

N-Channel 40-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 71615
 www.vishay.com

 18-Apr-01
 1

SPICE Device Model SUP/SUB85N04-03

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.9		V
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	1410		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 30A$	0.0026	0.0029	Ω
		$V_{GS} = 4.5V, I_D = 20A$	0.0040	0.0044	
		$V_{GS} = 10V, I_D = 30A, T_J = 125^{\circ}C$	0.0037		
		$V_{GS} = 10V, I_D = 30A, T_J = 175^{\circ}C$	0.0043		
Forward Transconductance ^a	g fs	V _{DS} = 15V, I _D = 30 A	87		S
Forward Voltage ^a	V _{SD}	I _S = 85A, V _{GS} = 0 V	0.92	1.1	V
Dynamic ^b					
Input Capacitance	C _{iss}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1$ MHz	6809	6860	pf
Output Capacitance	C _{oss}		1347	1320	
Reverse Transfer Capacitance	C _{rss}		823	800	
Total Gate Charge ^b	Q_g	$V_{DS} = 30V$, $V_{GS} = 10V$, $I_D = 85A$	165	165	nC
Gate-Source Charge ^b	Q_{gs}		25	25	
Gate-Drain Charge ^b	Q_{gd}		55	55	
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD}=30V,R_L=0.35\Omega$ $I_D\cong 85A,V_{GEN}=10V,R_G=2.5\;\Omega$ $I_F=85A,di/dt=100\;A/\mu s$	57	15	ns
Rise Time ^b	t _r		103	90	
Turn-Off Delay Time ^b	$t_{d(off)}$		120	95	
Fall Time ^b	t _f		193	125	
Reverse Recovery Time	t _{rr}		65	60	

www.vishay.com Document Number: 71615

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

