

DP24H80/μA24H80 Winchester Disk Servo Preamplifier

General Description

The DP24H80/ μ A24H80 provides termination, gain, and impedance buffering for the servo read head in Winchester disk drives. It is a differential input, differential output design with fixed gain of approximately 100. The bandwidth is guaranteed greater than 30 MHz.

The internal design of the DP24H80/ μ A24H80 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-lead DIP, 10-lead flatpak, or SO-8 package suitable for surface mounting.

Features

- Low input noise voltage
- Wide power supply range (8V to 13V)
- Internal damping resistors (1.3 kΩ)
- Direct replacement for SSI 101A, with improved performance

Connection Diagrams

8-Lead DIP and SO-8 Package

Ceramic DIP
† Order Number μA24H80RC
‡ See NS Package Number J08A

Molded Surface Mount † Order Number μA24H80SC ‡ See NS Package Number M08A

Molded DIP
† Order Number μA24H80TC
‡ See NS Package Number N08E

10-Lead Ceramic Flatpak

TL/F/9408-2

Top View
† Order Number μΑ24H80FC
‡ See NS Package Number F10B

Pin Descriptions

Name	Description of Functions
V+	Positive Differential Supply with Respect to V -
V-	Negative Differential Supply with Respect to V+
+IN	Positive Differential Input
-IN	Negative Differential Input
+ OUT	Positive Differential Output
-OUT	Negative Differential Output
NC	No Connection

 $[\]dagger$ For most current order information, contact your local sales office.

[‡] For current package information, contact product marketing

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range Ceramic DIP and Flatpak Molded DIP and SO-8

-65°C to +175°C -65°C to +150°C

Operating Temperature Range Lead Temperature Ceramic DIP and Flatpak

(Soldering, 60 seconds) Molded DIP and SO-8 (Soldering, 10 seconds)

0°C to +70°C

300 °C

265°C

Internal Power Dissipation (Notes 1 & 2)

1.30W 8L-Ceramic DIP 0.93W 8L-Molded DIP 0.81W **SO-8** 0.79W 10L-Flatpak 15V Supply Voltage **Output Voltage** 15V ±10V Differential Input Voltage

Note 1: T_{J MAX} = 150°C for the Molded DIP and SO-8, and 175°C for the Ceramic DIP and Flatpak.

Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Ceramic DIP at 8.7 mW/°C, the 8L-Molded DIP at 7.5 mW/°C, the SO-8 at 6.5 mW/°C, and the Fiatpak at 5.3 mW/°C.

Electrical Characteristics T_A = 25°C, V_{CC} = 8V to 13.2V, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
G	Gain (Differential)	$R_p = 130\Omega$, $V_{CC} = 12V$	80	100	120	
	(Note 4)	$R_p = 130\Omega, V_{CC} = 12V$ $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$	70		130	
BW	Bandwidth (3.0 dB) (Note 2)	$V_l = 0.5 \text{ mV}_{p-p}$	30	65		MHz
RI	Input Resistance		1040	1300	1560	Ω
Cı	Input Capacitance			3		pF
VI	Input Dynamic Range (Differential)	$R_p = 130\Omega, V_{CC} = 12V$	3			mV _{p-}
ls .	Supply Current	V _{CC} = 12V		20	25	mA
Δ۷Ο	Output Offset (Differential)	$R_p = 130\Omega, R_s = 0\Omega$			200	mW
Vn	Equivalent Input Noise (Notes 2 & 3)	$H_{S} = 0\Omega$, BW = 4 MHz		1.5	2	μ٧
PSRR	Power Supply Rejection Ratio (Note 1)	$R_s = 0\Omega$, $f = 5 MHz$	55	70		dB
ΔG/ΔV	Gain Sensitivity (Supply)	$R_p = 130\Omega$, $\Delta V_{CC} = \pm 10\%$			±0.5	%/\
ΔG/ΔΤ	Gain Sensitivity (Temp)	$R_p = 130\Omega$, $T_A = 25^{\circ}C$ to $+70^{\circ}C$		-0.1		%/°(
CMR	Common Mode Rejection (Note 1) (Input)	f = 5 MHz	60	75		dB

Note 1: Tested at DC, guaranteed at frequency.

Note 2: Guaranteed, but not tested in production.

Note 3: Equivalent input noise (additional specification):

Condition Тур Max Unit μ٧ $BW = 15 MHz^2$ nV/√Hz $BW = 15 MHz^2$ 0.85 1.0

Typical Applications

Note 1: Leads shown for 8-lead DIP.

Note 2: Reg is equivalent load resistance.

R_L • R_{eq} Note 3: Rp =

Note 4: $G = 0.77 R_p$

Where Rp = value from Note 3 (above) in ohms.