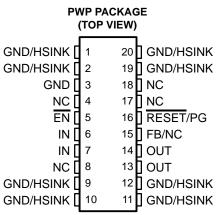
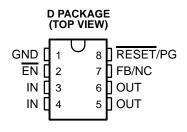
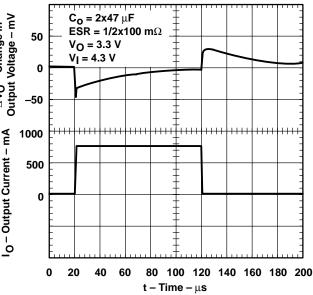

- Open Drain Power-On Reset With 200-ms Delay (TPS777xx)
- Open Drain Power Good (TPS778xx)
- 750-mA Low-Dropout Voltage Regulator
- Available in 1.5-V, 1.8-V, 2.5-V, 3.3-V Fixed Output and Adjustable Versions
- Dropout Voltage to 260 mV (Typ) at 750 mA (TPS77x33)
- Ultralow 85 μA Typical Quiescent Current
- Fast Transient Response
- 2% Tolerance Over Specified Conditions for Fixed-Output Versions
- 8-Pin SOIC and 20-Pin TSSOP PowerPAD[™] (PWP) Package
- Thermal Shutdown Protection


description

TPS777xx and TPS778xx are designed to have a fast transient response and be stable with a $10-\mu F$ low ESR capacitors. This combination provides high performance at a reasonable cost.


TPS77x33 DROPOUT VOLTAGE

vs



NC - No internal connection

TPS77x33 LOAD TRANSIENT RESPONSE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

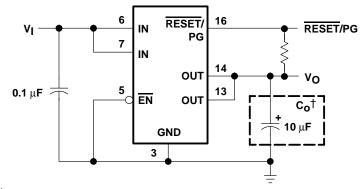
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

description (continued)

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 260 mV at an output current of 750 mA for the TPS77x33) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the guiescent current is very low and independent of output loading (typically 85 µA over the full range of output current, 0 mA to 750 mA). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to \overline{EN} (enable) shuts down the regulator, reducing the quiescent current to 1 μ A at T₁ = 25°C.

The RESET output of the TPS777xx initiates a reset in microcomputer and microprocessor systems in the event of an undervoltage condition. An internal comparator in the TPS777xx monitors the output voltage of the regulator to detect an undervoltage condition on the regulated output voltage.

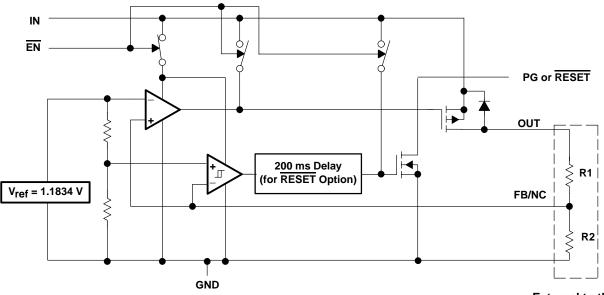

Power good (PG) of the TPS778xx is an active high output, which can be used to implement a power-on reset or a low-battery indicator.

The TPS777xx and TPS778xx are offered in 1.5-V, 1.8-V, 2.5-V, and 3.3-V fixed-voltage versions and in an adjustable version (programmable over the range of 1.5 V to 5.5 V for TPS77701 option and 1.2 V to 5.5 V for TPS77801 option). Output voltage tolerance is specified as a maximum of 2% over line, load, and temperature ranges. The TPS777xx and TPS778xx families are available in 8 pin SOIC and 20 pin PWP packages.

ТЈ	OUTPUT VOLTAGE (V)		PACKAGED	DEVICES		
-	ТҮР	TSSOP (PWP)		SOIC (D)		
	3.3	TPS77733PWP	TPS77833PWP	TPS77733D	TPS77833D	
	2.5	TPS77725PWP	TPS77825PWP	TPS77725D	TPS77825D	
	1.8	TPS77718PWP	TPS77818PWP	TPS77718D	TPS77818D	
–40°C to 125°C	1.5	TPS77715PWP	TPS77815PWP	TPS77715D	TPS77815D	
	Adjustable 1.5 V to 5.5 V	TPS77701PWP	_	TPS77701D	_	
	Adjustable 1.2 V to 5.5 V	_	TPS77801PWP	_	TPS77801D	

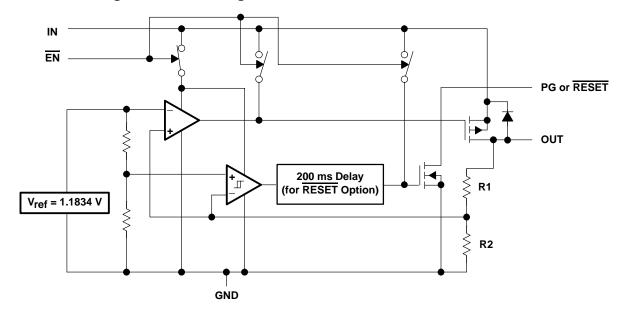
AVAILABLE OPTIONS

The TPS77x01 is programmable using an external resistor divider (see application information). The D and PWP packages are available taped and reeled. Add an R suffix to the device type (e.g., TPS77701DR).



[†] See application information section for capacitor selection details.

Figure 1. Typical Application Configuration for Fixed Output Options



functional block diagram—adjustable version

External to the device

functional block diagram—fixed-voltage version

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

Terminal Functions

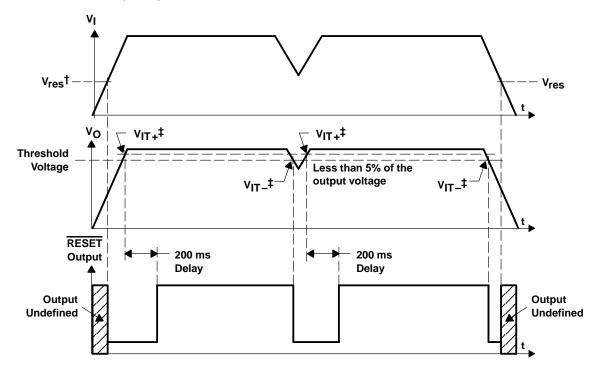
SOIC Package (TPS777xx)

TERMIN	TERMINAL		DESCRIPTION			
NAME	NO.	I/O	DESCRIPTION			
EN	2	I	Enable input			
FB/NC	7	I	Feedback input voltage for adjustable device (no connect for fixed options)			
GND	1		Regulator ground			
IN	3, 4	I	Input voltage			
OUT	5, 6	0	Regulated output voltage			
RESET	8	0	RESET output			

TSSOP Package (TPS777xx)

TER	TERMINAL		DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
EN	5	I	Enable input	
FB/NC	15	I	Feedback input voltage for adjustable device (no connect for fixed options)	
GND	3		Regulator ground	
GND/HSINK	1, 2, 9, 10, 11, 12, 19, 20		Ground/heatsink	
IN	6, 7	Ι	Input	
NC	4, 8, 17, 18		No connect	
OUT	13, 14	0	Regulated output voltage	
RESET	16	0	RESET output	

SOIC Package (TPS778xx)


TERMIN	NAL	1/0	DECODIDION			
NAME	NO.	1/0	DESCRIPTION			
EN	2	I	Enable input			
FB/NC	7	I	Feedback input voltage for adjustable device (no connect for fixed options)			
GND	1		Regulator ground			
IN	3, 4	I	Input voltage			
OUT	5, 6	0	Regulated output voltage			
PG	8	0	PG output			

TSSOP Package (TPS778xx)

TER	TERMINAL		DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
EN	5	I	Enable input	
FB/NC	15	I	Feedback input voltage for adjustable device (no connect for fixed options)	
GND	3		Regulator ground	
GND/HSINK	1, 2, 9, 10, 11, 12, 19, 20		Ground/heatsink	
IN	6, 7	I	Input	
NC	4, 8, 17, 18		No connect	
OUT	13, 14	0	Regulated output voltage	
PG	16	0	PG output	

TPS777xx RESET timing diagram

⁺ V_{res} is the minimum input voltage for a valid RESET. The symbol V_{res} is not currently listed within EIA or JEDEC standards for semiconductor symbology.

 V_{IT} –Trip voltage is typically 5% lower than the output voltage (95%V_O) V_{IT} to V_{IT} is the hysteresis voltage.

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range [‡] , V_1 Voltage range at \overline{EN} Maximum \overline{RESET} voltage (TPS777xx) Maximum PG voltage (TPS778xx) Peak output current Output voltage, V_O (OUT, FB) Continuous total power dissipation Operating virtual junction temperature range, T_J Storage temperature range, T_{stg}	0.3 V to 16.5 V 16.5 V 15.5 V 15.
Storage temperature range, T _{stg} ESD rating, HBM	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[‡] All voltage values are with respect to network terminal ground.

DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURES

PACKAGE	AIR FLOW (CFM)	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	0	568 mW	5.68 mW/°C	312 mW	227 mW
5	250	904 mW	9.04 mW/°C	497 mW	361 mW

DISSIFATION RATING TABLE 2 - FREE-AIR TEMPERATURES								
PACKAGE	AIR FLOW (CFM)	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING			
PWP§	0	2.9 W	23.5 mW/°C	1.9 W	1.5 W			
	300	4.3 W	34.6 mW/°C	2.8 W	2.2 W			
PWP¶	0	3 W	23.8 mW/°C	1.9 W	1.5 W			
	300	7.2 W	57.9 mW/°C	4.6 W	3.8 W			

DISSIDATION DATING TABLE 2 - EDEE-AID TEMPERATIDES

§ This parameter is measured with the recommended copper heat sink pattern on a 1-layer PCB, 5-in × 5-in PCB, 1 oz. copper, 2-in \times 2-in coverage (4 in²).

This parameter is measured with the recommended copper heat sink pattern on a 8-layer PCB, 1.5-in × 2-in PCB, 1 oz. copper with layers 1, 2, 4, 5, 7, and 8 at 5% coverage (0.9 in²) and layers 3 and 6 at 100% coverage (6 in²). For more information, refer to TI technical brief SLMA002.

recommended operating conditions

		MIN	MAX	UNIT
Input voltage, VI [#]	2.7	10	V	
	TPS77701	1.5	5.5	V
Output voltage range, V _O	TPS77801	1.2	5.5	v
Output current, IO (see Note 1)	0	750	mA	
Operating virtual junction temperature, T _J (see Note 1)	-40	125	°C	

[#] To calculate the minimum input voltage for your maximum output current, use the following equation: VI(min) = VO(max) + VDO(max load). NOTE 1: Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

electrical characteristics over recommended operating free-air temperature range, $V_I = V_{O(typ)} + 1 V$, $I_O = 1 mA$, $\overline{EN} = 0 V$, $C_O = 10 \mu F$ (unless otherwise noted)

							-
	TD077704	$1.5 \text{ V} \le \text{V}_{O} \le 5.5 \text{ V},$	TJ = 25°C		٧o		
	TPS77701	$1.5 \text{ V} \le \text{V}_{O} \le 5.5 \text{ V},$	TJ = −40°C to 125°C	0.98VO		1.02VO	
	TD077004	$1.2 \text{ V} \le \text{V}_{O} \le 5.5 \text{ V},$	TJ = 25°C		Vo		
	19577801	$1.2 \text{ V} \le \text{V}_{O} \le 5.5 \text{ V},$	$T_J = -40^{\circ}C$ to $125^{\circ}C$	0.98VO		1.02VO	
	TD077-46	TJ = 25°C,	2.7 V < V _{IN} < 10 V		1.5		
je (10 μA to 750 mA	19577815	$T_{J} = -40^{\circ}C$ to 125°C,	2.7 V < V _{IN} < 10 V	1.470		1.530	V
ote 2)	TD977v19	T _J = 25°C,	2.8 V < V _{IN} < 10 V		1.8		v
	195/7216	$T_{J} = -40^{\circ}C$ to $125^{\circ}C$,	2.8 V < V _{IN} < 10 V	1.764		1.836	
	TDC77v25	TJ = 25°C,	3.5 V < V _{IN} < 10 V		2.5		
	1957725	$T_{J} = -40^{\circ}C$ to 125°C,	3.5 V < V _{IN} < 10 V	2.450		2.550	
	TD977y22	T _J = 25°C,	4.3 V < V _{IN} < 10 V		3.3		
	19577x33	$T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C,$	4.3 V < V _{IN} < 10 V	3.234		3.366	
rropt (CND curropt) (co	o Noto 2)	10 μA < I _O < 750 mA,	$T_J = 25^{\circ}C$		85		μA
	e Note 2)	I _O = 750 mA,	$T_J = -40^{\circ}C$ to $125^{\circ}C$			125	μл
je line regulation ($\Delta VO^{/1}$ and 3)	VO)	$V_{O} + 1 V < V_{I} \le 10 V,$	TJ = 25°C		0.01		%/V
Load regulation					3		mV
Output noise voltage (TPS77x18)					54		μVrm
nt limit		V _O = 0 V			1.7	2	A
down junction temperat	ure				150		°C
		EN = V _{I,}	T _J = 25°C, 2.7 V < V _I < 10 V		1		μΑ
ent		EN = V _I ,	T _J = -40°C to 125°C 2.7 V < V _I < 10 V			10	μΑ
ent	TPS77x01	FB = 1.5 V			2		nA
able input voltage				1.7			V
able input voltage						0.9	V
ripple rejection (see N	ote 2)	f = 1 KHz, T _J = 25°C	$C_0 = 10 \ \mu F$,		60		dB
Minimum input voltage	e for valid RESET	IO(RESET) = 300 μA			1.1		V
Trip threshold voltage		V _O decreasing		92		98	%Vo
Hysteresis voltage	Hysteresis voltage			1	0.5		%Vo
Output low voltage		V _I = 2.7 V,	$I_{O(RESET)} = 1 \text{ mA}$	1	0.15	0.4	V
· · ·		· ·		+		1	μA
RESET time-out delay	,			+	200		ms
	rrent (GND current) (se le line regulation (∆VO/ and 3) on voltage (TPS77x18) nt limit down junction temperat ent able input voltage able input voltage r ripple rejection (see No Minimum input voltage Trip threshold voltage	TPS77x18 TPS77x25 TPS77x25 TPS77x33 rrent (GND current) (see Note 2) re line regulation ($\Delta V_O/V_O$) and 3) on voltage (TPS77x18) nt limit down junction temperature ent ent able input voltage ripple rejection (see Note 2) Minimum input voltage for valid RESET Trip threshold voltage Hysteresis voltage Output low voltage	$\begin{array}{c} \mbox{TPS77801} & \begin{tabular}{ c c c c c } \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline \hline 1.2 \ V \le V_O \le 5.5 \ V, \\ \hline \hline T = 25^{\circ} \ C, \\ \hline T = -40^{\circ} \ C \ to \ 125^{\circ} \ C, \\ \hline T = -75^{\circ} \ M \ C \ C, \\ \hline T = -40^{\circ} \ C \ C \ C \ C \ C \ C \ C \ C \ C \ $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

NOTES: 2. Minimum IN operating voltage is 2.7 V or $V_{O(typ)}$ + 1 V, whichever is greater. Maximum IN voltage 10V. 3. If $V_O \le 1.8$ V then $V_{Imin} = 2.7$ V, $V_{Imax} = 10$ V:

Line Reg. (mV) =
$$(\%/V) \times \frac{V_O(V_{Imax} - 2.7 V)}{100} \times 1000$$

If $V_O \ge 2.5$ V then $V_{Imin} = V_O + 1$ V, $V_{Imax} = 10$ V:

Line Reg. (mV) = (%/V) × $\frac{V_O(V_{Imax} - (V_O + 1 V))}{100}$ × 1000

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

electrical characteristics <u>over</u> recommended operating free-air temperature $V_I = V_{O(typ)} + 1 V$, $I_O = 1 \text{ mA}$, $\overline{EN} = 0 V$, $C_o = 10 \mu F$ (unless otherwise noted) (continued) range,

	P) 70 7	•	U 1 1		, ,			
	PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
	Minimum input voltage for val	id PG	I _{O(PG)} = 300 μA			1.1		V
	Trip threshold voltage		VO decreasing		92		98	%VO
PG (TPS778xx)	Hysteresis voltage		Measured at VO			0.5		%VO
	Output low voltage		V _I = 2.7 V,	I _{O(PG)} = 1 mA		0.15	0.4	V
	Leakage current		V _(PG) = 5 V				1	μA
Input ourrent			<u>EN</u> = 0 V		-1	0	1	
Input current			EN = VI		-1		1	μA
	TD077700		I _O = 750 mA,	TJ = 25°C		260		
Dropout voltage (see Note 4)		TPS77733	I _O = 750 mA,	$T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C$			427	mV
		TD077022	I _O = 750 mA,	TJ = 25°C		260		mv
		1-3//833	I _O = 750 mA,	T _J = -40°C to 125°C			427	

NOTE 4: IN voltage equals VO(typ) - 100 mV; TPS77x01 output voltage set to 3.3 V nominal with external resistor divider. TPS77x15, TPS77x18, and TPS77x25 dropout voltage limited by input voltage range limitations (i.e., TPS77x33 input voltage needs to drop to 3.2 V for purpose of this test).

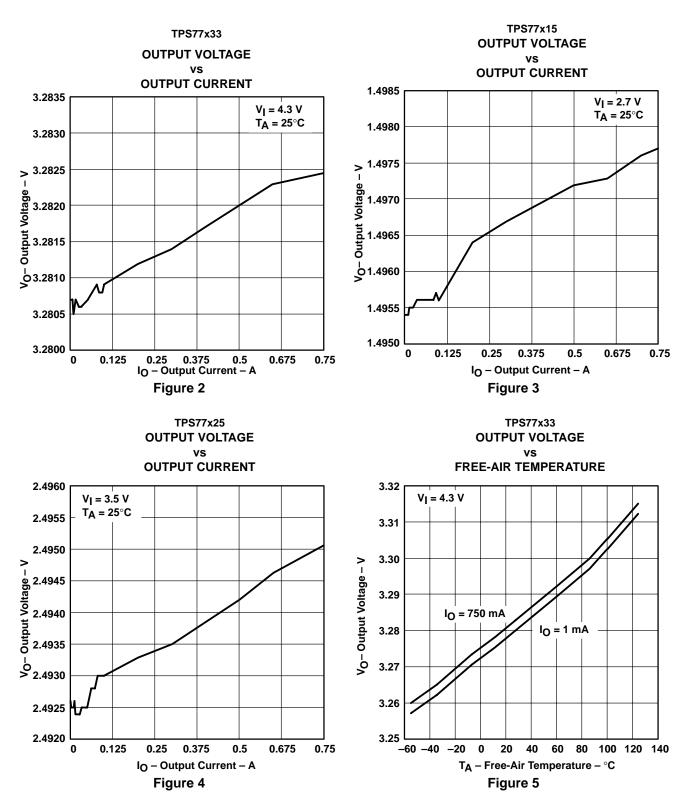
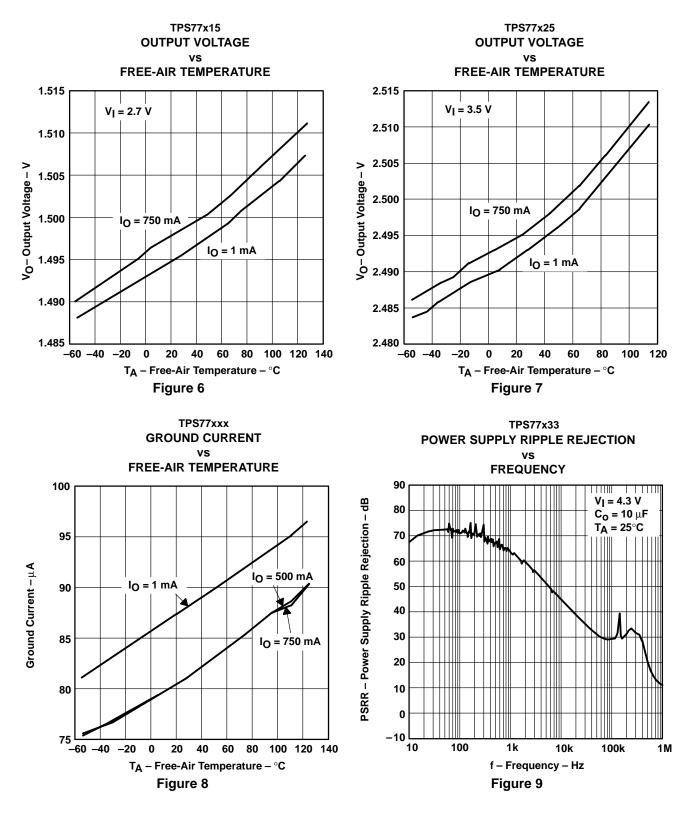
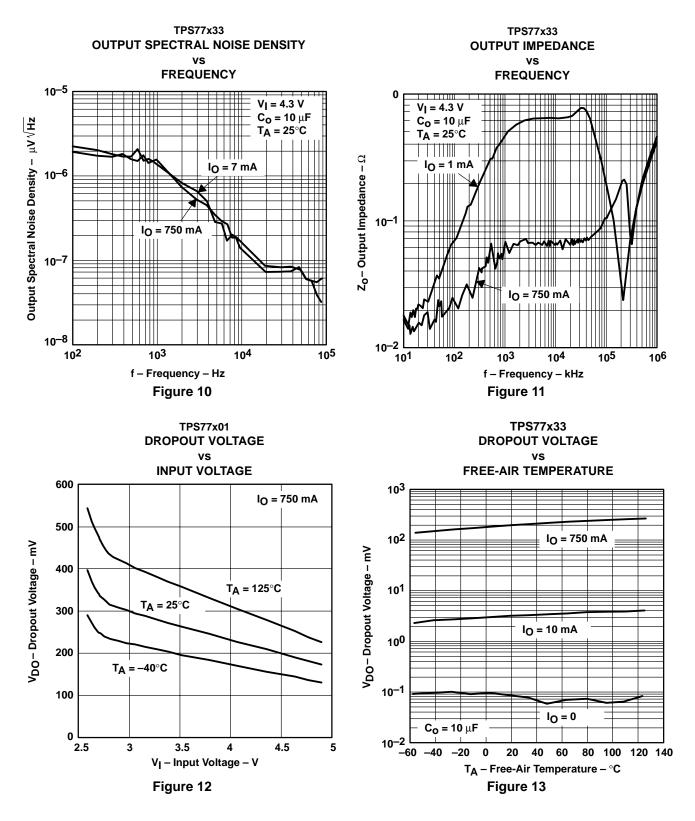

TYPICAL CHARACTERISTICS

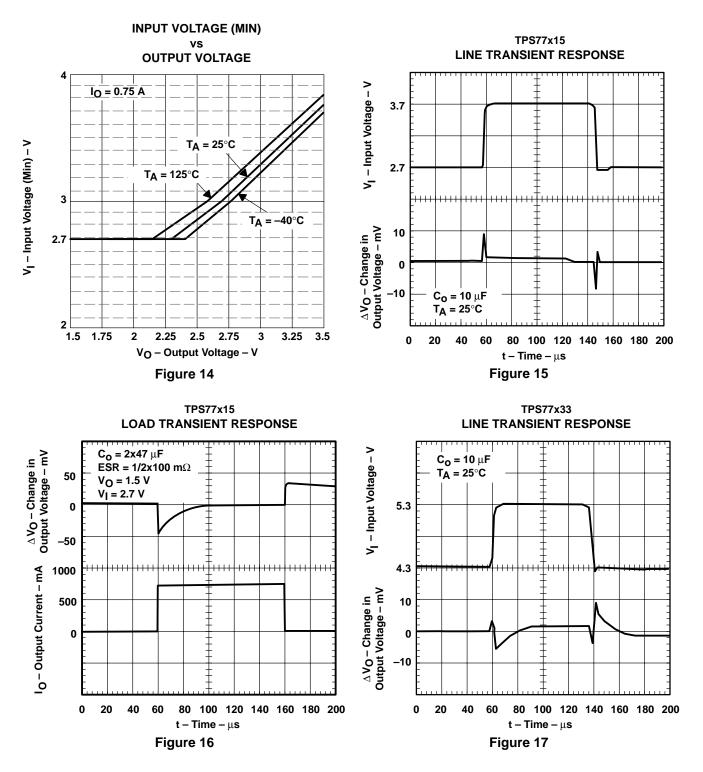
Table of Graphs

			FIGURE
VO	Output voltage	vs Output current	2, 3, 4
	Ouput voltage	vs Free-air temperature	5, 6, 7
	Ground current	vs Free-air temperature	8
	Power supply ripple rejection	vs Frequency	9
	Output spectral noise density	vs Frequency	10
Zo	Output impedance	vs Frequency	11
	Dropout voltage	vs Input voltage	12
VDO	Diopour voltage	vs Free-air temperature	13
	Input voltage (min)	vs Output voltage	14
	Line transient response		15, 17
	Load transient response		16, 18
VO	Output voltage	vs Time	19
	Equivalent series resistance (ESR)	vs Output current	21 – 24


SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002



SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002



SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

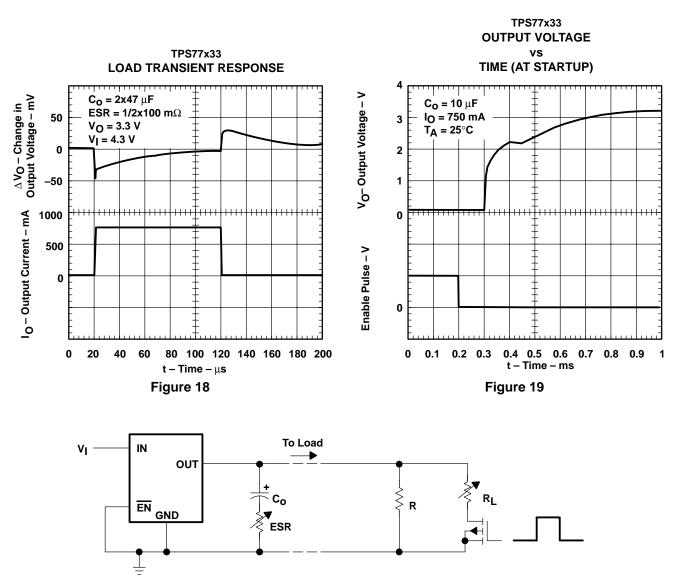
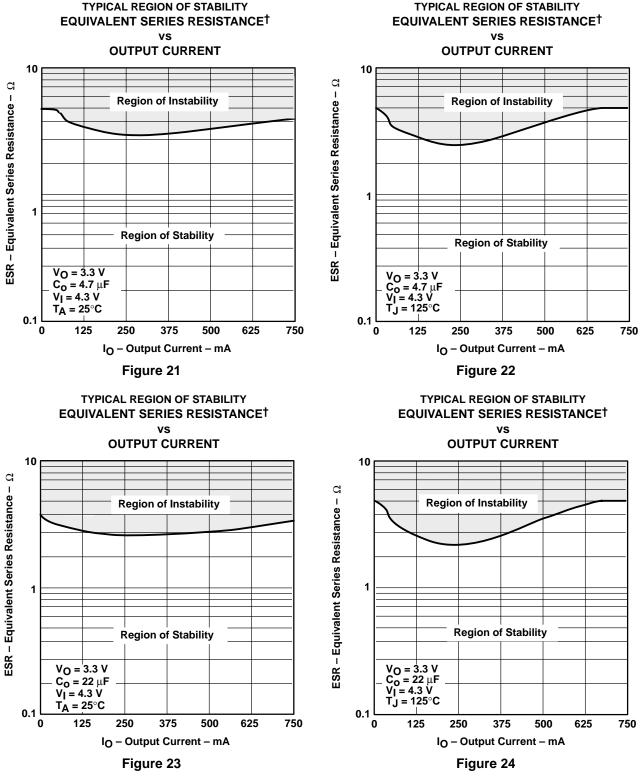



Figure 20. Test Circuit for Typical Regions of Stability (Figures 21 through 24) (Fixed Output Options)

SLVS230E – SEPTEMBER 1999 – REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS

[†] Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C₀.

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

The TPS777xx and TPS778xx families include four fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V, and 3.3 V), and an adjustable regulator, the TPS77x01 (adjustable from 1.5 V to 5.5 V for TPS77701 option and 1.2 V to 5.5 V for TPS77801 option).

device operation

The TPS777xx and TPS778xx feature very low quiescent current, which remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator ($I_B = I_C/\beta$). The TPS777xx and TPS778xx use a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariable over the full load range.

Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in I_B to maintain the load. During power up, this translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS777xx and TPS778xx guiescent currents remain low even when the regulator drops out, eliminating both problems.

The TPS777xx and TPS778xx families also feature a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 2 μ A. If the shutdown feature is not used, \overline{EN} should be tied to ground.

minimum load requirements

The TPS777xx and TPS778xx families are stable even at zero load; no minimum load is required for operation.

FB—pin connection (adjustable version only)

The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option. The output voltage is sensed through a resistor divider network to close the loop as it is shown in Figure 26. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize/avoid noise pickup is essential.

external capacitor requirements

An input capacitor is not usually required; however, a ceramic bypass capacitor (0.047 μ F or larger) improves load transient response and noise rejection if the TPS777xx or TPS778xx are located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

Like all low dropout regulators, the TPS777xx and TPS778xx require an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 10 μ F and the ESR (equivalent series resistance) must be between 50 m Ω and 1.5 Ω . Capacitor values 10 μ F or larger are acceptable, provided the ESR is less than 1.5 Ω. Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described previously.

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

external capacitor requirements (continued)

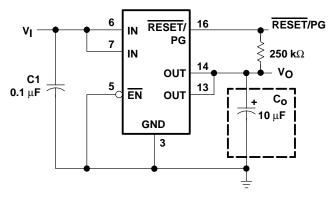


Figure 25. Typical Application Circuit (Fixed Versions)

programming the TPS77x01 adjustable LDO regulator

The output voltage of the TPS77x01 adjustable regulator is programmed using an external resistor divider as shown in Figure 26. The output voltage is calculated using:

$$V_{O} = V_{ref} \times \left(1 + \frac{R1}{R2}\right)$$
(1)

Where:

 $V_{ref} = 1.1834 V typ$ (the internal reference voltage)

Resistors R1 and R2 should be chosen for approximately 10-µA divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 110 k Ω to set the divider current at approximately 10 μ A and then calculate R1 using:

$$R1 = \left(\frac{V_{O}}{V_{ref}} - 1\right) \times R2$$

0.1 μ**F** ;

≥ 1.7 V

IN

EN

TPS77x01 RESET/ **Reset or PG Output** PG **250 k**Ω OUT ۷o Co **R1** FB/NC GND

OUTPUT VOLTAGE
PROGRAMMING GUIDE

(2)

OUTPUT VOLTAGE	R1	R2	UNIT
2.5 V	121	110	kΩ
3.3 V	196	110	kΩ
3.6 V	226	110	kΩ
4.75 V	332	110	kΩ

R2

APPLICATION INFORMATION

reset indicator

The TPS777xx features a RESET output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the RESET output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. RESET can be used to drive power-on reset circuitry or as a low-battery indicator. RESET does not assert itself when the regulated output voltage falls outside the specified 2% tolerance, but instead reports an output voltage low relative to its nominal regulated value (refer to timing diagram for start-up sequence).

power-good indicator

The TPS778xx features a power-good (PG) output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator.

regulator protection

The TPS777xx and TPS778xx PMOS-pass transistors have a built-in back diode that conducts reverse currents when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS777xx and TPS778xx also feature internal current limiting and thermal protection. During normal operation, the TPS777xx and TPS778xx limit output current to approximately 1.7 A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 150°C(typ), thermal-protection circuitry shuts it down. Once the device has cooled below 130°C(typ), regulator operation resumes.

SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

power dissipation and junction temperature

Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, PD(max), and the actual dissipation, PD, which must be less than or equal to P_{D(max)}.

The maximum-power-dissipation limit is determined using the following equation:

$$P_{D(max)} = \frac{T_{J}max - T_{A}}{R_{\theta,JA}}$$

Where:

 T_{I} max is the maximum allowable junction temperature.

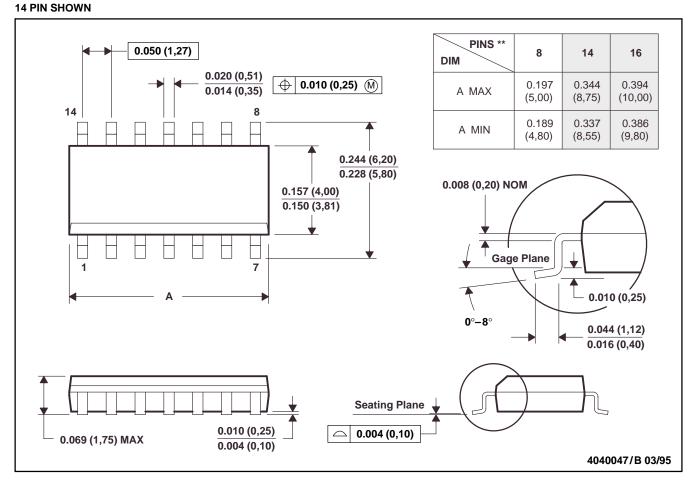
 $R_{\theta JA}$ is the thermal resistance junction-to-ambient for the package, i.e., 176°C/W for the 8-terminal SOIC and 32.6°C/W for the 20-terminal PWP with no airflow.

T_A is the ambient temperature.

The regulator dissipation is calculated using:

$$\mathsf{P}_{\mathsf{D}} = \left(\mathsf{V}_{\mathsf{I}} - \mathsf{V}_{\mathsf{O}}\right) \times \mathsf{I}_{\mathsf{O}}$$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.



SLVS230E - SEPTEMBER 1999 - REVISED FEBRUARY 2002

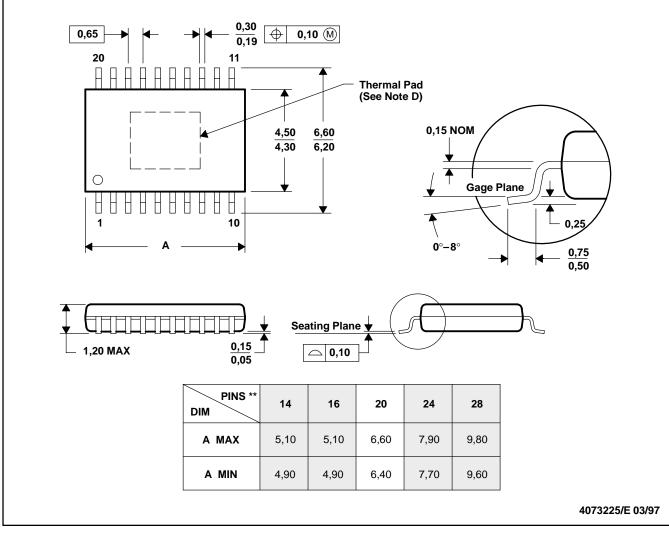
MECHANICAL DATA

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Four center pins are connected to die mount pad.
- E. Falls within JEDEC MS-012


SLVS230E – SEPTEMBER 1999 – REVISED FEBRUARY 2002

MECHANICAL DATA

PWP (R-PDSO-G**)

PowerPAD[™] PLASTIC SMALL-OUTLINE PACKAGE

20-PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusions.

D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.

E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated