BC BC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       | 10 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                         | -~       | •                | •                 | ••                 | 1 20 - V                                                                                                                                                                                                      |   |
|                           |                                                                                                                                                                        | BC - BC - 1<br>Repeat until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           |                                                                                                                                                                        | BC = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 3                                        |                                       |                                       |                                       | ര                                       |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           | CPI                                                                                                                                                                    | A - (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.           | ï                                        | X                                     | t                                     | X                                     | ĭ                                       | ì                                       | •                                     | 11 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |          | 2                | 4                 | 16                 |                                                                                                                                                                                                               |   |
|                           |                                                                                                                                                                        | HL HL+1<br>BC BC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                          |                                       |                                       |                                       | _                                       |                                         |                                       | 10 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001                                                                         | Ą1.      |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 3                                        |                                       |                                       |                                       | 0                                       |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          | _                | _                 |                    |                                                                                                                                                                                                               |   |
|                           | CPIR                                                                                                                                                                   | A - (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı            | 1                                        | Х                                     | ı                                     | X                                     | 1                                       | 1                                       | •                                     | 11 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                         | EĎ       | 2                | 5                 | 21                 | If BC ≠ 0 and<br>A ≠ (HL)                                                                                                                                                                                     |   |
|                           |                                                                                                                                                                        | HL - HL+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       | 10 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001                                                                         | Bl       | 2                | 4                 | 16                 | If BC = 0 or                                                                                                                                                                                                  |   |
|                           |                                                                                                                                                                        | BC - BC-1<br>Repeat until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    | A = (HL)                                                                                                                                                                                                      |   |
|                           |                                                                                                                                                                        | A = (HL) or<br>BC = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 3                                        |                                       |                                       |                                       | Ō                                       |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          | _                |                   |                    |                                                                                                                                                                                                               |   |
|                           | CPD                                                                                                                                                                    | A - (HL)<br>HL - HL-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t            | 1                                        | X                                     | ı                                     | X                                     | ı                                       | 1                                       | •                                     | 11 101<br>10 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101                                                                         | A9       | 2                | 4                 | 16                 |                                                                                                                                                                                                               |   |
|                           |                                                                                                                                                                        | BC - BC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 3                                        |                                       |                                       |                                       | 0                                       |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           | CPDR                                                                                                                                                                   | A - (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı            | ï                                        | X                                     | :                                     | Х                                     | ĭ                                       | ı                                       | •                                     | 11 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                         | ED       | 2                | 5                 | 21                 | If BC # 0 and                                                                                                                                                                                                 |   |
|                           |                                                                                                                                                                        | HL - HL-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       | 10 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001                                                                         | B9       | 2                | 4                 | 16                 | A ≠ (HL)<br>11 BC = 0 or                                                                                                                                                                                      |   |
|                           |                                                                                                                                                                        | $BC \leftarrow BC - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••                                                                         |          | -                | •                 |                    | A = (HL)                                                                                                                                                                                                      |   |
|                           |                                                                                                                                                                        | Repeat until<br>A = (HL) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                                       |                                       |                                       |                                         |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           | ② P/V (                                                                                                                                                                | BC = 0  lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ructi        | on o                                     | nerwi                                 | ise P/                                | V =                                   | 1.                                      |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    | -                                                                                                                                                                                                             |   |
|                           | ② P/V fl<br>③ Z flag                                                                                                                                                   | lag is 0 if the result of BC—<br>lag is 0 at completion of ins<br>r is 1 if A = (HL), otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ructi        | on o                                     | aly.                                  | ise P/                                |                                       |                                         |                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |          |                  |                   |                    |                                                                                                                                                                                                               |   |
|                           | ② P/V ii<br>③ Z ilag<br>ADD A, r                                                                                                                                       | lag is 0 if the result of BC—<br>lag is 0 at completion of ins<br>r is 1 if $A = (HL)$ , otherwise<br>$A \leftarrow A + r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rucii<br>Z = | on or<br>0.                              | nly.<br>X                             | 1                                     | x                                     | v                                       |                                         |                                       | 10 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                           |          | 1                | 1                 | 4                  | r Reg.                                                                                                                                                                                                        |   |
| 8-Bit<br>Arithmetic       | ② P/V fl<br>③ Z flag                                                                                                                                                   | lag is 0 if the result of BC—<br>lag is 0 at completion of ins<br>r is 1 if A = (HL), otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rucii<br>Z = | оп он<br>0.                              | aly.                                  |                                       |                                       |                                         |                                         | i i                                   | 11 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                                                                         |          | 1 2              | 1 2               | 4 7                | 000 B                                                                                                                                                                                                         |   |
| Arithmetic<br>and Logical | ② P/V ii<br>③ Z ilaq<br>ADD Ä, r<br>ADD Ä, n                                                                                                                           | lag is 0 if the result of BC-<br>lag is 0 at completion of ins<br>is 1 if A = (HL), otherwise<br>A - A + r<br>A - A + n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rucli<br>Z = | 0.<br>1                                  | x<br>x                                | 1                                     | x<br>x                                | v<br>v                                  | 0                                       | ı                                     | 11 000<br>- n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ]110<br>→                                                                   | -        | . 2              | 2                 | 7                  | 000 B<br>001 C<br>010 D                                                                                                                                                                                       |   |
| Arithmetic<br>and Logical | ② P/V H ③ Z Haq  ADD A, r  ADD A, n  ADD A, (HL)                                                                                                                       | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rucli<br>Z = | 0.<br>1<br>1                             | x<br>x<br>x                           | 1 1                                   | x<br>x<br>x                           | V<br>V                                  | °0<br>0                                 | 1                                     | 11 000<br>- n<br>10 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110<br>-                                                                    |          | . 2<br>. 1       | 2                 | 7                  | 000 B<br>001 C<br>010 D<br>011 E                                                                                                                                                                              |   |
| Arithmetic                | ② P/V H ③ Z Haq  ADD A, r  ADD A, n  ADD A, (HL)                                                                                                                       | lag is 0 if the result of BC-<br>lag is 0 at completion of ins<br>is 1 if A = (HL), otherwise<br>A - A + r<br>A - A + n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rucli<br>Z = | 0.<br>1                                  | x<br>x                                | 1                                     | x<br>x                                | v<br>v                                  | °0<br>0                                 | 1                                     | 11 000<br>- n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br><br>110<br>101                                                       | DD       | . 2<br>. 1       | 2                 | 7                  | 000 B<br>001 C<br>010 D                                                                                                                                                                                       |   |
| Arithmetic<br>and Logical | ADD A, r ADD A, n  ADD A, (HL) ADD A, (IX+d)                                                                                                                           | lag is 0 if the result of BC- dag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)  A - A + (IX+d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rucli<br>Z = | 0.<br>1<br>1                             | X<br>X<br>X                           | :<br>:                                | x<br>x<br>x                           | v<br>v                                  | °0<br>0<br>0                            | :                                     | 11 000<br>- n<br>10 000<br>11 011<br>10 000<br>- d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br><br>110<br>101<br>110                                                |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B<br>001 C<br>010 D<br>011 E<br>100 H                                                                                                                                                                     |   |
| Arithmetic<br>and Logical | ADD A, r ADD A, n  ADD A, (HL) ADD A, (IX+d)                                                                                                                           | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rucli<br>Z = | 0.<br>1<br>1                             | x<br>x<br>x                           | 1 1                                   | x<br>x<br>x                           | v<br>v                                  | °0<br>0<br>0                            | :                                     | 11 000<br>- n<br>10 000<br>11 011<br>10 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110<br>-<br>110<br>101<br>110                                               | DD       | 1 3              | 2                 | 7                  | 000 B<br>001 C<br>010 D<br>011 E<br>100 H<br>101 L                                                                                                                                                            | - |
| Arithmetic<br>and Logical | ③ prv ii<br>③ ∠ log  ADD A, r  ADD A, n  ADD A, (HL)  ADD A, (IX+d)                                                                                                    | lag is 0 if the result of BC- ag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r A - A + n  A - A + (HL) A - A + (IX+d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ructi<br>Z = | on o | x x x x x                             | :<br>:                                | x<br>x<br>x<br>x                      | v<br>v<br>v                             | °0<br>°0<br>°0                          | :                                     | 11 000<br>- n<br>10 000<br>11 011<br>10 000<br>- d<br>11 111<br>10 000<br>- d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1110<br>1110<br>101<br>1110<br>101<br>1110                                  |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B<br>001 C<br>010 D<br>011 E<br>100 H<br>101 L                                                                                                                                                            | - |
| Arithmetic<br>and Logical | ③ pr t ii<br>③ ∠ t log  ADD A, r  ADD A, n  ADD A, (HL)  ADD A, (IX+d)  ADD A, (IY+d)                                                                                  | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)  A - A + (IX+d)  A - A + (IY+d)  A - A + (IY+d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rucli<br>Z = | 0.<br>1<br>1                             | x x x x x x                           | :<br>:                                | x<br>x<br>x<br>x                      | v<br>v<br>v                             | 0 0 0                                   | :                                     | 11 000<br>- n<br>10 000<br>11 011<br>10 000<br>- d<br>11 111<br>10 000<br>- d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110<br>101<br>101<br>110<br>101<br>110                                      |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B 001 C 010 D 011 E 100 H 101 L 111 A                                                                                                                                                                     | - |
| Arithmetic<br>and Logical | ② PAY II  ③ ∠ I log  ADD A, r  ADD A, n  ADD A, (IK+d)  ADD A, (IX+d)  ADD A, (IY+d)                                                                                   | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)  A - A + (IX+d)  A - A + (IY+d)  A - A + (IY+d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ructi<br>Z = | on o | x x x x x x x                         | :<br>:                                | x<br>x<br>x<br>x                      | v<br>v<br>v<br>v                        | °0<br>°0<br>°0                          | :                                     | 11 0000<br>- n<br>10 0000<br>11 011<br>10 0000<br>- d<br>11 111<br>10 0000<br>- d<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1110<br>101<br>1110<br>101<br>1110                                          |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown                                                                                                                    |   |
| Arithmetic<br>and Logical | ③ pr t ii<br>③ ∠ t log  ADD A, r  ADD A, n  ADD A, (HL)  ADD A, (IX+d)  ADD A, (IY+d)                                                                                  | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)  A - A + (IX+d)  A - A + (IY+d)  A - A + (IY+d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ructi<br>Z = | on o | x x x x x x                           | :<br>:                                | x<br>x<br>x<br>x                      | v<br>v<br>v                             | °0 °0 °0 °1                             | 1 1                                   | 11 000<br>- n<br>10 000<br>11 011<br>10 000<br>- d<br>11 111<br>10 000<br>- d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1110<br>101<br>1110<br>101<br>1110<br>101<br>1110                           |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits                                                                            |   |
| Arithmetic<br>and Logical | ② prv ii ③ 2 d laag  ADD A, r  ADD A, n  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  SDC A, s  SBC A, s                                                                 | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r  A - A + n  A - A + (HL)  A - A + (HX+d)  A - A + (IY+d)  A - A + (IY+d)  A - A + S - CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ructi<br>Z = | on o | x x x x x x x x x                     | :<br>:                                | x x x x x x x x x x x x x x x x x x x | v v v v v v v v v v v v v v v v v v v   | 0 0 0 0 1 1                             | 1 1 1 1 1 1 1                         | 11 000<br>- n<br>10 000<br>11 011<br>10 000<br>- d<br>11 111<br>10 000<br>- d<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1110<br>101<br>1110<br>101<br>1110                                          |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ② press ③ d des  ADD A, r  ADD Å, n  ADD Å, (IX+d)  ADD A, (IY+d)  ADD A, (IY+d)  ADC A, s  SUB s  SBC A, s  AND s  OR s  XOR s                                        | lag is 0 if the result of BC- ag is 0 if the result of BC- ag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r A - A + r A - A + (HL) A - A + (IX+d)  A - A + (IY+d)  A - A + s+CY A - A - s A - A - s - CY A - A - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ructi<br>Z = | on o | x x x x x x x x x x x x x x x x x x x | :<br>:<br>:                           | x x x x x x x x x x x x x x x x x x x | v v v v v v p                           | 0 0 0 1 1 0                             | :<br>:<br>:<br>:<br>:                 | 11 000<br>- n<br>10 000<br>11 011<br>10 000<br>- d<br>11 111<br>10 000<br>- d<br>001<br>001<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1110<br>101<br>1110<br>101<br>1110<br>101<br>1110                           |          | 1 3              | 2<br>2<br>5       | 7<br>7<br>19       | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits                                                                            |   |
| Arithmetic<br>and Logical | ADD A, r ADD A, n  ADD A, (HL)  ADD A, (IX+d)  ADD A, (IY+d)  ADC A, s  SUB s  SEC A, s  AND s  OR s  COR s                                                            | lag is 0 if the result of BC- lag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r A - A + n  A - A + (HL) A - A + (IX+d)  A - A + (IY+d)  A - A + s+CY A - A - s A - A - s-CY A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | on o | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v P P P v                     | 0 0 0 1 1 0 0 0 1                       | ;<br>;<br>;<br>;<br>;<br>;<br>;       | 11 0000 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110<br>  110<br>  101<br>  110<br>  101<br>  110<br>  110                   |          | 1 3 3            | 2 2 5 5           | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ② prv ii ③ 2 d laag  ADD A, r  ADD A, h  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  ADC A, a  SUB a  SBC A, a  AND a  CR a  XOR a  INC r                               | lag is 0 if the result of BC- ag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r A - A + r A - A + r A - A + (HL) A - A + (IX+d)  A - A + (IY+d)  A - A + s+CY A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v v v v v v v v v v v v v v   | 0 0 0 1 1 0 0 0 1 0                     | : : : : : : : : : : : : : : : : : : : | 11 000 n 10  | 110<br>  110<br>  101<br>  110<br>  101<br>  110<br>  110<br>  110<br>  110 |          | 1 3 3            | 2 8 5             | 7 7 19 19          | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ② PAY II  ② 2 d last  ADD A, r  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  ADD A, S  SBC A, s  AND s  OR a  XOR s  CP s  INC r  INC (HL)                               | A = A + r  A = A + r  A = A + r  A = A + r  A = A + (HL)  A = A + (IX + d)  A = A + (IY + d)  A = A + s + CY  A = A - s - CY  A = A - s  A = A - s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A  |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v v p p p v v v v v v v v v v | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ;<br>;<br>;<br>;<br>;<br>;<br>;       | 11 0000 11 011 10 0000 11 011 10 0000 11 011 10 0000 11 011 10 0000 11 010 10 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11 0000 11  | 1110<br>101<br>101<br>110<br>101<br>1110<br>1101<br>1110<br>1110            | FD       | 2<br>1<br>3<br>3 | 2 5 5             | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ② prv ii ③ 2 d laag  ADD A, r  ADD A, h  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  ADC A, a  SUB a  SBC A, a  AND a  CR a  XOR a  INC r                               | lag is 0 if the result of BC- ag is 0 at completion of ins is 1 if A = (HL), otherwise  A - A + r A - A + r A - A + r A - A + (HL) A - A + (IX+d)  A - A + (IY+d)  A - A + s+CY A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v v v v v v v v v v v v v v   | 0 0 0 1 1 0 0 0 1 0                     | i i i i i i i i i i i i i i i i i i i | 11 000 n 10 000 11 011 10 000 c 11 011 10 000 c 10 11 011 10 000 r 00 11 011 10 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 00 110 | 1110<br>101<br>1110<br>101<br>1110<br>101<br>1010<br>1010<br>1              |          | 2<br>1<br>3<br>3 | 2 8 5             | 7 7 19 19          | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ② PAY II  ② 2 d log  ADD A, r  ADD A, n  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  ADD A, (IY+d)  ADC A, s  SUB s  SBC A, s  AND s  CP s  INC r  INC (HL)  INC (IX+d) | A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + (HL)  A = A + (IX + d)  A = A + (IY + d)  A = A + s + CY  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A = A - s  A - A - s  A - A - s  A - A - s  A - A - s   |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v v v v v v v v v v v v v v   | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | i i i i i i i i i i i i i i i i i i i | 11 0000 11 011 10 0000 11 011 10 0000 11 111 10 0000 10 011 10 011 00 110 01 11 011 00 110 01 10 01 00 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110 01 110  | 1110                                                                        | FD       | 2<br>1<br>3<br>3 | 2<br>5<br>5       | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ② PAY II  ② 2 d last  ADD A, r  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  ADD A, S  SBC A, s  AND s  OR a  XOR s  CP s  INC r  INC (HL)                               | A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + (HL)  A = A + (IX+d)  A = A + (IY+d)  A = A + (IY+d)  A = A + s+CY  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + s  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A = A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c  A + c |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v v p p p v v v v v v v v v v | 0 0 0 1 1 0 0 0 0 0 0                   | : : : : : : : : : : : : : : : : : : : | 11 0000 - n 10 0000 11 011 10 0000 - d 11 111 10 0000 001 10 011 00 r 00 110 11 011 00 110 - d 11 111 00 110 00 110 11 111 00 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1110<br>-<br>101<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>1      | FD       | 2<br>1<br>3<br>3 | 2 5 5             | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩000 in                                                        |   |
| Arithmetic<br>and Logical | ADD A, r ADD A, n  ADD A, (HL)  ADD A, (IX+d)  ADD A, (IY+d)  ADC A, s  SUB s  SEC A, s  AND s  OR s  CP s  INC r  INC (HL)  INC (IX+d)                                | A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A - A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A - A - s  A - A - s  A - A - s  A - A - s  A - A - s   |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | V V V V V V V V V V V V V V V V V V V   | 0 0 0 0 1 1 0 0 0 0 0 0 0               | t t t t t t t t t t t t t t t t t t t | 11 000 - n 10 000 11 011 10 000 - d 11 111 10 000 001 1001 1001 1001 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1110                                                                        | FD       | 2<br>1<br>3<br>3 | 2<br>5<br>5       | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the 000 in the ADD set above.                                      |   |
| Arithmetic<br>and Logical | ② PAY II  ② 2 d log  ADD A, r  ADD A, n  ADD A, (HL)  ADD A, (IY+d)  ADD A, (IY+d)  ADD A, (IY+d)  ADC A, s  SUB s  SBC A, s  AND s  CP s  INC r  INC (HL)  INC (IX+d) | lag is 0 if the result of BC- lag is 0 at completion of ins r is 1 if A = (HL), otherwise  A - A + r A - A + r A - A + (HL) A - A + (IX+d)  A - A + (IX+d)  A - A + (IY+d)  A - A + s+CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s CY A - A - s A - A - s A - A - s CY A - A - s A - A - s A - A - s CY A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - s A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - A - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A - B - S A |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | v v v v v v v v v v v v v v v v v v v   | 0 0 0 0 1 1 0 0 0 0 0 0 0               | t t t t t t t t t t t t t t t t t t t | 11 0000 - n 10 0000 11 011 10 0000 - d 11 111 10 0000 001 10 011 00 r 00 110 11 011 00 110 - d 11 111 00 110 00 110 11 111 00 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1110<br>-<br>101<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>1      | FD       | 2<br>1<br>3<br>3 | 2<br>5<br>5       | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the 000 in the ADD set above.  m is any of r, (HL), (IX+d), (IY+d) |   |
| Arithmetic<br>and Logical | ADD A, r ADD A, n  ADD A, (HL)  ADD A, (IX+d)  ADD A, (IY+d)  ADC A, s  SUB s  SEC A, s  AND s  OR s  CP s  INC r  INC (HL)  INC (IX+d)                                | A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A - A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A - A - s  A - A - s  A - A - s  A - A - s  A - A - s   |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | V V V V V V V V V V V V V V V V V V V   | 0 0 0 0 1 1 0 0 0 0 0 0 0               | t t t t t t t t t t t t t t t t t t t | 11 0000 - n 10 0000 11 011 10 0000 - d 11 111 10 0000 001 10 011 00 r 00 110 11 011 00 110 - d 11 111 00 110 00 110 11 111 00 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1110                                                                        | FD       | 2<br>1<br>3<br>3 | 2<br>5<br>5       | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the ₩ D  m is any of r, (HL), (IX+d), (IY+d) as shown for INC.     |   |
| Arithmetic<br>and Logical | ADD A, r ADD A, n  ADD A, (HL)  ADD A, (IX+d)  ADD A, (IY+d)  ADC A, s  SUB s  SEC A, s  AND s  OR s  CP s  INC r  INC (HL)  INC (IX+d)                                | A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A + r  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A + r  A - A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A = A - s  A - A - s  A - A - s  A - A - s  A - A - s  A - A - s  A - A - s   |              | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | x x x x x x x x x x x x x x x x x x x | : : : : : : : : : : : : : : : : : : : | x x x x x x x x x x x x x x x x x x x | V V V V V V V V V V V V V V V V V V V   | 0 0 0 0 1 1 0 0 0 0 0 0 0               | t t t t t t t t t t t t t t t t t t t | 11 0000 - n 10 0000 11 011 10 0000 - d 11 111 10 0000 001 10 011 00 r 00 110 11 011 00 110 - d 11 111 00 110 00 110 11 111 00 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1110                                                                        | FD       | 2<br>1<br>3<br>3 | 2<br>5<br>5       | 7<br>7<br>19<br>19 | 000 B 001 C 010 D 011 E 100 H 101 L 111 A  s is any of r, n, (HL), (IX+d), (IY+d) as shown for ADD instruction. The indicated bits replace the 000 in the ADD set above.  m is any of r, (HL), (IX+d), (IY+d) |   |

| ZI                        | LOG II            | NC 72 I                                                              | Ε        |      | 90       | 78       | 41       | 34   | 3    |    | 30053                                            | 38]        | 4              |                   |                   | D-T-49-17                                                                                       | ÷07 |
|---------------------------|-------------------|----------------------------------------------------------------------|----------|------|----------|----------|----------|------|------|----|--------------------------------------------------|------------|----------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------|-----|
| Rotate and<br>Shift Group | Mnemonic          | Symbolic<br>Operation                                                | 8        | z    |          | Fla<br>H | gs.<br>1 | /V : | N (  | 3  | Opcode<br>76 543 210                             | Hex        | No.of<br>Byles | No.of B<br>Cycles | No.of 1<br>States | Comments                                                                                        |     |
| (Continued)               |                   | 7-0-0-CY<br>n=r,(HL),(IX+d),(IY+c                                    | ı        | t    | x        | 0        | x        | P    | 0    |    | 011                                              |            |                |                   |                   |                                                                                                 |     |
|                           | SLA m             | CY 70-0                                                              | 1        | 1    | X.       | 0.       | x        | P    | 0 -  | l  | 100                                              |            |                |                   |                   |                                                                                                 |     |
|                           | SRA m             | n = r,(HL),(IX + d),(IY + c<br>7 6 CY<br>n = r,(HL),(IX + d),(IY + c | ı        | ı    | x        | 0        | x        | P    | O. 1 | l  | [0]                                              |            |                |                   |                   |                                                                                                 |     |
|                           | SRLm <sup>C</sup> | 0                                                                    |          | 1.   | x        | 0        | x        | P    | 0 1  | :  | 1111                                             |            |                |                   |                   |                                                                                                 |     |
|                           | RLD [             | 7-43-0 7-43-0                                                        | D 1      | t    | x        | 0        | X        | P    | 0 •  | ,  | 11 101 101<br>01 101 111                         | ED<br>6F   | 2              | 5                 | 18                | Rotate digit left and<br>right between<br>the accumulator                                       |     |
|                           | RRD [             | 7-4 3-0]                                                             | <u> </u> | 1    | <b>x</b> | o        | x        | P (  | 0 •  | ,• | 11 101 101<br>01 100 111                         | ED<br>67   | 2              | 5                 | 18                | and location (HL). The content of the upper half of the accumulator is unaffected.              |     |
| Bit Set, Reset            | BIT b, r          | Z – T <sub>b</sub>                                                   | х        | ,    | х.       | 1        | x :      | х (  | •    |    | 11 001 011                                       | СВ         | 2              | 2                 | 8                 | r Reg.                                                                                          |     |
| and Test                  | BIT b. (HL)       | $Z = (\overline{HL})_b$                                              | x        | ı    | x        | ì        | x :      | x c  | •    |    | 01 b r<br>11 001 011                             |            | 2              | 3                 | 12                | 000 B                                                                                           |     |
| Group                     | BIT b, (IX+d)     | $b = (\overline{IX + d})_b$                                          | x        | ı    | Х.       | 1        | х :      | K (  | •    |    | 01 b 110<br>11 011 101 1<br>11 001 011 6         |            | 4              | 5                 | 20                | 010 D<br>011 E<br>100 H<br>101 L                                                                |     |
|                           | BIT b, (IY+d)     | $_{b}$ Z = $(\overline{iY+d})_{b}$                                   | x        | ı    | X.       | 1        | х :      | к (  | •    |    | 01 b 110<br>11 111 101<br>11 001 011             | FD<br>CB   | 4              | 5                 | 20                | 111 A b Bit Tested 000 0 001 1                                                                  |     |
|                           |                   |                                                                      |          |      |          |          |          |      |      |    | 01 P 110                                         |            |                |                   |                   | 010 2<br>011 3<br>100 4<br>101 5<br>110 6                                                       |     |
|                           | SET b. r          | r <sub>b</sub> - 1                                                   | •        | •    | X        | •        | X ·      |      | •    |    | 11 001 011 0                                     | СВ         | 2              | 2                 | 8                 | 111 7                                                                                           |     |
|                           | SET b, (HL)       | (HL) <sub>b</sub> - 1                                                | •        | •    | X        | •        | X ·      |      |      |    | 11 001 011 0                                     | СВ         | 2              | 4                 | 15                |                                                                                                 |     |
|                           | SET b, (IX+d)     | $(IX+d)_{\mathbf{b}}=1$                                              | •        | •    | X        | •        | x ·      |      | •    |    | П ь 110<br>11 011 101 1<br>11 001 011 0<br>+ d - |            | 4:             | 6                 | 23                | 25<br>2                                                                                         |     |
|                           | SET b, (IY+d)     | $(lY+d)_b-1$                                                         | •        | •    | X        | •        | x ·      | •    | •    |    | П b 110<br>11 111 101 1<br>11 001 011 0          | FD<br>CB   | 4              | 6 .               | 23                |                                                                                                 |     |
|                           | RES b, m          | m <sub>b</sub> ← 0<br>m ≈ r, (HL),<br>(IX + d),<br>(IY + d)          | •        | •    | x        | • ;      | х (      |      | •    |    | П b 110                                          |            |                |                   |                   | To form new opcode replace [I] of SET b, s with [0]. Flags and time states for SET instruction. |     |
|                           | NOTES: The no     | ofation mb indicates bit b (0                                        | to 7) or | loca | stion r  | n,       |          |      |      |    |                                                  |            |                |                   |                   |                                                                                                 |     |
| Jump<br>Group             | JP nn             | PC ← nn                                                              | •        | •    | x        | •        | х        | • (  |      |    | 11 000 011                                       | СЗ         | 3              | 3                 | 10                |                                                                                                 |     |
|                           | IP cc, nn.        | If condition cc is<br>true PC ← nn,<br>otherwise<br>continue         | •        | •    | X-       | •        | X        | •    | •    | •  | 11 cc 010                                        |            | 3              | 3.                | 10                | Condition                                                                                       |     |
|                           | JR e              | PC - PC+e                                                            |          |      | x        |          | X        |      |      |    | 00 011 000                                       | 18         | 2              | 3                 | 12                | 110 P sign positive<br>111 M sign negative                                                      |     |
|                           | JR C, e           | If C = 0.<br>continue                                                | •        | •    |          |          | X        | •    |      |    | 00 111 000<br>- e-2 -                            |            | 2              | 2                 | 7                 | Il condition not met.                                                                           |     |
|                           | JR NC, •          | If C = 1,<br>PC PC+e<br>If C = 1,                                    |          |      | x        |          | x ·      |      |      | ٠  | 00 110 000                                       | 20         | 2              | 3<br>2            |                   | If condition is met.                                                                            |     |
|                           | ,                 | continue If C = 0,                                                   | •        | -    | ^        | -        | ^        | •    | •    |    | - e-2 →                                          | <i>5</i> 0 | 2              | 3                 |                   | If condition not met.  If condition is met.                                                     |     |
|                           | ſP Z, e           | PC - PC+e If Z = 0 continue                                          | •        | •    | x        | •        | х        |      |      |    | 00 101 000<br>- e-2 -                            | 28         | 2              | 2                 |                   | If condition not met.                                                                           |     |
|                           |                   | If Z = 1,<br>PC PC+e                                                 |          |      |          |          |          |      |      |    | ÷ 4-4 =                                          |            | 2              | 3                 | 12                | If condition is met.                                                                            |     |
|                           | JR NZ, e          | If Z = 1,<br>continue                                                | •        | •    | X        | •        | X        | •    | •    |    | 00 100 000                                       | 20         | 2              | 2                 | 7                 | If condition not met.                                                                           |     |
|                           |                   | If Z = 0.<br>PC - PC+e                                               |          |      |          |          |          |      |      |    |                                                  |            | 2              | 3                 | 12                | If condition is met.                                                                            |     |
|                           | IP (HL)           | PC - HL                                                              | •        |      |          |          | х (      |      | •    |    | 11 101 001                                       |            | 1              | 1                 | 4                 |                                                                                                 | •   |
|                           | JP (IX)           | PC - IX                                                              | •        | •    | X        | • ;      | X        | •    | •    |    | 11 011 101 1<br>11 101 001                       | DD<br>E9   | 2              | 2                 | 8                 |                                                                                                 |     |

|                           | ZILO        | G INC 7                                                                                                                     | 2    |             | DΕ   |     |      | 75            | 18             | 4 (   | 343             | 0                    | 00       | 53             | 82 1                           |          | D T-49-                                                                                                                   |
|---------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|------|-------------|------|-----|------|---------------|----------------|-------|-----------------|----------------------|----------|----------------|--------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|
| Jump Group<br>(Continued) | Mnemonic    | Symbolic<br>Operation                                                                                                       | 8    | Z           |      | F   | ags  | P/\           | 7 H            | c     | Op<br>78 S      | code<br>43 210       | ) Hex    | No.of<br>Bytes | No.of M<br>Cycles              |          | Comments                                                                                                                  |
|                           | JP (IY)     | PC - IY                                                                                                                     | •    | ٠           | X    | •   | X    | •             | •              | ٠     | 11 11           | 11 101               | FD<br>E9 | 2              | 2                              | 8        |                                                                                                                           |
|                           | DINZ, e     | $B \leftarrow B - 1$ If $B = 0$ ,                                                                                           | •    | •           | X    | •   | Х    | •             | •              | •     | 00 0            | 0 000                | 10       | 2              | 2                              | 8        | It B = 0.                                                                                                                 |
|                           |             | continue<br>If B ≠ 0,<br>PC ← PC+e                                                                                          |      |             |      |     |      |               |                |       |                 |                      |          | 2              | 3                              | 13       | If B ≠ 0.                                                                                                                 |
|                           | e is a      | esents the extension in the r<br>signed two's complement nu<br>n the opcode provides an el<br>2 prior to the addition of e. | mber | in the      | fanc | e < | - 12 | 6, 12<br>PC I | 9 > .<br>s inc | remer | nted -          |                      |          | ·              |                                | •        |                                                                                                                           |
| Call and<br>Return Group  | CALL nn     | (SP-1) - PCH<br>(SP-2) - PCL<br>PC - nn                                                                                     | •    | •           | х    | •   | х    | •             | •              | •     | 11 00           |                      | CD       | 3              | 5                              | 17       | · · · · · · · · · · · · · · · · · · ·                                                                                     |
|                           | CALL cc, nn | If condition                                                                                                                | •    | •           | x    | •   | x    | •             | ٠              | •     | lì c            |                      |          | 3              | 3                              | 10       | If cc is false.                                                                                                           |
|                           |             | co is false<br>continue,<br>otherwise same as<br>CALL nn                                                                    |      |             |      |     |      |               |                |       | - 1<br>- 1      |                      |          | 3              | 5                              | 17       | If cc is true.                                                                                                            |
|                           | RET         | $PC_{L} \leftarrow (SP)$<br>$PC_{H} \leftarrow (SP+1)$                                                                      | •    | •           | x    | •   | x    | •             | •              | •     | 11 00           | 1 001                | C9       | 1.             | 3                              | 10       |                                                                                                                           |
|                           | RET cc      | If condition<br>cc is false                                                                                                 | •    | •           | X    | •   | X    | . •           | •              | •     | 11 c            | c 000                |          | 1              | 1                              | 5        | If cc is false.                                                                                                           |
|                           |             | continue,<br>otherwise                                                                                                      |      |             |      |     |      |               |                |       |                 |                      |          | 1              | 3                              | 11       | If cc is true.                                                                                                            |
|                           | ·           | same as<br>RET                                                                                                              |      |             |      |     |      |               |                |       |                 |                      |          |                |                                |          | cc Condition<br>000 NZ non-zero<br>001 Z zero                                                                             |
|                           | RETI        | Return from<br>interrupt                                                                                                    | •    | •           | X    | •   | X    | •             | •              | •     | 11 10<br>01 00  | 1 101<br>1 101       | ED<br>4D | 2              | 4                              | 14       | 010 NC non-carry<br>011 C carry<br>100 PO parity odd                                                                      |
|                           | RETN¹       | Return from<br>non-maskable<br>interrupt                                                                                    | •    | •           | X    | •.  | х    | •             | •              | •     | 11 10<br>01 00  | 1 101                | ED       | 2              | 4                              | 14       | 100 PO parity odd<br>101 PE parity even<br>110 P sign positive<br>111 M sign negative                                     |
|                           | RST p       | (SP-1) - PCH<br>(SP-2) - PCL<br>PCH - 0<br>PCL - p                                                                          | •    | •           | X    | •   | x    | •             | •              | •     | 11 t            | 111                  |          | 1              | 3                              | 41       | 1 p<br>000 00H<br>001 09H<br>010 10H<br>011 18H<br>100 20H<br>101 28H<br>110 30H<br>111 38H                               |
|                           | NOTE: 'RETN | oads IFF <sub>2</sub> — IFF <sub>1</sub>                                                                                    |      |             |      |     |      |               |                |       |                 |                      |          | •              |                                |          |                                                                                                                           |
| Input and                 | IN A, (n)   | A - (n)                                                                                                                     | •    | •           | x    | •   | x    | •             | •              | •     |                 | 11 01                | DB       | 2              | 3                              | 11       | n to Ag ~ A7                                                                                                              |
| Output Group              | IN r, (Ć)   | r = (C)<br>if $r = 110$ only the<br>flags will be affected                                                                  | 1.   | 1           | X    | 1   | x    | P             | 0              | •     | 11 10           | n<br>01 101<br>r 000 | ED       | 2              | 3                              | 12       | Acc. to Ag - A <sub>15</sub><br>C to A <sub>0</sub> - A <sub>7</sub><br>B to Ag - A <sub>15</sub>                         |
|                           | INI         | (HL) (C)<br>B B-1<br>HL HL + 1                                                                                              | x    | ①<br>1<br>② | X    | x   | x    | x             | 1              | x     |                 | 01, 101<br>00 010    |          | 2              | 4 .                            | 16       | C to A <sub>0</sub> ~ A <sub>7</sub><br>B to A <sub>8</sub> ~ A <sub>15</sub>                                             |
|                           | inir        | (HL) (C) B B 1 HL HL +- 1 Repeat until B == 0                                                                               | X    | ĭ<br>①      | X    | X   | X    | X             | 1              | X     | 11. 10<br>10 11 | 01 101<br>10 010     |          | 2              | 5<br>(If B≠0)<br>4<br>(If B=0) | 21<br>16 | C to A <sub>0</sub> - A <sub>7</sub><br>B to A <sub>8</sub> - A <sub>15</sub>                                             |
|                           | IND         | (HL) = (C)<br>B = B - 1<br>HL = HL - 1                                                                                      | x    | (2)         | X    | x   | x    | X             | ì              | x     | 11 10<br>10 10  | )1 101<br>)1 010     | ED<br>AA | 2              | 4                              | 16       | C to A <sub>0</sub> - A <sub>7</sub><br>B to A <sub>8</sub> - A <sub>15</sub>                                             |
|                           | INDR        | (HL) (C) B B 1 HL HL 1 Repeat until B = 0                                                                                   | x    |             | X    | X   | х    | X             | 1              | x     | 11 10<br>10 11  | 1 101<br>1 010       | ED<br>BA | 2              | 5<br>(li B≠0)<br>4<br>(li B=0) | 21<br>16 | C to A <sub>0</sub> ~ A <sub>7</sub><br>B to A <sub>8</sub> ~ A <sub>15</sub>                                             |
|                           | OUT (n), A  | (n) - A                                                                                                                     | •    | •           | x    | •   | X    | •             | •              | •     | 11 01           |                      | D3       | 2              | 3                              | 11       | n to A <sub>0</sub> ~ A <sub>7</sub>                                                                                      |
|                           | OUT (C), r  | (C) - r                                                                                                                     | •    | •<br>①      | X    | •   | X    | •             | •              | •     | 11 10<br>01 7   |                      |          | 2              | 3.                             | 12       | Acc. to A <sub>8</sub> - A <sub>15</sub><br>C to A <sub>0</sub> - A <sub>7</sub><br>B to A <sub>8</sub> - A <sub>15</sub> |
|                           | OHT         | (0) (11)                                                                                                                    | v    | -           | ·    | v   | v    | 10            |                |       |                 |                      |          | _              |                                |          |                                                                                                                           |

11 101 101 ED 10 100 011 A3

11 101 101 ED 10 110 011 B3

11 101 101 ED 10 101 011 AB

(If B ≠ 0) 4 (If B = 0) 16

NOTE:  $\bigcirc$  If the result of B - 1 is zero the Z flag is set, otherwise it is reset.  $\bigcirc$  Z flag is set upon instruction completion only.

(C) -- (HL)
B -- B - 1
HL -- HL + 1
(C) -- (HL)
B -- B - 1
HL -- HL + 1
Repeat until
B = 0

(C) ← (HL) B ← B − 1 HL − HL − 1

OUTI

OTIR

OUTD

C to A<sub>0</sub> - A<sub>7</sub> B to A<sub>8</sub> - A<sub>15</sub>

C to A<sub>0</sub> ~ A<sub>7</sub> B to A<sub>8</sub> ~ A<sub>15</sub>

C to A<sub>0</sub> ~ A<sub>7</sub> B to A<sub>8</sub> ~ A<sub>15</sub>

| Input and<br>Output Group | Mnemonic                                                                                                                                                                                                                                                                                                                                                                                                             | Symbolic<br>Operation                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                | z                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flo<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıgı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                                                                                                          | С        | Opcode No.of No.of M No.of T C 78 543 210 Hex Byles Cycles States Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| (Continued)               | OTDR                                                                                                                                                                                                                                                                                                                                                                                                                 | (C) - (HL)<br>B - B-1<br>HL - HL-1<br>Repeat until B =                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                | 1                                                                      | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                          | x        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Summary of<br>Flag        | Instruction                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                       | D <sub>7</sub><br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z                                                                                |                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D <sub>1</sub>                                                                                                                                             | ?        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Operation                 | ADD A, s; ADC SUB s; SEC A, AND s OR s, XOR s INC s DEC s ACD DD, ss ADC HL, ss SEC HL, ss RLA, RLCA, RICA, RR C m; SLA SRA m; SRL RLD; RRD DAA CPL SCF IN r (C) INI, IND, OUTI INIR; INDR; OU LDI; LDD LDIR; LDDR CPI; CPIR; CPIR, LD A, LD A, BIT b, s | s; CP s; NEG  RA; RRCA RR m; m; m; c; OUTD GR; OTDR                                                                                                                                                                                                                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                            | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                 | 1 t 1 0 I I X X X 0 0 0 I 1 0 X 0 X X 0 0 X 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VVPPVVV•PP PPXX t 0 t IFF X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                    | }        | Logical operations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Symbolic<br>Notation      | Z Zc P/V P. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                  | ign flag. S = ero flag. Z = 1 arity or overfle // ) share the sa sis flag with the rithmetic opera- verflow of the if the result of esult is odd. If the result of the alf-carry flag. peration produ tit 4 of the accu- dd/Subtract fix and N flags a ecimal adjust if and N flags a ecimal adjust if act the result if ddition or subt acked BCD for arry/Link flag. carry from the | 11 if the lift of | he rag. lag. rity s af it. If ope holi- ratio a c ator N = sed uctio ack ion = 1 | MSI esu Par Lo of t fect rati ds c on r if th arry l in c on ( ed usir | 3 of lt of l | I thee (P) of (P) of all operation (P) of all operation (P) of (P | e or<br>and<br>per-<br>lt we<br>par-<br>yen<br>yen<br>yen<br>to<br>revi-<br>tion<br>pro-<br>revi-<br>tion<br>pro-<br>revi-<br>tion<br>pro-<br>revi-<br>tion<br>pro-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi-<br>revi | ocrail over ation over ation with a rity, proper at foods with a rity or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion riflo | v C iffe | operation.  The flag is unchanged by the operation.  The flag is reset by the operation.  The flag is reset by the operation.  The flag is set by the operation.  The flag is indeterminate.  V = V P/V flag affected according to the overflow of the operation.  The flag is indeterminate.  P/V flag affected according to the parity reset the operation.  The flag affected according to the parity reset the operation.  The flag affected according to the parity reset the operation.  The operation.  The flag is unchanged by the operation.  Any flag affected according to the overflow of the operation.  The flag is reset by the operation.  The flag is reset by the operation.  Any of the operation.  The flag is reset by the operation.  Any one of the CPU registers A, B, C, D, E, Any 8-bit location for all the addressing meallowed for that instruction.  Any 16-bit location for all the addressing meallowed for that instruction.  Any one of the two index registers IX or IY.  Refresh counter.  Solit value in range < 0, 255 > .  And the flag is reset by the operation.  Any one of the CPU registers A, B, C, D, E, Any 8-bit location for all the addressing meallowed for the parity reset the operation. | resu<br>sult c<br>H, I<br>des<br>odes |

#### Pin Descriptions

A<sub>0</sub>-A<sub>15</sub>. Address Bus (output, active High, 3-state). A<sub>0</sub>-A<sub>15</sub> form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their highimpedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low Bus Request has a higher priority than  $\overline{\text{NMI}}$ and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a highimpedance state so that other devices can control these lines. BUSREQ is normally wire-ORed and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

Do-D7. Data Bus (input/output, active High, 3-state). Do-D7 constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

**INT.** Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal softwarecontrolled interrupt enable flip-flop (IFF) is enabled. INT is normally wire-ORed and requires an external pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with MI during an interrupt acknowledge cycle to indicate that an interrupt response vector can be

placed on the data bus.

Mi. Machine Cycle One (output, active Low). MI, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. Ml, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state), MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, negative edge-triggered). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. Read (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

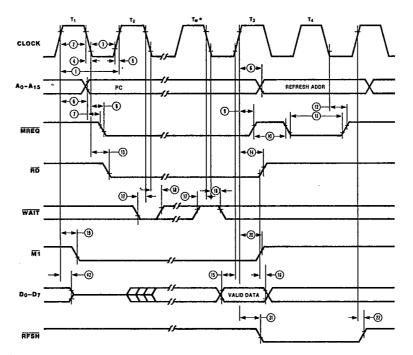
RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly.

WR. Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

#### CPU Timing


The CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

The CPU samples the WAIT input with the falling edge of clock state T<sub>2</sub>. During clock states T<sub>3</sub> and T<sub>4</sub> of an M1 cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.



\*Tw = Wait cycle added when necessary for slow ancilliary devices.

Figure 5. Instruction Opcode Fetch

CPU
Timing
(Continued)

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (MI) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle,

DΕ

 $\overline{\text{MREQ}}$  also becomes active when the address bus is stable. The  $\overline{\text{WR}}$  line is active when the data bus is stable, so that it can be used directly as an R/W pulse to most semiconductor memories.

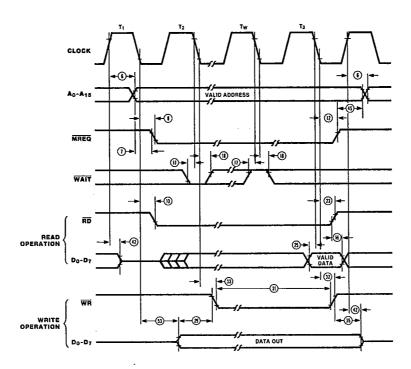
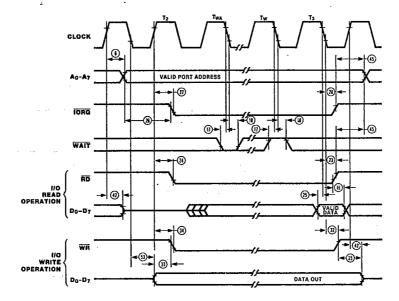
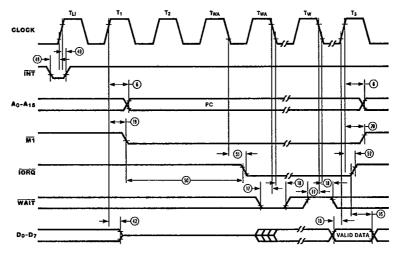




Figure 6. Memory Read or Write Cycles

700F CE

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically inserts a single Wait state ( $T_{WA}$ ). This extra Wait state allows sufficient time for an I/O port to decode the address from the port address lines.




TWA = Wait cycle automatically inserted by CPU.

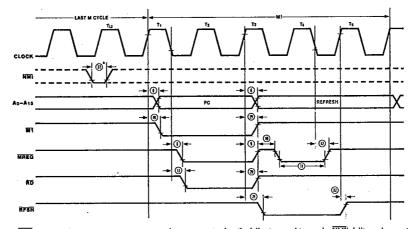
Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special  $\overline{\text{Ml}}$  cycle is generated.

During this MI cycle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.



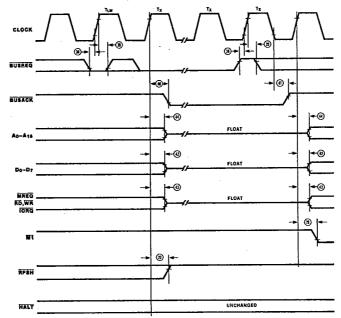
 $T_{LI} = Last$  state of any instruction cycle. TWA = Wait cycle automatically inserted by CPU.


Figure 8. Interrupt Request/Acknowledge Cycle

CPU Timing (Continued)

Non-Maskable Interrupt Request Cycle.

NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to


that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the  $\overline{\text{NMI}}$  service routine located at address 0066H (Figure 9).

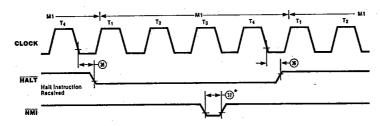


Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI). \* Although NMI is an asynchro

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If  $\overline{\text{BUSREQ}}$  is active, the CPU sets its address, data, and  $\overline{\text{MREQ}}$ ,  $\overline{\text{IORQ}}$ ,  $\overline{\text{RD}}$ , and  $\overline{\text{WR}}$  lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.




NOTES: 1)  $T_{LM}$  = Last state of any M cycle.

2) Tx = An arbitrary clock cycle used by requesting device.

Figure 10. Z-BUS Request/Acknowledge Cycle

Halt Acknowledge Cycle. When the CPU receives a  $\overline{HALT}$  instruction, it executes NOP states until either an  $\overline{INT}$  or  $\overline{NMI}$  input is received.

When in the Halt state, the <u>HALT</u> output is active and remains so until an interrupt is processed (Figure 11). <u>INT</u> will also force a Halt exit.



<sup>\*</sup>Although MMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than the rising edge of the clock cycle preceding the last state of any instruction cycle (TLI).

#### Figure 11. Halt Acknowledge Cycle

**Reset Cycle.** RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, two internal

T cycles are consumed before the CPU resumes normal processing operation.  $\overline{\text{RESET}}$  clears the PC register, so the first opcode fetch will be to location 0000 (Figure 12).

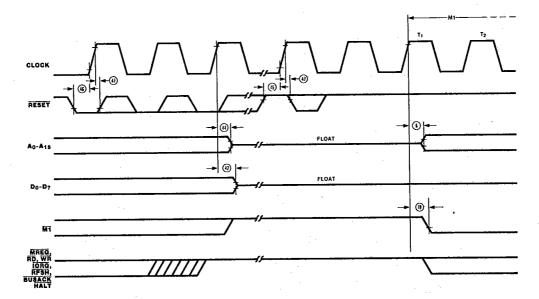



Figure 12. Reset Cycle

| AC<br>Characteristics |        | Symbol             | Parameter                                                                                               | Z83(<br>(1.0 l<br>Min<br>(ns) |                 | Z830<br>(2.5 Min<br>(ns) |              |
|-----------------------|--------|--------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|--------------------------|--------------|
|                       |        |                    |                                                                                                         | 1000*                         |                 | 400*                     | -,:,         |
|                       | 1      | T <sub>c</sub> C   | Clock Cycle Time                                                                                        | 470                           | 2000            | 180                      | 2000         |
|                       | 2      | TwCh               | Clock Pulse Width (High) Clock Pulse Width (Low)                                                        | 470                           | 2000            | 180                      | 2000         |
| •                     | 3      | TwCl               |                                                                                                         | 410                           | 30              | 100                      | 30           |
|                       | 4      | TfC                | Clock Fall Time  — Clock Rise Time                                                                      |                               | 30              |                          | 30<br>30     |
|                       | 5      | TrC                | Clock hise Time ————————————————————————————————————                                                    | _                             | 380             |                          | 145          |
|                       | 6<br>7 | TdCr(A) TdA(MREQI) | Address Valid to MREQ  1 Delay                                                                          | 370*                          | _               | 125*                     |              |
|                       | 8      | TdCf(MREQf)        | Clock ↓ to MREQ ↓ Delay                                                                                 | _                             | 260             |                          | 100          |
|                       | 9      | TdCr(MREQr)        | Clock 1 to MREQ 1 Delay                                                                                 |                               | 260             |                          | 100          |
|                       | 10     | - TwMREQh-         | - MREQ Pulse Width (High)                                                                               | 410*                          |                 | <del></del> 170*-        | <u> </u>     |
|                       | 11     | TwMREQ1            | MREQ Pulse Width (Low)                                                                                  | 890*                          |                 | 360*                     | _            |
|                       | 12     | TdCf(MREQr)        | Clock I to MREQ 1 Delay                                                                                 | . —                           | 260             | _                        | 100          |
|                       | 13     | TdCf(RDf)          | Clock ↓ to RD ↓ Delay                                                                                   | _                             | 340             | _=                       | 130          |
|                       | 14     | TdCr(RDr)          | Clock 1 to RD 1 Delay                                                                                   | _                             | 260             | _                        | 100          |
|                       | 15     | - TsD(Cr)          | - Data Setup Time to Clock 1                                                                            | 140 -                         |                 | 50                       |              |
|                       | 16     | ThD(RDr)           | Data Hold Time to RD 1                                                                                  | ·                             | 0               | <del></del> .            | . (          |
|                       | 17     | TsWAIT(Cf)         | WAIT Setup Time to Clock                                                                                | 190                           | -               | 70                       | _            |
|                       | 18     | ThWAIT(Cf)         | WAIT Hold Time after Clock 1                                                                            |                               | 0               |                          | (            |
|                       | 19     | TdCr(M1f)          | Clock 1 to MI ↓ Delay                                                                                   | _                             | 340             | _                        | 130          |
|                       | 20-    | - TdCr(Mlr)        | Clock t to MI t Delay                                                                                   |                               | —340 ——         |                          | <b>—</b> 130 |
|                       | 21     | TdCr(RFSHf)        | Clock ↑ to RFSH ↓ Delay                                                                                 |                               | 460             | _                        | 180          |
|                       | 22     | TdCr(RFSHr)        | Clock t to RFSH t Delay                                                                                 | · —                           | 390             | _                        | 150          |
|                       | 23     | TdCf(RDr)          | Clock ↓ to RD † Delay                                                                                   | _                             | 290             | _                        | 110          |
|                       | 24     | TdCr(RDf)          | Clock ↑ to RD ↓ Delay                                                                                   | _                             | 260             | -                        | 100          |
|                       | 25 —   | -TsD(Cf)           | Data Setup to Clock I during  M <sub>2</sub> , M <sub>3</sub> , M <sub>4</sub> or M <sub>5</sub> Cycles | 160 -                         |                 | 60                       |              |
|                       | 26     | TdA(IORQf)         | Address Stable prior to IORQ                                                                            | 790                           | <b>–</b>        | 320*                     |              |
|                       | 27     | TdCr(IORQf)        | Clock 1 to IORQ   Delay                                                                                 | <del></del>                   | 240             | -                        | 9            |
|                       | 28     | TdCf(IORQr)        | Clock I to IORQ 1 Delay                                                                                 | _                             | 290             | -                        | 110          |
|                       | 29     | TdD(WRf)           | Data Stable prior to WR                                                                                 | . 470*                        | _               | 190*                     | _            |
|                       | 30     | -TdCf(WRf)-        | —Clock I to WR I Delay ————                                                                             |                               | <del> 240</del> | ··-                      | 90           |
|                       | 31     | TwWR               | WR Pulse Width                                                                                          | 890*                          |                 | 360⁴                     | _            |
|                       | 32     | TdCf(WRr)          | Clock I to WR   Delay                                                                                   | _                             | 260             | _                        | 100          |
|                       | 33     | TdD(WRf)           | Data Stable prior to WR I                                                                               | -30                           | · —             | 30⁴                      | _            |
|                       | 34     | TdCr(WRf)          | Clock 1 to WR   Delay                                                                                   | _                             | 210             | _                        | 8            |
|                       | 35     | -TdWRr(D)          | —Data Stable from WR 1                                                                                  | 290°                          |                 | 130*-                    |              |
|                       | 36     | TdCf(HALT)         | Clock ↓ to HALT † or ↓                                                                                  | _                             | 760             | _                        | 30           |
|                       | 37     | TwNMI              | NMI Pulse Width                                                                                         | 210                           | _               | 80                       |              |
|                       |        |                    |                                                                                                         |                               |                 |                          |              |

<sup>\*</sup>For clock periods other than the minimums shown in the table, calculate parameters using the expressions in the table on the following page.

Calculated values above assumed.

TrC = TfC = 20 ns.

†All timings assume equal loading on pins within 50 pf.

TsBUSREQ(Cr) BUSREQ Setup Time to Clock 1

210

38

80

(Continued)

| Number | Symbol          | Parameter                                                             | Min   | 00-1<br>Max                 | Z830<br>Min      | 00-3<br>Max<br>(ns) |
|--------|-----------------|-----------------------------------------------------------------------|-------|-----------------------------|------------------|---------------------|
|        |                 |                                                                       | (ns)  | (ns)                        | (ns)             | (115)               |
| 39     | ThBUSREQ(Cr)    | BUSREQ Hold Time after Clock 1                                        | 0     | _                           | 0                |                     |
| 40     | TdCr(BUSACKf)   | -Clock 1 to BUSACK   Delay                                            |       | <del></del> 310 <del></del> |                  | 120                 |
| 41     | TdCf(BUSACKr)   | Clock I to BUSACK   Delay                                             | _     | 290                         | _                | 110                 |
| 42     | TdCr(Dz)        | Clock † to Data Float Delay                                           | _     | 240                         | _                | 90                  |
| 43     | TdCr(CTz)       | Clock 1 to Control Outputs Float<br>Delay (MREQ, IORQ, RD,<br>and WR) | -     | 290                         | _                | 110                 |
| 44     | TdCr(Az)        | Clock 1 to Address Float Delay                                        |       | 290                         | _                | 110                 |
| 45 —   | -TdCTr(A)       | - MREQ 1, IORQ 1, RD 1, and ————<br>WR 1 to Address Hold Time         | 400°  |                             | 160°             |                     |
| 46     | TsRESET(Cr)     | RESET to Clock   Setup Time                                           | 240   | _                           | 90               | _                   |
| 47     | ThRESET(Cr)     | RESET to Clock   Hold Time                                            | _     | 0                           | _                | C                   |
| 48     | TsINTf(Cr)      | INT to Clock 1 Setup Time                                             | 210   |                             | 80               | _                   |
| 49     | ThINTr(Cr)      | INT to Clock 1 Hold Time                                              | _     | لر ٥                        | —                | C                   |
| 50 —   | -TdM1f(IORQf) — | -M1   to IORQ   Delay                                                 | 2300° |                             | ——— 920 <b>*</b> |                     |
| 51     | TdCf(IORQf)     | Clock I to IORQ I Delay                                               | _     | 290                         |                  | 110                 |
| 52     | TdCf(IORQr)     | Clock † to IORQ † Delay                                               | _     | 260                         | _                | 100                 |
| 53     | TdCf(D)         | Clock I to Data Valid Delay                                           | _     | 290                         | _                | 230                 |

<sup>\*</sup>For clock periods other than the minimums shown in the table, calculate parameters using the following expressions. Calculated values above assumed TrC = TfC = 20 ns. † All timings assume equal loading on pins with 50 pF.

#### Footnotes to AC Characteristics

| Number | Symbol       | Z8300-1                 | Z8300-3                 |
|--------|--------------|-------------------------|-------------------------|
| 1      | TcC          | TwCh + TwCl + TrC + TiC | TwCh + TwCl + TrC + TfC |
| 7      | TdA(MREQf)   | TwCh + TfC - 200        | TwCh + TfC - 75         |
| 10     | TwMREQh      | TwCh + TfC - 90         | TwCh + TiC - 30         |
| 11     | TwMREQ1      | TcC - 110               | TcC - 30                |
| 26     | TdA(IORQi)   | TcC - 210               | TcC - 80                |
| 29 —   | - TdD(WRf)   | TcC - 540               | TcC - 210               |
| 31     | TwWR         | TcC = 110               | TcC - 40                |
| 33     | TdD(WRf)     | TwCl + TrC - 470        | TwC1 + TrC - 180        |
| 35     | TdWRr(D)     | TwC1 + TrC - 210        | TwC1 + TrC - 80         |
| 45     | TdCTr(A)     | TwC1 + TrC - 110        | TwCl + TrC - 40         |
| 50     | TdM1((IORQf) | 2TcC + TwCh + TfC - 210 | 2TcC + TwCh + TfC - 80  |

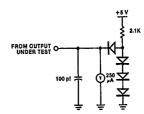
AC Test Conditions: VIH = 2.0 V VIL = 0.8 V VIHC = VCC -0.6 V VILC = 0.45 V VOH = 2.0 V VOL = 0.8 V FLOAT = ±0.5 V

Voltages on all pins with respect to ground.....-0.3V to +7VOperating Ambient

Temperature . . . . . . See Ordering Information Storage Temperature.....-65°C to +150°C

Stresses greater than those listed under Absolute Maxi-Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Standard Test Conditions


The DC characteristics and capacitance sections listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

Available operating temperature is:

 $\rm S = 0^{\circ}C$  to  $+70^{\circ}C$ ,  $+4.75V \leq V_{CC} \leq$ +5.25V

All ac parameters assume a load capacitance of 100 pf. Add 10 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus and 100 pf for address and control lines.

The Ordering Information section lists package temperature ranges and product numbers. Package drawings are in the Package Information section. Refer to the Literature List for additional documentation.



| DC<br>Charac-<br>teristics | Symbol           | Parameter                |            | -                   | Min                       | Мах                  | Unit | Test Condition                     |
|----------------------------|------------------|--------------------------|------------|---------------------|---------------------------|----------------------|------|------------------------------------|
|                            | V <sub>ILC</sub> | Clock Input Low Voltage  |            |                     | -0.3                      | 0.45                 | V    |                                    |
|                            | $v_{ihc}$        | Clock Input High Voltage |            | v                   | CC6                       | V <sub>CC</sub> + .3 | v    |                                    |
|                            | $v_{iL}$         | Input Low Voltage        |            |                     | -0.3                      | 8.0                  | v    |                                    |
|                            | $v_{ih}$         | Input High Voltage       |            |                     | 2.0                       | $v_{cc}$             | V    |                                    |
|                            | $v_{ol}$         | Output Low Voltage       |            |                     |                           | 0.4                  | V    | $I_{OL} = 2.0  \text{mA}$          |
|                            | $v_{oh}$         | Output High Voltage      |            |                     | 2.4                       |                      | v    | $I_{OH} = -250 \mu\text{A}$        |
|                            | I <sub>LI</sub>  | Input Leakage Current    |            |                     |                           | 10                   | μΑ   | $V_{IN} = 0 \text{ to } V_{CC}$    |
|                            | I <sub>LO</sub>  | 3-State Output Leakage   |            |                     |                           | ± 101                | μĀ   | $V_{OUT} = 0.4 \text{ to } V_{CC}$ |
|                            | Icc              | Power Supply Current     |            |                     |                           |                      |      |                                    |
|                            |                  | Frequency                | 0°C<br>Max | Temp<br>25°C<br>Max | erature<br>25°C<br>Typica |                      | Unit |                                    |
|                            |                  | Z8300-1 (1,0 MHz)        | 30         | 25                  | 15                        | 20                   | mĀ   |                                    |
|                            |                  | Z8300-3 (2.5 MHz)        | 45         | 40                  | 25                        | 35                   | mA   |                                    |

1. A<sub>15</sub>-A<sub>0</sub>, D<sub>7</sub>-D<sub>0</sub>, MREQ, IORQ, RD, and WR.

| Capacitance | Symbol             | Parameter          | Min | Max | Unit | Note |
|-------------|--------------------|--------------------|-----|-----|------|------|
|             | C <sub>CLOCK</sub> | Clock Capacitance  |     | 35  | рF   |      |
|             | $C_{IN}$           | Input Capacitance  |     | 5   | рF   |      |
|             | COUT               | Output Capacitance |     | 15  | рF   |      |

 $T_{A} = 25$ °C, f = 1 MHz.

Unmeasured pins returned to ground.

### **ORDERING INFORMATION**

**Z80L CPU, 1.0 MHz** 40-pin DIP Z8300-1 PS

**Z80L CPU, 2.5 MHz** 40-pin DIP Z8300-3 PS

#### Codes

First letter is for package; second letter is for temperature.

C = Ceramic DIP

P = Plastic DIP

L = Ceramic LCC

V = Plastic PCC

= Protopack

= Low Profile Protopack

DIP = Dual-In-Line Package

LCC = Leadless Chip Carrier

PCC = Plastic Chip Carrier (Leaded)

FLOW

B = 883 Class B

**TEMPERATURE** S = 0°C to +70°C

E = -40 °C to +85 °C

M\*= -55°C to +125°C

Example: PS is a plastic DIP, 0°C to +70°C.

†Available soon.

<sup>\*</sup>For Military Orders, contact your local Zilog Sales Office for Military Electrical Specifications.