DISCRETE SEMICONDUCTORS # DATA SHEET # BLT71/8 UHF power transistor Preliminary specification File under Discrete Semiconductors, SC08b 1996 Feb 06 **BLT71/8** #### **FEATURES** - High efficiency - · Very high gain - Internal pre-matched input - Low supply voltage. #### **APPLICATIONS** • Hand-held radio equipment in common emitter class-AB operation for 900 MHz communication band. #### **PINNING - SOT96-1** | PIN | SYMBOL | DESCRIPTION | |------------|--------|-------------| | 1, 8 | b | base | | 2, 4, 5, 7 | е | emitter | | 3, 6 | С | collector | #### **DESCRIPTION** NPN silicon planar epitaxial transistor encapsulated in a plastic SOT96-1 (SO8) SMD package. #### **QUICK REFERENCE DATA** RF performance at $T_s \leq 60~^{\circ}C$ in a common emitter test circuit. | MODE OF OPERATION | f | V _{CE} | P _L | G _p | ης | |-------------------|-------|-----------------|----------------|----------------|----------------| | | (MHz) | (V) | (W) | (dB) | (%) | | CW, class-AB | 900 | 4.8 | 1.2 | ≥11
typ. 13 | ≥55
typ. 63 | **BLT71/8** #### **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 134). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |------------------|--------------------------------|--------------------------------|------|------|------| | V _{CBO} | collector-base voltage | open emitter | _ | 16 | V | | V _{CEO} | collector-emitter voltage | open base | _ | 8 | V | | V _{EBO} | emitter-base voltage | open collector | _ | 2.5 | V | | I _C | collector current (DC) | | _ | 500 | mA | | P _{tot} | total power dissipation | T _s = 60 °C; note 1 | _ | 2.9 | W | | T _{stg} | storage temperature | | -65 | +150 | °C | | Tj | operating junction temperature | | _ | 175 | °C | #### THERMAL CHARACTERISTICS | SYMBOL | PARAMETER | CONDITIONS | VALUE | UNIT | |---------------------|---|--|-------|------| | R _{th j-s} | thermal resistance from junction to soldering point | $P_{tot} = 2.9 \text{ W}; T_s = 60 \text{ °C}; \text{ note 1}$ | 40 | K/W | #### Note to the "Limiting values" and "Thermal characteristics" 1. T_s is the temperature at the soldering point of the collector pin. #### **CHARACTERISTICS** $T_i = 25$ °C unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |----------------------|-------------------------------------|--|------|------|------| | V _{(BR)CBO} | collector-base breakdown voltage | open emitter; I _C = 0.5 mA | 16 | _ | V | | V _{(BR)CEO} | collector-emitter breakdown voltage | open base; I _C = 10 mA | 8 | _ | V | | V _{(BR)EBO} | emitter-base breakdown voltage | open collector; I _E = 0.1 mA | 2.5 | _ | V | | I _{CES} | collector leakage current | V _{CE} = 8 V; V _{BE} = 0 | _ | 0.1 | mA | | h _{FE} | DC current gain | V _{CE} = 5 V; I _C = 100 mA | 25 | _ | | | C _c | collector capacitance | $V_{CB} = 4.8 \text{ V}; I_E = i_e = 0; f = 1 \text{ MHz}$ | _ | 7 | pF | | C _{re} | feedback capacitance | V _{CE} = 4.8 V; I _C = 0; f = 1 MHz | _ | 5 | pF | **BLT71/8** #### **APPLICATION INFORMATION** RF performance at $T_s \le 60$ °C in a common emitter test circuit (note 1). | MODE OF OPERATION | f | V _{CE} | I _{CQ} | P _L | G _p | η c | |-------------------|-------|-----------------|-----------------|----------------|----------------|----------------| | | (MHz) | (V) | (mA) | (W) | (dB) | (%) | | CW, class-AB | 900 | 4.8 | 3 | 1.2 | ≥11
typ. 13 | ≥55
typ. 63 | #### Note 1. T_s is the temperature at the soldering point of the collector pin. #### Ruggedness in class-AB operation The BLT71/8 is capable of withstanding a load mismatch corresponding to VSWR = 6: 1 through all phases under the following conditions: f = 900 MHz; $V_{CE} = 6.5$ V; $I_{CQ} = 3$ mA; $P_{L} = 1.2$ W; $T_{s} \le 60$ °C. Fig.2 Power gain and collector efficiency as functions of load power; typical values. **BLT71/8** Input impedance as a function of frequency (series components); typical values. (series components); typical values. BLT71/8 #### **PACKAGE OUTLINE** **BLT71/8** #### **DEFINITIONS** | Data Sheet Status | | | | | |--|---|--|--|--| | Objective specification | This data sheet contains target or goal specifications for product development. | | | | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | | | | Product specification | This data sheet contains final product specifications. | | | | | Limiting values | | | | | | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or | | | | | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. #### **Application information** Where application information is given, it is advisory and does not form part of the specification. #### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.