
®

ZSP400
Digital Signal Processor
Architecture

TECHNICAL
MANUAL

D e c e m b e r 2 0 0 1

ii
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.

Document DB14-000121-03, Fourth Edition (December 2001)
This document describes LSI Logic Corporation’s ZSP400 Digital Signal
Processing Architecture and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of LSI
Logic or third parties.

Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design, CoreWare, and ZSP are trademarks or registered
trademarks of LSI Logic Corporation. All other brand and product names may be
trademarks of their respective companies.

GL

To receive product literature, visit us at http://www.lsilogic.com.

For a current list of our distributors, sales offices, and design resource
centers, view our web page located at

http://www.lsilogic.com/contacts/na_salesoffices.html

ZSP400 Digital Signal Processor Architecture Technical Manual iii
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Preface

This book is the primary reference and Technical Manual of the LSI Logic
ZSP400 Digital Signal Processor Architecture. It contains a functional
description of the architecture and details the instruction set.

Audience

This document assumes that you have some familiarity with
microprocessors and related support devices. The people who benefit
from this book are:

• Engineers and managers who are evaluating the ZSP400
architecture for possible use in a system

• Engineers who are designing a device based on the ZSP400
architecture into a system

• Engineers who are programming a device based on the ZSP400
architecture

Organization

This document has the following chapters and appendixes:

• Chapter 1, Introduction, introduces the features of the ZSP400 DSP
architecture and the instruction set.

• Chapter 2, ZSP400 Architecture Overview, briefly describes the
functional blocks that make up a ZSP400 device.

• Chapter 3, Control Registers, describes the control registers and
mode bits of a ZSP400 device.

• Chapter 4, Pipeline Control Unit, describes the pipeline operation,
the control register file, interrupts, and instruction grouping.

iv Preface
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

• Chapter 5, Instruction Unit, describes the instruction control unit,
which is responsible for fetching instructions from memory and
forwarding them to the pipeline.

• Chapter 6, Data Unit, describes the data unit, which is responsible
for fetching data from memory and forwarding it to the pipeline. The
data unit also handles data linking.

• Chapter 7, Execution Unit, describes the arithmetic logic units and
multiply/accumulate units.

• Chapter 8, ZSP400 Instruction Set, describes the ZSP400
instruction set in detail.

Related Publications

LSI402Z Digital Signal Processor User’s Guide, document number
DB15-000131-01

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it is italicized.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive. Signals that are active
LOW end in an “n.”

Hexadecimal numbers are indicated by the prefix “0x” —for example,
0x32CF. Binary numbers are indicated by the prefix “0b” —for example,
0b0011.0010.1100.1111.

ZSP400 Digital Signal Processor Architecture Technical Manual v
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Contents

Chapter 1 Introduction
1.1 ZSP400 Architecture Overview 1-1
1.2 Instruction Set Highlights 1-3
1.3 Available Implementations 1-5

Chapter 2 ZSP400 Architecture Overview
2.1 Typical ZSP400 System 2-1
2.2 Control Register File 2-3
2.3 Pipeline Control Unit 2-3
2.4 Instruction Unit 2-3
2.5 Data Unit 2-4
2.6 Execution Unit 2-4
2.7 Device Emulation Unit 2-4

Chapter 3 Control Registers
3.1 Introduction 3-2
3.2 Address Mode Register (%amode) 3-4
3.3 Circular Buffer 0 Begin Address Register (%cb0_beg) 3-5
3.4 Circular Buffer 0 End Address Register (%cb0_end) 3-6
3.5 Circular Buffer 1 Begin Address Register (%cb1_beg) 3-6
3.6 Circular Buffer 1 End Address Register (%cb1_end) 3-7
3.7 Device Emulation Data Register (%ded) 3-7
3.8 Device Emulation Instruction Register (%dei) 3-7
3.9 Functional Mode Register (%fmode) 3-8
3.10 Guard Bits for {r1 r0} and {r3 r2} 3-9
3.11 Hardware Flag Register (%hwflag) 3-10
3.12 Interrupt Mask Register (%imask) 3-12
3.13 Interrupt Priority Register 0 (%ip0) 3-14
3.14 Interrupt Priority Register 1 (%ip1) 3-15

vi Contents
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.15 Interrupt Request Register (%ireq) 3-16
3.16 Loop Counter Registers (%loop0, %loop1, %loop2, %loop3) 3-17
3.17 Program Counter Register (%pc) 3-18
3.18 Return Program Counter Register (%rpc) 3-18
3.19 System Mode Register (%smode) 3-18
3.20 Timer Control Register (%tc) 3-22
3.21 Timer 0 Register (%timer0) 3-23
3.22 Timer 1 Register (%timer1) 3-23
3.23 Trap Return Program Counter Register (%tpc) 3-24
3.24 Viterbi Traceback Register (%vitr) 3-24

Chapter 4 Pipeline Control Unit
4.1 Introduction 4-1
4.2 Interlocking Pipeline 4-2
4.3 Grouping Rules 4-2
4.4 Interrupts 4-11
4.5 Timers 4-15

Chapter 5 Instruction Unit
5.1 Introduction 5-1
5.2 Instruction Cache and Prefetcher 5-1

5.2.1 Cache Miss Penalty 5-2
5.2.2 Cache Line Straddling 5-5
5.2.3 Issue Rate Slower than Prefetch Rate 5-7

5.3 Branch Prediction 5-9

Chapter 6 Data Unit
6.1 Introduction 6-1
6.2 Data Cache, Data Prefetcher, and Data Linking 6-2
6.3 Data Linking Setup 6-5
6.4 Data Unit Stores 6-6
6.5 Circular Buffers 6-8
6.6 Reverse Carry Addressing 6-10

Chapter 7 Execution Unit
7.1 Introduction 7-1

Contents vii
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

7.2 Arithmetic Logic Units (ALU) 7-2
7.3 Multiply Accumulate Units (MAC) 7-3
7.4 General Purpose Register File 7-4
7.5 Shadow Registers 7-5

Chapter 8 ZSP400 Instruction Set
8.1 Functional and Execution Unit Usage 8-1
8.2 Control Register–Instruction Interaction 8-7

8.2.1 Move Instructions 8-10
8.2.2 MAC Instructions 8-11
8.2.3 Arithmetic Instructions 8-13
8.2.4 Bitwise Logical Instructions 8-17
8.2.5 Bit Manipulation Instructions 8-18
8.2.6 Branch Instructions 8-19
8.2.7 Memory Reference Instructions 8-23
8.2.8 NOP Instruction 8-24
8.2.9 Synthetic Instructions 8-25

8.3 Instruction Coding 8-26
8.3.1 Instruction Opcode 8-26

8.4 ZSP400 Instruction Set 8-36

Customer Feedback

viii Contents
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ix
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figures
2.1 System Block Diagram 2-2
3.1 Low-Overhead Looping Construct Code Example 3-17
4.1 ZSP400 Pipeline 4-1
4.2 Interrupt Processing Flow 4-14
5.1 Cache Line Organization 5-2
5.2 Instruction Cache Miss Penalty 5-4
5.3 Cache and Prefetcher Solve Data Alignment Dilemma 5-6
5.4 Example of Prefetcher Staying Slightly Ahead of Instruction

Consumption 5-8
5.5 Explanation of Branch Misprediction Penalties 5-11
6.1 Data Linking in Detail 6-4
6.2 Example of Data Linking Setup 6-6
6.3 Double Operand Store Straddling Two Cache Lines 6-7
7.1 Execution Unit Datapath 7-2
7.2 Dual MAC 7-3
7.3 General Purpose Register File 7-4

x
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

xi
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Tables
3.1 ZSP400 Control Registers 3-2
5.1 Static Branch Prediction Rules 5-9
6.1 Circular Buffer 0 (cb0) Load Operations 6-8
6.2 Circular Buffer 0 (cb0) Store Operations 6-9
8.1 Instruction Functional Unit Usage and Execution Stage 8-2
8.2 Notational Conventions 8-8
8.3 Move Instructions 8-10
8.4 MAC Instructions 8-11
8.5 Arithmetic Instructions 8-13
8.6 Bitwise Logical Instructions 8-17
8.7 Bit Manipulation Instructions 8-18
8.8 Branch Instructions 8-20
8.9 Memory Reference Instructions 8-23
8.10 NOP Instruction 8-24
8.11 Synthetic Instructions 8-25
8.12 Instruction Set Opcode Summary 8-27
8.13 Condition Field 8-29
8.14 op0 Field 8-30
8.15 op1 Field 8-31
8.16 op2 Field 8-32
8.17 op3 Field 8-33
8.18 op4 Field 8-34
8.19 op5 Field 8-35
8.20 op6 Field 8-35
8.21 op7 Field 8-36

xii
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual 1-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 1
Introduction

This chapter introduces the ZSP400 digital signal processing
architecture. It contains the following sections:

• Section 1.1, “ZSP400 Architecture Overview,” page 1-1

• Section 1.2, “Instruction Set Highlights,” page 1-3

• Section 1.3, “Available Implementations,” page 1-5

1.1 ZSP400 Architecture Overview

The ZSP400 architecture offers software engineers, system designers,
and ASIC developers a new avenue for high performance programmable
DSP solutions. The ZSP400 architecture is based on a RISC architecture
and utilizes a superscalar approach. External peripherals can easily
interface with the ZSP400 device, enabling complex systems.

Highlights of the ZSP400 architecture include:

• RISC-based superscalar architecture

– Execution of multiple instructions per cycle

– Hardware scheduling

Programmers write serial code without worrying about
parallelism.

– Interlocked pipeline

The pipeline controls stalls; software handling of pipeline
conflicts is not required.

– Static branch prediction

Programmers do not need to code branch delay slots.

1-2 Introduction
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

• Load/store architecture

– Memory operations use load and store instructions

Data moves from memory to registers—operations do not take
place directly on memory.

– All other instructions are register to register operations

Manipulating registers saves memory bandwidth.

– Variety of load/store instructions optimizes memory operations

The architecture supports both double precision (32 bit) and
single precision (16 bit) transfers to memory.

– Flexible architecture allows result forwarding

A functional unit’s result can be used by any functional unit in the
next cycle without penalty.

• Data Linking

– Data linking keeps the data cache filled for continuous data
streams

– Linking allows streaming operands to bypass loading into a
general purpose register

Three general purpose registers support linking.

– Contents of index registers used for linking automatically
updated

• Memory structure

– Simple, contiguous data space with memory-mapped I/O

– Data cache and Instruction cache enhance performance and
lower power dissipation

– Data and instruction cache prefetchers allow deterministic
operation

– Extended precision operands can reside anywhere in data
memory without any alignment restrictions

• Register file

– Sixteen 16-bit general-purpose registers

Two 16-bit register pairs can be combined into a single 32-bit
register.

Instruction Set Highlights 1-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– Accumulator support

Two register pairs can be used as accumulators, each with a
separate 8-bit guard.

– Minimal special-purpose registers

– Full support for data movement from any register to any other
register

– Any instruction can specify any general purpose registers as the
source

1.2 Instruction Set Highlights

The ZSP400 instruction set provides very powerful instructions while
maximizing processor execution speed. The load/store architecture
de-couples memory access functionality from the instructions. All
instructions can use any of the general purpose registers as the source.

A multiply or multiply-and-accumulate operation requires an accumulator
destination register. All other instructions’ results can be stored in any
general purpose register.

The instruction set features:

• Single word (16-bit) compact instructions

• Single cycle execution of:

– Any two 16-bit ALU operations

– Any 32-bit ALU operation

– Two 16-bit X 16-bit MUL with a single 40-bit accumulation

– One 32-bit X 32-bit MUL with 40-bit accumulation

– Exponent detection for 16/32-bit variables

– Squaring of 16/32-bit variables

– Majority of the basic functions defined by ETSI for speech coding
applications

• Two parallel 16-bit additions or subtractions in the MAC units support
ALU intensive code

1-4 Introduction
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

• Excellent support for compare-select operations

– Single cycle compare select instructions that facilitates two cycle
Viterbi butterfly operation

– Single cycle 16/32-bit minimum and maximum instructions

• 16-bit complex multiplication or multiply-accumulate using two
instructions

• Extensive bit manipulation instructions

– Bit reversal support

– Logical and Arithmetic shift support

– True arithmetic shift left instructions for 16/32 bit variables

– Bit set, bit clear, and bit invert instructions for all registers

• Conditional branch support with specific prediction direction

• Double word (32 bit) load and store instructions

– Provides high register-save bandwidth for context switches

– Optimizes prolog/epilog code

• Load/store with short immediate offset instructions

– Simplified stack and structure accesses

• Two to four hardware loops (specific implementations)

– Hardware loops have zero overhead once set up.

• Fast and simple context switching support

– Excellent store capabilities

– User visibility into all registers

• Two hardware circular buffers

– Circular buffers can have any starting and ending address. No
special alignment is required.

• Move contents of any register to any other register

• Secondary (shadow) register bank (specific implementations)

– 8 additional registers selectable via mode bit.

• Reverse carry indexing for FFT algorithms

Available Implementations 1-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

The ZSP400 architecture is very compiler-friendly due to its RISC
instruction set and the orthogonal set of general-purpose register
instructions.

1.3 Available Implementations

The ZSP400 architecture is available in three forms: a component of the
LSI Logic CoreWare® library, application-specific standard products
(ASSP), and a licensable core, giving designers maximum flexibility in
system design.

As a component in the LSI Logic CoreWare library, ZSP400 parts enable
complex system-on-a-chip designs to take advantage of a world class
DSP. The embedded in-circuit emulation capabilities and standard JTAG
interface allow easy debug of system solutions containing several
processor cores. Furthermore, the ZSP400 superscalar architecture
provides assembly level software engineers with a simple programming
model. This simple programming model leads to easier software tool
development, where high level language compilers can take advantage
of the highly orthogonal instruction set.

For applications not requiring a core approach, the ZSP400 family is also
available in application specific standard products. System designers can
use a standard product part knowing that it can be integrated into a
system-on-a-chip solution later without losing their valuable software
investments.

1-6 Introduction
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual 2-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 2
ZSP400 Architecture
Overview

This chapter provides an overview of the ZSP400 digital signal
processing architecture. It contains the following sections:

• Section 2.1, “Typical ZSP400 System,” page 2-1

• Section 2.2, “Control Register File,” page 2-3

• Section 2.3, “Pipeline Control Unit,” page 2-3

• Section 2.4, “Instruction Unit,” page 2-3

• Section 2.5, “Data Unit,” page 2-4

• Section 2.6, “Execution Unit,” page 2-4

• Section 2.7, “Device Emulation Unit,” page 2-4

2.1 Typical ZSP400 System

Figure 2.1 is a block diagram of a typical ZSP400 system, the LSI402ZX
Digital Signal Processor. The block diagram shows the ZSP400 Core,
which is used in every implementation of the ZSP400 architecture, and
the peripherals and memory logic that are combined with the core to
implement a complete DSP device.

The JTAG Controller, PLL, Boot ROM, Program Memory, Data Memory,
DMA Controller, MXU, and peripheral modules, which are not part of the
ZSP400 Core, are included in Figure 2.1 to illustrate a typical system.

2-2 ZSP400 Architecture Overview
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 2.1 System Block Diagram

Serial
Port 1

Serial
Port 0

JTAG

DEU

HPI

Execution Unit
A

D

rdA

wrA

DO

DI

64

64

64

64

Interrupts

ICUPLL

DMA Controller

Boot ROM

Instruction Unit

Instruction
Cache

Data
Memory

Data Unit

Data
Cache

Pipeline
Control

Unit

Register
File

ALU

ALU

MAC

MAC

8 or 16

HPI = Host Processor Interface
PIO = Programmable I/O

MXU

3216 16

PIO(8)

64

32

A

DOProgram
Memory

MXU = External Memory Interface Unit

Timer0

Timer1

ICU = Interrupt Control Unit
DEU = Device Emulation Unit

DI
64

Load/Store Buffer

XBus

16 or 32

1616

XBus = External Bus

ZSP400 DSP Core

Control Register File 2-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

2.2 Control Register File

The ZSP400 architecture contains a set of control registers, used for
mode control, status, and flag information. The ZSP400 architecture
allows for 32 16-bit control registers.

2.3 Pipeline Control Unit

The pipeline control unit (PCU) receives instructions during the
fetch/decode stage of the pipeline. The PCU checks for dependencies
and grouping, and forwards instructions to the data unit. Only instructions
that can execute in parallel are forwarded. Out-of-order execution is not
allowed.

The pipeline control unit notifies the instruction unit (IU) which four
instructions are needed for the next group. The data unit (DU) reads up
to two 32 bit operands, and sends the operands to the execution unit
(EXU). The EXU performs the necessary operation and writes the results
to a general purpose register or sends the results back to the data unit
to store in memory. Memory writes occur in the writeback stage of the
pipeline.

The interrupt control unit (ICU) interfaces with the PCU. A nonmaskable
interrupt (NMI) pin into the core allows for a separate interrupt control
unit.

2.4 Instruction Unit

The instruction unit contains the instruction cache, instruction prefetcher,
branch prediction logic, and an instruction dispatcher.

The instruction cache aligns instructions from main memory cache lines
and reduces main memory power consumption. The prefetcher keeps
the instruction cache full when running from on-chip memory and
minimizes pipeline stalls. The branch predictor minimizes the need to
flush the pipeline.

2-4 ZSP400 Architecture Overview
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

The instruction unit always fetches four instructions from the instruction
cache. The instruction dispatcher decodes four instructions. The
dispatcher issues up to four instructions to the data unit and the pipeline
control unit each cycle. The data and pipeline control units read the
required operands from registers or memory and execute the
instructions.

2.5 Data Unit

The data unit contains the data cache, data prefetcher, and the circular
buffer unit. The data unit is also responsible for data linking, a powerful
concept that alleviates loads of operands from memory into general
purpose registers before they can be used.

The data cache aligns operands from main memory cache lines and
reduces main memory power consumption. The prefetcher keeps the
data cache full when running from on-chip memory and minimizes
pipeline stalls.

2.6 Execution Unit

The execution unit performs all the arithmetic and logical operations in
the DSP. The execution unit contains two 16 bit arithmetic logic units
(ALUs), two 16 X 16 multiply and accumulate (MAC) units, and a general
purpose register file.

The ZSP400 architecture supports two identical 16 bit arithmetic logic
units (ALU), which can be combined as a single 32 bit ALU. The MAC
units can perform two 16-bit X 16-bit multiply operations followed by a
single 40-bit accumulation or one 32-bit X 32-bit multiply followed by a
40-bit accumulation per cycle. Both MACs share one adder for the
accumulate operation.

2.7 Device Emulation Unit

The device emulation unit (DEU) allows in-circuit debug and interfaces
with external JTAG logic.

ZSP400 Digital Signal Processor Architecture Technical Manual 3-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 3
Control Registers

This chapter discusses the control registers. It includes the following
sections:

• Section 3.1, “Introduction,” page 3-2

• Section 3.2, “Address Mode Register (%amode),” page 3-4

• Section 3.3, “Circular Buffer 0 Begin Address Register (%cb0_beg),”
page 3-5

• Section 3.4, “Circular Buffer 0 End Address Register (%cb0_end),”
page 3-6

• Section 3.5, “Circular Buffer 1 Begin Address Register (%cb1_beg),”
page 3-6

• Section 3.6, “Circular Buffer 1 End Address Register (%cb1_end),”
page 3-7

• Section 3.7, “Device Emulation Data Register (%ded),” page 3-7

• Section 3.8, “Device Emulation Instruction Register (%dei),” page 3-7

• Section 3.9, “Functional Mode Register (%fmode),” page 3-8

• Section 3.10, “Guard Bits for {r1 r0} and {r3 r2},” page 3-9

• Section 3.11, “Hardware Flag Register (%hwflag),” page 3-10

• Section 3.12, “Interrupt Mask Register (%imask),” page 3-12

• Section 3.13, “Interrupt Priority Register 0 (%ip0),” page 3-14

• Section 3.14, “Interrupt Priority Register 1 (%ip1),” page 3-15

• Section 3.15, “Interrupt Request Register (%ireq),” page 3-16

• Section 3.16, “Loop Counter Registers (%loop0, %loop1, %loop2,
%loop3),” page 3-17

• Section 3.17, “Program Counter Register (%pc),” page 3-18

• Section 3.18, “Return Program Counter Register (%rpc),” page 3-18

3-2 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

• Section 3.19, “System Mode Register (%smode),” page 3-18

• Section 3.20, “Timer Control Register (%tc),” page 3-22

• Section 3.21, “Timer 0 Register (%timer0),” page 3-23

• Section 3.22, “Timer 1 Register (%timer1),” page 3-23

• Section 3.23, “Trap Return Program Counter Register (%tpc),” page
3-24

• Section 3.24, “Viterbi Traceback Register (%vitr),” page 3-24

3.1 Introduction

The ZSP400 architecture contains a set of control registers, used for
mode control, status, and flag information. The ZSP400 architecture
allows for 32 16-bit control registers. Specific processors may use a
subset of the 32 control registers. Unused registers are reserved; write
reserved registers with zeros to guarantee compatibility with future
generation devices.

Control registers are specified in assembly language by a mnemonic with
a “%” prefix (for example, %fmode). All control registers are accessible
using mov instructions.

Table 3.1 lists the control registers.

Table 3.1 ZSP400 Control Registers

Mnemonic Reset Value Description

%amode 0x0 Address Mode Register

%cb0_beg Undefined Circular Buffer 0 Begin Address Register

%cb0_end Undefined Circular Buffer 0 End Address Register

%cb1_beg Undefined Circular Buffer 1 Begin Address Register

%cb1_end Undefined Circular Buffer 1 End Address Register

%ded Undefined Device Emulation Data Register

%dei Undefined Device Emulation Instruction Register

%fmode 0x0 Functional Mode Register

Introduction 3-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Several control registers contain reserved bits. To ensure future code
compatibility, do not set these reserved bits to a non-default value. This
can be guaranteed by using the bits, bitc, and biti instructions on
only the unreserved bits, or by doing a move from the control register to
an operand register, a modification of the operand register that leaves
the reserved bits unchanged, followed by a move from the operand
register back to the control register.

%guard Undefined Guard Bits for {r1 r0} and {r3 r2}

%hwflag Undefined Hardware Flag Register

%imask 0x0 Interrupt Mask Register

%ip0 0x0 Interrupt Priority Register 0

%ip1 0x0 Interrupt Priority Register 1

%ireq 0x0 Interrupt Request Register

%loop0 0x0 Loop 0 Register

%loop1 0x0 Loop 1 Register

%loop2 0x0 Loop 2 Register

%loop3 0x0 Loop 3 Register

%pc 0xF800 Program Counter

%rpc Undefined Return Program Counter

%smode 0x0 System Mode Register

%tc 0x0 Timer Control Register

%timer0 0x0 Timer 0 Register

%timer1 0x0 Timer 1 Register

%tpc Undefined Trap (Interrupt) Return Program Counter

%vitr Undefined Viterbi Traceback Register

Table 3.1 ZSP400 Control Registers (Cont.)

Mnemonic Reset Value Description

3-4 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.2 Address Mode Register (%amode)

This register controls the addressing mode for operand registers r0
through r12 when using load and store with update instructions (ldu,
lddu, stu, and stdu).

The reset value of this register is 0x00.

res Reserved [15:6]
This field is reserved.

rev Reverse Bit Length [5:2]
This field determines the bit location for reverse-carry
addressing updates.

The field encoding is shown as follows.

15 6 5 2 1 0

res rev st ld

rev Bit
Carry Bit
Insertion Location

0b0000 Bit 15

0b0001 Bit 0

0b0010 Bit 1

0b0011 Bit 2

0b0100 Bit 3

0b0101 Bit 4

0b0110 Bit 5

0b0111 Bit 6

0b1000 Bit 7

0b1001 Bit 8

0b1010 Bit 9

0b1011 Bit 10

0b1100 Bit 11

0b1101 Bit 12

0b1110 Bit 13

0b1111 Bit 14

Circular Buffer 0 Begin Address Register (%cb0_beg) 3-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

st Store Enable 1
This bit enables reverse-carry addressing on stores.

When set, enables reverse-carry addressing for stu and
stdu instructions.

When cleared, disables reverse-carry addressing for stu
and stdu instructions.

ld Load Enable 0
This bit enables reverse-carry addressing on loads.

When set, enables reverse-carry addressing for ldu and
lddu instructions.

When cleared, disables reverse-carry addressing for ldu
and lddu instructions.

3.3 Circular Buffer 0 Begin Address Register (%cb0_beg)

This register contains the start address for circular buffer 0. On reset, the
contents of %cb0_beg are undefined.

Circular buffer 0 operations affect the following instructions when the cb0
bit in the %smode register is set:

• lddu rX, r14, 2

• stdu rX, r14, 2

• ldu rX, r14, 1

• ldu rX, r14, 2

• stu rX, r14, 1

• stu rX, r14, 2

where rX is any operand register.

3-6 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.4 Circular Buffer 0 End Address Register (%cb0_end)

This register contains the end address +1 for circular buffer 0. The last
word of the Circular Buffer is cbX_end-1. On reset, the contents of
%cb0_end are undefined.

Circular buffer 0 operations affect the following instructions when the cb0
bit in the %smode register is set:

• lddu rX, r14, 2

• stdu rX, r14, 2

• ldu rX, r14, 1

• ldu rX, r14, 2

• stu rX, r14, 1

• stu rX, r14, 2

where rX is any operand register.

3.5 Circular Buffer 1 Begin Address Register (%cb1_beg)

This register contains the start address for circular buffer 1. On reset, the
contents of %cb1_beg are undefined.

Circular buffer 1 operations affect the following instructions when the cb1
bit in the %smode register is set:

• lddu rX, r15, 2

• stdu rX, r15, 2

• ldu rX, r15, 1

• ldu rX, r15, 2

• stu rX, r15, 1

• stu rX, r15, 2

where rX is any operand register.

Circular Buffer 1 End Address Register (%cb1_end) 3-7
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.6 Circular Buffer 1 End Address Register (%cb1_end)

This register contains the end address +1 for circular buffer 1. The last
word of the Circular Buffer is cbX_end-1. On reset, the contents of
%cb1_end are undefined.

Circular buffer 1 operations affect the following instructions when the cb1
bit in the %smode register is set:

• lddu rX, r15, 2

• stdu rX, r15, 2

• ldu rX, r15, 1

• ldu rX, r15, 2

• stu rX, r15, 1

• stu rX, r15, 2

where rX is any operand register.

3.7 Device Emulation Data Register (%ded)

The Device Emulation Data register passes data and addresses between
the processor and JTAG interface during device emulation. On reset, the
contents of %ded are undefined.

3.8 Device Emulation Instruction Register (%dei)

The Device Emulation Instruction register passes instructions between
the processor and JTAG interface during device emulation. On reset, the
contents of %dei are undefined.

3-8 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.9 Functional Mode Register (%fmode)

The %fmode register contains the functional mode bits for the ZSP400.
The functional modes determine how the results of arithmetic instructions
are affected. The value of the %fmode register at reset is 0x0.

res Reserved [15:6]
This field is reserved.

rez Round Zero Enable 5
This bit clears the lower 16 bits of MAC results when
MAC rounding is enabled (that is, when the mre bit of the
%fmode register is set).

When the rez bit is set, the lower 16 bits of MAC results
are set to zero. This affects the following 32-bit
instructions: mac, macn, mul, muln, mac2, cmacr, cmaci,
cmulr, cmuli, dmac, dmul, and round.e.

Note: The mre bit in the %fmode register must be set to use the
rez bit. If the mre bit is clear, setting rez has no effect.

When cleared, the rez bit has no effect.

sat Saturation Enable 4
This bit specifies whether saturation is enabled or
disabled. When set, effected arithmetic operations
saturate to MAX_POS1 or MAX_NEG2 on overflow.

When the sat bit is cleared, saturation is disabled.

The overflow check occurs after the accumulation for
MAC instructions.

res Reserved 3
This bit is reserved.

15 6 5 4 3 2 1 0

res rez sat res q15 sre mre

1. MAX_POS (16 bit) = 0x7FFF; MAX_POS (32 bit) = 0x7FFF.FFFF.
2. MAX_NEG (16 bit) = 0x8000; MAX_NEG (32 bit) = 0x8000.0000.

Guard Bits for {r1 r0} and {r3 r2} 3-9
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

q15 Fixed-Point Format q15 2
When set, the result of MAC and MUL instructions are
shifted left one bit. For a MAC instruction, the shifted
value is then accumulated. For the corner cases of
0x8000 • 0x8000 (16 bit) or 0x8000.0000 • 0x8000.0000
(32 bit), the result is saturated to 0x7FFF.FFFF.

When cleared, disable q15 format (enable integer
format). No shift occurs after MAC or MUL instructions.

sre Shift Round Enable 1
This feature enables rounding for the SHRA instruction.
This rounding never causes saturation. When set, if the
last bit shifted out is a 1, 0x0001 is added to the SHRA
result.

When the sre bit is cleared, the processor does not
round the SHRA result.

mre MAC/MUL Round Enable 0
This feature enables rounding for most MAC/MUL
instructions. Rounding may cause saturation. When set,
this bit enables MAC/MUL rounding. For 16-bit MAC
instructions, 0x8000 is added after the accumulation. For
32-bit MAC instructions, 0x8000.0000 is added to the
64-bit result after the accumulation and a 32-bit result is
returned.

When this bit is cleared, MAC/MUL results are not
rounded.

3.10 Guard Bits for {r1 r0} and {r3 r2}

The %guard register extends the precision of the operand registers by
8 bits (MSBs) for the accumulation result of MAC instructions. The
%guard register can be accessed using the mov instruction and is not
modified by shift instructions performed on either operand register pair
({r3 r2} or {r1 r0}).

The contents of this register at reset are undefined.

15 8 7 0

guard_1 guard_0

3-10 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

guard_1 Guard Bits for Accumulator b [15:8]
Guard bits for accumulator b, which consist of the register
pair {r3 r2}.

guard_0 Guard Bits for Accumulator a [7:0]
Guard bits for accumulator a, which consist of the register
pair {r1 r0}.

3.11 Hardware Flag Register (%hwflag)

The %hwflag register contains condition codes that occur as a result of
various instructions or processor status. The value of this register is
undefined at reset. The sticky overflow flags, sv and gsv, can only be
cleared through software. The user must explicitly write a zero to these
fields to clear these bits.

res Reserved [15:11]
This field is reserved.

v 32-Bit Overflow 10
Only MAC, MUL, ADD, and shift instructions modify this
bit.

When set, indicates the sign of the result of a
twos complement addition is different than the sign of the
operands (both operands have the same sign).

When cleared, indicates the sign of the result of a
twos complement addition is the same as the sign of the
operands (both operands have the same sign).

In addition, for MAC variants in q15 format, the following
sequence of suboperations occurs: Multiply, add, then
round if the mre field of the %fmode register is set, then
check for overflow and update the v field of %hwflag.
Saturate on overflow if the sat field of the %fmode
register is set.

For ADD variants, the following sequence of
suboperations occurs: Add, check for overflow and

15 11 10 9 8 7 6 5 4 3 2 1 0

res v gv sv gsv c ge gt z ir ex er

Hardware Flag Register (%hwflag) 3-11
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

update the v field of %hwflag register. Saturate on
overflow if the sat field of the %fmode register is set.

For the SHLA instruction, overflow occurs if any bit shifted
through the sign bit position differs from the sign bit of the
original operand.

gv Guard Register (40-Bit) Overflow 9
This bit is the same as the v bit, but for 40-bit data
instead of 32-bit data, and is modified only by MAC
instructions.

sv Sticky Overflow 8
This bit is the same as the v bit, but can only be cleared
through software (by writing a zero to the bit).

gsv Guard Register Sticky Overflow 7
This bit is the same as the gv bit, but can only be cleared
through software (by writing to the bit).

c Carry 6
This bit is set when a carry out from bit 15 (for 16-bit
operations) or bit 31 (for 32-bit operations) occurs.

This bit is cleared when no carry out has occurred.

ge Greater Than, or Equal To 5
This bit is set when the result is greater than, or equal to,
zero. This bit is cleared when the result is less than zero.

gt Greater Than 4
This bit is set when the result is greater than zero. This
occurs when the ge bit is set and the z bit is not set.

This bit is cleared when the result is less than or equal
to zero.

z Equal To Zero 3
This bit is set when the result is equal to zero, or the
values compared are equal.

This bit is cleared when the result is not equal to zero, or
the values compared are not equal.

ir Interrupt Pending 2
This bit is set when an interrupt is pending, regardless of
the interrupt’s masking or priority level.

The ir bit is cleared when no interrupt is pending.

3-12 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ex Emulation Transmit 1
This bit is set when the JTAG TAP controller has read the
%ded or %dei register.

This bit is cleared when the %ded or %dei registers have
not been read.

er Emulation Receive 0
This bit is set when the JTAG TAP controller has written
the %ded or %dei register.

This bit is cleared when the %ded or %dei registers have
not been written.

3.12 Interrupt Mask Register (%imask)

The %imask register contains mask information for the 15 maskable
interrupts supported by the ZSP400. A cleared mask bit prevents the
corresponding interrupt from being serviced. All bits in the %imask
register are cleared on reset. The reset value of this register is 0x0.

gie Global Interrupt Enable 15
This bit is automatically cleared when an interrupt service
routine is entered, and is restored from the contents of
the pgie field by the reti instruction. Set this bit within
an interrupt service routine to nest interrupts.

When set, this bit enables all unmasked interrupts.

When cleared, this bit disables all interrupts except NMI
and the DEI.

pgie Previous Global Interrupt Enable 14
This bit contains the original value of giewhen executing
an interrupt service routine. Execution of the reti
instruction restores the value in pgie in the gie bit.

IM13 Interrupt 13 Enable 13
When set, this bit enables interrupt 13. When cleared,
this bit masks interrupt 13.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gie pgie IM13 IM12 IM11 IM10 IM9 IM8 IM7 mt1 mt0 IM4 IM3 IM2 IM1 IM0

Interrupt Mask Register (%imask) 3-13
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IM12 Interrupt 12 Enable 12
When set, this bit enables interrupt 12. When cleared,
this bit masks interrupt 12.

IM11 Interrupt 11 Enable 11
When set, this bit enables interrupt 11. When cleared,
this bit masks interrupt 11.

IM10 Interrupt 10 Enable 10
When set, this bit enables interrupt 10. When cleared,
this bit masks interrupt 10.

IM9 Interrupt 9 Enable 9
When set, this bit enables interrupt 9. When cleared, this
bit masks interrupt 9.

IM8 Interrupt 8 Enable 8
When set, this bit enables interrupt 8. When cleared, this
bit masks interrupt 8.

IM7 Interrupt 7 Enable 7
When set, this bit enables interrupt 7. When cleared, this
bit masks interrupt 7.

mt1 Timer1 Interrupt (t1) 6
When set, this bit enables the timer1 interrupt. When
cleared, this bit masks the timer1 interrupt.

mt0 Timer0 Interrupt (t0) 5
When set, this bit enables the timer0 interrupt. When
cleared, this bit masks the timer0 interrupt.

IM4 Interrupt 4 Enable 4
When set, this bit enables interrupt 4. When cleared, this
bit masks interrupt 4.

IM3 Interrupt 3 Enable 3
When set, this bit enables interrupt 3. When cleared, this
bit masks interrupt 3.

IM2 Interrupt 2 Enable 2
When set, this bit enables interrupt 2. When cleared, this
bit masks interrupt 2.

IM1 Interrupt 1 Enable 1
When set, this bit enables interrupt 1. When cleared, this
bit masks interrupt 1.

3-14 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IM0 Interrupt 0 Enable 0
When set, this bit enables interrupt 0. When cleared, this
bit masks interrupt 0.

3.13 Interrupt Priority Register 0 (%ip0)

The %ip0 register contains interrupt priority level and processor
execution priority level information. The user may write to any field of this
register. User-defined priorities are given values of 0b00 to 0b11, with
0b11 being the highest user-defined priority and 0b00 the lowest. This
register contains 0x0 at reset.

epl Current Execution Priority Level [15:14]
This field determines if an interrupt request is serviced. If
the interrupt priority level of the pending interrupt is lower
than that of the current epl, the pending interrupt is not
serviced.

If the interrupt priority level of the pending interrupt is
greater than or equal to the current epl, then the pending
interrupt is serviced and the pending interrupt’s epl is
copied into the epl field of %ip0.

pepl Previous Execution Priority Level [13:12]
When an interrupt is taken, the ZSP400 writes the
contents of the epl field into this field.

IP13 Interrupt 13 Priority Level [11:10]
This field sets the priority level of interrupt 13.

IP12 Interrupt 12 Priority Level [9:8]
This field sets the priority level of interrupt 12.

IP11 Interrupt 11 Priority Level [7:6]
This field sets the priority level of interrupt 11.

IP10 Interrupt 10 Priority Level [5:4]
This field sets the priority level of interrupt 10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

epl pepl IP13 IP12 IP11 IP10 IP9 IP8

Interrupt Priority Register 1 (%ip1) 3-15
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IP9 Interrupt 9 Priority Level [3:2]
This field sets the priority level of interrupt 9.

IP8 Interrupt 8 Priority Level [1:0]
This field sets the priority level of interrupt 8.

3.14 Interrupt Priority Register 1 (%ip1)

The %ip1 register sets interrupt priority level and controls interrupt
behavior of the timer and external interrupts. The user may write to any
field of this register. User-defined priorities are given values of 0b00 to
0b11, with 0b11 being the highest user-defined priority and 0b00 the
lowest. This register contains 0x0 at reset.

IP7 Interrupt 7 Priority Level [15:14]
This field sets the priority level of interrupt 7.

t1 Timer 1 (t1) Interrupt Priority Level [13:12]
This field sets the priority level of the Timer 1 interrupt.

t0 Timer 0 (t0) Interrupt Priority Level [11:10]
This field sets the priority level of the Timer 0 interrupt.

IP4 Interrupt 4 Priority Level [9:8]
This field sets the priority level of interrupt 4.

IP3 Interrupt 3 Priority Level [7:6]
This field sets the priority level of interrupt 3.

IP2 Interrupt 2 Priority Level [5:4]
This field sets the priority level of interrupt 2.

IP1 Interrupt 1 Priority Level [3:2]
This field sets the priority level of interrupt 1.

IP0 Interrupt 0 Priority Level [1:0]
This field sets the priority level of interrupt 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP7 t1 t0 IP4 IP3 IP2 IP1 IP0

3-16 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.15 Interrupt Request Register (%ireq)

The %ireq control register shows the pending interrupts for all sources.
Any of these bits may be set through software to create a user trap. All
bits are sticky in the sense that a pending interrupt status is only cleared
when that interrupt is serviced or the bit is explicitly cleared by software.
This register contains 0x0 at reset.

nmi Nonmaskable Interrupt Request 15
When set, this bit indicates that a NMI is pending.

dei Device Emulation Interrupt Request 14
When set, this bit indicates that a device emulation
interrupt is pending.

IR13 Interrupt 13 Request 13
When set, this bit indicates that interrupt 13 is pending.

IR12 Interrupt 12 Request 12
When set, this bit indicates that interrupt 12 is pending.

IR11 Interrupt 11 Request 11
When set, this bit indicates that interrupt 11 is pending.

IR10 Interrupt 10 Request 10
When set, this bit indicates that interrupt 10 is pending.

IR9 Interrupt 9 Request 9
When set, this bit indicates that interrupt 9 is pending.

IR8 Interrupt 8 Request 8
When set, this bit indicates that interrupt 8 is pending.

IR7 Interrupt 7 Request 7
When set, this bit indicates that interrupt 7 is pending.

t1 Timer 1 Interrupt Request 6
When set, this bit indicates a timer 1 interrupt is pending.

t0 Timer 0 Interrupt Request 5
When set, this bit indicates a timer 0 interrupt is pending.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nmi dei IR13 IR12 IR11 IR10 IR9 IR8 IR7 t1 t0 IR4 IR3 IR2 IR1 IR0

Loop Counter Registers (%loop0, %loop1, %loop2, %loop3) 3-17
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IR4 Interrupt 4 Request 4
When set, this bit indicates that interrupt 4 is pending.

IR3 Interrupt 3 Request 3
When set, this bit indicates that interrupt 3 is pending

IR2 Interrupt 2 Request 2
When set, this bit indicates that interrupt 2 is pending.

IR1 Interrupt 1 Request 1
When set, this bit indicates that interrupt 1 is pending.

IR0 Interrupt 0 Request 0
When set, this bit indicates that interrupt 0 is pending.

3.16 Loop Counter Registers (%loop0, %loop1, %loop2,
%loop3)

The %loop0, %loop1, %loop2, and %loop3 registers are 16-bit counters
that decrement as part of the execution of a low-overhead looping
construct that uses the agn0, agn1, agn2, and agn3 instructions,
respectively. Use the mov instruction to place an initial value into these
registers. The value initially loaded to these registers is always the
number of iterations minus one (N − 1). This is due to the fact that the
agn instructions test for N ≤ 0 before decrementing the count, so the 0th
loop iteration is always executed. After the loop has completed, the value
in the corresponding loop register is 0xFFFF (− 1). The value in the loop
counter registers is 0x0 at reset.

Figure 3.1 Low-Overhead Looping Construct Code Example

mov %loop0, 15 /* loop count = N-1. Execute this loop 16 times */
Loop:

lddu r4, r14, 2 /* load r4 and r5, post increment r14 by 2 */
lddu r8, r15, 2 /* load r8 and r9, post increment r15 by 2 */
mac2.a r4, r8 /* {g0 r1 r0} += (r4*r8) + (r5*r9) */
agn0 Loop /* test for 0, decrement count, then branch */

3-18 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

3.17 Program Counter Register (%pc)

The program counter register contains the address of the instruction
currently being executed. This register is implicitly written when branches
are taken. On reset, the value of this register is 0xF800.

3.18 Return Program Counter Register (%rpc)

This register contains the return address from a subroutine call. When
the call instruction is executed, the value of %rpc is updated with the
value of %pc +1, which is the address of the instruction following the
call. When the ret instruction is executed at the end of the routine,
%rpc is copied into %pc. The %rpc register is undefined at reset.

3.19 System Mode Register (%smode)

The %smode register controls the ZSP400 system modes. System
modes affect the operation of hardware, including power-saving features,
circular buffers, and memory accesses. The value of this register at reset
is 0x0.

15 0

pc

15 0

rpc

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lvl shd dct fie ict dsb uvt us lis sis cb0 cb1 dir ddr

System Mode Register (%smode) 3-19
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

lvl Power Level [15:13]
This field specifies the power level of the ZSP400. The
available power levels are normal, idle, sleep, and halt.

The effect of the power level field on system peripherals
depends on the system implementation.

shd Enable Shadow Registers 12
This bit toggles between the primary operand registers
and a set of shadow registers. Only operand registers
r2 through r9 have shadow register analogs.

When set, this bit uses shadow registers for accesses to
operand registers r2 through r9.

When cleared, this bit uses primary registers for
accesses to operand registers r2 through r9.

dct Data Cache Invalidate 11
Inverting this bit invalidates the contents of the
data cache. The value of the dct bit does not indicate
valid or invalid cache contents.

fie Force Internal Execution 10
When set, this bit overrides the execution control of the
dir bit in the %smode register and forces the processor
to execute instructions from internal memory if internal
memory and external memory are both physically present
at the executing address.

When this bit is cleared, execution of instructions is
controlled by the dir bit of the %smode register.

lvl Bits Power Level

0b000 Normal

0b001 Idle

0b010 Sleep

0b011 Reserved

0b100 Halt

0b101 Reserved

0b110 Reserved

0b111 Reserved

3-20 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ict Instruction Cache Invalidate 9
Inverting this bit invalidates the contents of the instruction
cache. The value of the ict bit does not indicate valid or
invalid cache contents.

dsb MXU Store Buffer Enable 8
When set, this bit controls an external memory interface
unit store buffer if the device includes a store buffer. The
store buffer is an optional module that is not included in
the core. When this bit is set, the store buffer is disabled.

When this bit is cleared, the store buffer is enabled.

uvt User Vector Table Starting Address 7
This bit selects the interrupt vector table (IVT) address.
When this bit is set, the interrupt vector table starting
address is internal SRAM address 0x0000.

When this bit is cleared, the interrupt vector table starting
address is 0xF800, but the ROM used (internal or
external) depends upon the state of the IBOOT pin.

us Uniscalar Mode Enable 6
This bit toggles between uniscalar (the processor
executes one instruction per cycle) and superscalar
mode (the processor executes multiple instructions per
cycle).

When this bit is set, the processor operates in uniscalar
mode.

When this bit is cleared, the processor operates in
superscalar mode.

lis Load Instruction Space Enable 5
This bit selects the location for data reads from internal
and external memory. This bit is cleared by default.

sis Store Instruction Space Enable 4
This bit selects the location for data writes to internal and
external memory.

This bit is cleared by default.

IBOOT Level IVT Address Memory Location

LOW 0xF800 External ROM

HIGH 0xF800 Internal ROM

System Mode Register (%smode) 3-21
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

cb0 Circular Buffer 0 Enable 3
When set, this bit enables r14 as Circular Buffer 0.

When cleared, this bit disables Circular Buffer 0.

cb1 Circular Buffer 1 Enable 2
When set, this bit enables r15 as Circular Buffer 1.

When cleared, this bit disables Circular Buffer 1.

dir Disable Internal Instruction RAM 1
This bit toggles between internal and external RAM for
instruction fetches. This bit also affects the location for
instructions when either the sis or lis bit is set.

When this bit is set, if the %pc register points to a
memory location that is physically present in both internal
and external instruction memory, the processor executes
instructions from external instruction memory.

If the lis bit is set, loads from a memory location that is
physically present in both internal and external instruction
memory are loaded from external instruction memory. If
the sis bit is set, stores to a memory location that is
physically present in both internal and external instruction
memory are stored to external instruction memory.

When this bit is cleared, if the PC points to a memory
location that is physically present in both internal and
external instruction memory, the processor executes
instructions from internal instruction memory.

If the lis bit is set, loads from a memory location that is
physically present in both internal and external instruction
memory are loaded from internal instruction memory. If
the sis bit is set, stores to a memory location that is
physically present in both internal and external instruction
memory are stored to internal instruction memory.

This bit toggles between internal and external RAM for
data loads and stores.

Note: If the lis or sis bit is set, the dir bit overrides the ddr bit.

ddr Disable Internal Data RAM 0
This bit determines where the processor loads and stores
data from. The lis and sis bits override this bit if set. In
this case, the ddr bit controls the load/store location.

3-22 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

When this bit is set, if the location of data memory
accessed by a load/store instruction is physically present
in both internal and external data memory, the processor
accesses the data from the external data memory.

When cleared, if the location of data memory accessed
by a load/store instruction is physically present in both
internal and external data memory, the processor
accesses the data from the internal data memory.

3.20 Timer Control Register (%tc)

The fields in the timer control register enable the two timers in the
ZSP400, set the prescale value for each timer, and set the timer mode.
The lower half of the %tc register sets the enable, mode, and prescale
values for Timer 0, and the upper bytes set these values for Timer 1. The
values of the %tc, %timer0, and %timer1 registers are 0x0 at reset.

et1 Enable Timer 1 15
This bit controls the operation of Timer 1. When set, this
bit enables Timer 1.

When cleared, this bit disables Timer 1.

cm1 Control Mode for Timer 1 14
This bit controls the reloading feature of Timer 1. When
this bit is set, Timer 1 counts down to 0, then reloads the
initial count.

When this bit is cleared, autoreload is disabled. Timer 1
counts down to 0 and stops (single-shot mode).

tmrdiv1 Prescale Value for Timer 1 [13:8]
For a value N represented by 6 bits in this field, the clock
divisor is (N + 1). Therefore, if N = 2, then Timer 1
decrements every three clock cycles.

et0 Enable Timer 0 7
This bit controls the operation of Timer 0. When set, this
bit enables Timer 0.

When cleared, this bit disables Timer 0.

15 14 13 8 7 6 5 0

et1 cm1 tmrdiv1 et0 cm0 tmrdiv0

Timer 0 Register (%timer0) 3-23
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

cm0 Control Mode for Timer 0 6
This bit controls the reloading feature of Timer 0. When
this bit is set, Timer 0 works with autoreload. Timer 0
counts down to 0, then reloads the initial count.

When this bit is cleared, autoreload is disabled. Timer 0
counts down to 0 and stops (single-shot mode).

tmrdiv0 Prescale Value for Timer 0 [5:0]
For a value N represented by 6 bits in this field, the clock
divisor is (N + 1). Therefore, if N = 2, then Timer 0
decrements every three clock cycles.

3.21 Timer 0 Register (%timer0)

The Timer 0 register contains a 16-bit counter that decrements at a
constant rate. The decrement rate for %timer0 is controlled by the device
clock period and the prescale value set in the timrdiv0 field of the %tc
register. On reset, the contents of %timer0 are 0x0.

Load a value into %timer0 using register mov instructions. When the
counter decrements to zero, the t0 bit in the %ireq register is set and an
interrupt request is generated. Upon reaching zero, the counter reloads or
remains at zero based on the contents of the cm0 field of the %tc register.

3.22 Timer 1 Register (%timer1)

The Timer 1 register contains a 16-bit counter that decrements at a
constant rate. The decrement rate for %timer1 is controlled by the device
clock period and the prescale value set in the timrdiv1 field of the %tc
register. On reset, the contents of %timer1 are 0x0.

Load a value into %timer1 using register mov instructions. When the
counter decrements to zero, the t1 bit in the %ireq register is set, and
an interrupt request is generated. Upon reaching zero, the counter

15 0

timer0

3-24 Control Registers
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

reloads or remains at zero based on the contents of the cm1 field of the
%tc register.

3.23 Trap Return Program Counter Register (%tpc)

The %tpc register contains the return value from an ISR. When the
processor takes an unmasked interrupt, %tpc is updated with the
address of the next sequential instruction (%pc + 1). When the interrupt
is serviced, the contents of %tpc are copied to %pc.

When the processor takes a DEI, the current value of %tpc is stored in
the %ded register before copying the next instruction’s value to %tpc.

On reset, the contents of the %tpc register are undefined.

3.24 Viterbi Traceback Register (%vitr)

The %vitr register holds Viterbi traceback information. The oldest
traceback bit is contained in bit 15, and the most recent traceback bit is
in bit 0. The vit_a and vit_b instructions update the LSB of the
%vitr register. The contents of the register are shifted left one bit when
the LSB is updated. At reset, the contents of the %vitr register are
undefined.

15 0

timer1

15 0

tpc

15 0

vitr

ZSP400 Digital Signal Processor Architecture Technical Manual 4-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 4
Pipeline Control Unit

This chapter discusses the pipeline control unit. It includes the following
sections:

• Section 4.1, “Introduction,” page 4-1

• Section 4.2, “Interlocking Pipeline,” page 4-2

• Section 4.3, “Grouping Rules,” page 4-2

• Section 4.4, “Interrupts,” page 4-11

• Section 4.5, “Timers,” page 4-15

4.1 Introduction

In a pipelined processor, instructions execute in stages. This separation
allows the overlap of instructions in the pipeline. The ZSP400
architecture is a superscalar processor that employs a five-stage
pipeline.

Figure 4.1 shows the ZSP400 pipeline.

Figure 4.1 ZSP400 Pipeline

Fetch/Decode Stage – The processor fetches instructions from memory
and decodes them during this stage.

Group – The processor checks grouping and dependency rules and
issues valid instructions to the pipeline.

Read – Operands are read from the data unit during this stage.

F/D G R E W

4-2 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Execute – The appropriate execution unit (ALU or MAC) executes the
instruction and writes the results to a general purpose register or sends
them to the Data Unit.

Write Back – The Data Unit writes the results to memory and updates
all control registers.

The pipeline control unit (PCU) takes care of instruction grouping,
housekeeping functions, and arithmetic unit result bypassing. The PCU
synchronizes the operation of the pipeline and handles interrupt requests
from the Interrupt Control Unit.

4.2 Interlocking Pipeline

The ZSP400 architecture uses an interlocking pipeline—hardware
controls the pipeline. Stalls and pipeline dependencies are not visible to
the programmer. Stalls occur under the following conditions:

• Slow external memory accesses starve the pipeline of data

• The instruction prefetcher needs additional cycles to load cache lines
from main memory at a program flow discontinuity or a branch
mispredict

• The data prefetcher needs additional cycles to load two cache lines
from main memory during setup

• The write-through cache needs an additional cycle to write the
results of an extended precision operand back to main memory. (The
result straddles two cache lines. The pipeline stalls one cycle to allow
both cache lines to be written.)

4.3 Grouping Rules

This section discusses the ZSP400 instruction grouping rules. The
Pipeline Control Unit (PCU) receives instructions from the Instruction
Unit while the instructions are in the fetch/decode stage of the pipeline.
The PCU checks the instructions for dependencies and groups them for
execution according to the grouping rules listed in this section.

Grouping Rules 4-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Within the constraints imposed by the grouping rules, the PCU attempts
to issue instructions in groups of up to four instructions per group to
maximize DSP throughput, but such dense instruction grouping is not
possible with every instruction sequence without violating a grouping
rule.

Programmers who write ZSP400 code in a high-level language do not
need to know these rules to write functional code because the ZSP400
C-compiler optimizer knows the grouping rules and attempts to optimize
the machine-level instructions to minimize pipelines stalls, and the PCU
automatically applies the grouping rules to the optimized code.

However, knowledge of these grouping rules is useful for writing or
debugging assembly-level code that can be densely grouped to improve
DSP speed. To facilitate debug, the SDK debugger displays the grouping
rule that was applied to each group of instructions.

1. Do not group invalid instructions.

2. Do not group the following instructions with any ZSP400 instruction;
these instructions must be placed in a group that consists of only one
instruction. Following a group that includes one of these instructions,
do not group any ZSP400 instruction until two processor clock cycles
after the first instruction reaches the W pipeline stage (W+2).

– call rX

– mov %smode, rX

– bitc %ip*, x ; * = 0, 1;

– mov %pc, rX

– bitc %smode, x

– bits %ip*, x ; * = 0, 1;

– mov %amode, rX

– bits %smode, x

– biti %ip*, x ; * = 0, 1;

– mov %imask, rX

– bitc %amode, x

– biti %smode, x

– bitc %ireq, x

4-4 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– mov %ip0, rX

– bits %amode, x

– bitc %imask, x

– bits %ireq, x

– mov %ip1, rX

– biti %amode, x

– bits %imask, x

– biti %ireq, x

– mov %ireq, rX

– bitc %imask, x

– biti %imask, x

3. Do not group the following instructions, which use the ALU or MAC
units, if there is an instruction in the R or G pipeline stage that effects
the %fmode register.

– Store instructions: all the Memory Reference instructions
(Table 8.9) starting with st.

– Unlinked Load instructions (Table 8.9) are all ld and ldx
instructions plus the ldu and lddu instructions for which no link
has been established.

– ALU operations: all Arithmetic instructions (Table 8.5) and all
Bitwise Logical instructions (Table 8.6).

– MAC instructions: All MAC instructions (Table 8.4)

– mov rY, cx

– mov cx, rY

– mov rX, rY

– mov rX, IMM

4. Do not group the following instructions, which read the %guard or
%vitr registers, if there is a MAC instruction (Table 8.4) in the G or R
pipeline stage.

– mov rX, cy

– bits cx, y (cx: %guard or %vitr)

– bitc cx, y (cx: %guard or %vitr)

Grouping Rules 4-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– biti cx, y (cx: %guard or %vitr)

– bitt cx, y (cx: %guard or %vitr)

In addition, do not group the following instruction if there is a MAC
instruction (Table 8.4) in the G or R pipeline stage.

– mov %guard, IMM

5. Do not group any MAC instruction (Table 8.4) if there is an instruction
in the G or R pipeline stage that writes to the %guard or %vitr
registers through one of the following instructions:

– mov cx, rY

– bitc cx, y

– bits cx, y

– biti cx, y

6. Do not group a Branch Conditional instruction (all instructions on
Table 8.8 except for the agn and br) if there is a mov %hwflag, rX
instruction in the G or R pipeline stage.

7. Do not group the following instructions:

– mov rX, cy

– bitc cx, y

– bits cx, y

– biti cx, y

– bitt cx, y

– ret

– reti

– mov cx, IMM

– call rX

– call IMM

If one of the following instructions are in the R or E pipeline stages:

– mov rX, cy

– bitc cx, y

– bits cx, y

– biti cx, y

4-6 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– bitt cx, y

– ret

– reti

– mov cx, rY

– call rX

– call IMM

Or, if one of the following instructions is in the G pipeline stage:

– mov cx, rY

– bitc cx, y

– bits cx, y

– biti cx, y

8. Do not group the following instructions if any instruction is in the G,
R, or E pipeline stage:

– mov rX, %hwflag

– bits %hwflag, y

– bitc %hwflag, y

– biti %hwflag, y

– bitt %hwflag, y

9. Do not group the following instructions if there is a mov %hwflag, rX
instruction in the R pipeline stage, or any instruction in the G pipeline
stage.

– Conditional Branch instruction (all instructions on Table 8.8
except for the agn and br).

– addc.e

– subc.e

10. Do not group the following instructions if there is a mov cb*, rX
instruction in the G, R, E, or W pipeline stages:

– ldu

– lddu

– stu

– stdu

Grouping Rules 4-7
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

11. Do not group the following instructions if there is a Conditional
Branch instruction (all instructions on Table 8.8, page 8-20, except
for the agn and br instructions) or an reti instruction in the G, R, or
E pipeline stages:

– call IMM

– call rX

– agn0

– agn1

– agn2

– agn3

– ret

– reti

– mov cx, IMM

12. Do not group the following agnx instructions if the instruction has a
corresponding mov %loopx, rY instruction in the G, R, E, W, or W+1
pipeline stages. For example, do not group the agn0 instruction if the
mov %loop0, rY instruction is in the G, R, E, W, or W+1 pipeline
stages.

– agn0

– agn1

– agn2

– agn3

13. Do not group an ret or reti instruction if one of the following
instructions is in the G, R, E, W, or W+1 pipeline stages:

– mov rX, cy

– bitc cx, y

– bits cx, y

– biti cx, y

– bitt cx, y

– ret

– reti

– mov cx, rY

4-8 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– call rX

– call IMM

14. Do not group any instruction in a processor clock cycle in which the
processor has an interrupt request pending or in a processor clock
cycle in which the processor takes an interrupt.

15. Do not group an agnx instruction if there is a mov %loopx, rX
instruction in the G, R, E, W, or W+1 pipeline stages, or there is a
mov loopx, IMM instruction in the R or E pipeline stages.

16. Do not group an ret or reti instruction if one of the following
instructions is in the G, R, E, W, or W+1 pipeline stages.

– mov rX, cy

– mov cx, rY

– bitc cx, y

– bits cx, y

– biti cx, y

– ret

– reti

17. Do not group instructions in a manner that causes them to execute
out of order.

18. Do not group more than one instruction if the device is in Uniscalar
mode.

19. Do not group a mov rX, %pc instruction if any instruction is in the G
pipeline stage.

20. Do not group the following instructions if there is a mov cx, IMM
instruction in the G pipeline stage:

– mov rX, cy

– bitt cx, y

– bits cx, y

– bitc cx, y

– biti cx, y

21. Do not group the following instructions if there is a Conditional
Branch instruction (all instructions on Table 8.8 except for the agn
and br) or an reti instruction in the G pipeline stage:

Grouping Rules 4-9
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– mov cx, rY

– biti cx, y

– bits cx, y

– bitc cx, y

– bitt cx, y

– mov cx, IMM

22. Do not group more than one MAC instruction (Table 8.4) per group.

23. Do not group more than two instructions that use one ALU
(Arithmetic instructions, Table 8.5, and Bitwise Logical instructions,
Table 8.6) each, or more than one instruction that uses both the
ALUs.

24. Do not group more than one Unlinked Load instruction per group.
Unlinked Load instructions (Table 8.9) are all ld and ldx instructions
plus the ldu and lddu instructions for which no link has been
established.

25. Do not group more than one Store instruction per group. Store
instructions are all the Memory Reference instructions (Table 8.9)
that start with st.

26. Do not group a Load instruction after a Store instruction, and do not
group a Store instruction after an Unlinked Load instruction. Where:

– Load instructions are all the Memory Reference instructions
(Table 8.9) that start with ld.

– Store instructions are all the Memory Reference instructions
(Table 8.9) starting with st.

– Unlinked Load instructions (Table 8.9) are all ld and ldx
instructions plus the ldu and lddu instructions for which no link
has been established.

27. Do not group an agn0 instruction under the following circumstances:

– An agn0 instruction is in the G pipeline stage.

– A mov loop0, IMM instruction is in the G, R, or E pipeline stage.

– A mov rX, %loop0 instruction is in the G pipeline stage

– A bitt %loop0, y instruction is in the G pipeline stage

– A biti %loop0, y instruction is in the G pipeline stage

4-10 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

– A bits %loop0, y instruction is in the G pipeline stage

– A bitc %loop0, y instruction is in the G pipeline stage

Rule 27 also applies to agn0, agn1, agn2, and ang3, For these
instructions, the relevant operands are loop0, loop1, loop2, loop3.

28. Do not group a call IMM or a call rX instruction under the following
circumstances:

– A call IMM or call rX instruction is in the G pipeline stage

– A mov rX, %rpc instruction is in the G pipeline stage

29. Do not group a mov %fmode, IMM instruction under the following
circumstances:

– An ALU instruction (Arithmetic instructions, Table 8.5, and
Bitwise Logical instructions, Table 8.6) is in the G pipeline stage

– A MAC instruction (Table 8.4) is in the G pipeline stage

30. Do not group an instruction that depends on the result of a previous
instruction in the same group, with the following exceptions:

– The first instruction depends on the result of a Linked Load
instruction. Linked Load instructions (Table 8.9) are ldu rX, rY, n
and lddu rX, rY, n where a link is established and rY = {r13, r14,
r15}.

– The first instruction is a store instruction, and the second
instruction is not a MAC instruction or an unlinked load
instruction. Where:

◊ Store instructions are all the Memory Reference instructions
(Table 8.9) starting with st.

◊ Unlinked Load instructions (Table 8.9) are all ld and ldx
instructions plus the ldu and lddu instructions for which no
link has been established.

◊ MAC instructions are all instructions in Table 8.4

31. Stall the pipeline for one processor clock cycle if one of the following
instructions is in R pipeline stage:

– mov %hwflag, rY

– bits %hwflag, y

– bitc %hwflag, y

– biti %hwflag, y

Interrupts 4-11
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

32. Miscellaneous grouping rules:

– A Conditional Branch instruction must be the first instruction in
its group.

– Do not group more than one Conditional Branch instruction per
group.

– Do not group more than one call IMM or call rX instruction per
group.

– Do not group the following instructions if two or more instructions
have the same address register.

◊ ldu

◊ lddu

◊ ldxu

◊ stu

◊ stdu

◊ stxu

– An reti instruction must be the first instruction in its group.

– Do not group the following instructions if there is an reti
instruction in the G pipeline stage:

◊ mov rX, [imask/ip0/tpc]

◊ bitc [imask/ip0/tpc], y

◊ bitt [imask/ip0/tpc], y

◊ biti [imask/ip0/tpc], y

◊ bits [imask/ip0/tpc], y

4.4 Interrupts

The interrupt controller provides support for 16 interrupt sources. Two
sources are not maskable, the rest are individually and globally
maskable. The nonmaskable interrupts have a fixed priority level higher
than the rest, the rest have a user assignable priority level between 0 to
3. The interrupt controller uses masking, the priority and order within the
%ireq register (bit 15 to 0) to determine the highest unmasked priority
interrupt to service next. Once taken, it stores the priority of the selected

4-12 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

interrupt for use in determining the next interrupt to service when nesting
interrupts. Interrupts are normally serviced serially, but an interrupt
routine may enable nesting by saving the interrupt state, changing the
current interrupt level (if required) and enabling interrupts. Nested
interrupts are supported without saving interrupt state for the
nonmaskable interrupts.

There are two nonmaskable interrupts: NMI (external to the core), DEI
(device emulation interrupt.) NMI has the highest priority (over all
interrupts), DEI has the second highest priority (over all maskable
interrupts regardless of priority). If either of these two interrupts occur
while any maskable interrupt is being serviced, the existing interrupt state
is saved and the new interrupt routine is dispatched. If a DEI interrupt is
being serviced and an NMI occurs, the existing interrupt state is saved
and the NMI routine is dispatched. If while executing a DEI or NMI
routine the same interrupt occurs again (executing DEI and another DEI
occurs, or executing NMI and another NMI occurs), the processor will
restart the interrupt service routine without saving or changing any of the
interrupt state. While servicing nonmaskable interrupts, nesting of
interrupts is not possible because the interrupt priority level cannot be
changed to allow maskable interrupts. To allow this nesting, the hardware
will preserve the interrupt state as follows.

When an interrupt is taken, the following state (the interrupt state)
changes occur:

• gie (global interrupt enable) is saved in pgie (previous global enable.)
gie is then cleared. If a nonmaskable interrupt is interrupting an
executing routine, pgie is saved too.

• epl (executing privilege level) is saved in pepl (previous epl.) epl is
set to the new interrupt priority level unless a nonmaskable interrupt
is occurring (in which epl will not change.) If a nonmaskable interrupt
is interrupting an executing routine, pepl will also be saved.

• pc+1 is saved in %tpc (trap program counter.) If a nonmaskable
interrupt is interrupting an executing routine, tpc will also be saved.

• Bit in %ireq corresponding to interrupt being serviced is cleared.

If a nonmaskable interrupt occurs while servicing any interrupt routine
(except for NMI), the state is preserved (as noted above) and restored at
the end of the routine. When the interrupt routine completes, via the ‘reti’
instruction, the following state is restored:

Interrupts 4-13
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

• epl is restored from pepl. pepl is restored to its previous value if
completing a nonmaskable interrupt.

• %pc is restored from %tpc. %tpc is restored to its previous value if
completing a nonmaskable interrupt.

• gie is restored from pgie. pgie is restored to its previous value if
completing a nonmaskable interrupt.

If another maskable interrupt request occurs while an interrupt routine is
already executing, it is considered a pending interrupt. This interrupt will
be serviced after (unless the interrupt routine intends to allow nesting of
interrupt routines - see next paragraph) the current routine completes
(the reti instruction is executed.) If there are pending interrupts when the
reti instruction executes (and the pending interrupt is not masked or
lower priority than the current priority), the next interrupt service routine
will be executed without executing any more code in the main routine.
The %tpc register will not be changed in this case, the execution will
directly flow from one interrupt routine to another interrupt routine. Only
after the interrupt routines complete, will main routine code begin
execution at the %tpc address.

To nest interrupts, this state (the interrupt state) must be saved: %tpc,
epl, pepl. After saving this state, epl (executing privilege level) can be
changed to allow lower priority interrupts to occur if necessary. Now set
gie (global interrupt enable) to allow new interrupts to occur. At the end
of this routine, the interrupt state must be restored before exiting:

• Clear gie (so no interrupts corrupt this state restoration.)

• Restore tpc, pgie, and pepl.

• Issue the ‘reti’ instruction.

Once an interrupt is determined, the core will group no additional
instructions and allow the pipe to empty of executing instructions. The
new interrupt routine will be fetched and executed. For software enabled
interrupts (writes to the interrupt request register) subsequent
instructions are flushed and the interrupt routine serviced instead.

4-14 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 4.2 Interrupt Processing Flow

ireq bit is set

set hwflag<ir> = 1

imask<gie> = 1 ?

interrupt
masked?

interrupt
priority

 ip0<epl>

Do Nothing

Do Nothing

Do Nothing

Yes

Yes

Yes

Yes

No

No

No

No

ireq<nmi> = 1?

- imask<pgie> = imask<gie>; imask<gie> = 0
- ip0<pepl> = ip0<epl>
- ip0<epl> = priority of maskable interrupt
- clear corresponding ireq<> bit.
- execute interrupt service routine; execute reti
- ip0<epl> = ip0<pepl>; imask<gie> = imask<pgie>
- %pc = %tpc

Timers 4-15
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

4.5 Timers

There are two built-in timers. Three control registers control the operation
of the timer unit (%timer0, %timer1, and %tc). %timer0 is a 16-bit counter
containing the current timer 0 value or the value loaded by the user.
%timer1 is a 16-bit counter containing the current timer 1 value or the
value loaded by the user. %tc is the 16 bit control register for both timers.
Timer 0 utilizes the lower 8-bits of this register, while timer 1 uses the
upper 8 bits. Refer to Section 3.20, “Timer Control Register (%tc),” page
3-22.

The control register specifies the mode that the timer will operate in. The
user can control when the timer is enabled (et), the mode it operates in
single shot or continuous mode (cm) and the prescale value for
decrementing the timer (timrdiv).

The timer decrements when it is enabled and the counter is not at 0. The
timer can be loaded by the user. If the timer was loaded and is enabled
it will begin decrementing. It will decrement based on the prescale value.
The prescale value is N+1 clocks for a prescale value of N. Every N+1
clocks the timer will then decrement. Once the timer transitions to zero,
an interrupt will be generated. There is an interrupt bit in the interrupt
request register for each timer (t0, t1).

Once the timer reaches 0 and has generated the interrupt, it will not
count unless the timer is reloaded by the user or the timer is in
continuous mode. If continuous mode is enabled, the timer will reload the
last value the user loaded into the timer and it will begin decrementing
again.

The timer can be disabled at any time while the timer is running. The
timer value can be loaded at any time while the timer is running to
shorten the timing period. If the timer was loaded with a value of zero
and the timer did not contain the value 0 (there was a transition to zero)
an interrupt will be generated. If the timer is enabled while the timer
count is 0 no interrupt will be generated. The timer will not reload in
continuous mode if the timer was loaded with zero by the user.

4-16 Pipeline Control Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual 5-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 5
Instruction Unit

This chapter explains the ZSP400 Instruction Unit (IU). It includes the
following sections:

• Section 5.1, “Introduction,” page 5-1

• Section 5.2, “Instruction Cache and Prefetcher,” page 5-1

• Section 5.3, “Branch Prediction,” page 5-9

5.1 Introduction

The instruction unit contains the instruction cache, instruction prefetcher,
branch prediction logic, and an instruction dispatcher.

The instruction cache aligns instructions from main memory and reduces
main memory power consumption. The prefetcher keeps the instruction
cache full when running from on-chip memory and minimizes pipeline
stalls. The branch predictor minimizes the need to flush the pipeline.

The instruction unit always fetches four instructions from the instruction
cache. The instruction dispatcher decodes four instructions. The
dispatcher issues up to four instructions to the data unit and the pipeline
control unit each cycle. The data and pipeline control units read the
required operands from registers or memory and execute the
instructions.

5.2 Instruction Cache and Prefetcher

The instruction cache and prefetcher work closely together. These
submodules support two primary functions: instruction alignment and
main memory power reduction.

5-2 Instruction Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

On-chip main memory is structured such that four instructions reside in
a cache line. Figure 5.1 shows the layout of instructions in a cache line.
A maximum of one cache line loads from main memory into the
instruction cache each cycle.

Figure 5.1 Cache Line Organization

The instruction cache contains eight cache lines, or 32 instructions. It is
a direct mapped cache. In a direct mapped cache, each line in main
memory line maps into one specific cache line (the main memory line
address modulo the number of cache lines).

5.2.1 Cache Miss Penalty

At every program flow break causing a cache miss, the processor incurs
a minimum two cycle penalty.

The two cycle instruction cache miss penalty is illustrated in Figure 5.2.
The “−” prefix indicates fetch packets before the branch and the “+” are
those after the branch. Thus, +g1, +g2, and +g3 are the fetch packets,
or groups of four instructions, after a branch. Suppose two instructions,
I0 and I1, are issued from of the +g1 fetch packet. Thus, the +g2 fetch
packet needs to start with the unissued instructions I2 and I3 from the
last attempt together with new instructions I4 and I5.

Given the scenario of a fetch packet sequence (−g4, −g3, −g2, and −g1)
running to a BRANCH where the target of the branch is not in the
instruction cache, the following steps are taken.

In cycle n + 1, the target fetch packet is not found in the cache. So, the
Cache Line 1 address is sent to main memory.

instr0Cache Line 0

Cache Line 1

16 Bits

64 Bits

instr1 instr2 instr3

instr4 instr5 instr6 instr7

Instruction Cache and Prefetcher 5-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Cache Line 1 is returned and loaded into the instruction cache in cycle
n + 2. Also in cycle n + 2, the address for Cache Line 2 is sent to main
memory. Recall that two cache lines must be prefetched into the cache
so that the machine can sustain a four instruction issue rate. The pipeline
is stalled for both the n + 1 and n + 2 cycles. The +g1 target fetch packet
is read from the cache and loaded into the pipeline at cycle n + 3. These
two stall cycles represent the two cycle penalty when running from on-
chip memory at a program flow discontinuity.

In cycle n + 3, the +g1 fetch packet is sent to the pipeline. Cache Line
2 is loaded into the cache and the address for Cache Line 3 is sent to
the main memory.

By cycle n + 4, the +g2 fetch packet is sent to the pipeline. Cache Line
3 is saved in the instruction cache. The address for Cache Line 4 is sent
to main memory.

In cycle n + 5, the +g3 fetch packet will be loaded into the pipeline.
Cache Line 4 is saved in the instruction cache. The last line that the
prefetcher loaded into the instruction cache was Cache Line 3. That is,
the contents of Cache Line 3 are available for fetching. However, the +g3
fetch packet does not require any instructions from the previously loaded
Cache Line 3. Thus, the prefetcher will halt and not request the next
cache line from main memory.

The prefetcher only fetches approximately one cache line in advance. It
will stop if the Instruction Unit does not use any of the instructions in the
last prefetched line residing in the instruction cache. Stopping the
prefetcher keeps it from over running the instruction cache and also
reduces power for main memory accesses.

[Only fetch stage is stalled —restof pipe moves with an instruction fetch
delay. Only a data unit delay stalls the entire pipe.]

5-4 Instruction Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 5.2 Instruction Cache Miss Penalty

Cache
Line +g1, issue I0–I1 +g2, issue I2 +g3, issue I3

1 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3
Fetch
Packets2 I4 I5 I6 I7 I4 I5 I6 I7 I4 I5 I6 I7

3 I8 I9 I10 I11 I8 I9 I10 I11 I8 I9 I10 I11

4 I12 I13 I14 I15 I12 I13 I14 I15 I12 I13 I14 I15

Cycle F G R E W Instruction Sequence

n BR −g1 −g2 −g3 −g4 −g4

n + 1
stall

– BR −g1 −g2 −g3 −g3

Target Fetch packet +g1 is not in I-cache. Need to send Cache
Line 1’s address to main memory.

−g2
−g1

n + 2
stall

– – BR −g1 −g2 BR TARGET

Cache Line 1 is loaded into the I-cache. Cache Line 2’s address is
sent to main memory.

TARGET:
+g1

n + 3 +g1 – – BR −g1 +g2

Fetch packet +g1 is loaded into the pipeline from the I-cache.
Cache Line 2 is saved in the I-Cache. The address for Cache Line
3 is sent to main memory

+g3

n + 4 +g2 +g1 – – BR

Fetch packet +g2 is loaded into the pipeline from the I-cache.
Cache Line 3 is saved in the I-cache. The address for Cache Line
4 is sent to main memory.

n + 5 +g3 +g2 +g1 – –

Fetch packet +g3 is loaded into the pipeline from the I-cache.
Cache Line 4 is saved in the I-cache. The +g3 fetch packet does
not use any of the instructions in Cache Line 3, the last cache line
saved. Thus, the prefetcher will not request the next cache line
from main memory.

Execution
Direction

Instruction Cache and Prefetcher 5-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

5.2.2 Cache Line Straddling

The prefetcher is not used when executing from external memory. If the
requested group of four fetch instructions are not in the instruction cache,
the pipeline stalls while the external memory is accessed and
instructions are saved in the cache. The prefetcher does not load
instructions before they are requested by the IU. When executing from
external memory, the number of pipeline stalls depend on the number of
wait states to the memory.

In the event that a fetch packet of four instructions span two cache lines,
reading directly from the main memory would require two separate
SRAM output ports. Also, the Fetch and Decode stages are combined
into one in the ZSP400 pipelines. Fetch directly accesses a register in
the instruction cache instead of main memory. The prefetcher works in
the background to fetch instructions from main memory.

In order to keep memory design simple by using a single read port, allow
a shorter five stage pipeline, and use only a single read port instruction
memory, the ZSP400 relies on the instruction cache. The instruction
dispatcher will always find four prefetched instructions in the cache
barring a break in the program flow, such as an unconditional branch or
a branch mispredict.

In a program discontinuity where the next fetch packet (of four
instructions) spans two cache lines and is not already available in the
cache, both cache lines must be loaded in the instruction cache. This
load incurs a three cycle start-up penalty. Thus, aligning the target of a
branch to the beginning of a cache line would save one start up cycle.

Figure 5.3 shows an example of how the prefetcher and cache scheme
solve the data alignment dilemma at a program discontinuity in on-chip
memory.

In cycle n + 1, the instruction prefetcher finds that the branch target fetch
packet is not in the cache and issues the address for Cache Line 1 to
main memory.

Cache Line 1, which contains the first part of the fetch packet, is saved
in the instruction cache and the prefetcher sends the address for Cache
Line 2 to main memory in cycle n + 2. Cache line 2, which contains the
remainder of the target fetch packet, is loaded into the cache in cycle
n + 3.

5-6 Instruction Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

The pipeline is stalled for cycles n + 1, n + 2, and n + 3. By cycle n + 4,
however, the entire fetch packet is in the instruction cache and can be
used by the Fetch stage of the pipeline. Subsequent instruction fetches
will incur no penalty, even if the maximum of four instructions are issued
every cycle.

Figure 5.3 Cache and Prefetcher Solve Data Alignment Dilemma

Cycle F G R E W Instruction Sequence

n BR −g1 −g2 −g3 −g4 −g4

n + 1
stall

− BR −g1 −g2 −g3 −g3

Target Instruction +g1 is not in I-cache. Need to send Cache Line
1 address to main memory.

−g2
−g1

n + 2
stall

− − BR −g1 −g2 BR TARGET

Cache Line with IA instruction is loaded into the I-cache. The
remainder of the fetch packet is not in the cache. Send Cache Line
2 address to main memory.

TARGET:
+g1
+g2

n + 3
stall

− − − BR −g1 +g3

Cache line with IB, IC, ID, and I3 instructions are loaded into the
cache. The next cache line address is sent to main memory.

Assume that TARGET
address is not in the
cache.

n + 4 +g1 - − − BR

The +g1 instructions are fetched from the instruction cache. The
cache line with I4, I5, I6, and I7 are saved in the I-cache. Since
Cache Line 2 has been used, the address for Cache Line 4 is sent
to main memory.

Also assume all the
instructions in a fetch
packet are issued. +g1
= {IA, Ib, IC, ID}

I0 I1 I2 IA

IB IC ID I3

I4 I5 I6 I7

On-Chip Main Memory

TARGET Address

Cache Line 1

Cache Line 2

Cache Line 3

I-Cache

I0

I1

I2

IA

IB

IC

ID

I3

IA, IB, IC, and ID are the instructions required for a fetch. This fetch packet spans two
cache lines. Without the cache, two read ports are needed from main memory. With the
cache and prefetcher, these four instructions are always available in the cache.

Execution
Direction

Instruction Cache and Prefetcher 5-7
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

5.2.3 Issue Rate Slower than Prefetch Rate

The prefetcher only loads approximately one cache line ahead. In the
event that the instruction dispatcher finds all the instructions in the cache,
main memory (whether it is on-chip or off-chip) will not be accessed.
Thus, the cache saves main memory from being accessed every cycle
and reduces system level power.

Figure 5.4 shows another example of the prefetcher stopping when the
issue rate does not keep up with the prefetch rate.

In cycle n + 1, the address for Cache Line 1 is sent to main memory and
the pipeline is stalled.

By cycle n + 2, Cache Line 1 is loaded into the instruction cache and the
address for Cache Line 2 is sent to main memory. Instructions are not
available for reading from the cache, so n + 2 is a stall cycle.

In cycle n + 3, the +g1 fetch packet is sent to the pipeline. Cache Line
2 is saved in the instruction cache and the address for Cache Line 3 is
sent to main memory.

During cycle n + 4, the +g2 fetch packet is sent to the pipeline. Cache
Line 3 is saved in the instruction cache. The address for Cache Line 4
is sent to main memory.

In cycle n + 5, the +g3 fetch packet is loaded into the pipeline. Cache
Line 4 is saved in the instruction cache. The +g3 fetch packet does not
use any instructions from the previously loaded Cache Line 4. Thus, the
prefetcher stops and does not request a main memory access for the
next cache line.

5-8 Instruction Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 5.4 Example of Prefetcher Staying Slightly Ahead of Instruction Consumption

Cache
Line +g1, issue I0 +g2, issue I1 +g3, issue I2 +g4, issue I3

1 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3

2 I4 I5 I6 I7 I4 I5 I6 I7 I4 I5 I6 I7 I4 I5 I6 I7

3 I8 I9 I10 I11 I8 I9 I10 I11 I8 I9 I10 I11 I8 I9 I10 I11

4 I12 I13 I14 I15 I12 I13 I14 I15 I12 I13 I14 I15 I12 I13 I14 I15

Cycle F G R E W Instruction Sequence

n BR −g1 −g2 −g3 −g4 −g4

n + 1
stall

− BR −g1 −g2 −g3 −g3

Target Fetch packet +g1 is not in I-cache. Need to send Cache Line
1 address to main memory.

−g2
−g1

n + 2
stall

− − BR −g1 −g2 BR TARGET

Cache Line 1 is loaded into the I-cache. The address for Cache Line
2 is sent to main memory.

TARGET:
+g1

n + 3 +g1 − − BR −g1 +g2

The +g1 instructions are sent to the pipeline from the I-cache. Cache
Line 2 is stored in the I-Cache. The address for Cache Line 3 is sent
to main memory

+g3
+g4

n + 4 +g2 +g1 − − BR

The +g2 fetch packet is sent to the IU. Cache Line 3 is stored in the
I-cache. Since the IU reads I4 from the last line saved in the cache,
the prefetcher goes ahead and sends the address for Cache Line 4
to main memory.

Assume that the
TARGET fetch packet
is not in the cache

n + 5 +g3 +g2 +g1 BR −g1

The +g3 instructions are sent to the IU. None of the contents of
Cache Line 3, the last line that the prefetcher loaded, are used by the
+g3 fetch packet. Thus, the prefetcher does not send a read request
to main memory. Meanwhile, Cache Line 4 is stored in the cache.

n + 6 +g4 +g3 +g2 +g1 BR

The +g4 instructions are sent to the IU. None of the contents of
Cache Line 4, the last line that the prefetcher loaded, are used by the
+g4 fetch packet. Thus, the prefetcher does not send a read request
to main memory.

Execution
Direction

Branch Prediction 5-9
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

To summarize, a two cycle setup penalty is incurred if the first fetch
packet after a program discontinuity fits within a cache line and is not
already in the instruction cache. Otherwise, a three cycle penalty is
incurred since two cache lines must be retrieved from main memory.
These values are only relevant for program execution from on-chip
memory. Off-chip program execution does not use the prefetcher and
depends on the number of wait states to external memory.

5.3 Branch Prediction

The ZSP400 architecture uses static branch prediction. In static branch
prediction, the direction of conditional branches are based on the branch
type and the branch direction. The prefetcher assumes the branch target
and loads the pipeline accordingly. In the event that the branch
assumption is incorrect, the pipeline has to be flushed and instructions
from the actual target need to be loaded. In most cases, the prediction
is correct and the branch incurs zero penalty.

Using static branch prediction, there is no need for branch delay slots
found in other processors.

Table 5.1 shows the ZSP400 static branch prediction rules.

Table 5.1 Static Branch Prediction Rules

Instruction Branch Direction Notes Prediction

br rX either not taken

br IMM either taken

bz IMM either taken

bnz IMM backward taken

bnz IMM forward not taken

blt IMM backward taken

blt IMM forward not taken

ble IMM backward taken

ble IMM forward not taken

5-10 Instruction Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

A mispredicted branch when running from on-chip memory usually incurs
a five cycle penalty if the mispredicted fetch packet is aligned within one
cache line. Otherwise, the misprediction penalty is six cycles because
another cache line must be fetched into the instruction cache. When the
branch error is discovered, the branch instruction is in a group of
instructions at the execute stage. Suppose this time is called Cycle N.
Figure 5.5 lists the events occurring in the subsequent clock cycles.

In cycle n + 1, the pipeline stalls as the actual target address is sent to
instruction memory. The instruction cache is loaded from memory in
cycle n + 2 while the pipeline is kept in a stalled state. Cycles n + 3,

bgt IMM either taken

bge IMM either taken

bov IMM either taken

bnov IMM backward taken

bnov IMM forward not taken

bc IMM either taken

bnc backward taken

bnc forward not taken

agnX IMM backward loopX! = 0 taken

call rX either not taken

call IMM either taken

ret either no instructions in the pipeline
will modify rpc

taken

ret either at least one instruction in the
pipeline will modify rpc

not taken

reti either no instruction in the pipeline
will modify tpc

taken

reti either at least one instruction in the
pipeline will modify tpc

not taken

Table 5.1 Static Branch Prediction Rules (Cont.)

Instruction Branch Direction Notes Prediction

Branch Prediction 5-11
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

n + 4, and n + 5 flush the mispredicted instructions out of the pipeline. In
cycle n + 6, the first instruction of the mispredicted branch is executed.

In the event that the mispredicted fetch packet is in the instruction cache,
the two stall cycles for cache loading are not needed. Thus, the
processor will only encounter a three cycle pipeline flush penalty on the
branch mispredict.

To summarize, a three cycle mispredict penalty is encountered if the
branch target instructions are in the cache. Otherwise, the branch
mispredict penalty is five cycles if the branch target is aligned to the
beginning of a cache line. In the event that the branch target is not
aligned at the beginning of a word line, the penalty is six cycles.

Figure 5.5 Explanation of Branch Misprediction Penalties

Cache
Line +g1, issue I0–I3 +g2, issue I4–I7 +g3, issue I8–I11 +g4, issue I12–I15

1 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3 I0 I1 I2 I3

2 I4 I5 I6 I7 I4 I5 I6 I7 I4 I5 I6 I7 I4 I5 I6 I7

3 I8 I9 I10 I11 I8 I9 I10 I11 I8 I9 I10 I11 I8 I9 I10 I11

4 I12 I13 I14 I15 I12 I13 I14 I15 I12 I13 I14 I15 I12 I13 I14 I15

5-12 Instruction Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 5.5 Explanation of Branch Misprediction Penalties (Cont.)

Cycle F G R E W Instruction Sequence

n −g1 −g2 −g3 BNE −g1

Status flags are checked for ! = 0. Finds that a mispredict occurred. START

n + 1 − − − - BNE −g3

Since +g1 is not in the cache, send the address for Cache Line 1
to main memory.

-g2
-g1

n + 2 − − − - - BNE START

Cache Line 1 is saved in the I-cache. Address for Cache Line 2 is
sent to main memory.

+g1
+g2

n + 3
Flush

+g1 − − − - +g3

The +g1 fetch packet is loaded into the pipeline. Cache Line 2 is
saved in the I-cache. The address for Cache Line 3 is sent to main
memory.

The BNE predicts that
the branch direction is
to START. However, the
program flow falls
through to +g1 in this
example.

n + 4
Flush

+g2 +g1 − − −

The +g2 fetch packet is loaded into the pipeline. Cache Line 3 is
saved in the I-cache. The address for Cache Line 4 is sent to main
memory.

n + 5
Flush

+g3 +g2 +g1 − − Assume that the loop
has been executing
through the pipeline. In
cycle n, there is a
mispredict because the
loop is exiting into the
+g1 fetch group.

The +g3 fetch packet is loaded into the pipeline. Cache Line 4 is
saved in the I-cache. The address for the next cache line is sent
to main memory.

n + 6 +g4 +g3 +g2 +g1 −

The first mispredicted program flow instruction reaches the E
stage.

This illustration implies
that all four instructions
in the +g1 fetch packet
are found in one cache
line. Otherwise, an extra
stall cycle after n + 2 is
required to load the
remainder of the +g1
fetch packet.

Execution
Direction

ZSP400 Digital Signal Processor Architecture Technical Manual 6-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 6
Data Unit

This chapter explains the ZSP400 data unit. It contains the following
sections:

• Section 6.1, “Introduction,” page 6-1 on page 6-1

• Section 6.2, “Data Cache, Data Prefetcher, and Data Linking,” page
6-2

• Section 6.3, “Data Linking Setup,” page 6-5

• Section 6.4, “Data Unit Stores,” page 6-6

• Section 6.5, “Circular Buffers,” page 6-8

• Section 6.6, “Reverse Carry Addressing,” page 6-10

6.1 Introduction

The data unit (DU) is a comprised of the data cache, data prefetcher, and
the circular buffer unit. The DU is also responsible for data linking, a
powerful concept that alleviates loads of operands from memory into
general purpose registers before they can be used.

DSP applications often require streaming data. For example, in a filtering
operation, two operands are read, operated upon, and the result saved
in a register. This process is set in a long loop. Operands are “streamed”
into the execution unit.

In a RISC machine, one cycle is needed for each of the two operands
loads into general purpose registers. For DSP applications where these
type of loops are often found, direct-from-memory operand reads
enhance program efficiency.

As opposed to general purpose computing, DSP data is saved in an
orderly fashion in memory. That is, operands are generally arranged in

6-2 Data Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

sequential data memory addresses. The ZSP400 architecture, while
typically a load/store machine, can be made to do operand and result
data streaming by using this concept of data linking. When a set of
contiguous memory locations are linked, the operands are read during
the R stage of the pipeline and used directly in the E stage without
requiring that they first be loaded into a general purpose register.

The ZSP400 architecture does not impose any memory alignment
restrictions on extended precision operands. For example, some
architectures require that a double word operand be aligned such that it
starts on an even address. Without this restriction, the ZSP400 is
friendlier to program and eases the compiler complexity.

6.2 Data Cache, Data Prefetcher, and Data Linking

The data cache and data prefetcher perform the same functions as the
instruction cache and prefetcher. The data cache is a fully associative
write-through cache consisting of 17 lines. Each cache line contains four
single precision words of 16 bits. For the most part, the cache and
prefetcher are needed to ensure that double precision, or 32-bit,
operands, can be accessed via a single read port memory in one cycle
without any stalls once setup is complete. That is, if an operand should
straddle two cache lines, both lines would be available in the cache when
the data is needed.

Data linking is established by storing values to data linking index
registers. These index registers, located in the Execution Units’s general
purpose register file, are r13, r14, and r15. Whenever an address is
saved in a data linking index register, the DU resets the link pointer.
When the data referenced by the link register is next used in a load
instruction, the data prefetcher brings two cache lines into the data cache
and establishes the data link.

The ZSP400 supports three data linking registers, or three discrete sets
of contiguous data streams. Once the data linking setup is complete,
contiguous operand accesses to any of these three sets of data incur
zero cycles for a register load. In other words, these linked regions may
be accessed with no load penalty if accessed in a sequentially increasing
order.

Data Cache, Data Prefetcher, and Data Linking 6-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Two cache lines are needed to ensure that the cache contains valid data
for each data link throughout the streaming loop. Each cycle, four 16-bit
operands or two 32-bit operands can be used. Hence, a maximum of
64 bits can be consumed each cycle with 32 bits from one data link and
32 bits from the other.

From main data memory, one cache line of 64 bits can be fetched each
cycle. This cache line is specific to one set of operands, or one data link.
From a system standpoint, the fill rate of 64 bits per cycle matches the
consumption rate of 64 bits per cycle. The data prefetcher can only
service one data link each cycle, though. Thus, two cache lines usually
need to be prefetched in the setup sequence to ensure that the DSP
does not run out of data in a loop.

However, if the first operand in a data link is aligned to the beginning of
a cache line, then the second cache line fetch is not immediately needed
because the next operand of 32 bits is already in the same cache line.
The data prefetcher can always fill the cache faster than the machine can
consume data from the link. Thus, the DSP can save one cycle in data
linking setup.

Once two cache lines from each linked set are loaded in the cache, data
is guaranteed to remain in the cache at the fastest operand data rate.

Only two of the three data linking pointers may be used in any given
cycle. The third data linking register is a convenience which allows the
programmer to switch to another set of data without resetting one of the
two existing links.

The three data links can each use three cache lines. If two or more data
links are to the same address, then obviously redundant cache lines are
not loaded into the data cache. The remaining three cache lines are used
for operands when accessing other general purpose registers. Thus,
even if a general purpose register is loaded from internal memory, the
entire cache line containing that value will be loaded into the data cache.

In addition to the setup penalty required for bringing two cache lines into
the data cache, the data linking setup incurs an extra penalty due to
checking for circular buffer boundaries.

Since the setup of the data linking index registers incurs these cycle
penalties, they should not normally be used as general purpose registers
in load instructions. These registers do not incur a setup penalty if they

6-4 Data Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

are used in other instructions. Data linking registers will always work as
general purpose registers.

Figure 6.1 illustrates the data linking concept.

Figure 6.1 Data Linking in Detail

Of course, the side benefits of the data cache is that it lowers system
level power requirements. A cache line containing operands is not
usually required every cycle from main memory. Thus, it is not necessary
to do a main memory accesses when operands are not needed.

Data linking does not work when operands are in external memory
space. Operands from external memory must be loaded using a
dedicated cycle into a general purpose register in the E stage before they

DA DB DC DD

DE DF DG DH

DI DJ DK DL

DM DN DO DP

DQ DR DS DT

DU DV DW DX

Main Memory
Data Cache

Link 1

Link 2

Link 3

Data
Unit

4 words/cycle

Up to three Data Links may be established from main memory to the data cache. At setup, two cache lines from each
link are read into the Data Cache. Once setup has completed, up to four 16-bit operands or two 32-bit operands may

4 words/cycle

be read by the Data Unit continuously. The data prefetcher can maintain cache fullness by loading one cache line
from main memory every cycle. Note that extended precision operands spanning two cache lines will be loaded into
the data cache such that both halves are available in the same cycle.

Data Linking Setup 6-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

can be used in calculations. From a programming point of view, though,
this difference is transparent. The programming model remains the
same. The DU just forces the operands to load into a general purpose
register before using them.

6.3 Data Linking Setup

Once a value in a link register is changed by a move or load, that
particular link is reset. The next time this link register is used as an index
for a load instruction, a linking setup sequence is required to establish
the new link. This sequence involves loading two cache lines from main
memory into the data cache. Figure 6.2 shows the link setup. This
example assumes that data is in on-chip memory.

The instruction sequence first resets the link by moving a new value into
r15. Next, three sets of load and add instructions are grouped together.
The pipeline diagram shows three stalls as two cache lines are read from
main memory in cycles n + 1, n + 2, and n + 3.

In cycle n + 3, the first operand for instruction i3 is read from the data
cache into the operand bypass register. By cycle n + 4, the pipeline can
start operating with no data stalls. The data prefetcher can always keep
the three data links full since the maximum main memory bandwidth is
four words per cycle and the maximum operand consumption bandwidth
is also four words per cycle.

The data linking setup also has to check the circular buffer end registers
when first loading the two cache lines. That is, the first cache line in the
data linking setup could be at a circular buffer boundary. Thus, the
second cache line needs to be fetched from the circular buffer start
address.

6-6 Data Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 6.2 Example of Data Linking Setup

6.4 Data Unit Stores

The data cache is write through–when data is stored to memory in the
W stage of the pipeline, the processor writes the data to both the main
memory and the data cache.

Instruction Sequence

i1: mov r15, r0 ! reset r15 link

i2: ldu r2, r15, 1 ! 1st load
i3: add r1, r2 ! use D0
i4: ldu r2, r15, 1 ! use D1
i5: add r1, r2
i6: ldu r2, r15, 1 ! use D2
i7: add r1, r2

F G R E W

i1i2g3g4 ?

i1i2i4g4g5

r15 data link is reset.

First load on a cleared data link.
Send mem(r15) address to data
memory. Increment r15.

i1i2i4g4g5

Save Cache Line 1 into the data
cache. Send mem(r15) address to
data memory. Increment r15.

i1i2i4g4g5

Load ALU bypass register with D0

into data cache. Increment r15.
from the data cache. Save Cache Line 2

i1i2i4g5g6

Execute i2/i3. Load D1 into ALU
bypass register from data cache.

Sample Data

? ? D0 D1

D2 D3 D4 D5

Cache

1

2

Initial r15
pointer

Increment r15.

group 1

group 2

group 3

group 4

i3

i3i5

i3i5

i3i5

i3i5

i2i4i6g6

i3i5i7

g7

Execute i4/i5. Load D2 into ALU
bypass register from data cache.
Increment r15.

n

n + 1

n + 2

n + 3

n + 4

n + 5

Stall

Stall

Stall

Line
Memory

Data Unit Stores 6-7
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

In the event of an extended precision 32-bit store where the data word
straddles two cache lines, the pipeline stalls one cycle when running
from on-chip data memory to allow both lines to be written. Figure 6.3
illustrates this extended precision cache-line straddling store.

Figure 6.3 Double Operand Store Straddling Two Cache Lines

Instruction Sequence:

-g1

STDU r4, r6, 2
+g1
+g2

Execution
Direction

+g3

Cycle F G R E W

+g2 +g1 STDU −g1n

n + 1

Stall

n + 3

+g3

The STDU instruction will save
the r4–r5 registers into the
memory location referenced
by r6 and update the r6 pointers.
Assume that the address in r6
straddles two cache lines.

The address and data for Cache Line 1
are sent to on-chip main memory.

n + 2

+g1 STDU −+g2+g3

The address and data for Cache Line 2
are sent to on-chip main memory,

+g2 +g1 STDU+g3+g4

+g2 +g1+g3+g4+g5

+g4

D0 D1 D2 r4

r5 D3 D4 D5

D6 D7 D8 D9

D0

r5

D1

D3

D2

r4

D-Cache

Cache
Line 1

Cache
Line 2

On-Chip Data Memory

TARGET address
referenced by r6

+g5

Stall

6-8 Data Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

6.5 Circular Buffers

The ZSP400 supports two circular buffers. A circular buffer is defined by
a programmable starting address and an ending address. These
addresses can exist anywhere in data memory and do not need to be
aligned in any way. However, the buffer end address must be greater
than the buffer start address. If the buffer end address is less than the
buffer start address, then the circular buffer is not considered enabled.
The minimum size of a circular buffer is two elements. Sizes smaller than
two elements will not enable the circular buffer. The size of the buffer is
defined as the difference between the end address and the start address.
The last work of the circular buffer is at end-address −1.

When using an index register to automatically increment addresses for a
load or store operation, the index value will automatically wrap around to
the buffer starting address once it crosses the buffer end boundary. Only
positive increments are supported. Negative increments (decrements)
are not affected by the circular buffer operation, they decrement the
required amount.

Data linking comprehends circular buffers. When a circular buffer control
register is modified, the processor re-establishes all the data links.

Table 6.1 shows the functionality of circular buffer 0 loads, and Table 6.2
shows the functionality of circular buffer 0 stores. The functionality of
circular buffer 1 loads and stores is the same as for circular buffer 0,
except r15 replaces r14, cb1_beg replaces cb0_beg, and cb1_end
replaces cb0_end.

Table 6.1 Circular Buffer 0 (cb0) Load Operations

Instruction Current r14 Next rX Next r(X + 1) Next r14

lddu rX, r14, 2 < cb0_end − 2 mem[r14] mem[r14 + 1] r14 + 2

lddu rX, r14, 2 cb0_end − 2 mem[r14] mem[r14 + 1] cb0_beg

lddu rX, r14, 2 cb0_end − 1 mem[r14] mem[cb0_beg] cb0_beg + 1

lddu rX, r14, 2 ≥ cb0_end mem[r14] mem[r14 + 1] r14 + 2

ldu rX, r14, 2 < cb0_end − 2 mem[r14] – r14 + 2

Circular Buffers 6-9
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

The circular buffer index pointer automatically wraps around if the update
value on an ldu, lddu, stu, or stdu causes the pointer address to equal
or exceed the circular buffer end address.

ldu rX, r14, 2 cb0_end − 2 mem[r14] – cb0_beg

ldu rX, r14, 2 cb0_end − 1 mem[r14] – cb0_beg + 1

ldu rX, r14, 2 ≥ cb0_end mem[r14] – r14 + 2

ldu rX, r14, 1 < cb0_end − 1 mem[r14] – r14 + 1

ldu rX, r14, 1 cb0_end − 1 mem[r14] – cb0_beg

ldu rX, r14, 1 ≥ cb0_end mem[r14] – r14 + 1

Table 6.2 Circular Buffer 0 (cb0) Store Operations

Instruction Current r14 rX -> r(X + 1) -> Next r14

stdu rX, r14, 2 < cb0_end − 2 mem[r14] mem[r14 + 1] r14 + 2

stdu rX, r14, 2 cb0_end − 2 mem[r14] mem[r14 + 1] cb0_beg

stdu rX, r14, 2 cb0_end − 1 mem[r14] mem[cb0_beg] cb0_beg + 1

stdu rX, r14, 2 ≥ cb0_end mem[r14] mem[r14 + 1] r14 + 2

stu rX, r14, 2 < cb0_end − 2 mem[r14] – r14 + 2

stu rX, r14, 2 cb0_end − 2 mem[r14] – cb0_beg

stu rX, r14, 2 cb0_end − 1 mem[r14] – cb0_beg + 1

stu rX, r14, 2 ≥ cb0_end mem[r14] – r14 + 2

stu rX, r14, 1 < cb0_end − 1 mem[r14] – r14 + 1

stu rX, r14, 1 cb0_end − 1 mem[r14] – cb0_beg

stu rX, r14, 1 ≥ cb0_end mem[r14] – r14 + 1

Table 6.1 Circular Buffer 0 (cb0) Load Operations (Cont.)

Instruction Current r14 Next rX Next r(X + 1) Next r14

6-10 Data Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

For example, if circular buffer 0 is enabled:

If (cb0_end > r14 ≥ cb0_beg) and (r14 + update ≥ cb0_end)
then

r14 ← cb0_beg + (r14 + update - cb0_end).
else

r14 ← r14 + update.

6.6 Reverse Carry Addressing

The ZSP400 supports an alternate mode of indexing the base address
registers. This mode is called reverse-carry addressing (rca.) This mode
causes the address update of ldu, lddu, stu, or stdu instructions to be
modified as described below. This addressing mode only works with
address base registers R0 through R12.

The idea behind reverse-carry addressing is to speed up FFT and other
similar operations that require the next load or next store address to be
modified in a reverse-carry fashion. Typically, these algorithms work on
a buffer of 2N words, which are aligned at a 2N word boundary. In these
instances, the reverse-carry width of N is used.

With regular addressing, an address is updated by adding 1 or 2 to the
least significant bit position, and the carry out (if any) propagate to the
left. But with reverse-carry addressing, an address is updated by adding
a 1 to the ‘N − 1’ bit position, and the carry out (if any) propagates to the
right.

This is best illustrated by an example: Suppose we enable reverse-carry
addressing on loads-with-update with a reverse bit length of 4 (N = 4).
Thus, the %amode register will be: 0000 0000 0001 0001. If our address,
stored in R4, is initialized to 0x0000, and the above reverse-carry
addressing is employed with the below instruction stream, then the
update address will be as follows:

ldu r0, r4, 1 new r4 = 0000 0000 0000 1000
ldu r0, r4, 1 new r4 = 0000 0000 0000 0100
ldu r0, r4, 1 new r4 = 0000 0000 0000 1100
ldu r0, r4, 1 new r4 = 0000 0000 0000 0010
...
ldu r0, r4, 1 new r4 = 0000 0000 0000 1111
ldu r0, r4, 1 new r4 = 0000 0000 0000 0000

Reverse Carry Addressing 6-11
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Notice how a ‘1’ is added to bit position 3 and the carry is propagated to
the right. When there are all 1’s in the final 4 bit positions, these bits
become zero and the carry-out is discarded. This has the affect of
wrapping the address around the initial value of 0x0000.

It is important to note that reverse-carry addressing will also work with
offsets other than +1. The usual offsets of −2, −1, +1, and +2 all work
with reverse-carry addressing. Instead of adding a 1 to bit position
N − 1, for example, a −2 can be added at that position and the carry will
propagate to the right. It is usually the programmer’s responsibility to
align the data buffer at a 2N word boundary, so that proper wrap-around
operation is insured during reverse-carry addressing.

6-12 Data Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual 7-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 7
Execution Unit

This chapter explains the ZSP400 execution unit. It contains the following
sections:

• Section 7.1, “Introduction,” page 7-1

• Section 7.2, “Arithmetic Logic Units (ALU),” page 7-2

• Section 7.3, “Multiply Accumulate Units (MAC),” page 7-3

• Section 7.4, “General Purpose Register File,” page 7-4

• Section 7.5, “Shadow Registers,” page 7-5

7.1 Introduction

The execution unit performs all the arithmetic and logical operations in
the DSP. The execution unit contains two identical 16 bit arithmetic logic
units (ALUs), two 16 X 16 multiply and accumulate (MAC) units, and a
general purpose register file.

The two ALUs can be combined to form a single 32 bit ALU. The MAC
units can perform two 16-bit X 16-bit multiply operations followed by a
single 40-bit accumulation or one 32-bit X 32-bit multiply followed by a
40-bit accumulation per cycle. Both MACs share one adder for the
accumulate operation.

Figure 7.1 describes the EXU data path.

7-2 Execution Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Figure 7.1 Execution Unit Datapath

7.2 Arithmetic Logic Units (ALU)

The ZSP400 has two identical 16 bit arithmetic logic units (ALU), which
can be combined as a single 32 bit ALU. ALU functionality includes
addition, subtraction, left and right shift, all basic logic operations,
negation, absolute value calculation, rounding and normalization. The
ALU also implements bit manipulation instructions.

ALU operations affect the following hwflag register bits:

• carry

• zero

• overflow

• gt (greater than)

• ge (greater or equal to zero)

MACMAC
Acc

Bypass Bypass Bypass Bypass

Operands From Memory and Registers

Memory Write Back General Purpose
Register FileRegisters

To Memory Write Back Stage

Read Stage

Execute Stage

Bypass Bypass Bypass Bypass

Multiply Accumulate Units (MAC) 7-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

All ALU operations are single cycle operations. An ALU result bypass
mechanism allows the results from the ALUs to be used in subsequent
instructions in the next cycle by any functional unit without requiring that
they be written back to a register first.

7.3 Multiply Accumulate Units (MAC)

The ZSP400 can perform two 16-bit x 16-bit multiply operations followed
by a single 40-bit accumulation or one 32-bit x 32-bit multiply followed by
a 40-bit accumulation per cycle. Both MACs share one adder for the
accumulate. Figure 7.2 shows the dual MAC approach.

Figure 7.2 Dual MAC

MAC hardware performs two instruction Viterbi butterfly operations.

The parallel add and subtract (padd and psub) instructions allow Integer
intensive code to use the MAC accumulator as two 16-bit
adder/subtractors. Mode bit settings do not affect the padd and psub
instructions, nor do they set any flags.

Normal MAC operations affect the ge (greater than or equal to zero) and
overflow flags.

The MAC result bypass mechanism allows the results from the MACs to
be used in subsequent instructions in the next cycle by any functional unit
without requiring that they be written into the operand register file first.

Saturation and rounding are supported depending on the instruction and
the operating mode settings.

X

+

X

Accumulator

7-4 Execution Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

7.4 General Purpose Register File

The baseline ZSP400 general purpose register file contains sixteen
16-bit registers labelled r0 to r15. Each of these registers may be used
as the input or output of any functional unit. Three registers in this set,
r13–15, are used to establish data linking.

To form extended precision 32-bit registers, use two adjacent even-odd
pairs. The even-numbered register specifies the extended precision
register in an extended precision instruction.

The r0–r1 pair along with an eight bit guard in the control register file
form the 40-bit A accumulator. Likewise, the r2–r3 register pair and
another eight bit control register guard comprise the 40-bit B
accumulator.

In addition to these registers, Figure 7.3 shows the organization of the
base general purpose register file.

Figure 7.3 General Purpose Register File

The ZSP400 provides a flexible stack and structure access by allowing
any general purpose register to be used as a stack pointer.

r1 r0

r2r3

r4r5

r6r7

r8r9

r10r11

r12r13

r14r15

guard A

guard B

Accumulator A

Accumulator B

Each general purpose register is 16 bits. An
adjacent even-odd pair form an extended
precision 32-bit register. The r0–1 and r2–3
pairs form 40-bit Accumulators A and B. The

%vitr

%vitr register holds the viterbi trace back bits.

Shadow Registers 7-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

7.5 Shadow Registers

General Purpose registers r2–r9 have a set of shadow registers. These
shadow registers are exchanged for the primary registers when the
shadow bit in the %smode register is set.

Both register sets (primary and shadow) preserve their values when they
are exchanged, so the registers can be used to preserve processor
states. For examples, interrupt state, special subroutine state, or control
routine state.

7-6 Execution Unit
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual 8-1
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Chapter 8
ZSP400 Instruction Set

This chapter provides detailed information on the ZSP400 instruction set
for the ZSP400 family of processors, and contains the following sections:

• Section 8.1, “Functional and Execution Unit Usage,” page 8-1

• Section 8.2, “Control Register–Instruction Interaction,” page 8-7

• Section 8.3, “Instruction Coding,” page 8-26

• Section 8.4, “ZSP400 Instruction Set,” page 8-36

8.1 Functional and Execution Unit Usage

Table 8.1 shows the functional unit (ALU or MAC) used by each
instruction, and the stage in which the instruction executes.

8-2 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

A ▲ indicates that the instruction uses a particular unit and a ✵ indicates
that an ALU is used only if the load instruction does not complete in the
R stage.

Table 8.1 Instruction Functional Unit Usage and Execution Stage

Instruction
One
ALU

Both
ALU MAC

Execution
Stage

mov rX, rY ▲ E

mov cX, rY ▲ E

mov rX, cX ▲ E

mov %pc, cY G

mov rX, IMM ▲ E

movl rX, IMM ▲ E

movh rX, IMM ▲ E

movl cX, IMM R

movh cX, IMM R

mac.a rX, rY ▲ E

mac.b rX, rY ▲ E

macn.a rX, rY ▲ E

macn.b rX, rY ▲ E

mul.a rX, rY ▲ E

mul.b rX, rY ▲ E

muln.a rX, rY ▲ E

muln.b rX, rY ▲ E

mac2.a rX, rY ▲ E

mac2.b rX, rY ▲ E

cmacr.a rX, rY ▲ E

(Sheet 1 of 6)

Functional and Execution Unit Usage 8-3
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

cmacr.b rX, rY ▲ E

cmaci.a rX, rY ▲ E

cmaci.b rX, rY ▲ E

cmulr.a rX, rY ▲ E

cmulr.b rX, rY ▲ E

cmuli.a rX, rY ▲ E

cmali.b rX, rY ▲ E

dmac.a rX, rY ▲ E

dmac.b rX, rY ▲ E

dmul.a rX, rY ▲ E

dmul.b rX, rY ▲ E

imul.a rX, rY ▲ E

imul.b rX, rY ▲ E

padd.a rX, rY ▲ E

padd.b rX, rY ▲ E

psub.a rX, rY ▲ E

psub.b rX, rY ▲ E

norm rX, rY ▲ E

norm.e rX, rY ▲ E

add rX, rY ▲ E

add.e rX, rY ▲ E

add rX, IMM ▲ E

addc.e rX, rY ▲ E

Table 8.1 Instruction Functional Unit Usage and Execution Stage
(Cont.)

Instruction
One
ALU

Both
ALU MAC

Execution
Stage

(Sheet 2 of 6)

8-4 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

sub rX, rY ▲ E

sub.e rX, rY ▲ E

subc.e rX, rY ▲ E

cmp rX, rY ▲ E

cmp.e rX, rY ▲ E

cmp rX, IMM ▲ E

abs rX, rY ▲ E

abs.e rX, rY ▲ E

shla rX, rY ▲ E

shla.e rX, rY ▲ E

shla rX, IMM ▲ E

shla.e rX, IMM ▲ E

shra rX, rY ▲ E

shra.e rX, rY ▲ E

shra rX, IMM ▲ E

shra.e rX, IMM ▲ E

min rX, rY ▲ E

min.e rX, rY ▲ E

max rX, rY ▲ E

max.e rX, rY ▲ E

round.e rX, rY ▲ E

vit_a rX, rY ▲ E

vit_b rX, rY ▲ E

Table 8.1 Instruction Functional Unit Usage and Execution Stage
(Cont.)

Instruction
One
ALU

Both
ALU MAC

Execution
Stage

(Sheet 3 of 6)

Functional and Execution Unit Usage 8-5
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

and rX, rY ▲ E

and.e rX, rY ▲ E

or rX, rY ▲ E

or.e rX, rY ▲ E

xor rX, rY ▲ E

xor.e rX, rY ▲ E

neg rX, rY ▲ E

neg.e rX, rY ▲ E

not rX, rY ▲ E

not.e rX, rY ▲ E

bitc rX, IMM ▲ E

bitc cX, IMM ▲ E

bits rX, IMM ▲ E

bits cX, IMM ▲ E

biti rX, IMM ▲ E

biti cX, IMM ▲ E

bitt rX, IMM ▲ E

bitt cX, IMM ▲ E

revb rX, IMM ▲ E

shll rX, rY ▲ E

shll.e rX, rY ▲ E

shll rX, IMM ▲ E

shll.e rX, IMM ▲ E

Table 8.1 Instruction Functional Unit Usage and Execution Stage
(Cont.)

Instruction
One
ALU

Both
ALU MAC

Execution
Stage

(Sheet 4 of 6)

8-6 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

shrl rX, rY ▲ E

shrl.e rX, rY ▲ E

shrl rX, IMM ▲ E

shrl.e rX, IMM ▲ E

br LABEL E

bz LABEL E

bnz LABEL E

blt LABEL E

ble LABEL E

bgt LABEL E

bge LABEL E

bov LABEL E

bnov LABEL E

bc LABEL E

bnc LABEL E

agn0 LABEL G

agn1 LABEL G

call rX E

call LABEL G

ld rX, rY[, n] ▲ E

ldu rX, rY, n ✵ R/E

lddu rX, rY ✵ R/E

ldx rX, rY ▲ E

Table 8.1 Instruction Functional Unit Usage and Execution Stage
(Cont.)

Instruction
One
ALU

Both
ALU MAC

Execution
Stage

(Sheet 5 of 6)

Control Register–Instruction Interaction 8-7
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2 Control Register–Instruction Interaction

This section presents the set of baseline instructions supported by
architecture-compliant ZSP400 processors. The architecture supports
some instructions natively, while others are synthetic or pseudo
operations. The assembler replaces synthetic instructions with one or
more native instructions. Synthetic instructions enhance code readability
and improve programmer productivity.

The ZSP400 instruction set supports the following classes of instructions:

• Move Instructions

• MAC Instructions

• Arithmetic Instructions

• Bitwise Logical Instructions

• Bit Manipulation Instructions

• Branch Instructions

• Memory Reference Instructions

• NOP Instruction

• Synthetic Instructions

ldxu rX, rY ▲ E

st rX, rY[, n] ▲ W

stu rX, rY, n ▲ W

stdu rX, rY ▲ W

stx rX, rY ▲ W

stxu rX, rY ▲ W

nop

Table 8.1 Instruction Functional Unit Usage and Execution Stage
(Cont.)

Instruction
One
ALU

Both
ALU MAC

Execution
Stage

(Sheet 6 of 6)

8-8 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table 8.2 summarizes the notation used to describe the instruction set.
For detailed descriptions of each instruction, refer to Section 8.4,
“ZSP400 Instruction Set,” on page 8-36.

Table 8.2 Notational Conventions

Notation Description

cX, cY Any valid control register

rX, rY Any valid operand register: r0 through r15

rX.e, rY.e Any valid operand register pair specifier. An even numbered register r0 through r14.

IMM32U 32-bit unsigned immediate value: 0 ≤ IMM32 ≤ 4294967296

IMM16U 16-bit unsigned immediate value: 0 ≤ IMM16U ≤ 65535

IMM8U 8-bit unsigned immediate value: 0 ≤ IMM8U ≤ 255

IMM5U 5-bit unsigned immediate value: 0 ≤ IMM5U ≤ 32

IMM4S 4-bit signed immediate value: −8 ≤ IMM4S ≤ 7

IMM4U 4-bit unsigned immediate value: 0 ≤ IMM4U ≤ 15

LABEL Label references

{LABEL} Address of a label

[value] Optional parameter in the instruction

{r(X + 1) rX} Pair of consecutive operand registers with rX being an even numbered register.
Example: {r(X+1) rX} may be {r1 r0} or {r3 r2}, not {r2 r1}.

g0 Contents of guard[7:0]

g1 Contents of guard[15:8]

.a MUL Operations write to the register pair {r1 r0}.
MAC operations that accumulate to registers {g0 r1 r0}.

.b MUL Operations write to the register pair {r3 r2}.
MAC operations that accumulate to registers {g1 r3 r2}.

.e Extended precision (32 bit) ALU operation

rX[n] Bit n of register rX

rX[m:n] A set of bits (bit m to bit n inclusive) of register rX

(Sheet 1 of 2)

Control Register–Instruction Interaction 8-9
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

hwf The hardware flag (hwflag) control register.

mem[rX] Contents of memory location addressed by the contents of rX.

mem[X] Contents of memory location with address X.

x Don’t care condition

✓ The corresponding hwflag register bit is modified based on the result of the
instruction.

● The corresponding hwflag register bit is cleared.

▲ The corresponding mode bit has an effect on the instruction.

rX += rY The contents of rX and rY are added and the result is stored in rX.

rX −= rY The contents of rY are subtracted from rX and the result is stored in rX.

rX &= rY The logical AND of the contents of rX and rY is performed and the result is stored in rX.

rX l= rY The logical OR of the contents of rX and rY is performed and the result is stored in rX.

rX ^= rY The logical exclusive OR (XOR) of the contents of rX and rY is performed and the
result is stored in rX.

rX =~ rY The logical complement of the contents of rY are stored in rX.

Table 8.2 Notational Conventions (Cont.)

Notation Description

(Sheet 2 of 2)

8-10 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.1 Move Instructions

Table 8.3 shows the ZSP400 move instructions.

Table 8.3 Move Instructions

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

MOV mov rX, rY rX = rY

MOV mov cX, rY cX = rY

MOV mov rX, cY rX = cY

MOV mov rX,
IMM4S

rX = IMM4S

MOVL movl rX,
IMM8U

rX[7:0] = IMM8U

MOVH movh rX,
IMM8U

rX[15:8] = IMM8U

MOVL movl cX,
IMM8U

cX[7:0] = IMM8U,
cX = {%fmode,
%loop0, %loop1,
%loop2, %loop3,
%guard}

MOVH movh cX,
IMM8U

cX[15:8] =
IMM8U, cX =
{%fmode,
%loop0, %loop1,
%loop2, %loop3,
%guard}

Control Register–Instruction Interaction 8-11
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.2 MAC Instructions

Table 8.4 shows the ZSP400 MAC instructions.

Table 8.4 MAC Instructions

fmode Register Bits Instruction hwflag Register Bits

sat q15 rez mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

▲ ▲ ▲ ▲ MAC.A mac.a rX,
rY

{g0 r1 r0} += rX * rY ✓ ✓ ✓ ✓

▲ ▲ ▲ ▲ MAC.B mac.b rX,
rY

{g1 r3 r2} += rX * rY ✓ ✓ ✓ ✓

▲ ▲ ▲ ▲ MACN.A macn.a
rX, rY

{g0 r1 r0} −= rX * rY ✓ ✓ ✓ ✓

▲ ▲ ▲ ▲ MACN.B macn.b
rX, rY

{g1 r3 r2} −= rX * rY ✓ ✓ ✓ ✓

▲ ▲ ▲ ▲ MUL.A mul.a rX,
rY

{r1 r0} = rX * rY ✓ ● ✓

▲ ▲ ▲ ▲ MUL.B mul.b rX,
rY

{r3 r2} = rX * rY ✓ ● ✓

▲ ▲ ▲ ▲ MULN.A muln.a
rX, rY

{r1 r0} = −rX * rY ✓ ● ✓

▲ ▲ ▲ ▲ MULN.B muln.b
rX, rY

{r3 r2} = −rX * rY ✓ ● ✓

▲ ▲ ▲ ▲ MAC2.A mac2.a
rX.e, rY.e

{g0 r1 r0} += rX *
r(Y) + r(X + 1) * r(Y
+ 1)

✓ ✓ ● ✓

▲ ▲ ▲ ▲ MAC2.B mac2.b
rX.e, rY.e

{g1 r3 r2} += rX *
r(Y) + r(X + 1) * r(Y
+ 1)

✓ ✓ ● ✓

▲ ▲ ▲ ▲ CMACR.A cmacr.a
rX.e, rY.e

{g0 r1 r0} += r(X + 1)
* r(Y + 1) − rX * rY

✓ ✓ ● ✓

▲ ▲ ▲ ▲ CMACR.B cmacr.b
rX.e, rY.e

{g1 r3 r2} += r(X + 1)
* r(Y + 1) − rX * rY

✓ ✓ ● ✓

(Sheet 1 of 2)

8-12 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

▲ ▲ ▲ ▲ CMACI.A cmaci.a
rX.e, rY.e

{g0 r1 r0} += rX * r(Y
+ 1) + r(X + 1) * rY

✓ ✓ ● ✓

▲ ▲ ▲ ▲ CMACI.B cmaci.b
rX.e, rY.e

{g1 r3 r2} += rX * r(Y
+ 1) + r(X + 1) * rY

✓ ✓ ● ✓

▲ ▲ ▲ ▲ CMULR.A cmulr.a
rX.e, rY.e

{r1 r0} = r(X + 1) *
r(Y + 1) − rX * rY

✓ ● ✓

▲ ▲ ▲ ▲ CMULR.B cmulr.b
rX.e, rY.e

{r3 r2} = r(X + 1) *
r(Y + 1) − rX * rY

✓ ● ✓

▲ ▲ ▲ ▲ CMULI.A cmuli.a
rX.e, rY.e

{r1 r0} = rX * r(Y + 1)
+ r(X + 1) * rY

✓ ● ✓

▲ ▲ ▲ ▲ CMULI.B cmuli.b
rX.e, rY.e

{r3 r2} = rX * r(Y + 1)
+ r(X + 1) * rY

✓ ● ✓

▲ ▲ ▲ DMAC.A dmac.a
rX.e, rY.e

{g0 r1 r0} += {r(X +
1) rX} * {r(Y + 1) rY}

✓ ✓ ✓ ✓

▲ ▲ ▲ DMAC.B dmac.b
rX.e, rY.e

{g1 r3 r2} += {r(X +
1) rX} * {r(Y + 1) rY}

✓ ✓ ✓ ✓

▲ ▲ ▲ DMUL.A dmul.a
rX.e, rY.e

{r1 r0} = {r(X + 1) rX}
* {r(Y + 1) rY}

✓ ● ✓

▲ ▲ ▲ DMUL.B dmul.b
rX.e, rY.e

{r3 r2} = {r(X + 1) rX}
* {r(Y + 1) rY}

✓ ● ✓

IMUL.A imul.a rX,
rY

{r1 r0} = rX * rY ✓ ● ✓

IMUL.B imul.b rX,
rY

{r3 r2} = rX * rY ✓ ● ✓

Table 8.4 MAC Instructions (Cont.)

fmode Register Bits Instruction hwflag Register Bits

sat q15 rez mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 2 of 2)

Control Register–Instruction Interaction 8-13
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.3 Arithmetic Instructions

Table Table 8.5 shows the ZSP400 Arithmetic instructions.

Table 8.5 Arithmetic Instructions

fmode
Register Bits Instruction hwflag Register Bits

sat sre rez Name Syntax Description
v,
sv

gv,
gsv c ge gt z

IMUL.A imul.a rX, rY {r1 r0} = rX * rY ✓ ● ✓

IMUL.B imul.b rX, rY {r3 r2} = rX * rY ✓ ● ✓

PADD.A padd.a rX.e,
rY.e

r0 = rX + rY; r1 = r(X + 1) +
r(Y + 1)

PADD.B padd.b rX.e,
rY.e

r2 = rX + rY; r3 = r(X + 1) +
r(Y + 1)

PSUB.A psub.a rX.e,
rY.e

r0 = rX − rY; r1 = r(X + 1) −
r(Y + 1)

PSUB.B psub.b rX.e,
rY.e

r2 = rX − rY; r3 = r(X + 1) −
r(Y + 1)

NORM norm rX, rY If rY == 0 then rX = 0
else if rY == −1 then rX = 15
else if rY >= 0 then rX = 14 -
bit position of leading 1 in rY
else rX = 14 - bit position of
leading 0 in rY

✓ ✓ ✓ ✓ ✓

NORM.E norm.e rX.e,
rY.e

If rY.e == 0 then rX = 0
else if rY.e == -1 then rX = 31
else if rY.e >= 0 then rX = 30
- bit position of leading 1 in
rY.e
else rX = 30 - bit position of
leading 0 in rY.e

✓ ✓ ✓ ✓ ✓

▲ ADD add rX, rY rX += rY ✓ ✓ ✓ ✓ ✓

▲ ADD.E add.e rX.e,
rY.e

{r(X + 1) rX} += {r(Y + 1) rY} ✓ ✓ ✓ ✓ ✓

(Sheet 1 of 4)

8-14 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

▲ ADD add rX,
IMM4S

rX = rX + IMM4S ✓ ✓ ✓ ✓ ✓

▲ ADDC.E addc.e rX.e,
rY.e

{r(X + 1) rX} += {r(Y + 1) rY}
+ carry

✓ ✓ ✓ ✓ ✓

▲ SUB sub rX, rY rX −= rY ✓ ✓ ✓ ✓ ✓

▲ SUB.E sub.e rX.e,
rY.e

{r(X + 1) rX} −= {r(Y + 1) rY} ✓ ✓ ✓ ✓ ✓

▲ SUBC.E subc.e rX.e,
rY.e

{r(X + 1) rX} −= {r(Y + 1) rY} -
logical inverse of carry

✓ ✓ ✓ ✓ ✓

NEG neg rX, rY rX = −rY ✓ ✓ ✓ ✓ ✓

NEG.E neg.e rX.e,
rY.e

{r(X + 1) rX} = −{r(Y + 1) rY} ✓ ✓ ✓ ✓ ✓

CMP cmp rX, rY If rX rY: hwf<ge> = 1
If rX > rY: hwf<gt> = 1
other flags set by the result of
(rX − rY)

✓ ✓ ✓ ✓ ✓

CMP.E cmp.e rX.e,
rY.e

If {r(X + 1) rX} ≥ {r(Y + 1) rY}:
hwf<ge> = 1
If {r(X + 1) rX} > {r(Y + 1) rY}:
hwf<gt> = 1
other flags set by the result
of: ({r(X + 1) rX} − {r(Y + 1)
rY})

✓ ✓ ✓ ✓ ✓

CMP cmp rX,
IMM4S

If rX ≥ IMM4S: hwf<ge> = 1;
If rX > IMM4S: hwf<gt> = 1,
other flags set by the result of
(rX − IMM4S)

✓ ✓ ✓ ✓ ✓

Table 8.5 Arithmetic Instructions (Cont.)

fmode
Register Bits Instruction hwflag Register Bits

sat sre rez Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 2 of 4)

Control Register–Instruction Interaction 8-15
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMP.E cmp.e rX.e,
IMM4S

If {r(X + 1) rX} ≥ IMM4S:
hwf<ge> = 1
If {r(X + 1) rX} > IMM4S:
hwf<gt> = 1
other flags set by the result
of: ({r(X + 1) rX} − sign
extended (IMM4S))

✓ ✓ ✓ ✓ ✓

ABS abs rX, rY rX = |rY| ✓ ✓ ✓ ✓ ✓

ABS.E abs.e rX.e,
rY.e

{r(X + 1) rX} = |{r(Y + 1) rY}| ✓ ✓ ✓ ✓ ✓

▲ SHLA shla rX, rY rX = rX << rY[3:0] ✓ ✓ ✓ ✓ ✓

▲ SHLA.E shla.e rX.e,
rY.e

{r(X + 1) rX} = {r(X + 1) rX} <<
rY[4:0]

✓ ✓ ✓ ✓ ✓

▲ SHLA shla rX,
IMM4U

rX = rX << IMM4U ✓ ✓ ✓ ✓ ✓

▲ SHLA.E shla.e rX.e,
IMM4U

{r(X + 1) rX} = {r(X + 1) rX} <<
IMM4U

✓ ✓ ✓ ✓ ✓

▲ SHRA shra rX, rY rX = rX >> rY[3:0] ✓ ✓ ✓ ✓ ✓

▲ SHRA.E shra.e rX.e,
rY.e

{r(X + 1) rX} = {r(X + 1) rX} >>
rY[4:0]

✓ ✓ ✓ ✓ ✓

▲ SHRA shra rX,
IMM5U

rX = rX >> IMM5U ✓ ✓ ✓ ✓ ✓

▲ SHRA.E shra.e rX.e,
IMM5U

{r(X + 1) rX} = {r(X + 1) rX} >>
IMM5U

✓ ✓ ✓ ✓ ✓

MIN min rX, rY rX = min (rX, rY)
if rX ≤ rY hwflag<c> = 1;
other flags are set on the
result of (rX − rY)

✓ ✓ ✓ ✓ ✓

Table 8.5 Arithmetic Instructions (Cont.)

fmode
Register Bits Instruction hwflag Register Bits

sat sre rez Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 3 of 4)

8-16 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MIN.E min.e rX.e,
rY.e

{r(X + 1) rX} = min ({r(X + 1)
rX, {r(Y + 1) rY})
if {r(X +1)rX} ≤ {r(Y + 1)rY}
hwf<c> = 1;
other flags are set on the
result of {r(X + 1)rX} − {r(Y +
1)rY}

✓ ✓ ✓ ✓ ✓

MAX max rX, rY rX = max (rX, rY)
if rX rY, hwf<c> = 1;
other flags are set by the
result of (rX − rY)

✓ ✓ ✓ ✓ ✓

MAX.E max.e rX.e,
rY.e

{r(X + 1) rX} = max ({r(X + 1)
rX, {r(Y + 1) rY})
if {r(X + 1) rX} {r(Y + 1)rY}
hwf<c> = 1;
other flags are set on the
result of {r(X + 1)rX} − {r(Y +
1)rY}

✓ ✓ ✓ ✓ ✓

▲ ROUND.E round.e
rX.e, rY.e

{r(X + 1) rX} = {r(Y + 1) rY} +
0x0000 8000

✓ ✓ ✓ ✓ ✓

VIT_A vit_a rX.e,
rY.e

r0 = min {(rX + rY), (r(X + 1)
+ r(Y + 1))}
if ((rX + rY) < (r(X + 1) + r(Y
+ 1)))
vitr = vitr << 1 | 0x0001
else
vitr = vitr << 1

✓ ✓ ✓

VIT_B vit_b rX.e,
rY.e

r1 = min {(rX + r(Y + 1)), (r(X
+ 1) + rY)}
if ((rX + r(Y + 1)) < (r(X + 1) +
rY))
vitr = vitr << 1 | 0x0001
else
vitr = vitr << 1

✓ ✓ ✓

Table 8.5 Arithmetic Instructions (Cont.)

fmode
Register Bits Instruction hwflag Register Bits

sat sre rez Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 4 of 4)

Control Register–Instruction Interaction 8-17
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.4 Bitwise Logical Instructions

Table 8.6 shows the ZSP400 bitwise logical instructions.

Table 8.6 Bitwise Logical Instructions

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

AND and rX, rY rX &= rY ✓ ✓ ✓ ✓ ✓

AND.E and.e rX.e, rY.e {r(X + 1)rX}
&= {r(Y + 1)rY}

✓ ✓ ✓ ✓ ✓

OR or rX, rY rX |= rY ✓ ✓ ✓ ✓ ✓

OR.E or.e rX.e, rY.e {r(X + 1)rX}
|= {r(Y + 1)rY}

✓ ✓ ✓ ✓ ✓

XOR xor rX, rY rX ^= rY ✓ ✓ ✓ ✓ ✓

XOR.E xor.e rX.e, rY.e {r(X + 1)rX}
^= {r(Y + 1)rY}

✓ ✓ ✓ ✓ ✓

NOT not rX, rY rX =~ rY ✓ ✓ ✓ ✓ ✓

NOT.E not.e rX.e, rY.e {r(X + 1)rX}
=~ {r(Y + 1)rY}

✓ ✓ ✓ ✓ ✓

8-18 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.5 Bit Manipulation Instructions

Table 8.7 shows the ZSP400 bit manipulation instructions.

Table 8.7 Bit Manipulation Instructions

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

BITC bitc rX,
IMM4U

rX &= ~(1 << IMM4U) ✓

BITC bitc cX,
IMM4U

cX &= ~(1 << IMM4U), cX
= {%fmode, %tc, %imask,
%ip0, %ip1, %guard,
%hwflag, %ireq, %vitr,
%smode, %amode}

BITS bits rX,
IMM4U

rX |= (1 << IMM4U) ✓

BITS bits cX,
IMM4U

cX |= (1 << IMM4U), cX
={%fmode, %tc, %imask,
%ip0, %ip1, %guard,
%hwflag, %ireq, %vitr,
%smode, %amode}

BITI biti rX,
IMM4U

rX ^= (1 << IMM4U) ✓

BITI biti cX,
IMM4U

cX ^= (1 << IMM4U), cX
={%fmode, %tc, %imask,
%ip0, %ip1, %guard,
%hwflag, %ireq, %vitr,
%smode, %amode}

BITT bitt rX,
IMM4U

Update hwf<z>
depending on whether
rX[IMM4U] is zero or one.

✓

BITT bitt cX,
IMM4U

Update hwf<z>
depending on whether
cX[IMM4U] is zero or one.
cX = {%fmode, %tc,
%imask, %ip0, %ip1,
%guard, %hwflag, %ireq,
%vitr, %smode, %amode}

✓

(Sheet 1 of 2)

Control Register–Instruction Interaction 8-19
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.6 Branch Instructions

Unconditional branch instructions can span a 12-bit displacement,
corresponding to a range of −2048 to +2047 words. An out-of-range error
is emitted by the linker (SDLD) if this is violated. Conditional branch
instructions can span an 8-bit displacement (−128 to +127 words). The
agn0, agn1, agn2, agn3 instructions span an 8-bit negative displacement
(−256 to −1).

Note: For a branch operation, an immediate value can be used in
the place of a LABEL.

REVB revb rX,
IMM4U

Reverses order of
rX[IMM4U:0]. If IMM4U
<15, rX[15:IMM4U] = 0

✓ ✓ ✓ ✓ ✓

SHLL shll rX, rY rX = rX << rY[3:0] ✓ ✓ ✓ ✓ ✓

SHLL.E shll.e rX.e,
rY.e

{r(X + 1) rX} = {r(X + 1)
rX} << rY[4:0]

✓ ✓ ✓ ✓ ✓

SHLL shll rX,
IMM5U

rX = rX << IMM5U ✓ ✓ ✓ ✓ ✓

SHLL.E shll.e rX.e,
IMM5U

{r(X + 1) rX} = {r(X + 1)
rX} << IMM5U

✓ ✓ ✓ ✓ ✓

SHRL shrl rX, rY rX = rX >> rY[3:0] ✓ ✓ ✓ ✓ ✓

SHRL.E shrl.e rX.e,
rY.e

{r(X + 1) rX} = {r(X + 1)
rX} >>rY; [4:0]

✓ ✓ ✓ ✓ ✓

SHRL shrl rX,
IMM5U

rX = rX >> IMM5U ✓ ✓ ✓ ✓ ✓

SHRL.E shrl.e rX.e,
IMM5U

{r(X + 1) rX} = {r(X + 1)
rX} >> IMM5U

✓ ✓ ✓ ✓ ✓

Table 8.7 Bit Manipulation Instructions (Cont.)

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 2 of 2)

8-20 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table 8.8 shows the ZSP400 branch instructions.

Table 8.8 Branch Instructions

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

BR br LABEL pc = {LABEL}

BZ bz LABEL if hwf<z>{
pc = {LABEL} }
else {
pc += 1;
}

BNZ bnz LABEL if !hwf<z>{
pc = {LABEL} }
else {
pc += 1;
}

BLT blt LABEL if !hwf<ge> {
pc = {LABEL} }
else {
pc += 1;
}

BLE ble LABEL if !hwf<gt>{
pc = {LABEL} }
else {
pc += 1;
}

BGT bgt LABEL if hwf<gt>{
pc = {LABEL} }
else {
pc += 1;
}

BGE bge LABEL if hwf<ge>{
pc = {LABEL} }
else {
pc += 1;
}

(Sheet 1 of 3)

Control Register–Instruction Interaction 8-21
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BOV bov LABEL if hwf<v>{
pc = {LABEL} }
else {
pc += 1;
}

BNOV bnov LABEL if !hwf<v>{
pc = {LABEL} }
else {
pc += 1;
}

BC bc LABEL if hwf<c>{
pc = {LABEL} }
else {
pc += 1;
}

BNC bnc LABEL if !hwf<c>{
pc = {LABEL} }
else {
pc += 1;
}

AGN0 agn0 LABEL if (! loop0) {
pc += 1;
loop0 −= 1;
}
else {
pc = {LABEL}
; loop0 −= 1
}

AGN1 agn1 LABEL if (! loop1) {
pc += 1;
loop1 −= 1;
}
else {
pc = {LABEL};
loop1 −= 1
}

Table 8.8 Branch Instructions (Cont.)

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 2 of 3)

8-22 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AGN2 agn2 LABEL if (! loop2) {
pc += 1;
loop2 −= 1;
}
else {
pc = {LABEL};
loop2 −= 1
}

AGN3 agn3 LABEL if (! loop3) {
pc += 1;
loop3 −= 1;
}
else {
pc = {LABEL};
loop3 −= 1
}

CALL call rX rpc = pc + 1;
pc = rX;

CALL call LABEL pc - {LABEL} must be
representable as a
13-bit signed even
number.
rpc = pc +1
pc = {LABEL}

RET ret pc = rpc

RETI reti pc = tpc; imask<gie> =
imask<pgie>; ip0<epl>
= ip0<pepl>

Table 8.8 Branch Instructions (Cont.)

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 3 of 3)

Control Register–Instruction Interaction 8-23
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.7 Memory Reference Instructions

Table 8.9 shows the ZSP400 memory reference instructions.

Table 8.9 Memory Reference Instructions

smode Register Bits Instruction hwflag Register Bits

lis sis cb0 cb1 dir ddr Name Syntax Description
v,
sv

gv,
gsv c ge gt z

▲ ▲ ▲ LD ld rX, rY [, n] −4 ≤ n ≤ 3
rX ← mem[rY + n]

▲ ▲ ▲ ▲ ▲ LDU ldu rX, rY, n n = {1, 2}
rX ← mem[rY]
rY = rY + n

▲ ▲ ▲ LDU ldu rX, rY, n n = {−2, −1}
rX ← mem[rY]
rY = rY + n

▲ ▲ ▲ ▲ ▲ LDDU lddu rX,
rY.e, 2

if n = 2 {rX ← mem[rY]
r(X + 1) ← mem[rY + 1]}
else {rX ← mem[rY − 1]
r(X + 1) ← mem[rY]}
rY = rY + n

▲ ▲ ▲ LDDU lddu rX,
rY.e, −2

if n = 2 {rX ← mem[rY]
r(X + 1) ← mem[rY + 1]}
else {rX ← mem[rY − 1]
r(X + 1) ← mem[rY]}
rY = rY + n

▲ ▲ ▲ LDX ldx rX, rY.e rX ← mem[rY + r(Y + 1)]

▲ ▲ ▲ LDXU ldxu rX, rY.e rX ← mem[rY + r(Y +
1)]; rY += r(Y + 1)

▲ ▲ ▲ ST st rX, rY [, n] −4 ≤ n ≤ 3
mem[rY + n] = rX

(Sheet 1 of 2)

8-24 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.8 NOP Instruction

Table 8.10 shows the ZSP400 NOP (no operation) instructions.

▲ ▲ ▲ ▲ ▲ STU stu rX, rY, n n = {1, 2}
mem[rY] ← rX
rY = rY + n

▲ ▲ ▲ STU stu rX, rY, n n = {−2, −1}
mem[rY] ← rX
rY = rY + n

▲ ▲ ▲ ▲ ▲ STDU stdu rX.e,
rY, 2

mem[rY] ← rX
mem[rY + 1] ← r(X + 1)
rY = rY + 2

▲ ▲ ▲ STDU stdu rX.e,
rY, −2

mem[rY] ← r(X + 1)
mem[rY − 1] ← rX
rY = rY − 2

▲ ▲ ▲ STX stx rX, rY.e mem[rY + r(Y + 1)] = rX

▲ ▲ ▲ STXU stxu rX, rY.e mem[rY + r(Y + 1)] = rX
rY = rY + r(Y + 1)

Table 8.9 Memory Reference Instructions (Cont.)

smode Register Bits Instruction hwflag Register Bits

lis sis cb0 cb1 dir ddr Name Syntax Description
v,
sv

gv,
gsv c ge gt z

(Sheet 2 of 2)

Table 8.10 NOP Instruction

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description v, sv gv, gsv c ge gt z

NOP nop No operation

Control Register–Instruction Interaction 8-25
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.2.9 Synthetic Instructions

Table 8.11 shows the ZSP400 synthetic instructions. The description
column also describes the assembler replacements for each synthetic
instruction.

Table 8.11 Synthetic Instructions

fmode Register Bits Instruction hwflag Register Bits

sat q15 sre mre Name Syntax Description
v,
sv

gv,
gsv c ge gt z

LDA lda rX,
LABEL

Replaced by:
movl rX, {LABEL}[7:0] and
movh rX, {LABEL}[15:8]

MOV mov rX,
IMM

If −8 ≤ IMM ≤ 7, then
replaced by:
mov rX, IMM4S
else replaced by:
movl rX, IMM[7:0] and
movh rX, IMM[15:8]

MOV mov cX,
IMM16U

cX = {%fmode, %loop0,
%loop1, %loop2, %loop3,
%guard}
replaced by:
movl cX, IMM16U[7:0] and
movh cX, IMM16U[15:8]

MOVLH movlh rX,
IMM32U

Replaced by:
movl rX, IMM32U[23:16]
movl r(X − 1), IMM32U[7:0]
movh rX, IMM32U[31:24]
movh r(X − 1), IMM32U[15:0]

BR br rX Replaced by “mov pc, rX”

HALT halt Replaced by bits smode, 15

SLEEP sleep Replaced by bits smode, 14

IDLE idle Replaced by bits smode, 13

8-26 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

8.3 Instruction Coding

This section describes the instruction set coding for the ZSP400
architecture. The ZSP400 machine code is an example of the orthogonal
nature of the instruction set architecture. Fetching from the Instruction
Cache and preliminary decoding are accomplished in a single F/D
pipeline stage.

All processors conforming to the ZSP400 architecture must be able to
execute the machine code listed in this document.

8.3.1 Instruction Opcode

Table 8.12 summarizes the instruction set Opcodes.

Instruction
C

oding
8-27

C
opyright

©
1999–2001

by
LS

I
Logic

C
orporation.

A
ll

rights
reserved.

Table 8.12 Instruction Set Opcode Summary

Instruction 15–8 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

branch IMM 0x 0 0 0 0 immediate

call IMM 1x 0 0 0 1 immediate

movl rX, IMM 2x 0 0 1 0 rX immediate

movh rX, IMM 3x 0 0 1 1 rX immediate

bc IMM 4x 0 1 0 0 condition immediate

mac inst 5x 0 1 0 1 op0 rX rY

store inst 6x 0 1 1 0 op1 rX rY

load inst 7x 0 1 1 1 op1 rX rY

short alu inst 8x 1 0 0 0 op2 rX rY

extended alu inst 9x 1 0 0 1 op3 rX.e 0 rY.e 0

reserved 9x 1 0 0 1 x x x x x x x 1 x x x x

reserved 9x 1 0 0 1 x x x x x x x x x x x 1

short IMM inst Ax 1 0 1 0 op4 rX immediate

extended alu inst Bx 1 0 1 1 0 op5 rX.e 0 immediate / rY

reserved Bx 1 0 1 1 0 x x x x x x 1 x x x x

mov rX, cY Bx 1 0 1 1 1 0 0 cY rX

mov cX, rY Bx 1 0 1 1 1 0 1 cX rY

mov rX, rY Bx 1 0 1 1 1 1 0 0 rX rY

reserved Bd 1 0 1 1 1 1 0 1 x x x x x x x x

8-28
Z

S
P

400
Instruction

S
et

C
opyright

©
1999–2001

by
LS

I
Logic

C
orporation.

A
ll

rights
reserved.

reserved Be 1 0 1 1 1 1 1 0 x x x x x x x x

reserved Bf 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

ret Bf 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1

reti Bf 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0

reserved Bf 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1

reserved Bf 1 0 1 1 1 1 1 1 0 0 0 0 0 1 x x

reserved Bf 1 0 1 1 1 1 1 1 0 0 0 0 1 x x x

reserved Bf 1 0 1 1 1 1 1 1 0 0 0 1 x x x x

reserved Bf 1 0 1 1 1 1 1 1 0 0 1 x x x x x

reserved Bf 1 0 1 1 1 1 1 1 0 1 x x x x x x

reserved Bf 1 0 1 1 1 1 1 1 1 x x x x x x x

misc inst Cx 1 1 0 0 op6 rX immediate

movl cX Dx 1 1 0 1 0 cX immediate

movh cX Dx 1 1 0 1 1 cX immediate

mac inst Ex 1 1 1 0 op7 rX rY

reserved Fx 1 1 1 1 x x x x x x x x x x x x

Table 8.12 Instruction Set Opcode Summary (Cont.)

Instruction 15–8 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Instruction Coding 8-29
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table 8.13 lists the Condition field for the bc IMM instructions.

Table 8.13 Condition Field

Instruction b11 b10 b9

zero 0 0 0

not zero 0 0 0

greater than or equal to zero 0 0 1

less than zero 0 0 1

greater than zero 0 1 0

less than or equal to zero 0 1 0

overflow 0 1 1

not overflow 0 1 1

carry 1 0 0

not carry 1 0 0

reserved 1 0 1

reserved 1 0 1

loop2 is zero 1 1 0

loop3 is zero 1 1 0

loop0 is zero 1 1 1

loop1 is zero 1 1 1

8-30 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table 8.14Table lists the op0 field for the MAC instructions.

Table 8.14 op0 Field

Instruction b11 b10 b9 b8

mac.a 0 0 0 0

macn.a 0 0 0 1

mul.a 0 0 1 0

muln.a 0 0 1 1

mac2.a 0 1 0 0

cmacr.a 0 1 0 1

dmac.a 0 1 1 0

cmaci.a 0 1 1 1

mac.b 1 0 0 0

macn.b 1 0 0 1

mul.b 1 0 1 0

muln.b 1 0 1 1

mac2.b 1 1 0 0

cmacr.b 1 1 0 1

dmac.b 1 1 1 0

cmaci.b 1 1 1 1

Instruction Coding 8-31
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table Table 8.15 lists the op1 field for the Load and Store instructions.

Table 8.15 op1 Field

Instruction b11 b10 b9 b8

ld/st 0 signed offset

lddu/stdu rX, rY, 2 1 0 0 0

ldu/stu rX, rY, 1 1 0 0 1

ldu/stu rX, rY, 2 1 0 1 0

lddu/stdu rX, rY, −2 1 0 1 1

ldx/stx 1 1 0 0

ldxu/stxu 1 1 0 1

ldu/stu rX, rY, −2 1 1 1 0

ldu/stu rX, rY, −1 1 1 1 1

8-32 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table Table 8.16 lists the op2 field for the Short ALU instructions.

Table 8.16 op2 Field

Instruction b11 b10 b9 b8

add 0 0 0 0

cmp 0 0 0 1

shll 0 0 1 0

shrl 0 0 1 1

shla 0 1 0 0

shra 0 1 0 1

sub 0 1 1 0

norm 0 1 1 1

and 1 0 0 0

or 1 0 0 1

xor 1 0 1 0

not 1 0 1 1

abs 1 1 0 0

min 1 1 0 1

max 1 1 1 0

neg 1 1 1 1

Instruction Coding 8-33
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table Table 8.17 lists the op3 field for the Extended ALU instructions.

Table 8.17 op3 Field

Instruction b11 b10 b9 b8

add.e 0 0 0 0

cmp.e 0 0 0 1

shll.e 0 0 1 0

shrl.e 0 0 1 1

shla.e 0 1 0 0

shra.e 0 1 0 1

sub.e 0 1 1 0

norm.e 0 1 1 1

and.e 1 0 0 0

or.e 1 0 0 1

xor.e 1 0 1 0

not.e 1 0 1 1

abs.e 1 1 0 0

min.e 1 1 0 1

max.e 1 1 1 0

neg.e 1 1 1 1

8-34 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table 8.18Table lists the op4 field for the Short IMM instructions.

Table 8.18 op4 Field

Instruction b11 b10 b9 b8

addsi 0 0 0 0

cmp 0 0 0 1

shll 0 0 1 0

shrl 0 0 1 1

shla 0 1 0 0

shra 0 1 0 1

mov 0 1 1 0

call rX 0 1 1 1

bitc rX 1 0 0 0

bits rX 1 0 0 1

biti rX 1 0 1 0

bitt rX 1 0 1 1

bitc cX 1 1 0 0

bits cX 1 1 0 1

biti cX 1 1 1 0

bitt cX 1 1 1 1

Instruction Coding 8-35
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table Table 8.19 lists the op5 field for the Extended ALU instructions.

Table 8.20 lists the op6 field for the Miscellaneous instructions.

Table 8.19 op5 Field

Instruction b10 b9 b8

round.e rX, rY 0 0 0

cmp.e rX, IMM 0 0 1

shll.e rX, IMM 0 1 0

shrl.e rX, IMM 0 1 1

shla.e rX, IMM 1 0 0

shra.e rX, IMM 1 0 1

addc.e rX, rY 1 1 0

subc.e rX, rY 1 1 1

Table 8.20 op6 Field

Instruction b11 b10 b9 b8

revb 0 0 0 0

reserved 0 0 0 1

reserved 0 0 1 X

reserved 0 1 X X

reserved 1 0 X X

reserved 1 1 0 X

reserved 1 1 1 0

nop 1 1 1 1

8-36 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Table 8.21 lists the op7 field for the MAC instructions.

8.4 ZSP400 Instruction Set

The remainder of this chapter describes each ZSP400 instruction in
detail. Each instruction description includes:

• Instruction Syntax

• Description

• Examples

All ZSP400 instructions are single-word (16-bit) in length and execute in
a single cycle.

Table 8.21 op7 Field

Instruction b11 b10 b9 b8

vit_a 0 0 0 0

vit_b 0 0 0 1

padd.a 0 0 1 0

psub.a 0 0 1 1

imul.a 0 1 0 0

cmulr.a 0 1 0 1

dmul.a 0 1 1 0

cmuli.a 0 1 1 1

reserved 1 0 0 0

reserved 1 0 0 1

padd.b 1 0 1 0

psub.b 1 0 1 1

imul.b 1 1 0 0

cmulr.b 1 1 0 1

dmul.b 1 1 1 0

cmuli.b 1 1 1 1

ZSP400 Instruction Set 8-37
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ABS Absolute Value

Assembly Syntax abs rX, rY

Description rX = |rY|
The absolute value of the contents of register rY is computed and placed in
register rX. In the corner case where the contents of rY = 0x8000 the absolute
value is calculated to be 0x7FFF.

Example abs r9, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r4 0x8299

x x x x x r9 0x0421

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r4 0x8299

0 x x x 0 1 1 0 x x x r9 0x7d67

8-38 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ABS.E Absolute Value (Extended Precision)

Assembly Syntax abs.e rX.e, rY.e

Description {r(X + 1) rX} = |{r(Y + 1) rY}|
The absolute value of the contents of register pair {rY + 1 rY} is computed and
placed in register pair {rX + 1 rX}. In the corner case where the contents of rY
= 0x8000 0000 the absolute value is calculated to be 0x7FFF FFFF.

Example abs.e r6, r0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r7 r6} 0x0421 0x8821

x x x x x {r1 r0} 0x8000 0x0000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r7 r6} 0x7fff 0xffff

1 x 1 x 0 1 1 0 x x x {r1 r0} 0x8000 0x0000

ZSP400 Instruction Set 8-39
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ADD Add Immediate

Assembly Syntax add rX, IMM4S

Description rX = rX + IMM4S

Example add r5, 5

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r5 0x4512

x 0 x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r5 0x4517

0 x x x 0 1 1 0 x x x

8-40 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ADD Add Registers

Assembly Syntax add rX, rY

Description rX += rY

Example add r3, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r3 0x8c23

x 0 x x x r4 0x4f34

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r3 0xdb57

0 x x x 0 0 0 0 x x x r4 0x4f34

ZSP400 Instruction Set 8-41
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ADD.E Add Registers (Extended Precision)

Assembly Syntax add.e rX.e, rY.e

Description {r(X + 1) rX} += {r(Y + 1) rY}

Example add.e r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x8f34 0xc342

x 1 x x x {r5 r4} 0x8e0a 0x8c23

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x8000 0x0000

1 x 1 x 1 0 0 0 x x x {r5 r4} 0x8e0a 0x8c23

8-42 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ADDC.E Add with Carry (Extended Precision)

Assembly Syntax addc.e rX.e, rY.e

Description {r(X + 1) rX} += {r(Y + 1) rY} + carry

Example addc.e r8, r14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r9 r8} 0x0785c 0xcffe

x 1 x x x {r15 r14} 0x0000 0x0000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x 1 x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r9 r8} 0x785c 0xcfff

0 x x x 0 1 1 0 x x x {r15 r14} 0x0000 0x0000

ZSP400 Instruction Set 8-43
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AGN0 Again0

Assembly Syntax agn0 LABEL

Description if (! loop0) {
pc += 1;
loop0 −= 1;
}
else {
pc = {LABEL}
; loop0 −= 1
}

Example agn0 jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre loop0 0x0010

x x x x x pc 0x000a

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er loop0 0x000f

x x x x x x x x x x x pc 0x0006

{jmp} 0x0006

8-44 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AGN1 Again1

Assembly Syntax agn1 LABEL

Description if (! loop1) {
pc += 1;
loop1 −= 1;
}
else {
pc = {LABEL};
loop1 −= 1
}

Example agn1 jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre loop1 0x0000

x x x x x pc 0x000a

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er loop1 0xffff

x x x x x x x x x x x pc 0x000b

{jmp} 0x0006

ZSP400 Instruction Set 8-45
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AGN2 Again2

Assembly Syntax agn2 LABEL

Description if (! loop2) {
pc += 1;
loop2 −= 1;
}
else {
pc = {LABEL};
loop2 −= 1
}

Example agn2 jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre loop2 0x0000

x x x x x pc 0x000a

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er loop2 0xffff

x x x x x x x x x x x pc 0x000b

{jmp} 0x0006

8-46 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AGN3 Again3

Assembly Syntax agn3 LABEL

Description if (! loop3) {
pc += 1;
loop3 −= 1;
}
else {
pc = {LABEL};
loop3 −= 1
}

Example agn3 jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre loop3 0x0000

x x x x x pc 0x000a

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er loop3 0xffff

x x x x x x x x x x x pc 0x000b

{jmp} 0x0006

ZSP400 Instruction Set 8-47
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AND Logical AND

Assembly Syntax and rX, rY

Description rX &= rY

Example and r11, r2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r11 0x8f34

x x x x x r2 0x70cb

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r11 0x0000

0 x x x 0 1 0 1 x x x r2 0x70cb

8-48 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

AND.E Logical AND (Extended Precision)

Assembly Syntax and.e rX.e, rY.e

Description {r(X + 1)rX} &= {r(Y + 1)rY}

Example and.e r0, r2

Architectural state after the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x3f34 0xd2a1

x x x x x {r3 r2} 0x4343 0x7734

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x0300 0x5220

0 x x x 0 1 1 0 x x x {r3 r2} 0x4343 0x7734

ZSP400 Instruction Set 8-49
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BC Branch on Carry

Assembly Syntax bc LABEL

Description if hwf<c>{
pc = {LABEL} }
else {
pc += 1;
}

Example bc jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x 1 x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

x x x x 1 x x x x x x

{jmp} 0x0006

8-50 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BGE Branch on Greater Than or Equal To

Assembly Syntax bge LABEL

Description if hwf<ge>{
pc = {LABEL} }
else {
pc += 1;
}

Example bge jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x 0 x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x000b

x x x x x 0 x x x x x

{jmp} 0x0006

ZSP400 Instruction Set 8-51
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BGT Branch on Greater Than

Assembly Syntax bgt LABEL

Description if hwf<gt>{
pc = {LABEL} }
else {
pc += 1;
}

Example bgt jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x 1 x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

x x x x x x 1 x x x x

{jmp} 0x0006

8-52 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITC Bit Clear Control Register

Assembly Syntax bitc cX, IMM4U

Description cX &= ~(1 << IMM4U), cX = {%fmode, %tc, %imask, %ip0, %ip1, %guard,
%hwflag, %ireq, %vitr, %smode, %amode}

Example bitc %fmode, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre fmode 0x0004

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved sat res q15 sre mre fmode 0x0000

x 0 x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

ZSP400 Instruction Set 8-53
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITC Bit Clear Operand Register

Assembly Syntax bitc rX, IMM4U

Description rX &= ~(1 << IMM4U)

Example bitc r10, 5

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r10 0x3432

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r10 0x3412

x x x x x x x 0 x x x

8-54 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITI Bit Invert Control Register

Assembly Syntax biti cX, IMM4U

Description cX ^= (1 << IMM4U), cX ={%fmode, %tc, %imask, %ip0, %ip1, %guard,
%hwflag, %ireq, %vitr, %smode, %amode}

Example biti %fmode, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre fmode 0x0000

x x 1 x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved sat res q15 sre mre fmode 0x0004

x 0 x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

ZSP400 Instruction Set 8-55
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITI Bit Invert Operand Register

Assembly Syntax biti rX, IMM4U

Description rX ^= (1 << IMM4U)

Example biti r5, 0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r5 0xf812

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r5 0xf813

x x x x x x x 0 x x x

8-56 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITS Bit Set Control Register

Assembly Syntax bits cX, IMM4U

Description cX |= (1 << IMM4U), cX ={%fmode, %tc, %imask, %ip0, %ip1, %guard,
%hwflag, %ireq, %vitr, %smode, %amode}

Example bits %smode, 4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre smode 0x0029

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er smode 0x0039

x x x x x x x x x x x

ZSP400 Instruction Set 8-57
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITS Bit Set Operand Register

Assembly Syntax bits rX, IMM4U

Description rX |= (1 << IMM4U)

Example bits r0, 14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r0 0x3412

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r0 0x7412

x x x x x x x 0 x x x

8-58 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITT Bit Test Control Register

Assembly Syntax bitt cX, IMM4U

Description Update hwf<z> depending on whether cX[IMM4U] is zero or one.
cX = {%fmode, %tc, %imask, %ip0, %ip1, %guard, %hwflag, %ireq, %vitr,
%smode, %amode}

Example bitt %fmode, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre fmode 0x0000

x x 0 x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved sat res q15 sre mre fmode 0x0000

x 0 x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x 1 x x x

ZSP400 Instruction Set 8-59
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BITT Bit Test Operand Register

Assembly Syntax bitt rX, IMM4U

Description Update hwf<z> depending on whether rX[IMM4U] is zero or one.

Example bitt r5, 0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r5 0x0001

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r5 0x0001

x x x x x x x 0 x x x

8-60 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BLE Branch on Less Than or Equal To

Assembly Syntax ble LABEL

Description if !hwf<gt>{
pc = {LABEL} }
else {
pc += 1;
}

Example ble jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x 1 x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x000b

x x x x x x 1 x x x x

{jmp} 0x0006

ZSP400 Instruction Set 8-61
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BLT Branch on Less Than

Assembly Syntax blt LABEL

Description if !hwf<ge> {
pc = {LABEL} }
else {
pc += 1;
}

Example blt jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x 0 x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

x x x x x 0 x x x x x

{jmp} 0x0006

8-62 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BNC Branch on No Carry

Assembly Syntax bnc LABEL

Description if !hwf<c>{
pc = {LABEL} }
else {
pc += 1;
}

Example bnc jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x 1 x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x000b

x x x x 1 x x x x x x

{jmp} 0x0006

ZSP400 Instruction Set 8-63
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BNZ Branch on Not Zero

Assembly Syntax bnz LABEL

Description if !hwf<z>{
pc = {LABEL} }
else {
pc += 1;
}

Example bnz jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x 1 x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x000b

x x x x x x x 1 x x x

{jmp} 0x0006

8-64 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BNOV Branch on No Overflow

Assembly Syntax bnov LABEL

Description if !hwf<v>{
pc = {LABEL} }
else {
pc += 1;
}

Example bnov jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

0 x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

0 x x x x x x x x x x

{jmp} 0x0006

ZSP400 Instruction Set 8-65
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BOV Branch on Overflow

Assembly Syntax bov LABEL

Description if hwf<v>{
pc = {LABEL} }
else {
pc += 1;
}

Example bov jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

1 x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

1 x x x x x x x x x x

{jmp} 0x0006

8-66 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BR Unconditional Branch

Assembly Syntax br LABEL

Description pc = {LABEL}

Example br jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

x x x x x x x x x x x

{jmp} 0x0006

ZSP400 Instruction Set 8-67
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BR Unconditional Branch on Register Value
(Synthetic Instruction)

Assembly Syntax br rX

Description Replaced by:
mov pc, rX

8-68 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

BZ Branch on Zero

Assembly Syntax bz LABEL

Description if hwf<z>{
pc = {LABEL} }
else {
pc += 1;
}

Example bz jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0x000a

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x 1 x x x {jmp} 0x0006

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0x0006

x x x x x x x 1 x x x

{jmp} 0x0006

ZSP400 Instruction Set 8-69
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CALL Call

Assembly Syntax call LABEL

Description pc - {LABEL} must be representable as a 13-bit signed even number.
rpc = pc +1
pc = {LABEL}

Example call jmp

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre rpc 0x0f34

x x x x x pc 0x500

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x {LABEL} 0x0088

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er rpc 0x501

x x x x x x x x x x x pc 0x0088

{LABEL} 0x0088

8-70 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CALL Call

Assembly Syntax call rX

Description rpc = pc + 1;
pc = rX;

Example call r10

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r10 0x3013

x x x x x pc 0x0030

rpc 0x0010

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r10 0x3013

x x x x x x x x x x x pc 0x3013

rpc 0x0031

ZSP400 Instruction Set 8-71
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMACR.A Complex MAC Real to Accumulator A

Assembly Syntax cmacr.a rX.e, rY.e

Description {g0 r1 r0} += r(X + 1) * r(Y + 1) − rX * rY

Example cmacr.a r4, r12

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xfddb 0x8c64

1 1 1 0 1 {r5 r4} 0x7777 0x7777

{r13 r12} 0x8120 0x3214

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x 0 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 8000 0000

1 0 1 x 0 0 x x x x x {r5 r4} 0x7777 0x7777

{r13 r12} 0x8120 0x3214

guard guard_1 guard_0

x x x x x x x x 1 1 1 1 1 1 1 1

8-72 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMACR.B Complex MAC Real to Accumulator B

Assembly Syntax cmacr.b rX.e, rY.e

Description {g1 r3 r2} += r(X + 1) * r(Y + 1) − rX * rY

Example cmacr.b r8, r10

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xfddb 0x8c64

0 0 1 0 1 {r9 r8} 0x83ff 0x5231

{r11 r10} 0x73ff 0x73ff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

0 0 0 0 0 0 0 0 x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x4300 0x58c8

1 0 1 x 0 1 x x x x x {r9 r8} 0x83ff 0x5231

{r11 r10} 0x73ff 0x73ff

guard guard_1 guard_0

0 0 0 0 0 0 0 0 x x x x x x x x

ZSP400 Instruction Set 8-73
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMACI.A Complex MAC Imaginary to Accumulator A

Assembly Syntax cmaci.a rX.e, rY.e

Description {g0 r1 r0} += rX * r(Y + 1) + r(X + 1) * rY

Example cmaci.a r4, r12

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xfddb 0x8c64

0 1 1 0 1 {r5 r4} 0x63ff 0x63ff

{r13 r12} 0x63ff 0x63ff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x 1 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x7fff 0xffff

1 0 1 x 0 1 x x x x x {r5 r4} 0x63ff 0x63ff

{r13 r12} 0x63ff 0x63ff

guard guard_1 guard_0

x x x x x x x x 0 0 0 0 0 0 0 0

8-74 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMACI.B Complex MAC Imaginary to Accumulator B

Assembly Syntax cmaci.b rX.e, rY.e

Description {g1 r3 r2} += rX * r(Y + 1) + r(X + 1) * rY

Example cmaci.b r8, r10

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xfddb 0x8c64

0 0 1 0 1 {r9 r8} 0x8012 0x7777

{r11 r10} 0x3214 0x8312

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

0 0 0 0 0 0 0 0 x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0xa975 0xa184

1 0 1 x 0 0 x x x x x {r9 r8} 0x8012 0x7777

{r11 r10} 0x3214 0x8312

guard guard_1 guard_0

0 0 0 0 0 0 0 1 x x x x x x x x

ZSP400 Instruction Set 8-75
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMP Compare Immediate

Assembly Syntax cmp rX, IMM4S

Description If rX ≥ IMM4S: hwf<ge> = 1;
If rX > IMM4S: hwf<gt> = 1,
other flags set by the result of (rX − IMM4S)

Example cmp r9, −8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r9 0x7fff

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r9 0x7fff

0 x x x 0 1 1 0 x x x

8-76 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMP Compare Register to Register

Assembly Syntax cmp rX, rY

Description If rX ≥ rY: hwf<ge> = 1
If rX > rY: hwf<gt> = 1
other flags set by the result of (rX − rY)

Example cmp r8, r3

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r8 0xffff

x x x x x r3 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r8 0xffff

0 x x x 1 1 0 1 x x x r3 0xffff

ZSP400 Instruction Set 8-77
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMP.E Compare (Extended Precision)

Assembly Syntax cmp.e rX.e, rY.e

Description If {r(X + 1) rX} ≥ {r(Y + 1) rY}: hwf<ge> = 1
If {r(X + 1) rX} > {r(Y + 1) rY}: hwf<gt> = 1
other flags set by the result of: ({r(X + 1) rX} − {r(Y + 1) rY})

Example cmp.e r12, r0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r13 r12} 0x8f34 0xd2a1

x x x x x {r1 r0} 0x4343 0x7734

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r13 r12} 0x8f34 0xd2a1

0 x x x 1 0 0 0 x x x {r1 r0} 0x4343 0x7734

8-78 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMP.E Compare Immediate (Extended Precision)

Assembly Syntax cmp.e rX.e, IMM4S

Description If {r(X + 1) rX} ≥ IMM4S: hwf<ge> = 1
If {r(X + 1) rX} > IMM4S: hwf<gt> = 1
other flags set by the result of: ({r(X + 1) rX} − IMM4S)

Example cmp.e r12, −1

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r13 r12} 0x8f34 0xd2a1

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r13 r12} 0x8f34 0xd2a1

0 x x x 0 0 0 0 x x x

ZSP400 Instruction Set 8-79
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMULR.A Complex Multiplication Real to Accumulator A

Assembly Syntax cmulr.a rX.e, rY.e

Description {r1 r0} = r(X + 1) * r(Y + 1) − rX * rY

Example cmulr.a r4, r12

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xfddb 0x8c64

1 1 1 0 1 {r5 r4} 0x7777 0x7777

{r13 r12} 0x8120 0x3214

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 8000 0000

1 x 1 x 1 0 x x x x x {r5 r4} 0x7777 0x7777

{r13 r12} 0x8120 0x3214

8-80 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMULR.B Complex Multiplication Real to Accumulator B

Assembly Syntax cmulr.b rX.e, rY.e

Description {r3 r2} = r(X + 1) * r(Y + 1) − rX * rY

Example cmulr.b r8, r10

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xfddb 0x8c64

x 0 1 0 0 {r9 r8} 0x0001 0xffff

{r11 r10} 0x73ff 0x0800

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x0000 0x7bff

0 x x x 0 1 x x x x x {r9 r8} 0x0001 0xffff

{r11 r10} 0x73ff 0x0800

ZSP400 Instruction Set 8-81
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMULI.A Complex Multiplication Imaginary to
Accumulator A

Assembly Syntax cmuli.a rX.e, rY.e

Description {r1 r0} = rX * r(Y + 1) + r(X + 1) * rY

Example cmuli.a r4, r12

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xfddb 0x8c64

0 1 1 0 1 {r5 r4} 0x63ff 0x63ff

{r13 r12} 0x63ff 0x63ff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x7fff 0xffff

1 0 1 x 1 1 x x x x x {r5 r4} 0x63ff 0x63ff

{r13 r12} 0x63ff 0x63ff

8-82 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

CMULI.B Complex Multiplication Imaginary to
Accumulator B

Assembly Syntax cmuli.b rX.e, rY.e

Description {r3 r2} = rX * r(Y + 1) + r(X + 1) * rY

Example cmuli.b r8, r10

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xfddb 0x8c64

0 0 1 0 1 {r9 r8} 0xffff 0x0001

{r11 r10} 0x3214 0x8312

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x0000 0xaf02

0 x x x 0 1 x x x x x {r9 r8} 0xffff 0x0001

{r11 r10} 0x3214 0x8312

ZSP400 Instruction Set 8-83
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

DMAC.A Double MAC to Accumulator A

Assembly Syntax dmac.a rX.e, rY.e

Description {g0 r1 r0} += {r(X + 1) rX} * {r(Y + 1) rY}

Example dmac.a r10, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x0000 0x0000

0 0 1 0 1 {r9 r8} 0x8000 0x0000

{r11 r10} 0x0000 0x0001

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0xffff 0xffff

0 0 x x 0 0 x x x x x {r9 r8} 0x8000 0x0000

{r11 r10} 0x0000 0x0001

guard guard_1 guard_0

x x x x x x x x 1 1 1 1 1 1 1 1

8-84 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

DMAC.B Double MAC to Accumulator B

Assembly Syntax dmac.b rX.e, rY.e

Description {g1 r3 r2} += {r(X + 1) rX} * {r(Y + 1) rY}

Example dmac.b r10, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x0000 0x0000

x 0 1 0 0 {r9 r8} 0x8000 0x0000

{r11 r10} 0x0000 0x0001

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

1 1 1 1 1 1 1 1 x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0xffff 0xffff

0 0 x x 0 0 x x x x x {r9 r8} 0x8000 0x0000

{r11 r10} 0x0000 0x0001

guard guard_1 guard_0

1 1 1 1 1 1 1 0 x x x x x x x x

ZSP400 Instruction Set 8-85
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

DMUL.A Multiplication (Extended Precision) to
Accumulator A

Assembly Syntax dmul.a rX.e, rY.e

Description {r1 r0} = {r(X + 1) rX} * {r(Y + 1) rY}

Example dmul.a r10, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x0000 0x0000

x 0 1 0 0 {r9 r8} 0x8000 0x0000

{r11 r10} 0x8000 0x0000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x7fff 0xffff

0 x x x 0 1 x x x x x {r9 r8} 0x8000 0x0000

{r11 r10} 0x8000 0x0000

guard guard_1 guard_0

x x x x x x x x x x x x x x x x

8-86 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

DMUL.B Multiplication (Extended Precision) to
Accumulator B

Assembly Syntax dmul.b rX.e, rY.e

Description {r3 r2} = {r(X + 1) rX} * {r(Y + 1) rY}

Example dmul.b r10, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x0000 0x0000

x 0 1 0 0 {r9 r8} 0x8000 0x0000

{r11 r10} 0x8000 0x0000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x7fff 0xffff

0 x x x 0 1 x x x x x {r9 r8} 0x8000 0x0000

{r11 r10} 0x8000 0x0000

guard guard_1 guard_0

x x x x x x x x x x x x x x x x

ZSP400 Instruction Set 8-87
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

HALT Halt (Synthetic Instruction)

Assembly Syntax halt

Description Replaced by bits %smode, 15

8-88 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IDLE Idle (Synthetic Instruction)

Assembly Syntax idle

Description Replaced by bits %smode, 13

ZSP400 Instruction Set 8-89
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IMUL.A Integer Multiply to Accumulator A

Assembly Syntax imul.a rX, rY

Description {r1 r0} = rX * rY

Example imul.a r3, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xf678 0xc521

x x x x x r3 0x8000

r4 0x8020

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x3ff0 0x0000

0 x x x 0 1 x x x x x r3 0x8000

r4 0x8020

8-90 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

IMUL.B Integer Multiply to Accumulator B

Assembly Syntax imul.b rX, rY

Description {r3 r2} = rX * rY

Example imul.b r1, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xf678 0xc521

x x x x x r1 0x8000

r4 0x8020

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x3ff0 0x0000

0 x x x 0 1 x x x x x r1 0x8000

r4 0x8020

ZSP400 Instruction Set 8-91
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

LD Load

Assembly Syntax ld rX, rY [, n]

Description −4 ≤ n ≤ 3
rX ← mem[rY + n]

Example ld r3, r15, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r15 0x3401

x x x x x r3 0x5673

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3403 0x4500

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r15 0x3401

x x x x x x x x x x x r3 0x4500

Data Memory

0x3403 0x4500

8-92 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

LDA Load (Synthetic Instruction)

Assembly Syntax lda rX, LABEL

Description Replaced by:
movl rX, {LABEL}[7:0] and
movh rX, {LABEL}[15:8]

ZSP400 Instruction Set 8-93
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

LDU Load with Update

Assembly Syntax ldu rX, rY, n

Description n = {−2, −1, 1, 2}
rX ← mem[rY]; rY = rY + n;

Example ldu r3, r15, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r15 0x3401

x x x x x r3 0x5673

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3401 0x4500

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r15 0x3403

x x x x x x x x x x x r3 0x4500

Data Memory

0x3401 0x4500

8-94 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

LDDU Load Double with Update

Assembly Syntax lddu rX, rY.e, n where n = {2,−2}

Description if n = 2 {rX ← mem[rY]
r(X + 1) ← mem[rY + 1]}
else {rX ← mem[rY − 1]
r(X + 1) ← mem[rY]}
rY = rY + n

Example lddu r0, r15, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r15 0x3400

x x x x x {r1 r0} 0x8976 0x5682

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3400 0x4500

0x3401 0xff56

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r15 0x3402

x x x x x x x x x x x {r1 r0} 0xff56 0x4500

Data Memory

0x3400 0x4500

0x3401 0xff56

ZSP400 Instruction Set 8-95
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

LDX Load with Register Based Offset

Assembly Syntax ldx rX, rY.e

Description rX ← mem[rY + r(Y + 1)]

Example ldx r4, r14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r15 r14} 0x0001 0x3400

x x x x x r4 0xc567

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3401 0xff56

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r15 r14} 0x0001 0x3400

x x x x x x x x x x x r4 0xff56

Data Memory

0x3401 0xff56

8-96 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

LDXU Load with Register Based Offset and Update

Assembly Syntax ldxu rX, rY.e

Description rX ← mem[rY + r(Y + 1)]; rY += r(Y + 1)

Example ldxu r4, r14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r15 r14} 0x0001 0x3400

x x x x x r4 0xc567

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3401 0xff56

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r15 r14} 0x0001 0x3401

x x x x x x x x x x x r4 0xff56

Data Memory

0x3401 0xff56

ZSP400 Instruction Set 8-97
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MAC2.A Dual MAC to Accumulator A

Assembly Syntax mac2.a rX.e, rY.e

Description {g0 r1 r0} += rX * r(Y) + r(X + 1) * r(Y + 1)

Example mac2.a r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x7ffd 0xf750

x 0 0 0 0 {r5 r4} 0xee3a 0x04b0

{r3 r2} 0xf060 0x0050

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x8115 0x2410

1 0 1 x 0 0 x x x x x {r5 r4} 0xee3a 0x04b0

{r3 r2} 0xf060 0x0050

guard guard_1 guard_0

x x x x x x x x 0 0 0 0 0 0 0 0

8-98 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MAC2.B Dual MAC to Accumulator B

Assembly Syntax mac2.b rX.e, rY.e

Description {g1 r3 r2} += rX * r(Y) + r(X + 1) * r(Y + 1)

Example mac2.b r0, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x7ffd 0xf750

0 1 1 0 1 {r5 r4} 0xee3a 0x04b0

{r1 r0} 0xf060 0x0050

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

0 0 0 0 0 0 0 0 x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x7fff 0xffff

1 0 1 x 0 1 x x x x x {r5 r4} 0xee3a 0x04b0

{r1 r0} 0xf060 0x0050

guard guard_1 guard_0

0 0 0 0 0 0 0 0 x x x x x x x x

ZSP400 Instruction Set 8-99
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MAC.A Multiply Accumulate to Accumulator A

Assembly Syntax mac.a rX, rY

Description {g0 r1 r0} += rX * rY

Example mac.a r6, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x0000 0x0000

0 0 1 0 1 r6 0x6b85

r8 0x2b85

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x248e 0xe632

0 0 x x 0 1 x x x x x r6 0x6b85

r8 0x2b85

guard guard_1 guard_0

x x x x x x x x 0 0 0 0 0 0 0 0

8-100 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MAC.B Multiply Accumulate to Accumulator B

Assembly Syntax mac.b rX, rY

Description {g1 r3 r2} += rX * rY

Example mac.b r6, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x0000 0x0000

0 0 1 0 1 r6 0x8685

r8 0x2b85

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

0 0 0 0 0 0 0 0 x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0xd6b2 0xf432

0 0 x x 0 0 x x x x x r6 0x8685

r8 0x2b85

guard guard_1 guard_0

1 1 1 1 1 1 1 1 x x x x x x x x

ZSP400 Instruction Set 8-101
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MACN.A Multiply Accumulate with Negation to
Accumulator A

Assembly Syntax macn.a rX, rY

Description {g0 r1 r0} −= rX * rY

Example macn.a r4, r6

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x8003 0x7c6e

1 1 1 0 1 r6 0x0fa0

r4 0x0320

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

x x x x x x x x 1 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x8000 0x0000

1 0 1 x 1 0 x x x x x r6 0x0fa0

r4 0x0320

guard guard_1 guard_0

x x x x x x x x 1 1 1 1 1 1 1 1

8-102 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MACN.B Multiply Accumulate with Negation to
Accumulator B

Assembly Syntax macn.b rX, rY

Description {g1 r3 r2} −= rX * rY

Example macn.b r4, r6

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x8003 0x7c6e

x 0 0 0 0 r6 0x0fa0

r4 0x0320

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

guard guard_1 guard_0

1 1 1 1 1 1 1 1 x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x7fd2 0xa86e

1 0 1 x 1 1 x x x x x r6 0x0fa0

r4 0x0320

guard guard_1 guard_0

1 1 1 1 1 1 1 1 x x x x x x x x

ZSP400 Instruction Set 8-103
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MAX Maximum

Assembly Syntax max rX, rY

Description rX = max (rX, rY)
if rX ≥ rY, hwf<c> = 1;
other flags are set by the result of (rX − rY)

Example max r2, r12

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x8f34

x x x x x r12 0x7734

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x7734

0 x x x 0 1 1 0 x x x r12 0x7734

8-104 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MAX.E Maximum (Extended Precision)

Assembly Syntax max.e rX.e, rY.e

Description {r(X + 1) rX} = max ({r(X + 1) rX, {r(Y + 1) rY})
if {r(X + 1) rX} ≥ {r(Y + 1)rY} hwf<c> = 1;
other flags are set on the result of {r(X + 1)rX} − {r(Y + 1)rY}

Example max.e r10, r0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x3fff 0x7fff

x x x x x {r11 r10} 0x7fff 0x7fff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x3fff 0x7fff

0 x x x 1 1 1 0 x x x {r11 r10} 0x7fff 0x7fff

ZSP400 Instruction Set 8-105
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MIN Minimum

Assembly Syntax min rX, rY

Description rX = min (rX, rY)
if rX ≤ rY hwflag<c> = 1;
other flags are set on the result of (rX − rY)

Example min r2, r12

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x8f34

x x x x x r12 0x7734

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x8f34

0 x x x 1 0 0 0 x x x r12 0x7734

8-106 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MIN.E Minimum (Extended Precision)

Assembly Syntax min.e rX.e, rY.e

Description {r(X + 1) rX} = min ({r(X + 1) rX, {r(Y + 1) rY})
if {r(X +1)rX} ≤ {r(Y + 1)rY} hwf<c> = 1;
other flags are set on the result of {r(X + 1)rX} − {r(Y + 1)rY}

Example min.e r10, r0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x3fff 0x7fff

x x x x x {r11 r10} 0x7fff 0x7fff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x3fff 0x7fff

0 x x x 0 1 1 0 x x x {r11 r10} 0x3fff 0x7fff

ZSP400 Instruction Set 8-107
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move to PC

Assembly Syntax mov %pc, cY

Description cY = tpc/rpc

Example mov %pc, %rpc

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre pc 0xf154

x x x x x rpc 0xd4a5

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er pc 0xd4a5

x x x x x x x x x x x rpc 0xd4a5

8-108 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move Operand Register to Control Register

Assembly Syntax mov cX, rY

Description cX = rY

Example mov %loop0, r3

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre loop0 0xaf56

x x x x x r3 0xf00d

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er loop0 0xf00d

x x x x x x x x x x x r3 0xf00d

ZSP400 Instruction Set 8-109
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move Control Register to Operand Register

Assembly Syntax mov rX, cY

Description rX = cY

Example mov r3, %fmode

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre fmode 0xaf56

x x x x x r3 0xf00d

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er fmode 0xaf56

x x x x x x x x x x x r3 0xaf56

8-110 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move Operand Register to Operand Register

Assembly Syntax mov rX, rY

Description rX = rY

Example mov r3, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r4 0xaf56

x x x x x r3 0xf00d

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r4 0xaf56

x x x x x x x x x x x r3 0xaf56

ZSP400 Instruction Set 8-111
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move Immediate to Operand Register

Assembly Syntax mov rX, IMM4S

Description rX = IMM4S

Example mov r4, −8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r4 0xaf56

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r4 0xfff8

x x x x x x x x x x x

8-112 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move Immediate to Operand Register
(Synthetic Instruction)

Assembly Syntax mov rX, IMM

Description If −8 ≤ IMM ≤ 7, then
replaced by:

mov rX, IMM4S
else replaced by:

movl rX, IMM[7:0] and
movh rX, IMM[15:8]

ZSP400 Instruction Set 8-113
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOV Move Immediate to Control Register
(Synthetic Instruction)

Assembly Syntax mov cX, IMM16U

Description cX = {%fmode, %loop0, %loop1, %loop2, %loop3, %guard}
replaced by:

movl cX, IMM16U[7:0] and
movh cX, IMM16U[15:8]

8-114 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOVH Move Immediate to Higher Byte of
Control Register

Assembly Syntax movh cX, IMM8U

Description cX[15:8] = IMM8U, cX = {%fmode, %loop0, %loop1, %loop2, %loop3, %guard}

Example movh %guard, 0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre guard 0xaf56

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er guard 0x0056

x x x x x x x x x x x

ZSP400 Instruction Set 8-115
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOVH Move Immediate to Higher Byte of
Operand Register

Assembly Syntax movh rX, IMM8U

Description rX[15:8] = IMM8U

Example movh r4, 0

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r4 0xaf56

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r4 0x0056

x x x x x x x x x x x

8-116 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOVL Move Immediate to Lower Byte of
Control Register

Assembly Syntax movl cX, IMM8U

Description cX[7:0] = IMM8U, cX = {%fmode, %loop0, %loop1, %loop2, %loop3, %guard}

Example movl %guard, 255

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre guard 0xaf56

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er guard 0xafff

x x x x x x x x x x x

ZSP400 Instruction Set 8-117
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOVL Move Immediate to Low Byte of
Operand Register

Assembly Syntax movl rX, IMM8U

Description rX[7:0] = IMM8U

Example movl r4, 255

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r4 0xaf56

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r4 0xafff

x x x x x x x x x x x

8-118 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MOVLH Move Long Immediate to Operand Register
(Synthetic Instruction)

Assembly Syntax movlh rX, IMM32U

Description Replaced by:
movl rX, IMM32U[23:16]
movl r(X − 1), IMM32U[7:0]
movh rX, IMM32U[31:24]
movh r(X − 1), IMM32U[15:0]

ZSP400 Instruction Set 8-119
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MUL.A Multiply to Accumulator A

Assembly Syntax mul.a rX, rY

Description {r1 r0} = rX * rY

Example mul.a r3, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xf678 0xc521

x 0 0 x 0 r3 0x8000

r4 0x8020

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x3ff0 0x0000

0 x x x 0 1 x x x x x r3 0x8000

r4 0x8020

8-120 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MUL.B Multiply to Accumulator B

Assembly Syntax mul.b rX, rY

Description {r3 r2} = rX * rY

Example mul.b r1, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xf678 0xc521

x 0 0 x 0 r1 0x8000

r4 0x8020

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x3ff0 0x0000

0 x x x 0 1 x x x x x r1 0x8000

r4 0x8020

ZSP400 Instruction Set 8-121
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MULN.A Multiply with Negation to Accumulator A

Assembly Syntax muln.a rX, rY

Description {r1 r0} = −rX * rY

Example muln.a r3, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0xf678 0xc521

0 0 0 x 1 r3 0x03ff

r4 0x03ff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0xfff0 0x87ff

0 x x x 0 0 x x x x x r3 0x03ff

r4 0x03ff

8-122 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

MULN.B Multiply with Negation to Accumulator B

Assembly Syntax muln.b rX, rY

Description {r3 r2} = −rX * rY

Example muln.b r1, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0xf678 0xc521

x 0 0 x 0 r1 0x03ff

r4 0x03ff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0xfff0 0x07ff

0 x x x 0 0 x x x x x r1 0x03ff

r4 0x03ff

ZSP400 Instruction Set 8-123
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NEG Negate

Assembly Syntax neg rX, rY

Description rX = −rY

Example neg r3, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

Note: Negation of 0 does not set the carry bit in hwflag.

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r3 0x8000

x x x x x r4 0x8000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r3 0x7fff

1 x 0 x 0 1 1 0 x x x r4 0x8000

8-124 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NEG.E Negate (Extended Precision)

Assembly Syntax neg.e rX.e, rY.e

Description {r(X + 1) rX} = −{r(Y + 1) rY}

Example neg.e r0, r6

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

Note: Negation of 0 does not set the carry bit in hwflag.

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x0000 0x0000

x x x x x {r7 r6} 0x0000 0x0001

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0xffff 0xffff

0 x x x 0 0 0 0 x x x {r7 r6} 0x0000 0x0001

ZSP400 Instruction Set 8-125
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NOP No Operation

Assembly Syntax nop

Description No operation

Example nop

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0

fmode reserved rez sat res q15 sre mre

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

8-126 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NORM Normalize

Assembly Syntax norm rX, rY

Description If rY == 0 then rX = 0
else if rY == −1 then rX = 15
else if rY >= 0 then rX = 14 - bit position of leading 1 in rY
else rX = 14 - bit position of leading 0 in rY

Example norm r4, r2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x0001

x x x x x r4 0x8000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0001

0 x x x 0 1 1 0 x x x r4 0x000e

ZSP400 Instruction Set 8-127
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NORM.E Normalize (Extended Precision)

Assembly Syntax norm.e rX.e, rY.e

Description If rY.e == 0 then rX = 0
else if rY.e == -1 then rX = 31
else if rY.e >= 0 then rX = 30 - bit position of leading 1 in rY.e
else rX = 30 - bit position of leading 0 in rY.e

Example norm.e r6, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r6 0xf567

x x x x x {r5 r4} 0x0000 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r6 0x000f

0 x x x 0 1 1 0 x x x {r5 r4} 0x0000 0xffff

8-128 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NOT Logical Not

Assembly Syntax not rX, rY

Description rX =~ rY

Example not r4, r2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x0001

x x x x x r4 0x8000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0001

0 x x x 0 0 0 0 x x x r4 0xfffe

ZSP400 Instruction Set 8-129
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

NOT.E Logical Not (Extended Precision)

Assembly Syntax not.e rX.e, rY.e

Description {r(X + 1)rX} =~ {r(Y + 1)rY}

Example not.e r6, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r7 r6} 0xf567 0x0984

x x x x x {r5 r4} 0x0000 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r7 r6} 0xffff 0x0000

0 x x x 0 0 0 0 x x x {r5 r4} 0x0000 0xffff

8-130 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

OR Logical OR

Assembly Syntax or rX, rY

Description rX |= rY

Example or r4, r2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x0001

x x x x x r4 0x8000

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0001

0 x x x 0 1 1 0 x x x r4 0x8001

ZSP400 Instruction Set 8-131
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

OR.E Logical OR (Extended Precision)

Assembly Syntax or.e rX.e, rY.e

Description {r(X + 1)rX} |= {r(Y + 1)rY}

Example or.e r6, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r7 r6} 0xf567 0x0984

x x x x x {r5 r4} 0x0000 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r7 r6} 0xf567 0xffff

0 x x x 0 0 0 0 x x x {r5 r4} 0x0000 0xffff

8-132 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

PADD.A Parallel Add Registers to Accumulator A

Assembly Syntax padd.a rX.e, rY.e

Description r0 = rX + rY; r1 = r(X + 1) + r(Y + 1)

Example padd.a r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x8f34 0xc342

x x x x x {r3 r2} 0x8e0a 0x8c23

{r5 r4} 0x00f0 0x31c0

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x8efa 0xbde3

x x x x x x x x x x x {r3 r2} 0x8e0a 0x8c23

{r5 r4} 0x00f0 0x31c0

ZSP400 Instruction Set 8-133
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

PADD.B Parallel Add Registers to Accumulator B

Assembly Syntax padd.b rX.e, rY.e

Description r2 = rX + rY; r3 = r(X + 1) + r(Y + 1)

Example padd.b r6, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x8efa 0xc342

x x x x x {r7 r6} 0x7fff 0x8000

{r9 r8} 0x0001 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x8000 0x7fff

x x x x x x x x x x x {r7 r6} 0x7fff 0x8000

{r9 r8} 0x0001 0xffff

8-134 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

PSUB.A Parallel Subtract Registers to Accumulator A

Assembly Syntax psub.a rX.e, rY.e

Description r0 = rX − rY; r1 = r(X + 1) − r(Y + 1)

Example psub.a r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x8f34 0xc342

x x x x x {r3 r2} 0x8e0a 0x8c23

{r5 r4} 0x00f0 0x01c0

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x8d1a 0xda54

x x x x x x x x x x x {r3 r2} 0x8e0a 0x8c23

{r5 r4} 0x00f0 0x01c0

ZSP400 Instruction Set 8-135
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

PSUB.B Parallel Subtract Registers to Accumulator B

Assembly Syntax psub.b rX.e, rY.e

Description r2 = rX − rY; r3 = r(X + 1) − r(Y + 1)

Example psub.b r6, r8

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x8efa 0xc342

x x x x x {r7 r6} 0x7fff 0x8000

{r9 r8} 0xffff 0x0002

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x8000 0x7ffe

x x x x x x x x x x x {r7 r6} 0x7fff 0x8000

{r9 r8} 0xffff 0x0002

8-136 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

RET Return

Assembly Syntax ret

Description pc = rpc
Return: used as the last statement of a subroutine initiated by a call.

Example ret

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0

fmode reserved rez sat res q15 sre mre

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

ZSP400 Instruction Set 8-137
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

RETI Interrupt Return

Assembly Syntax reti

Description pc = tpc; imask<gie> = imask<pgie>; ip0<epl> = ip0<pepl>
Return from interrupt: used as the last statement in an interrupt service routine.

Example reti

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0

fmode reserved rez sat res q15 sre mre

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

8-138 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

REVB Reverse Bit

Assembly Syntax revb rX, IMM4U

Description Reverses order of rX[IMM4U:0]. If IMM4U <15, rX[15:IMM4U] = 0

Example revb r2, 15

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0xc001

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x8003

0 x x x 0 0 0 0 x x x

ZSP400 Instruction Set 8-139
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ROUND.E Round (Extended Precision)

Assembly Syntax round.e rX.e, rY.e

Description {r(X + 1) rX} = {r(Y + 1) rY} + 0x0000 8000

Example round.e r6, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r7 r6} 0xf567 0x0984

x x x x x {r5 r4} 0x0000 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r7 r6} 0x0001 0x7fff

0 x x x 0 1 1 0 x x x {r5 r4} 0x0000 0xffff

8-140 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLA Shift Left Arithmetic Immediate

Assembly Syntax shla rX, IMM4U

Description rX = rX << IMM4U
This is a true arithmetic left shift. If the fmode saturation bit is set, a shift which
would result in a number less than MAX_NEG or greater than MAX_POS will
set hwflag<v,sv>, and produce MAX_NEG or MAX_POS respectively. If the
fmode saturation bit is clear, then a shift which would result in a number less
than MAX_NEG or greater than MAX_POS will set hwflag<v,sv>, while
producing the same result as a SHLL.

Example shla r2, 3

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x0001

x 0 x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0008

0 x x x 0 1 1 0 x x x

ZSP400 Instruction Set 8-141
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLA Shift Left Arithmetic Register

Assembly Syntax shla rX, rY

Description rX = rX << rY[3:0]
This is a true arithmetic left shift. If the fmode saturation bit is set, a shift which
would result in a number less than MAX_NEG or greater than MAX_POS will
set hwflag<v,sv>, and produce MAX_NEG or MAX_POS respectively. If the
fmode saturation bit is clear, then a shift which would result in a number less
than MAX_NEG or greater than MAX_POS will set hwflag<v,sv>, while
producing the same result as a SHLL.

Example 1 shla r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0xfffc

x 1 x x x r4 0x000f

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x8000

1 x 1 x 0 0 0 0 x x x r4 0x000f

8-142 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Example 2 shla r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0xfffc

x 0 x x x r4 0x000f

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0000

1 x 1 x 0 1 0 1 x x x r4 0x000f

ZSP400 Instruction Set 8-143
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLA.E Shift Left Arithmetic Immediate
(Extended Precision)

Assembly Syntax shla.e rX.e, IMM4U

Description {r(X + 1) rX} = {r(X + 1) rX} << IMM4U
This is a true arithmetic left shift. If the fmode saturation bit is set, a shift which
would result in a number less than MAX_NEG or greater than MAX_POS will
set hwflag<v,sv>, and produce MAX_NEG or MAX_POS respectively. If the
fmode saturation bit is clear, then a shift which would result in a number less
than MAX_NEG or greater than MAX_POS will set hwflag<v,sv>, while
producing the same result as a SHLL.E

Example shla.e r2, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x 1 x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x7fff 0xffff

1 x 1 x 0 1 1 0 x x x

8-144 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLA.E Shift Left Arithmetic Register
(Extended Precision)

Assembly Syntax shla.e rX.e, rY.e

Description {r(X + 1) rX} = {r(X + 1) rX} << rY[4:0]
This is a true arithmetic left shift. If the fmode saturation bit is set, a shift which
would result in a number less than MAX_NEG or greater than MAX_POS will
set hwflag<v,sv>, and produce MAX_NEG or MAX_POS respectively. If the
fmode saturation bit is clear, then a shift which would result in a number less
than MAX_NEG or greater than MAX_POS will set hwflag<v,sv>, while
producing the same result as a SHLL.E

Example shla.e r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff ffff

x 1 x 0 x r4 0x0002

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x7fff 0xffff

1 x 1 x 0 1 1 0 x x x r4 0x0002

ZSP400 Instruction Set 8-145
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLL Shift Left Logical Immediate

Assembly Syntax shll rX, IMM5U

Description rX = rX << IMM5U

Example shll r2, 3

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x0001

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0008

0 x x x 0 1 1 0 x x x

8-146 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLL Shift Left Logical Register

Assembly Syntax shll rX, rY

Description rX = rX << rY[3:0]

Example shll r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0xfffc

x x x x x r4 0x000f

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x0000

0 x x x 0 1 0 1 x x x r4 0x000f

ZSP400 Instruction Set 8-147
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLL.E Shift Left Logical Immediate
(Extended Precision)

Assembly Syntax shll.e rX.e, IMM5U

Description {r(X + 1) rX} = {r(X + 1) rX} << IMM5U

Example shll.e r2, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0xffff 0xfffc

0 x x x 0 0 0 0 x x x

8-148 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHLL.E Shift Left Logical Register
(Extended Precision)

Assembly Syntax shll.e rX.e, rY.e

Description {r(X + 1) rX} = {r(X + 1) rX} << rY[4:0]

Example shll.e r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x x x x x r4 0x0002

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0xffff 0xfffc

0 x x x 0 0 0 0 x x x r4 0x0002

ZSP400 Instruction Set 8-149
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRA Shift Right Arithmetic Immediate

Assembly Syntax shra rX, IMM5U

Description rX = rX >> IMM5U

Example shra r2, 1

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x8001

x x x 1 x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0xc001

0 x x x 0 0 0 0 x x x

8-150 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRA Shift Right Arithmetic Register

Assembly Syntax shra rX, rY

Description rX = rX >> rY[3:0]

Example shra r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x8001

x x x 0 x r4 0x0001

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0xc000

0 x x x 0 0 0 0 x x x r4 0x0001

ZSP400 Instruction Set 8-151
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRA.E Shift Right Arithmetic Immediate
(Extended Precision)

Assembly Syntax shra.e rX.e, IMM5U

Description {r(X + 1) rX} = {r(X + 1) rX} >> IMM5U

Example shra.e r2, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x x x 1 x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x1000 0x0000

0 x x x 0 1 1 0 x x x

8-152 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRA.E Shift Right Arithmetic Register
(Extended Precision)

Assembly Syntax shra.e rX.e, rY.e

Description {r(X + 1) rX} = {r(X + 1) rX} >> rY[4:0]

Example shra.e r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x x x 0 x r4 0x0002

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x0fff 0xffff

0 x x x 0 1 1 0 x x x r4 0x0002

ZSP400 Instruction Set 8-153
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRL Shift Right Logical Immediate

Assembly Syntax shrl rX, IMM5U

Description rX = rX >> IMM5U

Example shrl r2, 3

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x8001

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x1000

0 x x x 0 1 1 0 x x x

8-154 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRL Shift Right Logical Register

Assembly Syntax shrl rX, rY

Description rX = rX >> rY[3:0]

Example shrl r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r2 0x8001

x x x 0 x r4 0x0003

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r2 0x1000

0 x x x 0 1 1 0 x x x r4 0x0003

ZSP400 Instruction Set 8-155
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRL.E Shift Right Logical Immediate
(Extended Precision)

Assembly Syntax shrl.e rX.e, IMM5U

Description {r(X + 1) rX} = {r(X + 1) rX} >> IMM5U

Example shrl.e r2, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x x x x x

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x0fff 0xffff

0 x x x 0 1 1 0 x x x

8-156 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SHRL.E Shift Right Logical Register
(Extended Precision)

Assembly Syntax shrl.e rX.e, rY.e

Description {r(X + 1) rX} = {r(X + 1) rX} >>rY; [4:0]

Example shrl.e r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x3fff 0xffff

x x x x x r4 0x0002

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x0fff 0xffff

0 x x x 0 1 1 0 x x x r4 0x0002

ZSP400 Instruction Set 8-157
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SLEEP Sleep (Synthetic Instruction)

Assembly Syntax sleep

Description Replaced by bits %smode, 14

8-158 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ST Store

Assembly Syntax st rX, rY [, n]

Description −4 ≤ n ≤ 3
mem[rY + n] = rX

Example st r3, r15, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r15 0x3401

x x x x x r3 0x5673

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3403 0x4500

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r15 0x3401

x x x x x x x x x x x r3 0x5673

Data Memory

0x3403 0x5673

ZSP400 Instruction Set 8-159
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

STU Store with Update

Assembly Syntax stu rX, rY, n

Description n = {−2, −1, 1, 2}
mem[rY] = rX; rY = rY + n;

Example stu r3, r15, 2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r15 0x3401

x x x x x r3 0x5673

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3401 0x4500

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r15 0x3403

x x x x x x x x x x x r3 0x5673

Data Memory

0x3401 0x5673

8-160 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

STDU Store Double with Update

Assembly Syntax stdu rX.e, rY, n where n = {2, −2}

Description if n = 2 {mem[rY] = rX
mem[rY + 1] = r(X + 1) }
else {mem[rY − 1] = rX
mem[rY] = r(X + 1) }
rY = rY + n

Example stdu r0, r15, −2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r15 0x3400

x x x x x {r1 r0} 0x8976 0x5682

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x33ff 0xff56

0x3400 0x4500

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r15 0x33fe

x x x x x x x x x x x {r1 r0} 0x8976 0x5682

Data Memory

0x33ff 0x5682

0x3400 0x8976

ZSP400 Instruction Set 8-161
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

STX Store with Register Based Offset

Assembly Syntax stx rX, rY.e

Description mem[rY + r(Y + 1)] = rX

Example stx r4, r14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r15 r14} 0x0001 0x3400

x x x x x r4 0xc567

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3401 0xff56

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r15 r14} 0x0001 0x3400

x x x x x x x x x x x r4 0xc567

Data Memory

0x3401 0xc567

8-162 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

STXU Store with Register Based Offset and Update

Assembly Syntax stxu rX, rY.e

Description mem[rY + r(Y + 1)] = rX
rY = rY + r(Y + 1)

Example stxu r4, r14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r15 r14} 0x0001 0x3400

x x x x x r4 0xc567

hwflag reserved v gv sv gsv c ge gt z ir ex er Data Memory

x x x x x x x x x x x 0x3401 0xff56

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r15 r14} 0x0001 0x3401

x x x x x x x x x x x r4 0xc567

Data Memory

0x3401 0xc567

ZSP400 Instruction Set 8-163
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SUB Subtract

Assembly Syntax sub rX, rY

Description rX −= rY

Example sub r13, r14

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r13 0x8f34

x 0 x x x r14 0x7734

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r13 0x1800

1 x 1 x 1 1 1 0 x x x r14 0x7734

8-164 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SUB.E Subtract (Extended Precision)

Assembly Syntax sub.e rX.e, rY.e

Description {r(X + 1) rX} −= {r(Y + 1) rY}

Example sub.e r2, r4

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r3 r2} 0x0000 0x0004

x 1 x x x {r5 r4} 0xffff 0xffff

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r3 r2} 0x0000 0x0005

0 x x x 0 1 1 0 x x x {r5 r4} 0xffff 0xffff

ZSP400 Instruction Set 8-165
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

SUBC.E Subtract with Carry (Extended Precision)

Assembly Syntax subc.e rX.e, rY.e

Description {r(X + 1) rX} −= {r(Y + 1) rY} - logical inverse of carry

Example subc.e r8, r10

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r9 r8} 0x4bf1 0x5b6d

x 1 x x x {r11 r10} 0x0000 0x0001

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x 1 x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r9 r8} 0x4bf1 0x5b6c

0 x x x 1 1 1 0 x x x {r11 r10} 0x0000 0x0001

8-166 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

VIT_A Viterbi Instruction for Point A

Assembly Syntax vit_a rX.e, rY.e

Description r0 = min {(rX + rY), (r(X + 1) + r(Y + 1))}
if ((rX + rY) < (r(X + 1) + r(Y + 1)))
vitr = vitr << 1 | 0x0001
else
vitr = vitr << 1

Example vit_a r4, r6

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r0 xxxx

x x x x x {r5 r4} 0x1123 0x0030

{r7 r6} 0x000a 0x0008

hwflag reserved v gv sv gsv c ge gt z ir ex er vitr 0x0000

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r0 0x0038

0 x x x 1 1 x x x x x {r5 r4} 0x1123 0x0030

{r7 r6} 0x000a 0x0008

vitr 0x0001

ZSP400 Instruction Set 8-167
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

VIT_B Viterbi Instruction for Point B

Assembly Syntax vit_b rX.e, rY.e

Description r1 = min {(rX + r(Y + 1)), (r(X + 1) + rY)}
if ((rX + r(Y + 1)) < (r(X + 1) + rY))
vitr = vitr << 1 | 0x0001
else
vitr = vitr << 1

Example vit_b r4, r6

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r1 xxxx

x x x x x {r5 r4} 8000 0xff30

{r7 r6} 0x000a 0xff00

hwflag reserved v gv sv gsv c ge gt z ir ex er vitr 0x0001

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r1 0x7f00

1 x 1 x 0 1 x x x x x {r5 r4} 0xf000 0xff30

{r7 r6} 0x000a 0xff00

vitr 0x0002

8-168 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

XOR Exclusive OR

Assembly Syntax xor rX, rY

Description rX ^= rY

Example xor r11, r2

Architectural state before the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre r11 0x70f2

x x x x x r2 0x0901

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er r11 0x79f3

0 x x x 0 1 1 0 x x x r2 0x0901

ZSP400 Instruction Set 8-169
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

XOR.E Exclusive OR (Extended Precision)

Assembly Syntax xor.e rX.e, rY.e

Description {r(X + 1)rX} ^= {r(Y + 1)rY}

Example xor.e r0, r2

Architectural state after the instruction is executed:

Architectural state after the instruction is executed:

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

fmode reserved rez sat res q15 sre mre {r1 r0} 0x8000 0x8c23

x x x x x {r3 r2} 0x8f34 0x8300

hwflag reserved v gv sv gsv c ge gt z ir ex er

x x x x x x x x x x x

15 11 10 9 8 7 6 5 4 3 2 1 0 Register

hwflag reserved v gv sv gsv c ge gt z ir ex er {r1 r0} 0x0f34 0x0f23

0 x x x 0 1 1 0 x x x {r3 r2} 0x8f34 0x8300

8-170 ZSP400 Instruction Set
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Customer Feedback
Copyright © 1999–2001 by LSI Logic Corporation. All rights reserved.

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ZSP400 Digital Signal
Processor Architecture Technical Manual. Place a check mark in the
appropriate blank for each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and

illustrations
____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

You can find a current list of our U.S. distributors, international distributors, and sales
offices and design resource centers on our web site at

http://www.lsilogic.com/contacts/na_salesoffices.html

	Preface
	ZSP400 Digital Signal Processor Architecture
	Contents
	Chapter�1 Introduction
	1.1 ZSP400 Architecture Overview
	1.2 Instruction Set Highlights
	1.3 Available Implementations

	Chapter�2 ZSP400 Architecture Overview
	2.1 Typical ZSP400 System
	Figure�2.1 System Block Diagram

	2.2 Control Register File
	2.3 Pipeline Control Unit
	2.4 Instruction Unit
	2.5 Data Unit
	2.6 Execution Unit
	2.7 Device Emulation Unit

	Chapter�3 Control Registers
	3.1 Introduction
	Table�3.1 ZSP400 Control Registers (Cont.)

	3.2 Address Mode Register (%amode)
	3.3 Circular Buffer 0 Begin Address Register (%cb0_beg)
	3.4 Circular Buffer 0 End Address Register (%cb0_end)
	3.5 Circular Buffer 1 Begin Address Register (%cb1_beg)
	3.6 Circular Buffer 1 End Address Register (%cb1_end)
	3.7 Device Emulation Data Register (%ded)
	3.8 Device Emulation Instruction Register (%dei)
	3.9 Functional Mode Register (%fmode)
	3.10 Guard Bits for {r1 r0} and {r3 r2}
	3.11 Hardware Flag Register (%hwflag)
	3.12 Interrupt Mask Register (%imask)
	3.13 Interrupt Priority Register 0 (%ip0)
	3.14 Interrupt Priority Register 1 (%ip1)
	3.15 Interrupt Request Register (%ireq)
	3.16 Loop Counter Registers (%loop0, %loop1, %loop2, %loop3)
	Figure�3.1 Low-Overhead Looping Construct Code Example

	3.17 Program Counter Register (%pc)
	3.18 Return Program Counter Register (%rpc)
	3.19 System Mode Register (%smode)
	3.20 Timer Control Register (%tc)
	3.21 Timer 0 Register (%timer0)
	3.22 Timer 1 Register (%timer1)
	3.23 Trap Return Program Counter Register (%tpc)
	3.24 Viterbi Traceback Register (%vitr)

	Chapter�4 Pipeline Control Unit
	4.1 Introduction
	Figure�4.1 ZSP400 Pipeline

	4.2 Interlocking Pipeline
	4.3 Grouping Rules
	4.4 Interrupts
	Figure�4.2 Interrupt Processing Flow

	4.5 Timers

	Chapter�5 Instruction Unit
	5.1 Introduction
	5.2 Instruction Cache and Prefetcher
	Figure�5.1 Cache Line Organization
	5.2.1 Cache Miss Penalty
	Figure�5.2 Instruction Cache Miss Penalty

	5.2.2 Cache Line Straddling
	Figure�5.3 Cache and Prefetcher Solve Data Alignment Dilemma

	5.2.3 Issue Rate Slower than Prefetch Rate
	Figure�5.4 Example of Prefetcher Staying Slightly Ahead of Instruction Consumption

	5.3 Branch Prediction
	Table�5.1 Static Branch Prediction Rules (Cont.)
	Figure�5.5 Explanation of Branch Misprediction Penalties

	Chapter�6 Data Unit
	6.1 Introduction
	6.2 Data Cache, Data Prefetcher, and Data Linking
	Figure�6.1 Data Linking in Detail

	6.3 Data Linking Setup
	Figure�6.2 Example of Data Linking Setup

	6.4 Data Unit Stores
	Figure�6.3 Double Operand Store Straddling Two Cache Lines

	6.5 �Circular Buffers
	Table�6.1 Circular Buffer 0 (cb0) Load Operations (Cont.)
	Table�6.2 Circular Buffer 0 (cb0) Store Operations�

	6.6 Reverse Carry Addressing

	Chapter�7 Execution Unit
	7.1 Introduction
	Figure�7.1 Execution Unit Datapath

	7.2 Arithmetic Logic Units (ALU)
	7.3 Multiply Accumulate Units (MAC)
	Figure�7.2 Dual MAC

	7.4 General Purpose Register File
	Figure�7.3 General Purpose Register File

	7.5 Shadow Registers

	Chapter�8 ZSP400 Instruction Set
	8.1 Functional and Execution Unit Usage
	Table�8.1 Instruction Functional Unit Usage and Execution Stage (Cont.)

	8.2 Control Register–Instruction Interaction
	Table�8.2 Notational Conventions (Cont.)
	8.2.1 Move Instructions
	Table�8.3 Move Instructions �

	8.2.2 MAC Instructions
	Table�8.4 MAC Instructions (Cont.)

	8.2.3 Arithmetic Instructions
	Table�8.5 Arithmetic Instructions (Cont.)

	8.2.4 Bitwise Logical Instructions
	Table�8.6 Bitwise Logical Instructions

	8.2.5 Bit Manipulation Instructions
	Table�8.7 Bit Manipulation Instructions (Cont.)

	8.2.6 Branch Instructions
	Table�8.8 Branch Instructions (Cont.)

	8.2.7 Memory Reference Instructions
	Table�8.9 Memory Reference Instructions (Cont.)

	8.2.8 NOP Instruction
	Table�8.10 NOP Instruction

	8.2.9 Synthetic Instructions
	Table�8.11 Synthetic Instructions

	8.3 Instruction Coding
	8.3.1 Instruction Opcode
	Table�8.12 Instruction Set Opcode Summary (Cont.)
	Table�8.13 Condition Field
	Table�8.14 op0 Field
	Table�8.15 op1 Field
	Table�8.16 op2 Field�
	Table�8.17 op3 Field
	Table�8.18 op4 Field
	Table�8.19 op5 Field
	Table�8.20 op6 Field
	Table�8.21 op7 Field

	8.4 ZSP400 Instruction Set

	Customer Feedback

