

ZN5683E/J PCM LINE INTERFACE CIRCUIT

The ZN5683E/J is a PCM line interface circuit suitable for 2.048Mbit/s or 8.448Mbit/s PCM systems. It contains both transmit and receive channels in a single 18 pin dual in-line package. The incoming bipolar PCM signal, which has been attenuated and distorted by the cable is processed by the receiver to extract Data-, Data \pm and clock signals. These are then level shifted to TTL levels suitable for further digital processing.

In the transmit direction the TTL data input is used to drive a centre tapped transformer, which is used to interface with the transmission line.

FEATURES

- Operation up to 8.448Mbit/s in both Transmit and Receive Directions
- Supports Balanced and Unbalanced Receiver Inputs
- Single +5V Supply
- TTL Compatible
- Suitable for T1, T2, 2.048 and 8.448Mbit Systems
- 18 Pin Ceramic or Plastic DIL

Fig.1 Pin connections - top view

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Tamb: -40°C to +85°C, Vcc +5V \pm 0.25V

DC CHARACTERISTICS

Characteristic	Symbol	Pins	Value				0 4731
Characteristic			Min.	Тур.	Max.	Units	Conditions
Supply current	Icc			35.0	60.0	mA	Output drivers open
Low level input current - data	lico	12, 17	-200	1	-50	μΑ	$V_{IN} = 0V$
Low level input current - clock	lic	16	-400		-100	μΑ	$V_{IN} = 0V$
Low level output voltage - clock	Volc	8		0.4	0.8	v	IcL = 2mA
High level output voltage - clock	Vонс	8	3	3.6		V	F
Low level output voltage - data	Volb	10, 11		0.4	0.8	V	Ict = 2mA
High level output voltage - data	Vond	10, 11	3	3.6		V	
Low level output voltage - line driver	Volo	13, 15	0.6	0.8	0.9	V	See Note 3
High level output current - line driver	Гоно	13, 15			100	μΑ	
Output driver current sink	loto	13, 15			40	mA	
Input voltage		2, 3		3	3.3	V	See Note 4

AC CHARACTERISTICS

Characteristic	Symbol		Value			Conditions
	Symbol	Min.	Тур.	Max.	Units	
Output driver rise time	tro		20	25	ns	See Note 5

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Supply voltage, Vcc +20VInput voltage, V in (See Note 2) -0.3V to +20VCurrent sink 40mAOperating temperature range -40 °C to +85 °C Storage temperature range -55 °C to +125 °C

NOTES

- 1. The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.
- V_{IN} = input voltage relative to pins 7, 14.
- 3. Measured at pirs 13, 15 with 300 Ohms pull up to 5.0V.
- 4. Per CCITT G.703 pulse mask. See Fig.3.
- 5. Measured at pins 13. 15 with 150 Ohms pull up to 5.0V.

Fig.3 Input signal pulse mask

PIN DESIGNATION

Pin No.	Name	Description				
1	Decoupling	Pin for connection of an external decoupling capacitor to the peak detector circuit.				
2	RX DATA +	Received data input from isolating transformer. A '1' on this pin represents a positive going HDB3 pulse.				
3	RX DATA-	Received data input from isolating transformer. A '1' on this pin represents a negative going HDB3 pulse.				
4, 5, 6	LC TANK BIAS	L and C components are connected to form a circuit which is tuned to optimise the extraction of the HDB3 signal.				
7	RX GROUND	Ground pin for receiving circuitry.				
8	RX CLOCK	Output for clock extracted from received data stream.				
9	RX Vcc	Positive supply pin for receive circuitry.				
10	RX DATA- O/P	TTL compatible output for -ve pulses extracted from the transmission line.				
11	RX DATA + O/P	TTL compatible output for +ve pulses extracted from the transmission line.				
12	TX DATA- I/P	Data input for transmission as negative going pulses.				
13	TX DATA- O/P	Data output to isolating transformer for -ve pulses.				
14	TX GROUND	Ground pin for transmit circuitry.				
15	TX DATA + O/P	Data output to isolating transformer for +ve pulses.				
16	TX CLOCK I/P	Synchronising clock input for transmit circuitry.				
17	TX DATA + I/P	Data input for transmission as positive going pulses.				
18	TX Vcc	Positive supply pin for transmit circuitry.				

Fig.4 Recommended circuit