
Universal
Debugger Interface

(UDI)
Specification

Version 1.4, Revision 3

Universal Debugger Interface (UDI) Specification
Version 1.4, Revision 3
Last Update: August 17, 1995

© 1991, 1992, 1993, 1994, 1995 by Advanced Micro Devices, Inc. All rights
reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Advanced Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer
Software clause at 252.227-7013. Advanced Micro Devices, Inc., 5204 E. Ben
White Blvd., Austin, TX 78741-7399.

AMD is a registered trademark, and 29K, Am29000, Am29005, Am29030,
Am29035, Am29050, Am29200, Am29205, Am29240, Am29243, Am29245,
and MiniMON29K are trademarks of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.

All other brand and product names are used for identification only and may be
trademarks of their respective companies.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741-7399

Universal Debugger Interface Specification i

Contents

 About the UDI Specification
 UDI Documentation..vii
 About This Specification...vii
 Suggested Reference Material.. ix
 Documentation Conventions... x

Chapter 1 Introduction to the Universal Debugger
Interface (UDI)
 UDI Terms..1-1
 Problems UDI Solves...1-1
 UDI Concepts..1-2

Chapter 2 UDI Services Overview
 UDI Session Management..2-1
 Process Management...2-2
 Resource Access..2-5
 Programmed I/O..2-5
 Transparent Mode..2-6
 Using UDIDFE calls in Transparent Mode...2-9
 Symbolic Mapping...2-9
 TIP Access to DFE Screen I/O...2-10
 Future Groups..2-11
 Recommended Usage...2-11

Chapter 3 UDI Services
 Return Codes...3-1
 Optional versus Required Services...3-1

Contents

ii Universal Debugger Interface Specification

 Values Reserved for Vendor–Specific Use..3-4
 UDI Type Definitions..3-4
 UDICapabilities...3-11
 UDIClearBreakpoint..3-13
 UDIConnect...3-14
 UDICopy...3-17
 UDICreateProcess..3-18
 UDIDestroyProcess..3-19
 UDIDisconnect..3-20
 UDIEnumerateTIPs...3-21
 UDIExecute...3-22
 UDIFind..3-23
 UDIGetErrorMessage..3-24
 UDIGetStderr..3-25
 UDIGetStdout..3-26
 UDIGetTargetConfig...3-27
 UDIGetTrans...3-28
 UDIInitializeProcess..3-30
 UDIPutStdin..3-32
 UDIPutTrans ...3-33
 UDIQueryBreakpoint...3-34
 UDIRead..3-36
 UDISetBreakpoint...3-37
 UDISetCurrentConnection...3-40
 UDISetCurrentProcess...3-41
 UDIStdinMode..3-42
 UDIStep...3-43
 UDIStop..3-44
 UDITransMode..3-45
 UDIWait..3-46
 UDIWrite...3-50
 UDIDFE calls..3-51
 UDIDFEEndTIPIO..3-52
 UDIDFEEvalExpression..3-53
 UDIDFEEvalResource...3-55
 UDIDFEGetInput..3-56
 UDIDFEPutOutput..3-58

Chapter 4 UDI IPC Methods for DOS Hosts
 Establishing the Connection ..4-2
 General Call Interface Information ..4-3
 Typedefs of UDI Parameters..4-4

Contents

Universal Debugger Interface Specification iii

 Specific Calls and Parameters ..4-4
 UDICapabilities...4-6
 UDIClearBreakpoint..4-7
 UDIConnect...4-8
 UDICopy...4-12
 UDICreateProcess..4-13
 UDIDestroyProcess..4-14
 UDIDisconnect..4-15
 UDIExecute...4-16
 UDIFind..4-17
 UDIGetErrorMessage..4-18
 UDIGetStderr..4-19
 UDIGetStdout..4-20
 UDIGetTargetConfig...4-21
 UDIGetTrans...4-22
 UDIInitializeProcess..4-23
 UDIPutStdin..4-24
 UDIPutTrans ...4-25
 UDIQueryBreakpoint...4-26
 UDIRead..4-27
 UDISetBreakpoint...4-28
 UDISetCurrentProcess...4-29
 UDIStdinMode..4-30
 UDIStep...4-31
 UDIStop..4-32
 UDITransMode..4-33
 UDIWait..4-34
 UDIWrite...4-35
 UDIDFE calls..4-36
 UDIDFEEndTIPIO..4-37
 UDIDFEEvalExpression..4-38
 UDIDFEEvalResource...4-39
 UDIDFEGetInput..4-40
 UDIDFEPutOutput..4-41

Chapter 5 UDI IPC Methods for UNIX Hosts
 Establishing the Connection ..5-1
 General Message Format Information ..5-2
 Endian Type of Fields in Messages..5-4
 Request and Response Codes...5-5
 Signals from the DFE to the TIP..5-7
 Specific Message Formats..5-8

Contents

iv Universal Debugger Interface Specification

 UDICapabilities...5-9
 UDIClearBreakpoint..5-11
 UDIConnect...5-12
 UDICopy...5-15
 UDICreateProcess..5-16
 UDIDestroyProcess..5-17
 UDIDisconnect..5-18
 UDIExecute...5-19
 UDIFind..5-20
 UDIGetErrorMessage..5-22
 UDIGetStderr..5-23
 UDIGetStdout..5-24
 UDIGetTargetConfig...5-25
 UDIGetTrans...5-26
 UDIInitializeProcess..5-27
 UDIPutStdin..5-28
 UDIPutTrans ...5-29
 UDIQueryBreakpoint...5-30
 UDIRead..5-31
 UDISetBreakpoint...5-32
 UDISetCurrentProcess...5-33
 UDIStdinMode..5-34
 UDIStep...5-35
 UDIWait..5-36
 UDIWrite...5-37
 UDIDFE Messages..5-38
 UDIDFEEndTIPIO..5-38
 UDIDFEEvalExpression..5-39
 UDIDFEEvalResource...5-40
 UDIDFEGetInput..5-40
 UDIDFEPutOutput..5-41

Chapter 6 UDI Developer’s Toolkit
 The UDI Procedural Interface and the Sample IPC Code..............................6-2
 Directory Structure of the Toolkit..6-4
 The Sample IPC Sources in src/udi ..6-6
 Product and Company Codes Used by UDICapabilities................................6-9
 Notes for DFE Developers..6-10
 Notes for TIP Developers...6-11
 Notes for DOS Development..6-12
 Notes for UNIX Development..6-14

Contents

Universal Debugger Interface Specification v

Appendix A UDI Error Numbers

Appendix B UDI Configuration Files
 UDI Configuration Files for MS–DOS Hosts... B-1
 UDI Configuration Files for UNIX Hosts.. B-2

Appendix C 29K Family UDI Resource Spaces

Appendix D Compatibility of UDI 1.4, 1.3, and 1.2
DFEs and TIPs

Universal Debugger Interface Specification vi

 About the UDI Specification

The Universal Debugger Interface (UDI) was created to provide an interface
between a debugger and a target which allows the two to be developed,
implemented, maintained, and shipped separately. In this specification, we
refer to these two separately built pieces as the Debugger Front End (DFE) and
the Target Interface Process (TIP). UDI allows any DFE and TIP to
communicate using a set of functions called UDI services. Figure 0–1
illustrates the communication which occurs between DFEs and TIPs through
UDI.

The UDI specification defines:

• A C language procedural interface for each of the UDI services and
provides a description of the semantics of the service and each of its
parameters

• Inter–Process Communication (IPC) methods which provide the message
format for each UDI service and the message passing mechanism for a
particular host or operating system environment

The procedural interface and the semantics of both the services and the
parameters are the same for all IPC methods. The procedural interface is
defined in Chapters 2 and 3 of this specification.

UDI IPC methods have been defined for both DOS and UNIX hosts. These IPC
methods are described in Chapters 4 and 5 of this specification.

Introduction to the Universal Debugger Interface (UDI)

Universal Debugger Interface Specification vii

 UDI Documentation

This documentation is written for programmers using UDI to create portable
debuggers and target interface processes (TIPs). Anyone using UDI should
read Chapter 1 through Chapter 3.

AMD supplies sample IPC implementation code which maps the UDI
procedural interface to the IPC mechanism for the following host
environments: DOS IPC on DOS real–mode hosts, UNIX IPC on UNIX big–
endian hosts. Read Chapter 6 concerning the UDI Developer’s Toolkit if you
intend to use the IPC sample code provided. (If you plan to use the sample
code without modifying it, there is no need to read Chapters 4 and 5.)

If you want to modify the sample IPC code or port it to a different
environment, or if you simply want to understand more about IPC methods for
DOS hosts, read Chapter 4. For information on IPC methods for UNIX hosts,
read Chapter 5.

 About This Specification

• Chapter 1: “Introduction” describes the fundamental concepts behind the
development of UDI.

• Chapter 2: “Services Overview” describes the services available with UDI.

• Chapter 3: “UDI Services” documents all UDI services.

• Chapter 4: “UDI IPC Methods for DOS Hosts” specifies how UDI DFEs
and TIPs communicate using the DOS IPC mechanism.

• Chapter 5: “UDI IPC Methods for UNIX Hosts” specifies how UDI DFEs
and TIPs communicate using the socket–based IPC mechanism.

• Chapter 6: “UDI Developer’s Toolkit” describes the toolkit available for
development of UDI–compliant DFEs or TIPs.

• Appendix A: “UDI Errors” lists the error codes that UDI–conforming
services may return.

• Appendix B: “UDI Configuration Files” outlines the format of the UDI
configuration files for MS–DOS and UNIX hosts.

Introduction to the Universal Debugger Interface (UDI)

viii Universal Debugger Interface Specification

• Appendix C: “29K Family UDI Resource Spaces” describes the resource
spaces that are predefined when UDI is applied to targets using the AMD
29K Family of microprocessors.

• Appendix D: “Compatibility of UDI 1.4, 1.3, and 1.2 DFEs and TIPs” lists
the precautions and restrictions involved with interoperations between
TIPs and DFEs from different versions of UDI.

Introduction to the Universal Debugger Interface (UDI)

Universal Debugger Interface Specification ix

 Suggested Reference Material

The following AMD documents may be of interest:

• Am29000t and Am29005t User’s Manual and Data Sheet
Advanced Micro Devices, order number 16914A.

• Am29030t and Am29035t Microprocessors User’s Manual and Data
Sheet
Advanced Micro Devices, order number 15723B

• Am29050t Microprocessor User’s Manual
Advanced Micro Devices, order number 14778A

• Am29050t Data Sheet
Advanced Micro Devices, order number 15039A.

• Am29200t RISC Microcontroller User’s Manual and Data Sheet
Advanced Micro Devices, order number 16362B

• Am29205t RISC Microcontroller Data Sheet
Advanced Micro Devices, order number 17198A

• Am29240t , Am29245t , and Am29243t RISC Microcontrollers
User’s Manual and Data Sheet
Advanced Micro Devices, order number 17741A

Introduction to the Universal Debugger Interface (UDI)

x Universal Debugger Interface Specification

 Documentation Conventions

The Universal Debugger Interface (UDI) Specification uses the conventions
shown in Table 0–1 (unless otherwise noted). These same conventions are used
in all the 29K Family support product manuals.

Symbol Usage

Boldface Indicates that characters must be entered
exactly as shown, except that the alphabetic case is
only significant when indicated.

Italic Indicates a descriptive term to be replaced with a
user–specified term.

Typewriter face Indicates computer text input or output in an
example or listing.

[] Encloses an optional argument. To include the
information described within the brackets, type
only the arguments, not the brackets themselves.

{ } Encloses a required argument. To include the
information described within the braces, type only
the arguments, not the braces themselves.

.. Indicates an inclusive range.

... Indicates that a term can be repeated.

| Separates alternate choices in a list — only one of
the choices can be entered.

:= Indicates that the terms on either side of the sign
are equivalent.

Table 1. Notational Conventions

Universal Debugger Interface Specification 1-1

Chapter 1

1 Introduction to the Universal Debugger Interface (UDI)

This chapter describes the terms used in this specification to describe various
parts of the overall solution the Universal Debugger Interface (UDI) provides,
the problems that UDI attempts to solve, and the fundamental concepts used to
solve those problems.

 UDI Terms

This specification refers to the debugger as the Debugger Front End (DFE).
Early conversations about UDI revolved around splitting the debugger into a
front–end (user interface) and the target interface (execution interface). This
target interface later became known as the target interface process (TIP).
Referring to it as a process implied that the TIP was not linked with the DFE
into a single executable. UDI exclusively specifies the interface between the
DFE and the TIP. The term target refers to the actual execution vehicle that
runs the program under control of the DFE, via the TIP. Only the TIP knows
how to control the target.

Host refers to the computer system on which the DFE resides. Usually, the TIP
also resides on the host, but the communications method defined for some
hosts may allow the TIP to reside on a different computer system. Throughout
this document, we assume the TIP and DFE run on the same computer (i.e.,
the host).

 Problems UDI Solves

In many cases, a company provides multiple debuggers, targets, or both. The
problem such a company faces is that any time an update is made to a
complicated debugger, it must be rebuilt with the code that allows it to
communicate with each of the possible targets. All debugger/target
combinations must be retested and updates supplied to all affected customers.

Additionally, end customers of embedded systems inherently want to use
debuggers with their custom hardware. While in–circuit emulators have been
one solution to this problem in the lab, many customers would like to attach a
debugger to their hardware without an in–circuit emulator. Often, that
debugger does not support the only communications path to the hardware.

Introduction to the Universal Debugger Interface (UDI)

1-2 Universal Debugger Interface Specification

Finally, sometimes it is desirable to mix debuggers from one company with
targets from another. For example, an emulator company may not be able to
justify supporting a little–used debugger (or vice versa), but a customer may
decide that such a configuration is best.

The fundamental goal of UDI is to provide an interface between a debugger
and its target so that the two can be developed, implemented, maintained, and
shipped separately. It should be possible to use any UDI–compliant debugger
with any UDI–compliant target. Also, end users should be able to develop
either custom debuggers for use with standard targets or, more probably,
custom targets for use with standard debuggers.

 UDI Concepts

Most of the companies involved in specifying UDI are concerned with cross–
debugging, that is, using a computer of one type to debug a system of a
different type. Cross–debugging involves communication between the
computer that the debugger runs on (the host) and the system that the program
the debugger is debugging runs on (the target). Unfortunately, there can be no
strict standards for this communications path. For example, some targets
communicate via the host computer’s bus, some via RS–232, some via
Ethernet, some via SCSI, and some have no communications path at all
(simulators).

UDI works by providing interprocess communication (IPC) methods, which
allow separately built DFEs and TIPs to communicate. The IPC method
defines the basic communication method and the message format for each UDI
service.

This specification describes a procedural interface for each of the UDI services
and defines the semantics of the service and each of its parameters. The
procedural interface and the semantics of the services are the same for all IPC
methods.

UDI IPC methods have been defined for the following hosts:

• DOS

• UNIX sockets

The UDI IPC methods are defined in Chapters 4 and 5.

AMD provides sample code that maps the procedural interface defined in this
specification to either of the two UDI IPC methods listed above. This sample
code is described in Chapter 6.

Introduction to the Universal Debugger Interface (UDI)

Universal Debugger Interface Specification 1-3

UDI attempts to solve some problems that at first may not be obvious, for
example:

• Using a single debugger to debug multiple processes running on a single
target processor

• Using a single debugger to debug processes running on multiple target
processors

• Using a target capable of supporting multiple debuggers

UDI should support a debugger that attaches to a running target. In–circuit
emulators usually support advanced logic analysis features and an attempt is
made to abstract a few of these capabilities. Finally, UDI should be usable in a
more conventional non–cross, non–remote environment.

One issue that UDI does not address is target access to host resources (other
than simple terminal access implemented in the programmed I/O service
group). Because the TIP resides on the same host as the DFE, the TIP is
charged with managing host resource access from the target. Consequently,
UDI does not have to abstract wide operating system services across the
interface.

Universal Debugger Interface Specification 2-1

Chapter 2

2 UDI Services Overview

This chapter provides an overview of the services available with UDI.
Technically, the TIP and the DFE execute simultaneously. However,
debugging is usually an interactive process in which the DFE is in control of
the execution. Because of this, the majority of the UDI services are functions
that are available to the DFE and implemented by the TIP. Starting with UDI
1.3, a few new services were added in which the TIP calls back to the DFE.
These callback services can only be called by the TIP while the TIP is in the
process of servicing a UDI request from the DFE, not while the UDI
connection is quiet. In addition, the DFE, while servicing a UDI DFE callback
service, may occasionally need to call another UDI service to the TIP, thus
nesting one level further. Further nesting is theoretically possible, but is
unlikely.

All services, whether DFE to TIP or TIP to DFE, return as soon as the
requested information is available or the services are performed (except the
special case of UDIWait). Not all services or variations of parameters are
supported by all TIPs, while some functions are supported by every TIP. See
Chapter 3 for implementation requirements and options.

 UDI Session Management

Session management establishes DFE–to–TIP connections. The methods
support one–to–one, one–to–many, many–to–one, and many–to–many DFE–
to–TIP relationships. Some TIP configuration issues are handled here as well.

UDI Services Overview

2-2 Universal Debugger Interface Specification

Services in this group and their functions are:

UDIConnect Establishes initial connection.

UDIDisconnect Tears down a connection and frees the TIP.

UDISetCurrentConnection Used only by DFEs to identify multiple
connections. All other UDI services are
performed against the currently connected
TIP.

UDICapabilities Provides information between the DFE and
the TIP.

UDIEnumerateTIPs Used by DFEs to obtain a list of TIPs from the
TIP ID file to present to the user.

TIP configuration issues such as the name of the TIP program and TIP startup
parameters are specified in the configuration string passed to UDIConnect by
the DFE. The interpretation of the configuration string is specific to a
particular IPC method.

 Process Management

Process management in UDI accommodates a wide range of DFE and TIP
design goals. Some TIPs are best thought of as raw machine debuggers,
providing complete access to all of the target’s resources. Simulators and
emulators are typically raw machine debuggers. Other TIPs provide access
only to resources created explicitly for a process or distinguish between raw
mode and a program debug mode via some other means. Similarly, some DFEs
are designed to be raw machine debuggers and others are better thought of as
program debuggers.

UDI uses the services in this section to allow access to either a single process
or to the raw machine. The distinction is made by the value of the current
process. When the current process is the special value, UDIProcessProcessor,
then the resources accessed will be those of the raw machine. Note also that a
UDIInitializeProcess request, when the current process is
UDIProcessProcessor, is a request to reset the entire target system (or come
as close as possible to a reset). Whether the TIP allows access to the raw
machine is, of course, something the TIP decides.

UDI Services Overview

Universal Debugger Interface Specification 2-3

Most debugging occurs in the context of a process. DFEs can create, initialize,
and destroy processes. Processes can be executed and stepped, and breakpoints
can be set within them. The services available to DFEs to control processes
are:

UDICreateProcess Is called when a DFE starts up a new
connection. UDICreateProcess also allows
multi–tasking TIPs to create a new process
context.

UDISetCurrentProcess Identifies to the TIP which of several possible
processes the rest of the UDI services should
apply against.

UDIDestroyProcess Indicates that debugging of the current process
is finished.

UDIInitializeProcess Restarts a process already established. Any
information the TIP maintains about the
process (such as pass counts remaining on
breakpoints) should be re–initialized when this
service is invoked.

UDIExecute Continues execution of the current process and
returns when execution has been started. (It
does not wait until execution is finished.)
Execution is concurrent with DFE execution.

UDIStep Executes one or more single steps of the
current process, possibly excluding calls to
other functions and/or traps.

UDIStop Stops execution of the current process
regardless of where it is.

UDIWait Is called when the DFE requests the current
state of TIP execution.

UDISetBreakpoint Establishes a breakpoint in the TIP.

UDIClearBreakpoint Clears a breakpoint. If Breakpoint ID = 0,
clears all breakpoints.

UDIQueryBreakpoint Determines the currently active breakpoints.

To provide the broadest possible range of connectivity between various DFEs
and TIPs, UDI defines a specific set of rules for process management.

UDI Services Overview

2-4 Universal Debugger Interface Specification

When a DFE starts up a new connection, it should always call
UDICreateProcess. TIPs that support only raw machine debugging (type 0
TIPs) return a process ID (PId) of UDIProcessProcessor. TIPs that support
only program debugging (type 1 TIPs) must return a different PId. TIPs that
differentiate between program and machine resources (type 2 TIPs) should also
return a PId other than UDIProcessProcessor. TIPs that return process
UDIProcessProcessor in response to a UDICreate call can still support OS
services. Note, also, that UDICreateProcess has the side effect of setting the
current process as the one created.

In most cases, the DFE downloads the program to be debugged. In all cases,
the program to be debugged is downloaded into a process space compatible
with the TIP. If the current process is UDIProcessProcessor, the DFE simply
sets the PC to the downloaded program's entry point and is ready to execute.
(A UDIInitializeProcess when the process is UDIProcessProcessor performs
a target reset).

 If the current process is not UDIProcessProcessor, then the DFE should call
UDIInitializeProcess. The TIP initializes the process so that the next
instruction to be executed is the first instruction in the process (i.e., the entry
point). The TIP determines what happens to any other UDIInitializeProcess
parameters.

DFEs that debug programs rather than the raw machine can now inspect the
PC (using UDI PC space). If the PC is not at the entry point of the program,
the DFE sets a breakpoint at the entry point and executes up to it. Otherwise,
stepping the TIP may result in executing one or more instructions that the DFE
did not download, and this may confuse the DFE.

As stated earlier, UDICreateProcess also allows multi–tasking TIPs to create
a new process context. For TIPs that allow multiple processes, but do not allow
run–time creation of processes, this call would still be used to determine
whether a process can be debugged. A process is executed in the context of an
operating environment. When UDIInitializeProcess is called, command line
arguments for the process are passed. The TIP determines what to do with the
command line arguments.

Because UDIStep may possibly exclude calls to other functions and/or traps,
stepping may take a significant amount of time. As a result, UDIStep, like
UDIExecute, returns as soon as stepping has begun. Both UDIStep and
UDIExecute stop when a breakpoint is hit, when the TIP can no longer
continue executing the process, or when UDIStop is called.

UDI Services Overview

Universal Debugger Interface Specification 2-5

For some TIPs on some hosts (for example, a DOS machine with a simulator
for a TIP), all execution occurs when the DFE calls UDIWait . Consequently, a
DFE may not assume that any progress has been made by the sequence:
UDIExecute, long delay, UDIStop (and a DFE must call UDIWait to ensure
progress). If the process is stopped, UDIWait returns the reason that the
process stopped.

 Resource Access

The services in this group provide read and write access to target resources.
Services are available to move from host to target, to move from target to host,
to move from target to target, and to search target memory. A simple search of
target memory capability is also available.

The resource access functions are:

UDIRead and UDIWrite Provide access to TIP resources
1
, including

memory and registers.

UDICopy Produces target copies between resources.
This can be used to copy or fill memory by use
of the direction parameter.

UDIFind Tells the TIP to report the occurrences of a
specified pattern in a given range of memory
or other resource. A pattern mask can be used
to further qualify the search.

 Programmed I/O

Services in this group allow the user to communicate directly with a program
being debugged. Because the DFE ideally has complete control of the user
interface, while the TIP provides all target operating system services, the UDI
services in this group allow the DFE to manage the user interface for the
process.

1 Some TIPs may include additional resources, such as queues or semaphores associated with
an operating system, or special hardware features associated with an emulator. A DFE must
be TIP–aware to use these additional resources.

UDI Services Overview

2-6 Universal Debugger Interface Specification

The programmed I/O functions are:

UDIGetStdout Is invoked when UDIWait returns and indicates
that access to stdout is needed. The DFE then
performs I/O for the TIP.

UDIGetStderr Is invoked when UDIWait returns and indicates
that access to stderr is needed. The DFE then
performs I/O for the TIP.

UDIPutStdin Is invoked when UDIWait returns and indicates
that access to stdin is needed. The DFE then
performs I/O for the TIP.

UDIStdinMode Changes the mode by which characters are fetched
from the user.

When UDIWait returns, it may indicate that access to standard input, standard
output, or standard error is needed. The DFE then invokes the appropriate UDI
service and performs the I/O for the TIP. Once the I/O is completed, the TIP
automatically continues execution (if it has stopped) and the DFE should again
call UDIWait .

UDIStdinMode changes the mode by which characters are fetched from the
user. Echoed and non–echoed input are supported. Line buffered and
unbuffered input are also supported. In the absence of a TIP requesting a
change, (which can occur only through UDIWait), the mode of input reverts to
line buffered and echoed each time UDIInitializeProcess is called.

Since programmed I/O provides support for standard I/O services, I/O
redirection can be performed by the DFE. Note, however, that this does not
prevent the TIP from performing I/O redirection. In general, a DFE should
support redirection through its user interface, rather than by interpreting the
command line of the program being debugged. This helps avoid placing
unexpected constraints on the command line of a target operating system.

 Transparent Mode

This group of services allows DFEs and TIPs to support more functionality
than the other groups of services provide. For example, if a target supports
profiling in one of its many forms, none of which are directly supported by
other UDI service groups, transparent mode can be used for communication.

UDI Services Overview

Universal Debugger Interface Specification 2-7

DFEs can provide access to these extended TIP services using a simple
terminal emulator written using transparent mode services. This set of
functions is arranged so that the TIP can manage the I/O process with the user.

In general, a DFE may invoke transparent mode in one of two ways:

• interactive transparent mode (during which the TIP's prompt is displayed
and the user can enter any number of commands),

• immediate transparent mode (in which a single command is presented to
the TIP and the command's output is presented to the user).

The distinctions between interactive mode and immediate mode are handled
entirely on the DFE side. This is possible because the DFE can distinguish the
TIP's prompt output from the other TIP output. The code examples at the end
of this chapter show examples for both interactive transparent mode and
immediate transparent mode.

When a DFE leaves transparent mode, the DFE cannot know what changes
have occurred in the target state and thus should flush any cached values that it
has read from the target, poll the target state, query breakpoints, etc.

UDI Services Overview

2-8 Universal Debugger Interface Specification

The transparent mode functions are:

UDIGetTrans The DFE calls UDIGetTrans to find out if the TIP has
any output and the TIP also uses special returns from
UDIGetTrans to indicate:

• when the TIP requires input but is not at the prompt
(UDIErrorTransInputNeeded)

• when the TIP is returning the prompt
(UDIErrorTransPrompt). A TIP is not required to
have a prompt but if it has one it may only be
returned

• with UDIErrorTransPrompt .

• when the TIP is at the prompt waiting for input
(UDIErrorTransDone)

• when the TIP has parsed the transparent mode
"exit" command. (UDIErrorTransExit).

• when the TIP requires the DFE to change input
mode (UDIErrorTransModeX).

In general, the DFE must continue calling
UDIGetTrans until the TIP indicates (through the
UDIGetTrans return code) that the DFE call another
transparent function.

The DFE can allow the user to exit from the transparent
mode session only when the TIP returns
UDIErrorTransDone or UDIErrorTransExit . A DFE
may call UDIStop during transparent mode and the TIP,
on receiving UDIStop, should try to clean up and return
UDIErrorTransDone as soon as possible, but the DFE
is required to continue calling UDIGetTrans until
UDIErrorTransDone or UDIErrorTransExit is
returned.

UDIPutTrans If the TIP returns UDIErrorTransInputNeeded , the
DFE is required to acquire input from the user and call
UDIPutTrans , sending one block of data to the TIP.
Then the DFE should resume calling UDIGetTrans.

If the TIP returns UDIErrorTransDone , the TIP is at
the prompt and the DFE is allowed to leave transparent

UDI Services Overview

Universal Debugger Interface Specification 2-9

mode. If the DFE does not wish to leave transparent
mode, it must acquire input from the user and call
UDIPutTrans , as described above.

A special usage of UDIPutTrans (called with a
Count=0) tells the TIP that the DFE wants to get the
prompt from the TIP on the next UDIGetTrans call. If
the TIP has a prompt, it returns
UDIErrorTransPrompt to UDIPutTrans and then
returns the actual prompt on the next UDIGetTrans call
(again with the return UDIErrorTransPrompt). If the
TIP has no prompt, it returns UDIErrorTransDone to
the UDIPutTrans (Count=0) call. If the TIP is not in a
state where a prompt is possible, i.e., if the TIP is not
between commands, etc., then it returns
UDIErrorCantAccept to the UDIPutTrans (Count=0)
call.

UDITransMode If UDIGetTrans requests a call to UDITransMode, the
DFE must call UDITransMode, the TIP will return the
new mode that it wishes the DFE to use and then the
DFE must resume calling UDIGetTrans.

 Using UDIDFE calls in Transparent Mode

A TIP is allowed to use UDIDFEGetInput and UDIDFEPutOutput with
IOType UDIIOTypeTip xxx when servicing transparent mode calls with the
exception that the prompt, if any, can only be returned by UDIGetTrans.
Other UDIDFExxx calls may be used by the TIP without restriction during
transparent mode.

Because the TIP may mix UDIDFEGetInput and UDIDFEPutOutput with
IOType UDIIOTypeTip xxx with transparent mode handling, the DFE is
required to treat transparent mode I/O and UDIIOTypeTip xxx I/O in a similar
manner.

 Symbolic Mapping

The functions in this group, new with version 1.3 of UDI, are implemented by
the DFE and called by the TIP. Generally, these functions would be used by a
TIP that is operating in transparent mode.

UDI Services Overview

2-10 Universal Debugger Interface Specification

It may be necessary for a TIP to allow a user to include symbolic expressions
in the transparent mode commands. The TIP can then ask the DFE (which
controls the symbol table) to map an expression to a value or an address.
Alternatively, the TIP, instead of displaying a raw address to the user in the
output of a transparent mode command, may need to map that raw address to a
symbolic expression. Again, only the DFE can provide this mapping. The TIP
asks the DFE to perform these services by “calling back” to the DFE.

The DFE may require TIP services (such as UDIRead) during its evaluation
and it is legal for the DFE to make any UDI call before returning the answer to
the TIP, as long as further transparent mode calls are avoided.

The symbolic mapping functions are:

UDIDFEEvalExpression Evaluates a symbolic expression returning
either a value or a resource address.

UDIDFEEvalResource Maps a resource address to an ASCII string of
the form “symbolname” or “symbolname +
offset”.

 TIP Access to DFE Screen I/O

This set of functions, new with version 1.3 of UDI, is implemented by the DFE
and called by the TIP. As with all UDI DFE callback functions, the TIP is only
allowed to call these functions while in the process of handling a request from
the DFE.

The DFE screen I/O services are:

UDIDFEPutOutput Directs output to the DFE screen. An IOType
parameter indicates whether the output is from the
TIP itself or from a running target program.

UDIDFEGetInput Gets input from the DFE, and again, an IOType
parameter indicates whether the input is for the TIP
itself or for the target program.

UDIDFEEndTIPIO Provides a way for the TIP to indicate a logical
boundary for a set of TIP–directed (as opposed to
target–directed) I/O requests before returning from
the original UDI request made by the DFE.

Possible uses of the functions is this group are:

UDI Services Overview

Universal Debugger Interface Specification 2-11

• The TIP can present information to and get a response from the user to
determine how to proceed while handling a UDI request. Some parts of a
transparent mode session can be handled by using the
UDIDFEPutOutput and UDIDFEGetInput functions with IOType =
IOTypeTIPxxx. (The section on Transparent mode describes when
UDIDFEPutOutput and UDIDFEGetInput calls are allowed to be used
during transparent mode).

• The TIP can feed output from a running target program to the DFE or get
input from the DFE on behalf of a running target program. In this manner,
these calls are an alternative to returning UDIStdOutReady or
UDIStdInNeeded from UDIWait and waiting for the DFE to call
UDIGetStdout, UDIGetStderr , or UDIPutStdin .

 Future Groups

This version of UDI supports basic debugging. Not all of the functionality of
some TIPs will be apparent in the current UDI specification. The IPC
mechanisms defined for each host are designed to support additional services
without invalidating the existing set.

 Recommended Usage

The following is an outline of some important sections of code present in most
DFEs. It is intended to help implementors understand the relationship between
various services. (Error handling code is not shown.) The code shown is for a
simple, single–process program debugger.

 Startup:

UDIConnect() /* Establish connection with the TIP. */
UDIWait() /* See if the connection is a
reconnection to
 * a running target. */
UDICreateProcess() /* Simple TIPs return
UDIProcessProcessor,
 * but the DFE does not care. */
UDIWrite()/UDICopy() /* As necessary to download the program,
if

 * required. */
/* At this point control can be given to the user to examine or
 * modify memory, set breakpoints, and so on. */

UDI Services Overview

2-12 Universal Debugger Interface Specification

 To begin or restart execution from the entry point:

if (currentprocess == UDIProcessProcessor) {
UDIWrite(PC); /* set PC manually */

}
else {

UDIInitializeProcess() /* To pass any arguments to the
program,

 * establish the entry point,
etc. */

UDIRead(PC); /* to check where PC is after
 * UDIInitializeProcess */

if (PC not at EntryPoint) {
UDISetBreakPoint (EntryPoint);
UDIExecute();
UDIWait(); /* Until breakpoint is hit */

}
}

UDIExecute()/UDIStep() /* As required by the user’s command. */

 While executing:

After issuing a UDIExecute() or UDIStep() request, the DFE should execute
UDIWait() .

switch(StopReason){
case UDIStdOutReady:
case UDIStderrReady:
case UDIStdInNeeded:
case UDIStdinModeX: /* Perform requested I/O operation,

 * then loop back to calling UDIWait().
*/

default: /* Report reason for stopping to user. Do
 * whatever the user wants. */
}

 Shutdown:

UDIDestroyProcess() /* Ignore the error code if ProcessID
 * (returned from CreateProcess) is

 * UDIProcessProcessor. */
UDIDisconnect() /* Frees resources & disconnects from TIP
*/

UDI Services Overview

Universal Debugger Interface Specification 2-13

 Transparent mode Code Examples:

The following show code examples for both an interactive transparent mode
session, during which the TIP's prompt is displayed and the user can enter any
number of commands, and an immediate transparent mode session, in which a
single command is presented to the TIP and the command's output is presented
to the user.

Interactive_Transparent_Session()

// Note: The TIP may have pending unsolicited transparent mode
output.
// Thus, the DFE must call GetTrans before calling
UDIPutTrans.
{
 while (1) {
 switch (UDIGetTrans) {
 case UDIErrorNoError :

 display output;
 break;

case UDIErrorTransInputNeeded :
 Get a line of input from user;
 Call UDIPutTrans();
 break;

case UDITransModeX :
 Call UDITransMode;
 Change Input Mode as required;
 break;

case UDIErrorTransDone :
 Call UDIPutTrans with Count=0; // part of protocol for

getting prompt
 Call UDIGetTrans() until status = UDIErrorTransDone; // to

get prompt
 Display prompt to user.

 // DFE is allowed to break out of loop now (via DFE
exit method)

 if (not breaking out of loop) {
Get a line of input;
Call UDIPutTrans with new transparent mode command.

 }
 break;

case UDIErrorTransExit :
 // DFE must break out of loop.

 } /*switch*/
 } /*while*/
}

UDI Services Overview

2-14 Universal Debugger Interface Specification

The immediate session is identical to the interactive session loop except for the
way that UDIErrorTransDone is handled. As in interactive mode, the TIP may
have pending transparent mode output. Since this is immediate mode, the user
may only expect to see the output from the immediate mode command, but the
DFE could mark this "pending" output, if any, to show that it is not the output
from the immediate mode command.

Immediate_Transparent_Session(command)
char *command; // assumes immediate command is being passed as
a parameter
{

command_has_been_sent = false;
while (1) {

switch (UDIGetTrans) {
case UDIErrorNoError:

display output;
break;

case UDIErrorTransInputNeeded :
Get a line of input from user;
Call UDIPutTrans();
break;

case UDITransModeX :
Call UDITransMode;
Change Input Mode as required;
break;

case UDIErrorTransDone :
if (!command_has_been_sent) {

// ready to send immediate
command.

PutTrans(command);
command_has_been_sent = true;

}
else {

// command has been sent
&completed.

exit loop;
 }
break;

case UDIErrorTransExit :
// DFE must break out of loop.

} /*switch*/
}*while*/

}

Universal Debugger Interface Specification 3-1

Chapter 3

3 UDI Services

This chapter documents all UDI services. The services are defined in terms of
C language function prototypes, known as the UDI Procedural interface
(UDIP). These prototypes are independent of the underlying Inter–Process
Communication (IPC) mechanisms, which are defined in Chapters 4 and 5. We
recommend you use UDIP for creating DFEs and TIPs rather than using the
IPC mechanisms directly. By using UDIP, a DFE and TIP can be linked
together directly, allowing target–specific versions of debuggers to be created
in special situations (in some environments, this makes debugging the DFE or
TIP easier). Using UDIP also allows some changes to occur in the underlying
IPC mechanisms without causing major problems. Finally, using UDIP
provides a host–independent interface to UDI, thereby allowing one set of
sources to be used on hosts with different IPC mechanisms.

 Return Codes

In the following detailed descriptions of the UDI services, the return codes that
are shown at the end of each call are those that are of interest for that call and
do not generally include those return codes that could be returned by any UDI
call. For more information on the meaning of error codes, see “Appendix B:
UDI Error Codes.”

 Procedure Names

The procedural interfaces for the following functions changed from UDI 1.3 to
UDI 1.4: UDISetBreakpoint, UDIQueryBreakpoint , and UDIConnect. In
the descriptions of these functions in this chapter, we present both the old and
new procedural interfaces, differentiating them by appending either _13 or _14
to the above names. Of course, in the UDI 1.3 procedural interface, these
functions were called simply UDISetBreakpoint, UDIQueryBreakpoint , and
UDIConnect.

UDI Services

3-2 Universal Debugger Interface Specification

Since the _14 versions are supersets of the _13 versions, it is expected that
DFEs and TIPs will want to use the new _14 procedural interfaces. The old
_13 procedural interface is presented for the benefit of DFE and TIP
implementors who had used the 1.3 (or earlier) version of the UDI spec. For
backwards compatibility with existing 1.3 code, the sample procedural
interface implementation from AMD points the unqualified names at the _13
versions. These unqualified names can be modified to point to the _14
versions via a compile-time flag.

In general, throughout the rest of this specification, when we use the
unqualified names UDISetBreakpoint, UDIQueryBreakpoint , and
UDIConnect, we mean either the _13 or the _14 version.

Note that the new _14 procedural interface can be used by a DFE, even if the
TIP happens to be an older TIP. It is the responsibility of the IPC code that
maps the procedural interfaces to messages to detect the version of the TIP, to
map the new procedure to an old message, if possible, and if not, to return an
error.

Note also that a 1.4 TIP must define both the _13 and _14 versions of these
functions. This is because a 1.4 TIP may get connected to by a 1.3 DFE and
such a DFE can only send 1.3 messages. However, the sample IPC
implementation from AMD provides entry points for the _13 versions which
simply maps the _13 requests to the superset _14 functions and the TIP writer
using this IPC implementation need only supply the _14 functions.

 Optional versus Required Services

The following list documents which of the UDI services are optional for the
TIP and which of the UDI DFE callback services are optional for the DFE. All
other services are required. Any TIP or DFE which does not support an
optional service should return UDIErrorUnsupportedService if the service is
invoked. Despite the optional nature of some services, TIP and DFE
implementors should strive to provide all of the documented services.

• UDIGetErrorMsg is required only if the TIP returns TIP–defined
(negative) error codes.

• UDIGetTargetConfig is not required.

• UDICopy is not required.

UDI Services

Universal Debugger Interface Specification 3-3

• UDIStep is required, although only calls with StepType equal to
UDIStepNatural are guaranteed to work.

• UDISetBreakpoint is not required.

• UDIQueryBreakpoint and UDIClearBreakpoint must be supported if
UDISetBreakpoint is supported.

• UDIGetStdout must be implemented if a TIP returns UDIStdoutReady.

• UDIGetStderr , UDIPutStdin , and UDIStdinMode behave in a similar
manner.

• UDIGetTrans is optional. If UDIGetTrans is supported, UDIPutTrans
and UDITransMode must be supported. In the case of UDITransMode
and UDIStdinMode, only buffered, echoed, line–oriented input (the
default mode) is guaranteed to be supported.

• UDIFind support in the TIP is optional. If UDIFind is supported, the sub–
features of masking, “Stride != PatternSize, PatternCount != 1”, reverse
searches, and “WhereToLook.Space != <a memory space>” are optional.
The error UDIErrorUnsupportedServiceVariation can be used to mean,
“I have the service, but I can’t do that particular variation of it.”

• UDIDFEEvalExpression and UDIDFEEvalResource are optional in the
DFE.

• In UDIDFEGetInput , only the buffered, echoed, line–oriented input (the
default mode) is guaranteed to be supported.

• UDIEnumerateTIPS() is optional. Since this service is implemented
entirely in the DFE, it is optional by definition.

In general, no UDI services can be called from signal handlers except
UDIStop. TIPs and the IPC Layer are not required to be reentrant.

UDI Services

3-4 Universal Debugger Interface Specification

 Values Reserved for Vendor–Specific Use

Except for those types that have been specifically defined to contain vendor–
specific values, a function parameter cannot have a value other than those
defined by UDI. Use of a value for any parameter other than those defined
here will result in undefined behavior and may render the DFE incompatible
with future UDI specifications. A summary of the parameters that have been
defined to contain vendor–specific values are:

CPUSpace Negative values are reserved for vendor–specific
definition.

UDIStepType Negative values are reserved for vendor–specific
definition.

UDIBreakType If the value is negative (i.e., the MSB is set) the
definition of all other bits is vendor–specified.

 UDI Type Definitions

UDI defines many different data types. This section documents these data
types and provides specific values for the Am29000 microprocessor. Other
processors will need some modification of values in some fields and some may
even require new types.

UDISessionId is a handle that refers to a specific connection. It is returned
from a UDIConnect call and is used in UDISetCurrentConnection and
UDIDisconnect calls.

typedef UDIInt UDISessionId;

UDIPId is a handle for processes. The special UDIPId value,
UDIProcessProcessor, refers to the raw CPU. See UDICreateProcess for
more information about when UDIProcessProcessor can be used.

typedef UDIInt UDIPId;

UDIError is the type for the error code returned by each UDI service and for
the parameter supplied to UDIGetErrorMessage.

typedef UDIInt UDIError;

UDI Services

Universal Debugger Interface Specification 3-5

Many UDI services access target resources. All resources are identified via the
UDIResource structure, including target memory, target registers, and any
resources the TIP may provide, such as trace buffers or profiling data.
UDIResource consists of two members: a Space member, and an Offset
member. The Offset member is usually the width of the target CPU’s address,
although it may be wider. For the 29K Family, CPUOffset is an unsigned 32–
bit integer. The Space member, CPUSpace, is of signed integer type, and is
generally a small integer. Negative values of CPUSpace are reserved for
vendor–specific definition, i.e. a UDI specification cannot define a negative
CPUSpace value.

Each CPU–specific implementation provides its own values for CPUSpace to
access the various CPU–specific resources available. Note that CPU–specific
generally means CPU–family specific. All processors within a family that use
the same size addresses share space values and meanings.

Refer to Appendix C for 29K Family resource definitions.

The structure associated with a UDI resource is:

typedef struct
{
 CPUSpace Space;
 CPUOffset Offset;
 } UDIResource;

Some services return or receive a range of resources sharing a common space.
These services have defined UDIMemoryRange types.

typedef struct {
CPUSpace Space;
CPUOffset Offset;
CPUSizeT Size;

 } UDIMemoryRange;

When stepping the target, several options are available. You can step
individual instructions or step over certain kinds of instructions (calls and
traps). You can request stepping until the program is outside a specified range
of instruction addresses. These various step types (shown below) can be ORed
together. Each TIP offers a default step mode, and DFEs are encouraged to
use UDIStepNatural to refer to the TIP when the user has not specifically
requested a type of step. Some TIPs, such as emulators and simulators,
naturally step into traps, while other TIPs do not. If you request a step type that
the TIP cannot support, you get a UDIErrorUnsupportedStepType message.
If the value of a UDIStepType parameter is negative (i.e., the MSB is set), the
definition of all other bits is vendor-specified.

UDI Services

3-6 Universal Debugger Interface Specification

typedef UDIInt UDIStepType;
#define UDIStepOverTraps 0x0001
#define UDIStepOverCalls 0x0002
#define UDIStepInRange 0x0004
#define UDIStepNatural 0x0000
typedef struct
{

CPUOffset Low;
CPUOffset High;

 } UDIRange;

The function UDIWait returns the current status of the target in a parameter of
type UDIStopReason. It is defined as follows:

typedef UDIUInt32 UDIStopReason;
#define UDIGrossState 0xff
#define UDITrapped 0 /* Fine state - which trap */
#define UDINotExecuting 1
#define UDIRunning 2
#define UDIStopped 3
#define UDIWarned 4
#define UDIStepped 5
#define UDIWaiting 6
#define UDIHalted 7
#define UDIStdoutReady 8 /* fine state - size */
#define UDIStderrReady 9 /* fine state - size */
#define UDIStdinNeeded 10 /* fine state - size */
#define UDIStdinModeX 11 /* fine state - mode */
#define UDIBreak 12 /* Fine state - Breakpoint Id */
#define UDIExited 13 /* Fine state - exit code */
#define UDINotResponding 14
#define UDIOutOfControl 15
#define UDIReset 16
#define UDINoPower 17
#define UDINoClock 18

UDIBreakInfo is a structure that describes the characteristics of a breakpoint.
It is an input for UDISetBreakpoint and an output for UDIQueryBreakpoint .
It is defined as:

 struct UDIBreakInfo {
UDIBreakType_14 Type; /* break type */
UDIMemoryRange Region; /* breakpoint region: start addr

& size */
UDIInt32 PassCount; /* reload pass count */
UDIInt32 CntRemaining; /* effective pass count */
UDIUInt32 BufLen; /* Length of the Buf field

 * used on vendor-specific bkpts
*/

char Buf[1]; /* Variable length Buffer for
 vendor-specific breakpoints */

};

Note that the Buf field is used only for vendor-specific breakpoints and its
actual length is reflected in Buflen.

UDI Services

Universal Debugger Interface Specification 3-7

UDIBreakType_14 specifies the type of breakpoint to be applied in a
UDISetBreakpoint_14 call. If the value of a UDIBreakType_14 parameter is
negative (i.e., the MSB is set), the definition of all other bits is vendor–
specified. The various BreakFlags shown below can be OR'ed together to
make compound breaktypes.

typedef UDIInt32 UDIBreakType_14;

#define UDIBreakFlagExecute 0x0001
#define UDIBreakFlagRead 0x0002
#define UDIBreakFlagWrite 0x0004
#define UDIBreakFlagFetch 0x0008
#define UDIBreakFlagWidthByte 0x0010
#define UDIBreakFlagWidthHalfWord 0x0020
#define UDIBreakFlagWidthWord 0x0040
#define UDIBreakFlagGenSyncPulse 0x0080
#define UDIBreakFlagDoNotStopProcessor 0x0100

The semantics of these BreakType flags as well as the semantics of the other
fields of BreakInfo are described under the UDISetBreakpoint_14 call.

Note: the older call UDISetBreakpoint_13 used a subset of these breaktype
bits passed in a UDIBreakType_13 type defined as follows:

typedef UDIInt UDIBreakType_13;

#define UDIBreakFlagExecute 0x0001
#define UDIBreakFlagRead 0x0002
#define UDIBreakFlagWrite 0x0004
#define UDIBreakFlagFetch 0x0008

The following are the legal return values for the KindOfAnswer parameter
returned by UDIDFEEvalExpression:

#define UDIAnswerKindNone 0
#define UDIAnswerKindValue 1
#define UDIAnswerKindResource 2

The IOType parameter is used with UDIDFEPutOutput and
UDIDFEGetInput to specify whether the source of the I/O request (TIP or
target) and, for output, whether the destination is standard output or standard
error:

typedef UDIUInt UDIIOType
#define UDIIOTypeTIPStdout 0
#define UDIIOTypeTIPStderr 1
#define UDIIOTypeTIPStdin 2
#define UDIIOTypeTargetStdout 3
#define UDIIOTypeTargetStderr 4
#define UDIIOTypeTargetStdin 5

UDI Services

3-8 Universal Debugger Interface Specification

UDIDFEEvalExpression can return a Type parameter (of type
UDIExprType) if the expression evaluates to a value. This parameter is a
simplified indicator of the C language type of the returned value. The
following section from the udiproc.h file defines the possible return types.

typedef UDIInt UDIExprType;
#define UDITypeUnknown 0 /* type not applicable, or DFE

 * doesn’t support types */
#define UDITypeOther 1 /* type is known but does not

 * match one in the UDI list */
#define UDITypeChar 2 /* an 8-bit ASCII character */
#define UDITypeInt 3 /* an integral type with
 * Size, handles short, int,
 * long */
#define UDITypeFloat 4 /* with Size, handles float,
 * double, long double */

The end–of–line (EOL) character for all strings used in Programmed I/O
Services, Transparent Mode Services, and DFE Access to TIP I/O Services is
LF (0ah). It is the responsibility of the DFE (or its libraries) to do any host
mapping of this EOL to the host–specific line termination.

UDI Services

Universal Debugger Interface Specification 3-9

Table 2. UDI Services in Alphabetical Order

Name Description Page

UDICapabilities Allows TIPs and DFEs to be aware of
the other’s capabilities

3-11

UDIClearBreakpoint Clears identified breakpoint 3-13

UDIConnect Connects a TIP to a DFE and confirms
communication

3-14

UDICopy Duplicates a block of objects at the TIP 3-17

UDICreateProcess Creates a process context 3-18

UDIDestroyProcess Informs the TIP that no further
debugging will occur

3-19

UDIDisconnect Called when a DFE is finished with a
connection

3-20

UDIEnumerateTIPs Informs DFE of available TIPs 3-21

UDIExecute Causes execution to continue from the
current program counter location

3-22

UDIFind Finds one or more occurrences of a
specified pattern

3-23

UDIGetErrorMessage Retrieves the text associated with a
TIP–specific error

3-24

UDIGetStderr Called when TIP needs to send output
to the user via stderr

3-25

UDIGetStdout Called when TIP needs to send output
to the user via stdout

3-26

UDIGetTargetConfig Provides configuration information
about target

3-27

UDIGetTrans Is the heart of transparent mode
operation for DFEs

3-28

UDIInitializeProcess Initializes or reinitializes a process 3-30

UDIPutStdin Obtains input from the user 3-32

UDIPutTrans Called during transparent mode to
send characters from the DFE to the
TIP

3-33

UDI Services

3-10 Universal Debugger Interface Specification

UDIQueryBreakpoint Allows a DFE to obtain the state of
breakpoints on the TIP

3-34

UDIRead Transfers objects from the TIP to the
DFE

3-36

UDISetBreakpoint Sets a breakpoint in the current process 3-37

UDISetCurrent
Connection

Used by DFEs that support multiple
connections to switch between
connected TIPs

3-40

UDISetCurrentProcess Is used by DFEs that can handle
multiple processes

3-41

UDIStdinMode Is called to change the method used by
DFE for obtaining input from the user

3-42

UDIStep Causes execution to continue one
instruction at a time

3-43

UDIStop Requests that the TIP return as soon as
possible

3-44

UDITransMode Called when TIP wants to alter the
way DFE obtains data from the user
for transparent mode

3-45

UDIWait Returns when either a process stops or
MaxTime has elapsed

3-46

UDIWrite Same as UDIRead, except data flows
from DFE to TIP

3-50

UDI Services

Universal Debugger Interface Specification 3-11

 UDICapabilities

 Call

UDIError UDICapabilities (
UDIUInt32 *TIPId, /* Out */

 UDIUInt32 *TargetId, /* Out */
 UDIUInt32 DFEId, /* In */
 UDIUInt32 DFE, /* In */
 UDIUInt32 *TIP, /* Out */
 UDIUInt32 *DFEIPCId, /* Out */

UDIUInt32 * TIPIPCId, /* Out */
 char * TIPString, /* Out */
 UDISizeT BufSize, /* In */
 UDISizeT * CountDone /* Out */

);

 Description

UDICapabilities allows TIPs and DFEs to be aware of one another’s
capabilities. As of UDI 1.3, the DFE is required to call this function
immediately after UDIConnect. A DFE that does not call UDICapabilities
immediately after UDIConnect can be assumed to be a UDI 1.2 DFE.

The TIP, Target, DFE, DFEIPC, and TIPIPC Id fields are divided into three
sections:

• The 16 most–significant bits are a company code, assigned by AMD.

• The next 4 bits are a product code, assigned by the company.

• The least–significant 12 bits are a version number assigned by the
company. These twelve bits are broken into three 4-bit fields comprising a
major version number, minor version number and point version number.

For common display purposes, the version number should be displayed as
three four–bit values. Any component not present has a 0 Id. The TIP (always
present) zeroes the IPC Id fields, and the IPC Layer fills them in after the TIP
has finished.

UDI Services

3-12 Universal Debugger Interface Specification

• As a special case, bit 31 of the DFEIPCId and TIPIPCId parameters are
used to indicate the endianness of the DFE or TIP. Bit 31 set indicates a
little-endian DFE or TIP, Bit 31 clear indicates a big-endian DFE or TIP.
At the procedural interface, a DFE or TIP usually need only be concerned
with the endianness of the other side for vendor-specific extensions where
non-byte quantities are being sent.

The DFE parameter indicates to the TIP what version of UDI the DFE prefers,
i.e., the latest version number the DFE understands. The TIP examines the
DFE’s UDI version and determines whether it can support that version. If the
TIP is capable of supporting the DFE at the DFE’s preferred UDI level, the
TIP returns that level in the TIP parameter. If the TIP’s UDI version is lower
than the DFE’s, the TIP returns the TIP’s version in the TIP parameter. If the
TIP’s UDI version is higher than the DFE’s, but the TIP cannot support
obsolete features of the DFE’s version, the TIP returns 0 in the TIP parameter.
Upon returning, the DFE should examine the TIP’s UDI version. If the TIP’s
UDI version is the same as the DFE’s, communication can take place without
problems. If the TIP’s UDI version is 0, the DFE should immediately
disconnect because further communication is unlikely. If the TIP’s UDI
version is other than 0 or the DFE’s version, the DFE can communicate with
the TIP at the TIP’s level.

The TIPString parameter is a buffer of BufSize characters that the TIP fills
with information that may further modify the TIP identification information,
setting CountDone to the number of bytes (including the null terminator)
returned. A typical example of the kind of information returned in TIPString
would be a human-readable listing of the TIP and/or target’s configuration. If
CountDone is equal to BufSize, the DFE should continue calling
UDICapabilities to get the rest of the TIPString. It is recommended that DFEs
provide a TIPString buffer of at least 1Kbyte to avoid multiple calls to the TIP.
The TIP is allowed to have embedded end–of–line characters in the returned
TIPString. It is recommended that DFEs display this information on a line by
itself immediately following a line where the various Id fields have been
displayed.

UDI Services

Universal Debugger Interface Specification 3-13

 UDIClearBreakpoint

 Call

UDIError UDIClearBreakpoint (
UDIBreakId BreakId /* In */
);

 Description

UDIClearBreakpoint clears the identified breakpoint. If no such breakpoint
exists, UDIErrorInvalidBreakId is returned. If Breakpoint ID = 0,
UDIClearBreakpoint clears all breakpoints.

 Return Codes

UDIErrorInvalidBreakId

UDI Services

3-14 Universal Debugger Interface Specification

 UDIConnect

 Call

UDIError UDIConnect_14 (
char *Configuration, /* In */

 UDISessionId *Session /* Out */
UDIUint32 DFE /* In */
);

 UDIError UDIConnect_13 (
char *Configuration, /* In */

 UDISessionId *Session /* Out */
);

 Description

UDIConnect connects a TIP to a DFE and confirms that the DFE and the TIP
can communicate. No other action (such as initializing the target) is
performed. If the TIP is not active at the time of the connection, the UDI DFE
IPC Layer starts the TIP.

The DFE parameter has the same semantics as the DFE parameter in the
UDICapabilities call; it indicates to the TIP what version of UDI the DFE
prefers, i.e., the latest version number the DFE understands. Adding the
parameter to the UDIConnect_14 call allows the TIP to decide whether it can
use some of the newer callback services during UDIConnect_14.

If the DFE parameter indicates a version that is older than what the TIP wishes
to support, the TIP can either "step down" to that level or else can refuse to
accept the connection. If the DFE parameter is newer than the TIP's the TIP
must still accept the connection, because the DFE may be willing to "step
down" to the TIP's level, which negotiation can't happen until the
UDICapabilities exchange.

UDIConnect_13 is the older version of this call. It is identical to
UDIConnect_14 except that the DFE parameter is not passed. The rest of this
description applies to either version.

UDI Services

Universal Debugger Interface Specification 3-15

The way the Configuration parameter is translated for DOS hosts and for
UNIX hosts is described in detail in Appendix B. In general, IPC layers use a
configuration file where each line contains the configuration name, the TIP
program name, and other TIP–specific options. For example, a simulator TIP
might have several lines in the file where each line represents different
configurations of the simulator that the user has set up and named.

Session points to an object that will be used to identify this DFE–TIP
connection in future session management UDI calls.

After a successful UDIConnect, the current connection is the one just
connected and the current process for that connection is
UDIProcessProcessor. If an error is returned, the connection was not
established. If the error is negative, the DFE can call UDIGetErrorMsg and
must call UDIDisconnect. No other service requests are permitted if an error is
returned.

To solve certain problems, the IPC Layer (prior to spawning a new TIP and
calling the new TIP’s UDIConnect function) can call UDIConnect at each
currently running TIP that has the same executable file name as the desired
configuration. Because TIPs may need exclusive access to either TIP or target
resources, TIPs may need to either prevent or force the IPC Layer to spawn a
new TIP.

One such example is a TIP that communicates with a private target. The TIP
should ensure that no other TIPs are spawned that might contend for the same
target. Such TIPs, when called at UDIConnect for a configuration that would
create the contention, should return UDIErrorConnectionUnavailable . The
IPC Layer will recognize this error and return to the DFE immediately, rather
than attempting to find or spawn another TIP to satisfy the request.

In another example, a TIP that can support multiple connections by spawning
multiple TIPs, like a simulator, needs to return only
UDIErrorTryAnotherTIP . This causes the IPC Layer to check other installed
TIPs and, if necessary, attempt to spawn another instance of the same TIP.

UDI Services

3-16 Universal Debugger Interface Specification

 Return Codes
UDIErrorTryAnotherTIP
UDIErrorNoSuchConfiguration
UDIErrorCantConnect
UDIErrorCantOpenConfigFile
UDIErrorCantStartTIP
UDIErrorConnectionUnavailable
UDIErrorTryAnotherTIP
UDIErrorExecutableNotTIP
UDIErrorInvalidTIPOption

UDI Services

Universal Debugger Interface Specification 3-17

 UDICopy

 Call

UDIError UDICopy (
UDIResource From, /* In */

 UDIResource To, /* In */
 UDICount Count, /* In */
 UDISizeT Size, /* In */
 UDICount * CountDone, /* Out */
 UDIBool Direction /* In */

);

 Description

UDICopy duplicates a block of objects at the TIP. The Direction parameter
indicates whether the copy occurs from lower–to–higher addresses or vice
versa. The parameter is used regardless of whether the copy involves
overlapping objects. A non–zero value indicates a lower–to–higher copy, while
a 0 value specifies a higher–to–lower copy.

UDICopy can be used to fill an area with a pattern by writing the pattern once
at the base of the fill area and then calling copy, specifying a lower–to–higher
copy with the source as the base of the fill area and the destination as the
address of the second copy. The TIP must guarantee that the copy is performed
as if it were done one object at a time. The actual transfer width used is TIP–
specific.

Unlike UDIRead and UDIWrite , there are no restrictions on Size. Like
UDIRead and UDIWrite , if the count of objects requested cannot be
performed, then CountDone indicates the number of objects completely copied
and UDICopy returns UDIErrorIncomplete . The result of To pointing into
the middle of the first From object is undefined. Not all memory spaces
support all object sizes. An attempt to access a resource with an unsupported
object size returns UDIErrorInvalidSize .

 Return Codes
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource
UDIErrorResourceNotWriteable

UDI Services

3-18 Universal Debugger Interface Specification

 UDICreateProcess

 Call

UDIError UDICreateProcess (
UDIPId *PId /* Out */
);

 Description

UDICreateProcess creates a process context. See the Process Management
section on page 2-2 for details on simple process management strategies. Note
that each connection manages processes separately. This means that two
sessions may return the same PId value. It also means that changing
connections (using UDISetCurrentConnection) changes the “current”
process, because each connection maintains its own current process state. After
a successful UDICreateProcess call, the newly created process is the current
process for that connection.

 Return Codes
UDIErrorCantCreateProcess

UDI Services

Universal Debugger Interface Specification 3-19

 UDIDestroyProcess

 Call

UDIError UDIDestroyProcess (
UDIPId PId /* In */
);

 Description

UDIDestroyProcess informs the TIP that no further debugging will occur
against the indicated process. DFEs should call this service for all processes
(except UDIProcessProcessor) before shutting down. If the PId passed to
UDIDestroyProcess is the current PId for the connection, then
UDIProcessProcessor becomes the current process.

 Return Codes
UDIErrorNoSuchProcess

UDI Services

3-20 Universal Debugger Interface Specification

 UDIDisconnect

 Call

UDIError UDIDisconnect (
UDISessionId Session, /* In */

 UDIBool Terminate /* In */
);

 Description

When a DFE is finished with a connection, it must call UDIDisconnect. There
are two types of disconnection:

• The primary disconnection (Terminate = UDITerminateSession)
terminates the TIP, possibly causing any target action to be lost.

• The second type of disconnection (Terminate = UDIContinueSession)
allows subsequent reconnection (via UDIConnect).

A user might want to reconnect in order to switch DFEs at a certain point in a
program, for example. Or, if the host cannot support a DFE resident with other
applications that the user wants to run, the user may want to leave a target
executing while running the other application.

The terminate type of UDIDisconnect allows a graceful shutdown of the
connection, and, on some hosts, returns critical resources used by the IPC
Layer.

The non–termination form of UDIDisconnect also permits a graceful
shutdown of the connection, although in some cases the TIP may not be able to
return some critical resources because they are needed to maintain execution
of the target.

In the event that UDIDisconnect returns an error, the connection is still
established (unless the error is UDIErrorNoSuchConnection, in which case
the connection was never established).

 Return Codes
UDIErrorCantDisconnect
UDIErrorNoSuchConnection

UDI Services

Universal Debugger Interface Specification 3-21

 UDIEnumerateTIPs

 Call

UDIError UDIEnumerateTIPs (
UDIInt (*UDIETCallback) (char *Configuration)

/* In In to callback */
);

 Description

If a DFE wants to know what TIPs are available, it should call
UDIEnumerateTIPs. For each TIP configuration on the system,
UDIEnumerateTIPs calls the callback function identified by the
UDIETCallback parameter. That function receives a single parameter that is a
pointer to a string containing the name of the configuration. If the DFE wants
to preserve the name, it must copy it from the indicated area into a DFE–
managed space. This is because UDIEnumerateTIPs can be implemented
with only one buffer into which it points for each configuration.

In all circumstances, the callback function must return to
UDIEnumerateTIPs. If the callback function does not want to be called for
additional configurations, it can return the value UDITerminateEnumeration .
Otherwise, it should return UDIContinueEnumeration.

Note: UDIEnumerateTips is not a service provided by the TIP, it is an
optional service provided by the procedural interface and
implemented entirely in the DFE side.

UDI Services

3-22 Universal Debugger Interface Specification

 UDIExecute

 Call

UDIError UDIExecute (
void
);

 Description

UDIExecute causes execution to continue from the current program counter
location. Progress is guaranteed by the TIP. The implementation of the
guarantee is as if one single step occurs, then all breakpoints are installed,
followed by unbounded execution. The single step that occurs is of the
StepNatural variety (see UDIStep). This may occasionally cause execution to
stop at the breakpoint again even though the instruction at the breakpoint has
not yet been executed. This occurs on emulators when interrupts are pending.
The natural step that takes place before breakpoints are installed does not step
the current PC, but rather steps the first instruction of the interrupt handler.

UDIExecute returns as soon as execution has begun on the target, usually just
after breakpoints are installed and the process is let go. For some TIPs on some
hosts, all execution occurs when the DFE calls UDIWait . Consequently, a
DFE may not assume that any progress has been made by the sequence:
UDIExecute, long delay, UDIStop (and a DFE must call UDIWait to ensure
progress).

Calling UDIExecute when the target is already running will cause the error
UDIErrorTargetAlreadyRunning .

 Return Codes
UDIErrorTargetAlreadyRunning

UDI Services

Universal Debugger Interface Specification 3-23

 UDIFind

 Call

UDIError UDIFind (
UDIMemoryRange WhereToLook, /* In */
UDIInt32 Stride, /* In */
UDIHostMemPtr Pattern, /* In */
UDIHostMemPtr PatternMask, /* In */
UDICount PatternCount, /* In */
UDISizeT PatternSize, /* In */
UDIBool PatternHostEndian, /* In */
UDICount MaxToFind, /* In */
UDICount * CountFound, /* Out */
CPUOffset FoundAtOffset[] /* Out */
UDIHostMemPtr FoundValues[] /* Out */
);

 Description

UDIFind is used to find one or more occurrences of a specified pattern in a
specified UDIMemoryRange. The DFE specifies the memory range to search, a
Pattern, and the maximum occurrences to report. The pattern consists of
PatternCount objects, each of size PatternSize and an endian type of
PatternHostEndian. (The pattern may be further qualified by a PatternMask,
such that a match is found only if, for each object in the pattern: TargetMem
& PatternMask == Pattern & PatternMask). A PatternMask of NULL
indicates no masking, i.e., it is equivalent to a PatternMask whose bits are all
ones.

The Stride parameter specifies how much to move the target offset pointer for
each step of the search (this will usually be the same as PatternSize). When
Stride is negative, a reverse search over the WhereToLook range is specified.
The TIP always reports the number of matches found and the offsets at which
they were found. If the PatternMask is not null, the TIP also reports the actual
data that was found at the offsets. Using the FoundAtOffset and FoundValues
arrays, the DFE is responsible for ensuring that the FoundAtOffset and
FoundValues buffers are large enough to hold MaxToFind answers. The data
returned in FoundValues if of endian type PatternHostEndian.

 Return Codes
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource

UDI Services

3-24 Universal Debugger Interface Specification

 UDIGetErrorMessage

 Call

UDIError UDIGetErrorMsg (
UDIError ErrorCode, /* In */
UDISizeT MsgSize, /* In */
char * Msg, /* Out */
UDISizeT * CountDone /* Out */
);

 Description

UDIGetErrorMessage retrieves the text associated with a TIP–specific error.
MsgSize indicates the size of the buffer the DFE has allocated to hold the error
message. The DFE should keep calling UDIGetErrorMessage until
CountDone is less than MsgSize.

UDIGetErrorMessage returns UDIErrorUnknownError if ErrorCode is not
a TIP–specific error code.

Multiple calls to UDIGetErrorMessage with the same error code will not
necessarily return the same string. Thus, negative error code strings should not
be cached by the DFE.

UDI Services

Universal Debugger Interface Specification 3-25

 UDIGetStderr

 Call

UDIError UDIGetStderr (
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /* In */
UDISizeT * CountDone /* Out */
);

 Description

UDIGetStderr is analogous to UDIGetStdout (on page 3-26) except that data
comes from the TIP’s standard error channel and UDIWait returns
UDIStderrReady.

UDI Services

3-26 Universal Debugger Interface Specification

 UDIGetStdout

 Call

UDIError UDIGetStdout (
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /* In */
UDISizeT * CountDone /* Out */
);

 Description

When the TIP needs to send output to the user via the conventional standard
output means, UDIWait will have returned a StopReason of UDIStdoutReady
with a fine state of the number of characters available. The DFE should then
call UDIGetStdout to acquire the data and then display it for the user by
whatever means the DFE uses for program I/O.

The DFE should pass a BufSize as large as practical even though it knows how
many characters were available when UDIWait returned. The program may
have added characters to the standard output stream since then and
UDIGetStdout can acquire those as well. In any case, the DFE should call
UDIGetStdout until the returned CountDone is less than BufSize. The
characters should be made immediately available to the user, although deferral
until certain other conditions (such as UDIStdinNeeded or UDIExited) occur
should work as well. After all output data have been obtained, the DFE should
resume calling UDIWait .

In the event the DFE calls UDIGetStdout and no data are available from the
TIP, it should simply return a CountDone of 0 rather than a UDI error.

UDI Services

Universal Debugger Interface Specification 3-27

 UDIGetTargetConfig

 Call

UDIError UDIGetTargetConfig (
UDIMemoryRange KnownMemory[], /* Out */
UDIInt * NumberOfRanges, /* In/Out */
UDIUInt32 ChipVersions[], /* Out */
UDIInt * NumberOfChips /* In/Out */
);

 Description

Call UDIGetTargetConfig to determine matters such as the size of various
memory spaces and the type of CPU–related chips installed. The DFE passes
the address of an array of UDIMemoryRange structures (using C semantics, a
pointer to a single UDIMemoryRange structure). The size of the array is passed
by the DFE at NumberOfRanges. The TIP fills in as many of the structures as
necessary, returning the number filled in at NumberOfRanges. If the function
returns UDIErrorIncomplete , the TIP tries to return more ranges than
available space allows, and the DFE is encouraged to call
UDIGetTargetConfig again with a larger array to retrieve all of the data.

The same array/count technique is used for various chips that may be
encountered in the system. For each target CPU family type, specific elements
of the array are defined to correspond to specific chips that may be present in
the system. For the 29K Family, element 0 is the CPU PRL (the entire
configuration register, since future members may expand the configuration
register towards the LSB) and element 1 is the coprocessor (Am29027—PRL
fetched from precision register). A chip not present in the system should have
its element filled in with the CPU–family defined value
UDIxxxCPUChipNotPresent. (xxx is CPU–family dependent. For the 29K
Family, for example, the constant’s name is UDI29KChipNotPresent.)

UDI Services

3-28 Universal Debugger Interface Specification

 UDIGetTrans

 Call

UDIError UDIGetTrans (
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /* In */
UDISizeT * CountDone /* Out */
);

 Description

UDIGetTrans is the heart of transparent mode operation for DFEs. DFEs
generally call UDIGetTrans until UDIGetTrans requests (via a return value)
that one of the other transparent mode functions be called. UDIGetTrans
returns UDINoError when it has transparent mode data to give to the user.
The amount of data is indicated by the CountDone return argument.

The TIP also uses special returns from UDIGetTrans to indicate:

• when the TIP requires input but is not at the prompt
(UDIErrorTransInputNeeded)

• when the TIP is returning the prompt (UDIErrorTransPrompt). A TIP is
not required to have a prompt but if it has one it may only be returned
with UDIErrorTransPrompt .

• when the TIP is at the prompt waiting for input (UDIErrorTransDone)

• when the TIP has parsed the transparent mode "exit" command.
(UDIErrorTransExit).

• when the TIP requires the DFE to change input mode
(UDIErrorTransModeX).

TIPs that do not support transparent mode should return
UDIErrorUnsupportedService. Note that TIPs that have a small transparent
command set that does not produce any output must still implement
UDIGetTrans if they implement UDIPutTrans . Such a TIP would always
return UDIErrorTransDone when UDIGetTrans is called.

UDI Services

Universal Debugger Interface Specification 3-29

 Return Codes
UDIErrorTransDone
UDIErrorTransInputNeeded
UDIErrorTransModeX
UDIErrorTransExit
UDIErrorTransPrompt

UDI Services

3-30 Universal Debugger Interface Specification

 UDIInitializeProcess

 Call

UDIError UDIInitializeProcess (
UDIMemoryRange ProcessMemory[], /* In */
UDIInt NumberOfRanges, /* In */
UDIResource EntryPoint, /* In */
CPUSizeT StackSizes[], /* In */
UDIInt NumberOfStacks, /* In */
char * ArgString /* In */
);

 Description

UDIInitializeProcess initializes or reinitializes a process. If
UDIInitializeProcess is performed against process UDIProcessProcessor, a
target system reset is performed, if permitted. Against other processes,
UDIInitializeProcess performs whatever steps are necessary to get the process
to the stage where the next instruction to be executed is the entry point. This
service should also initialize any files or other process–specific operating
system state. After a UDIInitializeProcess on a 29K Family target, the state of
the CPS and CFG registers is TIP–specific.

This call also identifies to the TIP the range of addresses used by the program
image(s). Execution of the program may result in additional memory being
allocated to the process. Since some processors (notably, the 29K) have more
than one stack, we provide as many stacks as the processor family may need.
Each processor family defines which element of the array of stack sizes
corresponds to which stack. For the 29K, stack 0 is the register stack and stack
1 is the memory stack. Zero is used for any stack size where the default values
should be used (default values are TIP–defined). The argument string is passed
and can be parsed according to TIP operating system rules. If the DFE wishes
to pass embedded whitespace in arguments, those arguments should be
enclosed in quotes. If no arguments are supplied, a NULL can be passed.

When UDIIntializeProcess is called (including the case when it is performed
against UDIProcessProcessor) all breakpoints remain enabled. If the target
system is reset manually via a reset button, breakpoints must also persist
although it is permitted that breakpoint passcounts be reset to their initial
values.

UDI Services

Universal Debugger Interface Specification 3-31

After UDIIntializeProcess is called, DFEs that debug programs rather than the
raw machine can now inspect the PC (using UDI PC space). If the PC is not at
the entry point of the program, the DFE sets a breakpoint at the entry point and
executes up to it. Otherwise, stepping the TIP may result in executing one or
more instructions that the DFE did not download, and this may confuse the
DFE.

 Return Codes
UDIErrorNoSuchProcess
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource

UDI Services

3-32 Universal Debugger Interface Specification

 UDIPutStdin

 Call

UDIError UDIPutStdin (
UDIHostMemPtr Buf, /* In */
UDISizeT Count, /* In */
UDISizeT * CountDone /* Out */
);

 Description

UDIPutStdin obtains input from the user. This can occur in either of two
ways:

• If the TIP wants user input, it returns UDIStdinNeeded from UDIWait ,
and the number of characters it is prepared to receive.

OR

• The user supplies data for the program’s I/O.

Note that even though the UDIWait returns UDIStdinNeeded, it does not
necessarily imply that the process is no longer running. If the TIP’s operating
system supports asynchronous I/O, it may still be running.

The result of data sent to a TIP that does not support buffering of data for user
programs is TIP–defined. If the TIP cannot accept the data, it should return
UDIErrorCantAccept . The TIP is required to accept at least the number of
characters requested by the StopReason from UDIWait if the most recent
UDIWait call has returned UDIStdinNeeded. After providing the TIP with
input data in response to a UDIWait StopReason of UDIStdinNeeded, the
DFE should resume calling UDIWait .

 Return Codes
UDIErrorCantAccept

UDI Services

Universal Debugger Interface Specification 3-33

 UDIPutTrans

 Call

UDIError UDIPutTrans (
UDIHostMemPtr Buf, /* In */
UDISizeT Count, /* In */
UDISizeT * CountDone /* Out */
);

 Description

The DFE can support transparent mode access to the TIP. If so, when the DFE
wants to send characters to the TIP, it sends them via UDIPutTrans.

When UDIGetTrans returns UDIErrorTransInputNeeded , the DFE must
send transparent mode input to the TIP. When UDIGetTrans returns
UDIErrorTransDone (indicating it is at a logical break between commands),
the DFE may present transparent mode input or may exit transparent mode.
For any other returns from UDIGetTrans, the DFE may not call
UDIPutTrans .

If UDIPutTrans is called with Count=0, this is a request for the TIP to return
the prompt on the next UDIGetTrans call. If the TIP has a prompt, it returns
UDIErrorTransPrompt to UDIPutTrans and then returns the actual prompt
on the next UDIGetTrans call (again with the return
UDIErrorTransPrompt). If the TIP has no prompt, it returns
UDIErrorTransDone to the UDIPutTrans (Count=0) call. If the TIP is not
in a state where a prompt is possible, i.e., if the TIP is not between commands,
etc., then it returns UDIErrorCantAccept to the UDIPutTrans (Count=0)
call.

TIPs that do not support transparent mode should return
UDIErrorUnsupportedService.

 Return Codes
UDIErrorCantAccept
UDIErrorTransPrompt

UDI Services

3-34 Universal Debugger Interface Specification

 UDIQueryBreakpoint

 Call

UDIError UDIQueryBreakpoint_14 (
UDIBreakId BreakId, /* In */
UDISizeT BufSize, /* In */
UDIBreakInfo * BreakInfo, /* Out */
UDIBreakId * NextBreakId /* Out */
);

 UDIError UDIQueryBreakpoint_13 (
 UDIBreakId BreakId, /* In */
 UDIResource *Addr, /* Out */
 UDIInt32 *PassCount, /* Out */
 UDIBreakType_13 *Type, /* Out */
 UDIInt32 *CurrentCount /* Out */
));

 Description

UDIQueryBreakpoint_14 allows a DFE to obtain the state of breakpoints on
the TIP. The DFE can do so even though it does not know which BreakId
values are valid. This is useful when a DFE connects to an unterminated TIP.
(See UDIDisconnect on page 3-20.)

Since the size of a returned breakinfo structure can vary (because of the
variable length vendor-specific Buf field), the DFE uses the parameter BufSize
to specify the maximum size of the BreakInfo.Buf that it is using to receive the
BreakInfo structure. If this is not big enough for the breakpoint that is being
queried, the TIP returns an error, UDIErrorIncomplete, and fills in
BreakInfo.BufLen as to what the actual required BufLen is. The DFE can then
requery with a larger BreakInfo.Buf if it desires.

To query all breakpoints, the DFE can start at BreakId 1 and continue until
UDIQueryBreakpoint returns UDIErrorNoMoreBreakIds. If the DFE queries a
BreakId values not currently in use, but with higher BreakId values in use, the
TIP will instead return UDIErrorInvalidBreakId. In all cases, the TIP returns
the next valid BreakId in NextBreakId and the DFE should use this for its next
query. In this way, the DFE can acquire all of the breakpoints installed on the
TIP without keeping any state locally.

Note that the CntRemaining field of the returned BreakInfo structure shows the
number of passes remaining until the breakpoint triggers. That is, it is a
downcounter which starts from the Passcount parameter passed in by
UDISetBreakpoint.

UDI Services

Universal Debugger Interface Specification 3-35

UDIQueryBreakpoint_13 is the old version of this call.

 Return Codes
UDIErrorInvalidBreakId
UDIErrorNoMoreBreakIds
UDIErrorIncomplete

UDI Services

3-36 Universal Debugger Interface Specification

 UDIRead

 Call

UDIError UDIRead (
UDIResource From, /* In */
UDIHostMemPtr To, /* Out */
UDICount Count, /* In */
UDISizeT Size, /* In */
UDICount * CountDone, /* Out */
UDIBool HostEndian /* In */
);

 Description

UDIRead transfers objects from the TIP to the DFE. The DFE specifies the
source resource address (From) and its base object size (Size). Count objects
are moved from the source to DFE memory at To. If the resource is not as
large as the requested transfer requires, CountDone indicates how many
objects were completely moved and UDIErrorIncomplete is returned.

If the DFE wants the TIP to ensure that the data is in host byte order, it should
set HostEndian to a non–zero value. A 0 HostEndian argument causes the TIP
to return the data in target order (as opposed to non–host order). It is assumed
that both the DFE and the TIP know the target order. Target order will be
either big endian (MSB first for all size objects) or little endian (LSB first for
all size objects). The only valid object sizes at this time are 1, 2, 4, 8, 10, and
16. Not all memory spaces support all object sizes. An attempt to access a
resource with an unsupported object size returns UDIErrorInvalidSize .

 Return Codes
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource

UDI Services

Universal Debugger Interface Specification 3-37

 UDISetBreakpoint

 Call

UDIError UDISetBreakpoint_14 (
UDIBreakInfo *BreakInfo, /* In */
UDIBreakId *BreakId /* Out */
);

 UDIError UDISetBreakpoint_13 (
 UDIResource Addr, /* In */
 UDIInt32 PassCount, /* In */
 UDIBreakType_13 Type, /* In */
 UDIBreakId *BreakId /* Out */
);

 Description

UDISetBreakpoint_14 sets a breakpoint in the current process. The
characteristics of the breakpoint are defined in the BreakInfo structure.

The UDIBreakType_14 Type field of the BreakInfo structure can contain one
or more of the following flags:

The flags UDIBreakFlagExecute, UDIBreakFlagRead, UDIBreakFlagWrite
and UDIBreakFlagFetch qualify the type of access to break on.

UDIBreakFlagExecute Is the ordinary execution breakpoint.

UDIBreakFlagRead Indicates that the process should break when the
given address is read.

UDIBreakFlagWrite Indicates that the process should break when the
given address is written.

UDIBreakFlagFetch Is used when fetching an address should cause
the process to break. Fetching is distinguished
from reading based on whether the CPU is
seeking an instruction or a datum.

The flags UDIBreakFlagWidthByte , UDIBreakFlagWidthHalfword and
UDIBreakFlagWidthWord qualify the width of an access (These are usually
used with a Read, Write or Fetch access).

UDI Services

3-38 Universal Debugger Interface Specification

The flags UDIBreakFlagGenSyncPulse and
UDIBreakFlagDoNotStopProcessor enable special actions that some
processors support. UDIBreakFlagGenSyncPulse causes the processor to
generate a sync pulse for external triggering when the breakpoint condition is
hit. UDIBreakFlagDoNotStopProcessor indicates that the processor should
not stop execution when this breakpoint is hit. Note that some processors
support these two flags only in the combinations of both set or both clear.

In general, any combination of the BreakType flags can be OR'ed together to
make a more complex breakpoint although some combinations may not be
supported on a particular TIP or particular processor. All TIPs are guaranteed
to support UDIBreakFlagExecute against instruction spaces that are writeable.
All other breakpoint combinations may be invalid against a TIP. If any part of
a breakpoint is invalid, the breakpoint is not set and
UDIErrorCantSetBreakpoint is returned.

The other fields of Breakinfo have the following meaning:

The Region field qualifies the address range of the breakpoint. For example, a
BreakType of UDIBreakFlagWrite will break when any address in the Region
is written.

The CntRemaining field of the BreakInfo structure shows the number of passes
remaining until the breakpoint next triggers.

The PassCount field specifies whether the CntRemaining should be reloaded
after triggering as well as what value it should be reloaded with. If PassCount
is greater than 0, the breakpoint is sticky. Each time the CntRemaining
expires, the process stops and the CntRemaining for this breakpoint is
reinitialized to the PassCount value. The breakpoint persists until
UDIClearBreakpoint is called against the returned BreakId. If PassCount is 0,
the breakpoint automatically clears when execution stops (UDIWait returns
UDIBreak, UDIStepped, or UDIExited for the current process) after the next
UDIStep or UDIExecute call. If PassCount is less than 0, the breakpoint is
non-sticky. When CntRemaining has expired, the process stops and the
breakpoint is removed. Of course, if execution stops earlier, the breakpoint
persists unless UDIClearBreakpoint is called. In no event will a non-sticky
breakpoint have its CntRemaining reinitialized.

The CntRemaining field can be set to any value by UDISetBreakpoint. The
usual usage is to set it to the absolute value of PassCount. Note that by using
the sequence

UDIQueryBreakpoint(id, &info);
UDIClearBreakpoint(id);

UDI Services

Universal Debugger Interface Specification 3-39

and then some time later

UDISetBreakpoint(info, &id);

a breakpoint can be disabled and then reenabled without changing its
PassCount and current CntRemaining status.

The Buf field, whose length is set in the BufLen field, is not used for the
standard breakpoints described in this section but can be optionally used for
vendor specific breakpoints.

BreakId values returned by UDISetBreakpoint are required to be non-zero and
are generally small positive integers. This makes it easier for pre-UDI1.4 TIPs
to query the breakpoints (UDIQueryBreakpoint did not return a NextBreakId
field before UDI 1.4).

The result of more than one breakpoint of the same type set against the same
address is TIP–defined (that is, the TIP must document what it does). A TIP
can limit the number of breakpoints it allows to be set. When any such limit is
reached, UDIErrorTooManyBreakpoints is returned.

The mechanism used to implement breakpoints should be hidden from the
DFE if possible. For example, if an execute breakpoint is implemented by
replacing an instruction with a special breakpoint instruction, subsequent calls
to UDIRead should continue to report the original instruction.

UDISetBreakpoint_13 is the old version of this call. It allowed a subset of
the breakpoint types allowed by UDISetBreakpoint_14. See the description of
UDISetBreakType_13 at the beginning of Chapter 3.

 Return Codes
UDIErrorCantSetBreakpoint
UDIErrorTooManyBreakpoints
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource

UDI Services

3-40 Universal Debugger Interface Specification

 UDISetCurrentConnection

 Call

UDIError UDISetCurrentConnection (
UDISessionId Session /* In */
);

 Description

DFEs that support multiple concurrent connections use
UDISetCurrentConnection to switch between the various connected TIPs.
DFEs that do not support multiple concurrent connections do not need to call
UDISetCurrentConnection.

TIPs should be aware that this function may be called apparently without
reason and more frequently than expected because of the way that multiple
connections may be managed in some IPC implementations.

 Return Codes
UDIErrorNoSuchConnection

UDI Services

Universal Debugger Interface Specification 3-41

 UDISetCurrentProcess

 Call

UDIError UDISetCurrentProcess (
UDIPId PId /* In */
);

 Description

UDISetCurrentProcess is used by DFEs that can handle multiple processes.
As pointed out in Chapter 2, even non–multitasking TIPs can support two
different processes. DFEs that debug strictly raw machines or strictly programs
do not need to be concerned with this call. All TIPs should validate the PId
argument, even those TIPs that support only one process.

 Return Codes
UDIErrorNoSuchProcess

UDI Services

3-42 Universal Debugger Interface Specification

 UDIStdinMode

 Call

UDIError UDIStdinMode (
UDIMode *Mode /* Out */
);

 Description

When the TIP wants to change the method used by the DFE for obtaining input
from the user, it causes UDIStdinMode to be called by returning
UDIStdinModeX from UDIWait . The default mode for input is line–buffered
and echoed with editing. Other modes to be supported are unbuffered (vs. line–
buffered), raw (vs. cooked), and non–echoing (vs. echoing). The TIP returns
the desired mode in Mode after UDIStdinMode is called. The TIP also returns
the desired mode in the UDIWait call as the fine state for the
UDIStdinModeX gross state. DFEs should endeavor to support all the modes,
but currently are required to support only the default mode. After calling
UDIStdinMode, the DFE should resume calling UDIWait .

UDI Services

Universal Debugger Interface Specification 3-43

 UDIStep

 Call

UDIError UDIStep (
UDIUInt32 Steps, /* In */
UDIStepType StepType, /* In */
UDIRange Range /* In */
);

 Description

UDIStep causes execution to continue one instruction at a time. The number
of instructions executed is specified by the Steps argument. That number of
steps is executed unless a breakpoint is encountered first. Additionally, the
StepType parameter can modify which instructions count and which do not.
Specifically, UDIStepOverCalls causes instructions that are executed as a
result of a call not to be counted. Similarly, UDIStepOverTraps causes
instructions in interrupt and trap handlers not to be counted. Not all targets
support all step types (monitors, for example, have problems with not stepping
over traps) and when a requested step type is unavailable,
UDIErrorUnsupportedStepType is returned.

An additional step type is UDIStepInRange which executes until the step
count is exhausted, a breakpoint is hit, or the PC is outside Range. The last
step type is UDIStepNatural, which allows the TIP to step naturally. It is the
only StepType value that is guaranteed to be supported by all TIPs. Note that
like UDIExecute, progress is guaranteed using the “same step, install
breakpoints, more steps” process.

UDIStep returns as soon as the TIP is informed of the number of steps to be
executed. Conceptually, no steps are performed until after control returns from
UDIStep. As a practical matter, on non–multitasking hosts, UDIStep does the
first step and installs breakpoints before returning.

If UDIStep is called when the target is already running, it should cause the
target to stop and the next UDIWait call should return
StopReason=UDIStepped.

 Return Codes
UDIErrorUnsupportedStepType
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource

UDI Services

3-44 Universal Debugger Interface Specification

 UDIStop

 Call

void UDIStop (
void
);

 Description

UDIStop requests that the TIP should return as soon as possible. If the TIP is
currently performing a transfer operation, it should be aborted and the TIP
should return UDIErrorAborted to the DFE. If no transfer is in progress, but
transparent mode data transfer is in progress, then the next UDIGetTrans call
should return UDIErrorTransDone , if possible. If transparent mode can not
be exited at the time of the UDIStop request, the next call to UDIGetTrans
should return text specifying why transparent mode can not be exited and what
can be done to put transparent mode in a state from which it can exit. If no
transfer or transparent mode transfer is in progress, but the TIP is executing or
stepping, execution should stop and the next UDIWait call should return
UDIStopped. In all other cases, the TIP ignores a UDIStop request. It is safe
to call UDIStop from a signal handler. UDIStop is unique in that it does not
have a return code.

UDI Services

Universal Debugger Interface Specification 3-45

 UDITransMode

 Call

UDIError UDITransMode (
UDIMode *Mode /* Out */
);

 Description

If UDIGetTrans returns UDIErrorTransModeX , the DFE must call
UDITransMode, and the TIP will return the new mode that it wishes the DFE
to use. The DFE must then resume calling UDIGetTrans.

In all other respects, this call is identical to UDIStdinMode on page 3-42.

UDI Services

3-46 Universal Debugger Interface Specification

 UDIWait

 Call

UDIError UDIWait (
UDIInt32 MaxTime, /* In */
UDIPId * PId, /* Out */
UDIUInt32 * StopReason /* Out */
);

 Description

UDIWait returns when either the target’s state changes or when approximately
MaxTime milliseconds have elapsed. If MaxTime is the special value
UDIWaitForever , then UDIWait returns only when the target’s state changes.
UDIWait returns the state of the target in StopReason. When UDIWait returns
any StopReason other than UDIRunning , then the process that stopped is
returned in PId and this process also becomes the “current process” for the
connection.

The TIP must return immediately from UDIWait (without waiting for the
expiration of the MaxTime parameter timer) for the following conditions:

• If the gross state is not UDIRunning .

• If the StopReason (combination of gross state and fine state) has changed
since the last UDIWait return—with the exception that if the state change
has been from (not UDIRunning + fine state anything) to (UDIRunning +
fine state 0). The logic here is that the transition from (not UDIRunning)
to UDIRunning can only come from a DFE action (for example,
UDIExecute) and that (UDIRunning + fine state 0) would be the next
expected state anyway.

If UDIWait is called before any calls to UDIExecute or UDIStep are made, it
returns UDINotExecuting as a reason..

For some TIPs (for example, a simulator TIP on a DOS host), all actual target
execution progress occurs when the DFE calls UDIWait . Consequently, a DFE
may not assume that any progress has been made by the sequence:
UDIExecute, long pause, UDIStop (and a DFE must call UDIWait to ensure
progress).

UDI Services

Universal Debugger Interface Specification 3-47

In general, UDIWait returns an error code only when it cannot determine the
true state of the target (an example might be
UDIErrorTargetNotResponding). If UDIWait can determine the true state of
the target, it should instead return UDINoError and return the state in
StopReason. StopReason is divided into two parts: the lower 8 bits indicate a
gross process state and the upper 24 bits indicate a fine process state. The
following table shows the gross StopReasons that are defined and their
meanings. Some StopReasons use the fine state field to return further
information and that is defined below as well.

StopReason Meaning

UDIBreak Breakpoint was hit. UDIBreak is returned
with the upper 24 bits indicating which
breakpoint was hit.

UDIExited Program stopped executing because it exited
(or its equivalent). Upper 24 bits give the exit
code.

UDIHalted CPU has halted. Fine state can be 0 or any
from the fine state table below. Target will
not leave UDIHalted state without DFE
intervention.

UDINotExecuting If UDIWait is called before any calls to
UDIExecute or UDIStep are made on a
connection, it returns UDINotExecuting as a
reason.

UDIRunning CPU is running. Fine state can be 0 or any
from the fine state table below.

UDIStdoutReady
UDIStderrReady
UDIStdinNeeded
UDIStdinModeX

TIP needs to perform I/O (usually on behalf of
the program). Upper 24 bits indicate how
much output is needed, how much input can
be accepted, or what mode is desired
(whichever is applicable).

UDIStepped Step count from the current UDIStep call
expired.

UDIStopped Target stopped because DFE called
UDIStop.

UDITrapped Invalid or unexpected trap was taken. Upper
24 bits of StopReason indicate which trap was

UDI Services

3-48 Universal Debugger Interface Specification

taken.

UDIWaiting CPU is in wait mode.

UDIWarned CPU was warned.

The two StopReasons, UDIRunning and UDIHalted , are special. They can
return a fine state of 0, or if the TIP wants to return additional information,
they can use a fine state from the following list of predefined fine states or a
TIP–defined negative fine state. Note that in all cases, gross state UDIHalted
means that the target will remain halted until some action by the DFE (for
example, UDIExecute) is taken to restart it.

Fine State2 Meaning

UDIResetAsserted Reset is currently asserted.

UDITransientReset Target went through a reset but is not currently
reset.

UDINoClock Indicates the target has no clock.

Any negative value Fine state is TIP defined. DFE can call
UDIGetErrorMessage, passing the fine state as an
argument to get a textual description for the fine
state.

The following are some combinations of gross state with these fine states and
how they would be interpreted:

UDIRunning + UDITransientReset Target is executing but went through a transient
Reset since the last UDIWait call.

UDIRunning + UDIResetAsserted Target is currently Reset but may resume execution
at any time.

UDIHalted + UDIResetAsserted Target is currenly Reset and will not resume
execution until some action is taken by the DFE to
restart it. (If reset deasserts, will enter UDIHalted +
UDITransientReset state).

UDIHalted + UDITransientReset Target is not currently reset but is halted (until
further DFE action is taken) because reset had been
asserted earlier and the target is configured such that
resets cause it to enter a halted state.

2 Used with UDIHalted or UDIRunning

UDI Services

Universal Debugger Interface Specification 3-49

UDIRunning + UDINoClock A static target, for example, may still be “running”
even though it has no clock.

Note that when UDIWait returns any particular UDIHalted StopReason, it
does not imply whether any other UDI call to the target will succeed or fail.
For example, returning (UDIHalted + UDIResetAsserted) does not imply that
an attempted UDIRead will fail. If the TIP, for example, cannot satisfy a
UDIRead because reset is asserted, it returns a UDIErrorResetAsserted error
on UDIRead. If a TIP can, in fact, satisfy the UDIRead even when reset is
asserted, it would just return UDINoError on UDIRead.

UDI Services

3-50 Universal Debugger Interface Specification

 UDIWrite

 Call

UDIError UDIWrite (
UDIHostMemPtr From, /* In */
UDIResource To, /* In */
UDICount Count, /* In */
UDISizeT Size, /* In */
UDICount * CountDone, /* Out */
UDIBool HostEndian /* In */
);

 Description

UDIWrite is the same as UDIRead (on page 3-36), except data flows from the
DFE to the TIP.

 Return Codes
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource
UDIErrorResourceNotWriteable

UDI Services

Universal Debugger Interface Specification 3-51

 UDIDFE calls

The UDIDFE calls on the following pages are all provided by the DFE and
called by the TIP. The TIP is only allowed to call these services while in the
process of handling a request from the DFE. The DFE, on receiving one of
these calls, may make any UDI call to the TIP with the exception of
transparent mode calls.

UDI Services

3-52 Universal Debugger Interface Specification

 UDIDFEEndTIPIO

 Call

UDIDFEEndTIPIO UDIParams((
void
));

 Description

The call to UDIDFEEndTIPIO provides a way for the TIP to indicate a
logical boundary for a set of I/O requests. If there have been any
UDIIOTypeTIP xxx IOType calls made by the TIP during the handling of a
UDI request, this call must be made before returning from the original UDI
request. The DFE may find it useful to close a special I/O window.

Note that on any call to UDIDFEPutOutput or UDIDFEGetInput , the DFE
may return UDIErrorAborted , indicating that the user wants to terminate this
“TIP Screen I/O session” and the TIP should then call UDIDFEEndTIPIO
and should try to finish the original UDI request without further input and
output requests. (Remember that these calls can only be made by the TIP while
it is servicing some UDI request from the DFE.)

UDI Services

Universal Debugger Interface Specification 3-53

 UDIDFEEvalExpression

 Call

UDIDFEEvalExpression (
char * Expression, /* In */
UDIInt KindofAnswer, /* Out */
UDIResource * AnswerResource, /* Out */
UDIHostMemPtr AnswerBuf, /* Out */
UDISizeT BufSize, /* In */
UDICount * CountDone, /* Out */
UDISizeT * Size, /* Out */
UDIExprType * Type, /* Out */
);

 Description

By calling UDIDFEEvalExpression, the TIP is asking the DFE to evaluate an
expression. The input parameter Expression will contain the zero–terminated
ASCII string to be evaluated. The TIP, not knowing whether the expression
will evaluate to a value or a resource address, can provide an AnswerBuf and
AnswerResource. Optionally, either AnswerBuf or AnswerResource can be set
to NULL if the TIP is not interested in that kind of answer. (The DFE will then
return an error if the expression did in fact evaluate to the kind of answer that
was set to NULL.) If AnswerBuf is provided, the TIP also passes the size of the
AnswerBuf in bytes.

The DFE treats the string as an expression, and evaluates it using its own
expression evaluation rules.

UDI Services

3-54 Universal Debugger Interface Specification

If the expression evaluates to a value or a set of values, KindOfAnswer is set to
UDIExprKindValue and the values are returned in AnswerBuf. (The
AnswerResource parameter is not used in this case.) CountDone indicates the
number of values returned, Size indicates the size of each value in bytes, and
Type contains simple type information for the expression. The endian type of
the objects is always host–endian (i.e. the data is in host byte order). Note that
the DFE is constrained to return a single Size descriptor. Thus, while arrays of
scalar values could be returned, structures which mixed size fields could not.
The Type information returned is fairly basic, being one of the following:

UDITypeUnknown /* type not applicable, or DFE doesn’t
 * support types */

UDITypeOther /* type is known but does not match one
in

 * the UDI list */
 UDITypeChar /* an 8-bit ASCII character */
 UDITypeInt /* an integral type. With Size, handles
 * short, int, long */

UDITypeFloat /* with Size, handles float, double, long
 * double */

If BufSize was not big enough to hold the values, (i.e. CountDone * Size >
BufSize), the DFE leaves the buffer unfilled and returns the error
UDIDFEErrorBufTooSmall but still sets CountDone, Size, and Type as if the
buffer had been big enough. This allows the TIP to reissue the request with a
large enough buffer if it so desires.

If the expression evaluates to an “address,” KindofAnswer is set to
UDIExprKindResource and the resource description (class and offset) is
returned in AnswerResource. (The AnswerBuf parameter is not used in this
case). If the DFE knows the type of the data that the address is pointing at, it
should set Type, Count, and Size appropriately. If the DFE does not know the
type, size, or count of the data that the address is pointing at, it can return:
Type = UDITypeUnknown and Count or Size = 0.

 Return Codes
UDIDFEErrorCouldNotEvaluate
UDIDFEErrorEvaluatedToValue

(This could happen if the supplied
 AnswerBuf was NULL.)

UDIDFEErrorEvaluatedToResource
(This could happen if the supplied
 AnswerResource was NULL.)

UDIDFEErrorBufTooSmall

UDI Services

Universal Debugger Interface Specification 3-55

 UDIDFEEvalResource

 Call

UDIDFEEvalResource UDIParams((
UDIResource ResourceToEval, /* In */
UDIBool ExactEval, /* In */
char * SymbolAnswer, /* Out */
UDISizeT BufSize, /* In */
));

 Description

This function is provided by the DFE and called by the TIP. The TIP is only
allowed to call this function while in the process of handling a request from
the DFE. By calling UDIDFEEvalResource, the TIP is asking the DFE to
map the resource ResourceToEval to a symbolic expression. The DFE should
map this resource to an ASCII string of the form symbolname or symbolname +
offset, where symbolname is the nearest symbol whose space is the same as
resource.space and whose offset is less than resource.offset.

If ExactEval is true, the symbol name’s offset must match the resource.offset
exactly. The DFE returns the answer in the form of a null–terminated ASCII
string in the SymbolAnswer parameter. BufSize indicates the maximum size of
the SymbolAnswer buffer in bytes. If the resource cannot be mapped to a
string, a null string is returned along with one of the errors listed below.

 Return Codes
UDIDFEErrorCouldNotEvaluate
UDIDFEErrorNoExactEval
UDIDFEErrorBufTooSmall
UDIErrorUnknownResourceSpace
UDIErrorInvalidResource

UDI Services

3-56 Universal Debugger Interface Specification

 UDIDFEGetInput

 Call

UDIDFEGetInput UDIParams((
UDIHostMemPtr Buf, /* Out */
UDIIOType IOType, /* In */
UDISizeT BufSize, /* In */
UDIMode Mode /* In */
UDISizeT * CountDone /* Out */
));

 Description

This function is provided by the DFE and called by the TIP. The TIP is only
allowed to call this function while in the process of handling a request from
the DFE. Buf is a set of maximum BufSize bytes that the TIP wants the DFE to
fill with input from the user. Mode indicates the mode to be used to get the
input, the default is line–buffered, echoed, with editing. Other modes are
described under the description of the UDIStdinMode call. IOType can be one
of the following:

• UDIIOTypeTIPStdin

• UDIIOTypeTargetStdin

In other words, IOType indicates the destination of the input (TIP or Target). A
DFE may want to get input from the user differently, depending on the
IOType, for example, a windowed debugger may get TIP input and target input
from different windows. On return, the DFE sets CountDone to indicate how
many bytes were actually input from the user.

Using UDIIOTypeTIPStdin allows the TIP to get a response from the user to
let the TIP know how to proceed while handling a UDI request. It is often used
together with UDIDFEPutOutput (with parameter UDIIOTypeTIPStdout),
which presents TIP–specific information to the user.

Using UDIIOTypeTargetStdin allows the TIP to get input from the DFE for a
running program. This represents an alternative to returning UDIStdInNeeded
from UDIWait and waiting for the DFE to call UDIPutStdin . For some TIPs,
this may be a simpler alternative.

UDI Services

Universal Debugger Interface Specification 3-57

 Return Codes
UDIErrorAborted

UDI Services

3-58 Universal Debugger Interface Specification

 UDIDFEPutOutput

 Call

UDIDFEPutOutput (
UDIHostMemPtr Buf, /* In */
UDIIOType IOType, /* In */
UDISizeT Count, /* In */
UDISizeT * CountDone /* Out */
);

 Description

This function is provided by the DFE and called by the TIP. The TIP is only
allowed to call this function while in the process of handling a request from
the DFE. Buf contains a set of Count bytes that the TIP wants the DFE to
present to the user. IOType can be one of the following:

• UDIIOTypeTIPStdout

• UDIIOTypeTIPStderr

• UDIIOTypeTargetStdout

• UDIIOTypeTargetStderr

Using UDIIOTypeTIPStdout (or TIPStderr) allows the TIP to present TIP–
specific status information to the user. When used together with
UDIDFEGetInput (with parameter UDIIOTypeTIPStdin), the TIP can get a
response from the user indicating how to proceed while handling a UDI
request.

Using UDIIOTypeTargetStdout (or TargetStderr) allows the TIP to feed
output from a running program to the DFE . This represents an alternative to
returning UDIStdOutReady or UDIStderrReady from UDIWait and waiting
for the DFE to call UDIGetStdout or UDIGetStderr . For some TIPs, this may
be a simpler alternative.

 Return Codes
UDIErrorAborted

Universal Debugger Interface Specification 4-1

Chapter 4

4 UDI IPC Methods for DOS Hosts

This chapter specifies how UDI DFEs and TIPs communicate using the DOS
IPC mechanism. The UDI version covered is UDI 1.4 but compatibility with
previous versions of UDI (back to version 1.2) is also discussed. (For complete
information on compatibility and interoperability of different version TIPs and
DFEs, please see page D–1.)

NOTE: Refer back to Chapter 3 for semantics on most of the fields of the
calls.

In the DOS IPC mechanism, the TIP makes itself resident in memory along
with a table of pointers to its UDI service routines. The DFE locates this table
and calls through the table to the TIP routines. The DFE and TIP thus use a
shared memory scheme and can pass real–mode pointers to each other.

The sections below describe how the DFE connects to the TIP, and the calling
conventions and the format of the stack when the DFE wants to call a routine
in the TIP or vice versa.

NOTE: All pointers in this specification are real–mode FAR pointers
consisting of a 16–bit offset followed by a 16–bit segment. All data,
unless otherwise noted, are in little–endian format. In particular, on
calls that use a HostEndian parameter (like UDIRead and
UDIWrite), HostEndian = 1 implies little endian.

UDI IPC Methods for DOS Hosts

4-2 Universal Debugger Interface Specification

 Establishing the Connection

The TIP places itself in memory in some manner that is not defined by UDI
(usually using DOS terminate and stay–resident calls). A TIP has a
TIPVecRec structure which the DFE uses to communicate with the TIP. The
format of the TIPVecRec structure is:

struct TIPVecRec {
union rec recognizer; /* 0xcf, ’u’, ’d’, ’i’ */
struct UDIVecRec FAR *Next; /* Pointer to next TIP */
struct UDIVecRec FAR *Prev; /* Pointer to previous TIP */
char FAR *exeName; /* Name that the DFE uses when

 * searching for a TIP and the
 * remainder of the structure
 * are far pointers to the UDI
 * routines in the TIP */

/* These routines are described separately below */
UDIConnect_12,
UDIDisconnect,
UDISetCurrentConnection,
UDICapabilities_12,
UDIGetErrorMsg,
UDIGetTargetConfig,
UDICreateProcess,
UDISetCurrentProcess,
UDIDestroyProcess,
UDIInitializeProcess,
UDIRead,
UDIWrite,
UDICopy,
UDIExecute,
UDIStep,
UDIStop,
UDIWait,
UDISetBreakpoint_13,
UDIQueryBreakpoint_13,
UDIClearBreakpoint,
UDIGetStdout,
UDIGetStderr,
UDIPutStdin,
UDIStdinMode,
UDIPutTrans,
UDIGetTrans,
UDITransMode

/* Fields below this did not exist in UDI 1.2 TipVecRec */
Signature_1.3 /* characters ”1.3\0”, identifies the

 * newer TipVecRec structure */
TIPIPCId /* so DFE can identify UDI level from

 * structure */
UDIConnect_13
UDIFind
UDICapabilities_13
UDIConnect_14
UDISetBreakpoint_14
UDIQueryBreakpoint_14

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-3

Before becoming resident, the TIP links its TIPVecRec structure into the UDI
chain. The UDI chain consists of a doubly linked list of TIPVecRec structures
anchored at a single interrupt vector between 60h and 66h.

The UDI chain is located through the following process:

Each interrupt vector from 60h to 66h is inspected in turn. If the interrupt
vector points to a location whose first four bytes contain the TIPVecRec
signature, that is assumed to be the UDI chain anchor. If no interrupt vector
from 60h to 66h matches the TIPVecRec signature, (as would be true for the
first TIP) then the first vector in that 60h through 66h group that equals NULL
is selected as the UDI chain anchor.

The exeName field of the TIPVecRec points to a “TIP identifier” string which
the TIP uses to identify itself and which the DFE uses when it searches down
the UDI chain for a particular TIP. The way the TIP chooses this TIP identifier
string and the manner in which the DFE learns the TIP identifier string is
outside the scope of this specification. (In the sample AMD implementation,
the DFE actually spawns the TIP and the TIP assumes argv[1] is the identifier
string.)

When the DFE locates the UDI chain and finds a TIP with the correct TIP
identifier string, it must first call the TIP’s UDIConnect routine. The
parameters for the UDIConnect routine are discussed below. Notice that one
of the things the DFE passes to the TIP at UDIConnect time is a pointer to a
DFEVecRec structure. The DFEVecRec structure contains call entry points
for the UDIDFE calls. The TIP uses this DFEVecRec structure to call back
into the DFE. The structure of this DFEVecRec is:

struct DFEVecRec {
UDIDFEEvalExpression /* all FAR pointers */
UDIDFEEvalResource
UDIDFEGetInput
UDIDFEPutOutput
UDIDFEEndTIPIO

 }

 General Call Interface Information

The information here applies to both DFE–to–TIP calls and to TIP–to–DFE
calls. The processor must be in real mode at the time of the call. On entry, the
called routine may not assume the contents of any registers except CS, IP, SS,
and SP. In all respects, the calling convention is that for Microsoft C compiled
large model using the compiler option—Alfu (DS != SS). Refer to Microsoft
documentation for further details on this calling convention.

UDI IPC Methods for DOS Hosts

4-4 Universal Debugger Interface Specification

 Typedefs of UDI Parameters

The following type definitions are used in many of the routine descriptions of
the specific calls and parameters (starting on page 4-6).

typedef unsigned long UDIUInt32; /* unsigned integers */
typedef unsigned short UDIUInt16;
typedef unsigned char UDIUInt8;
typedef long UDIInt32; /* 32-bit integer */
typedef short UDIInt16; /* 16-bit integer */
typedef char UDIInt8; /* unreliable signedness
*/
typedef UDIInt16 UDIInt;
typedef UDIUInt16 UDIUInt;
typedef UDIUInt16 UDISizeT;
typedef UDIInt UDIError;
typedef UDIInt UDISessionId;
typedef UDIInt UDIPId;
typedef UDIInt UDIStepType;
typedef UDIInt UDIBreakType;
typedef UDIUInt UDIBreakId;
typedef UDIUInt UDIMode;
typedef void UDIVoid; /* void type */
typedef void * UDIVoidPtr; /* void pointer type */
typedef void FAR* UDIHostMemPtr; /* arbitrary mem pointer
*/
typedef UDIInt16 UDIBool;
typedef UDIStruct
{

CPUSpace Space;
CPUOffset Offset;

 } UDIResource;
typedef UDIStruct
{

CPUOffset Low;
CPUOffset High;

 } UDIRange;
typedef UDIStruct
{

CPUSpace Space;
CPUOffset Offset;
CPUSizeT Size;

} UDIMemoryRange;

 Specific Calls and Parameters

This section describes the parameters for each call that the DFE can make into
the TIP. The calls are arranged alphabetically on the following pages for easy
access. In most cases, the semantics of each field of the messages is described
in Chapter 3. Message field descriptions not found in Chapter 3 are located in
the descriptions of the specific messages on the following pages.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-5

NOTE: Two calls described in Chapter 3 are handled entirely on the DFE side
and do not result in calls across the IPC interface to the TIP. These
calls are UDIEnumerateTIPs and UDISetCurrentConnection.

NOTE: (For UDI 1.2) On all calls except UDIConnect and UDIDisconnect,
the connection_id field appears as the last parameter to the call. This
parameter is new to UDI 1.3 and later versions and was not defined in
UDI 1.2. Because of the calling convention, it can be sent without
harm to a 1.2 TIP but the TIP will ignore it. Also, it will not be valid
for calls from a 1.2 DFE and must be ignored.

UDI IPC Methods for DOS Hosts

4-6 Universal Debugger Interface Specification

 UDICapabilities

 Call

UDIError (FAR *UDICapabilities_12) UDIParams((
UDIUInt32 far * TIPId, /* Out */
UDIUInt32 far * TargetId, /* Out */
UDIUInt32 DFEId, /* In */
UDIUInt32 DFE, /* In */
UDIUInt32 far * TIP, /* Out */
UDIUInt32 far * DFEIPCId, /* Out */
UDIUInt32 far * TIPIPCId, /* Out */
char far * TIPString /* Out */

));
 UDIError (FAR *UDICapabilities_13) UDIParams((

UDIUInt32 far * TIPId, /* Out */
UDIUInt32 far * TargetId, /* Out */
UDIUInt32 DFEId, /* In */
UDIUInt32 DFE, /* In */
UDIUInt32 far * TIP, /* Out */
UDIUInt32 far * DFEIPCId, /* Out */
UDIUInt32 far * TIPIPCId, /* Out */
char far * TIPString /* Out */
UDISizeT BufSize, /* In - not used

in 1.2 */
UDISizeT far * CountDone, /* Out - not used

in 1.2 */
UDISessionId connection_id

));

 Description

The semantics of the parameters above are described on page 3-11 and the
following additional information should also be noted. The first call from the
DFE to the TIP must be a UDIConnect call. If the UDIConnect request
succeeds, the second message must be a UDICapabilities request.
UDICapabilities_12 will only be called by 1.2 DFEs, UDICapabilities_13
will only be called by 1.3 DFEs.

With the UDI 1.3 UDICapabilities call, the maximum length of the returned
TIPString is limited to RqMsg.BufSize characters (including the terminator). If
exactly BufSize characters are returned, this indicates that the TIP may have
more characters to return in its TIPString and the DFE must then send another
UDICapabilities request and the TIP must return the next BufSize characters.

With the UDI 1.2 UDICapabilities request, the maximum length of the
returned TIPString is limited to 80 characters (including the terminator).

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-7

 UDIClearBreakpoint

 Call

UDIError (FAR *UDIClearBreakpoint) UDIParams((
unsigned int BreakId /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-11.

UDI IPC Methods for DOS Hosts

4-8 Universal Debugger Interface Specification

 UDIConnect

 Call

UDIError (FAR *UDIConnect_12) UDIParams((
char far * tip_parameters /* In */
UDISessionId far * connection_id, /* Out */
struct DOSTerm far * TermStruct /* In */
));

 UDIError (FAR *UDIConnect_13) UDIParams((
char far * tip_parameters /* In */
UDISessionId far * connection_id, /* Out */
struct DOSTerm far * TermStruct /* In */
UDIUInt32 DFEIPCId /* In -- not used

in 1.2 */
UDIUInt32 far * TIPIPCId /* Out -- not used

in 1.2 */
struct DFEVecRec far * VecRec /* In -- not used

in 1.2 */
UDISessionId DFESessionId /* In -- new with

1.3 */
));

UDIError (FAR *UDIConnect_14) UDIParams((
char far * tip_parameters /* In */
UDISessionId far * connection_id, /* Out */
struct DOSTerm far * TermStruct /* In */
UDIUInt32 DFEIPCId /* In -- not used

in 1.2 */
UDIUInt32 far * TIPIPCId /* Out -- not used

in 1.2 */
struct DFEVecRec far * VecRec /* In -- not used

in 1.2 */
UDISessionId DFESessionId /* In -- new with

1.3 */
UDIUInt32 DFE /* In -- new with

1.4 */
));

 where:

tip_parameters This is an ASCII string which
the TIP should interpret as TIP–specific
configuration parameters.

connection_id This uniquely defines this UDI
connection for this TIP. It is passed on
every call after UDIConnect by UDI 1.3
DFEs. (See notes on UDI 1.2, 1.3, and 1.4
compatibility on page D–1).

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-9

TermStruct It is a requirement of UDI that all
UDIxxx calls return to the DFE, even a
call where the TIP chooses to remove
itself from memory. A TIP might remove
itself from memory on either a failing
UDIConnect or on a UDIDisconnect of the
last connection.

The TermStruct parameter provides a way
for the TIP to remove itself from memory
and still return back to the DFE. The
TermStruct parameter has the following
format:

UDIStruct DOSTerm {

void (far *TermFunc)(void);

UDIUInt16 sds;

UDIUInt16 sss;

UDIUInt16 ssi;

UDIUInt16 sdi;

UDIUInt16 ssp;

UDIUInt16 retval;

UDIUInt16 sbp;

};

The semantics are such that if the TIP
stores the DS, SS, SI, SP, and BP
registers, which exist at the entry point
to the call (UDIConnect or
UDIDisconnect), into the sds, sss, ssi,
ssp, retval, and sbp fields, stores the
return error code into the retval field,
and also sets TermFunc as its PSP exit
function (offset 16 in the PSP) before
calling the DOS exit function, then flow
will return properly to the DFE caller
after the DOS exit by the TIP.

If the TIP is not removing itself from
memory, TermStruct can be ignored.

UDI IPC Methods for DOS Hosts

4-10 Universal Debugger Interface Specification

DFEIPCId The lowest 12 bits define the DFE IPC
version number. For UDI1.2 DFEs, this
will be 0x12N. For UDI1.3 DFEs, this will
be 0x13N. In each case, N is a minor
version indicator and should be ignored
by the TIP. This parameter is present so
that in future versions of UDI, the TIP
will know the UDI version of the DFE.

DFESessionId
This is a number that uniquely identifies
this connection for the DFE. This is
passed by the DFE to the TIP at connect
time and then used by the TIP on each of
the callbacks and allows the DFE to
distinguish which TIP the callback came
from.

DFE The DFE parameter has the same semantics
as the DFE parameter in the
UDICapabilities call; it indicates to the
TIP what version of UDI the DFE prefers,
i.e., the latest version number the DFE
understands. (This parameter appears in
the UDIConnect 1.4 procedural interface).

NOTE: When the return value from UDIConnect is negative, the TIP must
stay in memory and the DFE must call UDIGetErrorMessage to get
the error text. See Appendix A for descriptions of UDI errors,
including UDIErrorTryAnotherTIP and
UDIErrorConnectionUnavailable .?

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-11

 Description

The first call from the DFE to the TIP must be a UDIConnect call. There are
three different UDIConnect entries in the call table, the UDIConnect_12 entry
is used only by 1.2 DFEs; the UDIConnect_13 entry is used only by 1.3 and
later DFEs and the UDIConnect_14 adds the DFE parameter supported by the
UDIConnect_14 procedural interface. Because a TIP must have installed its
TIPVecRec table in memory before a DFE tries to connect to it, a DFE can
tell the IPC version of the TIP by looking for the Signature_1.3 field and the
TIPIPCId in the TIPVecRec. The absence of the Signature_1.3 field marks
the TIP as 1.2.

A TIP knows the IPC version of the DFE by looking at the DFEIPCId
parameter of the connect request. A 1.2 DFE can be detected because it is the
only one who will call the old Connect_12 entry point.

UDI IPC Methods for DOS Hosts

4-12 Universal Debugger Interface Specification

 UDICopy

 Call

UDIError (FAR *UDICopy) UDIParams((
UDIResource From, /* In */
UDIResource To, /* In */
UDICount Count, /* In */
UDISizeT Size, /* In */
UDICount far * CountDone, /* Out */
UDIBool direction, /* In */
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-17.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-13

 UDICreateProcess

 Call

UDIError (FAR *UDICreateProcess) UDIParams((
UDIPId far * Id, /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-18.

UDI IPC Methods for DOS Hosts

4-14 Universal Debugger Interface Specification

 UDIDestroyProcess

 Call

UDIError (FAR *UDIDestroyProcess) UDIParams((
UDIPId PId /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-19.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-15

 UDIDisconnect

 Call

UDIError (FAR *UDIDisconnect) UDIParams((
UDISessionId connection_id, /* In */
UDIBool Terminate, /* In */
struct DOSTerm far * TermStruct /* In - not seen

in UDIP */
));

 where:

connection_id Is the one returned by
UDIConnect .

 Description

The semantics of the parameters are described on page 3-20.

NOTE: For TermStruct, see the description under UDIConnect on page 4-8.

UDI IPC Methods for DOS Hosts

4-16 Universal Debugger Interface Specification

 UDIExecute

 Call

UDIError (FAR *UDIExecute) UDIParams((
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-22.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-17

 UDIFind

 Call

UDIError UDIFind UDIParams((
UDIMemoryRange WhereToLook, /* In */
UDIInt32 Stride, /* In */
UDIHostMemPtr Pattern, /* In */
UDIHostMemPtr PatternMask, /* In */
UDICount PatternCount, /* In */
UDISizeT PatternSize, /* In */
UDIBool PatternHostEndian, /* In */
UDICount MaxToFind, /* In */
UDICount * CountFound, /* Out */
CPUOffset FoundAtOffset[], /* Out */
UDIHostMemPtr FoundValues[], /* Out */
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-23.

UDI IPC Methods for DOS Hosts

4-18 Universal Debugger Interface Specification

 UDIGetErrorMessage

 Call

UDIError (FAR *UDIGetErrorMsg) UDIParams((
UDIError ErrorCode, /* In */
UDISizeT MsgSize, /* In */
char far * Msg, /* Out */
UDISizeT far * CountDone /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-24.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-19

 UDIGetStderr

 Call

UDIError (FAR *UDIGetStderr) UDIParams((
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /* In */
UDISizeT far * CountDone /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-25.

UDI IPC Methods for DOS Hosts

4-20 Universal Debugger Interface Specification

 UDIGetStdout

 Call

UDIError (FAR *UDIGetStdout) UDIParams((
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /* In */
UDISizeT far * CountDone /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-26.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-21

 UDIGetTargetConfig

 Call

UDIError (FAR *UDIGetTargetConfig) UDIParams((
UDIMemoryRange far KnownMemory[], /* Out */
UDIInt far * NumberOfRanges, /* In/Out */
UDIUInt32 far ChipVersions[], /* Out */
UDIInt far * NumberOfChips, /* In/Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-27.

UDI IPC Methods for DOS Hosts

4-22 Universal Debugger Interface Specification

 UDIGetTrans

 Call

UDIError (FAR *UDIGetTrans) UDIParams((
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /* In */
UDISizeT far * CountDone /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-28.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-23

 UDIInitializeProcess

 Call

UDIError (FAR *UDIInitializeProcess) UDIParams((
UDIMemoryRange far ProcessMemory[], /* In */
UDIInt NumberOfRanges, /* In */
UDIResource EntryPoint, /* In */
CPUSizeT far StackSizes[], /* In */
UDIInt NumberOfStacks, /* In */
char far * ArgString, /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-30.

UDI IPC Methods for DOS Hosts

4-24 Universal Debugger Interface Specification

 UDIPutStdin

 Call

UDIError (FAR *UDIPutStdin) UDIParams((
UDIHostMemPtr Buf, /* In */
UDISizeT Count, /* In */
UDISizeT far * CountDone /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-32.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-25

 UDIPutTrans

 Call

UDIError (FAR *UDIPutTrans) UDIParams((
UDIHostMemPtr Buf, /* In */
UDISizeT Count, /* In */
UDISizeT far * CountDone /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-33.

UDI IPC Methods for DOS Hosts

4-26 Universal Debugger Interface Specification

 UDIQueryBreakpoint

 Call

UDIError (FAR *UDIQueryBreakpoint 1.2) UDIParams((
UDIBreakId BreakId, /* In */
UDIResource far * Addr, /* Out */
UDIInt32 far * PassCount, /* Out */
UDIBreakType far * Type, /* Out */
UDIInt32 far * CountRemaining,/* Out */
UDISessionId connection_id
));

UDIError (FAR *UDIQueryBreakpoint_14) UDIParams((
UDIBreakId BreakId, /* In */
UDISizeT BufSize, /* In */
UDIBreakInfo far * BreakInfo, /* Out */
UDIBreakId far * NextBreakId /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-34.

The UDIQueryBreakpoint_13 call returns a subset of the information returned
by UDIQueryBreakpoint_14. Ranges are not supported. Only the low 4 bits
of Type are defined. Any information in the vendor-specific Buf field of a 1.4
breakpoint cannot be returned to UDIQueryBreakpoint_13.

In actual practice it is unlikely that these mapping problems will arise since
they require a new DFE to set up breakpoints on a new TIP, then disconnect
(without terminating the TIP) and have an old DFE connect and query the
breakpoints on the TIP.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-27

 UDIRead

 Call

UDIError (FAR *UDIRead) UDIParams((
UDIResource From, /* In */
UDIHostMemPtr To, /* Out */
UDICount Count, /* In */
UDISizeT Size, /* In */
UDICount far * CountDone, /* Out */
UDIBool HostEndian, /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-36.

UDI IPC Methods for DOS Hosts

4-28 Universal Debugger Interface Specification

 UDISetBreakpoint

 Call

UDIError (FAR *UDISetBreakpoint_13) UDIParams((
UDIResource Addr, /* In */
UDIInt32 PassCount, /* In */
UDIBreakType Type, /* In */
UDIBreakId far * BreakId , /* Out */
UDISessionId connection_id
));

UDIError (FAR *UDISetBreakpoint_14) UDIParams((
UDIBreakInfo *BreakInfo, /* In */
UDIBreakId far *BreakId, /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-37.

The UDISetBreakpoint_13 call allows setting breakpoints with a subset of the
information that is possible with UDISetBreakpoint_14. Ranges are not
supported. Only the low 4 bits of Type are defined. The CountRemaining
must be initialized to the absolute value of the PassCount. No vendor-specific
Buf field is supported.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-29

 UDISetCurrentProcess

 Call

UDIError (FAR *UDISetCurrentProcess) UDIParams((
UDIPId PId /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-41.

UDI IPC Methods for DOS Hosts

4-30 Universal Debugger Interface Specification

 UDIStdinMode

 Call

UDIError (FAR *UDIStdinMode) UDIParams((
UDIMode far * Mode /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-42.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-31

 UDIStep

 Call

UDIError (FAR *UDIStep) UDIParams((
UDIUInt32 Steps, /* In */
UDIStepType StepType, /* In */
UDIRange Range /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-43.

UDI IPC Methods for DOS Hosts

4-32 Universal Debugger Interface Specification

 UDIStop

 Call

UDIVoid (FAR *UDIStop) UDIParams((
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-44.

NOTE: UDIStop is unique in that it can be called by the DFE even before the
TIP has returned from the previous UDI call. (It can also be called
after a UDIExecute and before a UDIWait).

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-33

 UDITransMode

 Call

UDIError (FAR *UDITransMode) UDIParams((
UDIMode far * Mode, /* Out */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-45.

UDI IPC Methods for DOS Hosts

4-34 Universal Debugger Interface Specification

 UDIWait

 Call

UDIError (FAR *UDIWait) UDIParams((
UDIInt32 MaxTime, /* In */
UDIPId far * PId, /* Out */
UDIUInt32 far * StopReason, /* Out */
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-46.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-35

 UDIWrite

 Call

UDIError (FAR *UDIWrite) UDIParams((
UDIHostMemPtr From, /* In */
UDIResource To, /* In */
UDICount Count, /* In */
UDISizeT Size, /* In */
UDICount far * CountDone, /* Out */
UDIBool HostEndian, /* In */
UDISessionId connection_id
));

 Description

The semantics of the parameters are described on page 3-50.

UDI IPC Methods for DOS Hosts

4-36 Universal Debugger Interface Specification

 UDIDFE calls

The calls on the following pages are made from the TIP to the DFE. All
UDIDFExxx calls can only be made by the TIP while it is in the middle of
servicing some UDI request from the DFE (i.e., before it has returned from the
UDI call). In addition, while the DFE is servicing the UDIDFExxx request, the
DFE can issue a new UDI request to the TIP. The call traffic in this last case
would be:

--> UDIxxx called by DFE

<-- UDIDFEyyy called by TIP

--> UDIzzz called by DFE

<-- UDIzzz returns

--> UDIDFEyyy returns

<-- UDIxxx returns

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-37

 UDIDFEEndTIPIO

 Call

UDIDFEEndTIPIO UDIParams((
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-52.

UDI IPC Methods for DOS Hosts

4-38 Universal Debugger Interface Specification

 UDIDFEEvalExpression

 Call

UDIDFEEvalExpression UDIParams((
char * Expression, /* In */
UDIInt KindofAnswer, /* Out (None, Resource,

Value) */
UDIResource * AnswerResource, /* Out (used when Kind =

Resource) */
UDIHostMemPtr AnswerBuf, /* Out (used when Kind =

Value) */
UDIHostMemPtr AnswerBuf, /* Out (used when Kind =

Value) */
UDISizeT BufSize, /* In (size of AnswerBuf

in bytes)*/
UDICount * CountDone, /* Out (used when Kind =

Value) */
UDISizeT * Size, /* Out (used when Kind =

Value) */
UDIExprType * Type, /* Out (used when Kind =

Value) */
UDISessionId connection_id

));

 Description

Each response specifies (by KindOfAnswer) either an AnswerResource or an
AnswerBuf with CountDone, Size, and Type.

Any data in AnswerBuf consists of objects of size Size and is always in the
same endian format as the target.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-39

 UDIDFEEvalResource

 Call

UDIDFEEvalResource UDIParams((
UDIResource ResourceToEval, /* In */
UDIBool ExactEval, /* In, true if Exact

 * Evaluation Desired */
char * SymbolAnswer, /* Out */
UDISizeT BufSize, /* In */
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-55.

UDI IPC Methods for DOS Hosts

4-40 Universal Debugger Interface Specification

 UDIDFEGetInput

 Call

UDIDFEGetInput UDIParams((
UDIHostMemPtr Buf, /* Out */
UDIIOType IOType, /* In */
UDISizeT BufSize, /* In */
UDIMode Mode Mode, /* In */
UDISizeT * CountDone, /* Out */
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-56.

UDI IPC Methods for DOS Hosts

Universal Debugger Interface Specification 4-41

 UDIDFEPutOutput

 Call

UDIDFEPutOutput UDIParams((
UDIHostMemPtr Buf, /* In */
UDIIOType IOType, /* In */
UDISizeT Count, /* In */
UDISizeT * CountDone, /* Out */
UDISessionId connection_id

));

 Description

The semantics of the parameters are described on page 3-58.

Universal Debugger Interface Specification 5-1

Chapter 5

5 UDI IPC Methods for UNIX Hosts

This chapter specifies how UDI DFEs and TIPs communicate using the
socket–based IPC mechanism. The UDI version covered is UDI 1.4 but
compatibility with previous versions of UDI (back to version 1.2) is also
discussed. (For complete information on compatibility and interoperability of
different version TIPs and DFEs, please see page D–1.)

NOTE: Refer back to Chapter 3 for semantics on most of the fields of the
messages.

In the socket–based IPC mechanism, the DFE establishes a socket connection
to the TIP. The DFE and TIP then exchange requests and responses by sending
messages over that socket. Also, for a few unusual asynchronous situations, the
DFE can send a signal to the TIP.

The sections below describe how the DFE connects to the TIP, the format of
the request and response messages that are sent between the DFE and TIP on
the socket, and the signals that the DFE can send to the TIP.

NOTE: In this chapter, when a reference is made to a UDIConnect request
message, it means "either a UDIConnect_12 request message or a
UDIConnect_14 request message" unless otherwise noted.

 Establishing the Connection

The TIP and DFE communicate over a socket. The socket may be based on
any of the socket address families. The method by which the TIP chooses a
socket to listen on and the way the DFE learns the socket address and address
family of the TIP is outside the scope of this specification. (As an example, the
TIP and DFE could take the socket name as a startup parameter. In some
cases, the DFE might actually spawn the TIP.)

The TIP calls socket(), bind(), listen(), and accept(). After an accept()
establishes a socket descriptor, the TIP expects all data for that connection
from the DFE to arrive on that same socket descriptor.

UDI IPC Methods for UNIX Hosts

5-2 Universal Debugger Interface Specification

For each connection the DFE wants to make, even if it is another connection to
the same TIP, the DFE calls socket() and connect(), creating a new socket
descriptor. All messages for that connection are then sent over that same
socket descriptor.

Note that a TIP which needs to support more than one connection will have to
listen for messages from more than one socket, and the socket that a message
arrives on implies its connection ID.

 General Message Format Information

Each request or response message consists of a string of bytes. The fields of
each message are described below using the structure syntax. The fields of the
messages are always packed on byte boundaries; there are no padding bytes
between the fields.

The following field descriptors are used in the specific message formats which
start on page 5-9. The endian type of the various fields is specified on page 5-
4.

UDIUInt32 An unsigned 32–bit integer sent as 4
bytes (endian type specified on page 5-
4).

UDIInt32 A signed 32–bit integer sent as 4 bytes
(endian type specified on page 5-4).

UDIByteArray A string of bytes. The length
or dimension of the array is always
implicit from other information and is
not sent as part of the array. (See the
dimension = comments in the specific
requests.) For the UDIRead , UDIWrite ,
UDIFind and UDIDFEEvalExpression
requests, it is possible that the objects
specified by the byte array are not
actually bytes. In these cases, the
endian type of the objects is described
in the notes for each specific request.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-3

UDIString This is shorthand for:
struct {

UDIUInt32 Len;
UDIByteArray Buf;

}
A Len of zero is permitted. When the
UDIString deals with actual ASCII
strings, the null terminator byte is
always included in both the length and
the array.

UDIRange This is shorthand for:
struct {

UDIUInt32 Low;
UDIUInt32 High;

}

UDIResource This is shorthand for:
struct {

UDIUInt32
Space;

UDIUInt32
Offset;
}

UDIMemoryRange
This is shorthand for:

struct {
UDIUInt32

Space;
UDIUInt32

Offset;
UDIUInt32 Size;

}

UDIBreakInfo
This is shorthand for:
struct {

UDIUInt32 Type;
UDIMemoryRange Region;
UDIInt32 PassCount;
UDIInt32 CntRemaining;
UDIString Buf;

}

UDI IPC Methods for UNIX Hosts

5-4 Universal Debugger Interface Specification

UDIUInt32Array
This is a string of UDIUInt32 fields. The
number of fields is not sent explicitly
in the message but is implied by other
parts of the request or response message.
(See the
dimension = comments in the specific
requests.)

UDIMemoryRangeArray
This is a string of UDIMemoryRange
fields. The number of fields is not sent
explicitly in the message but is implied
by other parts of the request or response
message. (See the dimension = comments in
the specific requests.)

 Endian Type of Fields in Messages

There are two types of fields in UNIX socket IPC messages:

Target–Endian fields
These are the buffers used in UDIRead ,
UDIWrite , et cetera, that are explicitly
specified to be target–endian by a UDI
parameter i.e., HostEndian parameter set
to FALSE.

 Host–Endian fields
All other fields in all IPC messages
including those buffers used in UDIRead ,
UDIWrite , et cetera, for which the
HostEndian parameter is set to TRUE.

The target–endian fields are always sent target–endian. It is assumed that both
the DFE and TIP know the target–endian type.

The following discussion applies to the endian type of host–endian fields in
socket IPC messages.

In UDI 1.3 and earlier, all host–endian fields are sent big–endian regardless of
the endian type of either the DFE or TIP.

In UDI 1.4, the following rules apply which make it more efficient when both
the DFE and TIP are little endian:

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-5

• In the UDIConnectRqMsg and until the UDIConnectRespMsg is
received, all fields in all messages are always sent big endian.

• UDIConnectRqMsg has a DFEIPCId field and UDIConnectRespMsg
has a TIPIPCId field.

• Bit 31 of each xxxIPCId field, if set, indicates a little–enidan host (bits 30-
0 are the usual IPCId format).

• After the UDIConnectRespMsg has been sent, both sides know the
endian type of the other end of the connection. In the case where both
ends are little endian, all following messages on that connection use little–
endian format for “host–endian” fields. If either end is big endian, all
following messages on that connection use big–endian format for “host–
endian” fields.

 Request and Response Codes

The following table defines the codes for requests from the DFE to the TIP.

UDI IPC Methods for UNIX Hosts

5-6 Universal Debugger Interface Specification

Table 5_1 Codes for Requests from DFE to TIP

Request Code

UDIConnect_12_c 0

UDIDisconnect_c 1

Reserved 2

UDICapabilities_12_c 3

UDIEnumerateTIPs_c 4

UDIGetErrorMsg_c 5

UDIGetTargetConfig_c 6

UDICreateProcess_c 7

UDISetCurrentProcess_c 8

UDIDestroyProcess_c 9

UDIInitializeProcess_c 10

UDIRead_c 11

UDIWrite_c 12

UDICopy_c 13

UDIExecute_c 14

UDIStep_c 15

UDIStop_c 16

UDIWait_c 17

UDISetBreakpoint_13_c 18

UDIQueryBreakpoint_13_c 19

UDIClearBreakpoint_c 20

UDIGetStdout_c 21

UDIGetStderr_c 22

UDIPutStdin_c 23

UDIStdinMode_c 24

UDIPutTrans_c 25

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-7

UDIGetTrans_c 26

UDITransMode_c 27

Reserved 28

Reserved 29

UDIFind_c 30

UDICapabilities_13_c 31

UDIConnect_14_c 32

UDISetBreakpoint_14_c 33

UDIQueryBreakpoint_14_c 34

The following table defines the codes for requests from the TIP to the DFE.

Table 5_2. Codes for Requests from TIP to DFE

Request Code

UDIDFEEvalExpression_c 1000

UDIDFEEvalResource_c 1001

UDIDFEGetInput_c 1002

UDIDFEPutOutput_c 1003

UDIDFEEndTIPIO_c 1004

For both UDI and UDIDFE requests, a response code is always a 32–bit
unsigned integer equal to the request code but with the high bit set.

NOTE: The response message format for UDI 1.2 is slightly different. The
response_code field is always omitted. The DFE always assumes that
the first message that comes back on the socket is the response to the
request. (This works because, in UDI 1.2, UDIDFE requests from the
TIP to the DFE are not allowed.).

 Signals from the DFE to the TIP

The DFE sends a “signal” to the TIP to implement the UDIStop functionality
as described in Chapter 3.

UDI IPC Methods for UNIX Hosts

5-8 Universal Debugger Interface Specification

On AF_UNIX sockets, the UNIX signal, SIGUSR1, is sent to the tip_pid
which the TIP returns in the UDIConnectRespMsg.

On AF_INET sockets, an “out–of–bound” message is sent on the socket, which
causes a SIGURG signal at the TIP.

Upon the receipt of either of these signals, the TIP should take the actions
described under UDIStop in Chapter 3. No response as such is sent for the
signal. If the TIP was in the middle of handling some UDI request when the
signal came in, a response to that UDI request is sent back to the DFE with the
error UDIErrorAborted . If the TIP was executing a target program, execution
stops and the next UDIWaitRqMsg from the DFE should get a response with
UDIStopped.

 Specific Message Formats

The format of each request and response message between the DFE and the
TIP are provided on the following pages. The messages are arranged
alphabetically for easy access. In most cases, the semantics of each field of the
messages is described in Chapter 3. Message field descriptions not found in
Chapter 3 are located in the descriptions of the specific messages on the
following pages.

NOTE: A few calls described in Chapter 3 do not result in request messages.
These are UDIEnumerateTIPs and UDISetCurrentConnection.
Also, the UDIStop call results in a signal rather than a message.
These signals are described in the preceding section.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-9

 UDICapabilities

 Message

struct UDICapabilities_13_RqMsg {
UDIInt32 service_id;
UDIUInt32 DFEId;
UDIUInt32 DFE;
UDIUInt32 BufSize;

 }
struct UDICapabilities_13_RespMsg {

UDIInt32 response_id;
UDIUInt32 TIPId;
UDIUInt32 TargetId;
UDIUInt32 TIP;
UDIUInt32 Unused;
UDIUInt32 TIPIPCId;
UDIString TIPString;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described in Chapter 3 and the following
additional information should also be noted. The first message on the socket
connection from the DFE to the TIP must be a UDIConnect message. If the
UDIConnect request succeeds, the second message must be a
UDICapabilities request.

With the UDI 1.3 UDICapabilities request, the maximum length of the
returned TIPString is limited to RqMsg.BufSize characters (including the
terminator). If exactly BufSize characters are returned, this indicates that the
TIP may have more characters to return in its TIPSTring and the DFE must
then send another UDICapabilities request and the TIP must return the next
BufSize characters.

UDI IPC Methods for UNIX Hosts

5-10 Universal Debugger Interface Specification

When either side of the connection is UDI 1.2 (as determined by the
connection request IPC IDs), the following message format is used instead:

struct UDICapabilities_12_RqMsg {
UDIInt32 service_id;
UDIUInt32 DFEId;
UDIUInt32 DFE;

 }
struct UDICapabilities_12_RespMsg {

UDIInt32 response_id;
UDIUInt32 TIPId;
UDIUInt32 TargetId;
UDIUInt32 TIP;
UDIUInt32 Unused;
UDIUInt32 TIPIPCId;
UDIString TIPString;
UDIUInt32 err;

 }

With the UDI 1.2 UDICapabilities request, the maximum length of the
returned TIPString is limited to 80 characters (including the terminator).

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-11

 UDIClearBreakpoint

 Message

struct UDIClearBreakpointRqMsg {
UDIUInt32 service_id;
UDIUInt32 BreakId;

 }
struct UDIClearBreakpointRespMsg {

UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-13.

UDI IPC Methods for UNIX Hosts

5-12 Universal Debugger Interface Specification

 UDIConnect

 Message

struct UDIConnect_14_RqMsg {
UDIInt32 service_id;
UDIUInt32 DFEIPCId;
UDIString tip_parameters;
UDIUInt32 DFE; /* New with 1.4 */

 }
struct UDIConnect_14_RespMsg {

UDIInt32 response_id;
UDIUInt32 TIPIPCId;
UDIUInt32 tip_pid;
UDIUInt32 tip_id;
UDIUInt32 err;

 }

The older format of this message is:

struct UDIConnect_12_RqMsg {
UDIInt32 service_id;
UDIUInt32 DFEIPCId;
UDIString tip_parameters;

}

with the response message being identical to UDIConnect_14_RespMsg

 where:

DFEIPCId The lowest 12 bits define the DFE IPC
version number. For UDI 1.2 DFEs, this
will be 0x12N. For UDI 1.3 DFEs, this
will be 0x13N. In each case, N is a minor
version indicator and should be ignored
by the TIP.

tip_parameters This is an ASCII string which
the TIP should interpret as TIP–specific
configuration parameters.

TIPIPCId The lowest 12 bits define the DFE IPC
version number. For UDI 1.2 TIPs, this
will be 0x12N. For UDI 1.3 TIPs, this
will be 0x13N. In each case, N is a minor
version indicator and should be ignored
by the DFE.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-13

tip_pid The UNIX PID of the TIP. For AF_UNIX
sockets, this is used to signal the TIP
for UDIStop functionality (see signals
below). For other address family sockets,
this parameter is ignored.

tip_id This uniquely defines the UDI connection
for this TIP. It is used by the DFE in
the UDIDisconnect message.

errno When the errno is negative, the TIP
socket connection must remain open and
the DFE must send a UDIGetErrorMessage
request to get the error text. See
Appendix A for descriptions of
UDIErrorTryAnotherTIP and
UDIErrorConnectionUnavailable .

DFE The DFE parameter has the same semantics
as the DFE parameter in the
UDICapabilities call; it indicates to the
TIP what version of UDI the DFE prefers,
i.e., the latest version number the DFE
understands.

 Description

The first message on the socket connection from the DFE to the TIP must be a
UDIConnect_12 message. This is because older TIPs will not know how to
respond to later vintage UDIConnect messages and the DFE cannot tell the
version of the TIP until it sends some UDIConnect message. This
complication is handled in the following manner:

If the TIP is a pre-1.4 TIP, the TIP acts on the UDIConnect_12 message and
sends a UDIConnect_12 response. This concludes the UDIConnect activity for
older TIPs.

Similarly, if the TIP is 1.4 or later, and the TIP gets a UDIConnect_12
message from a pre-1.4 DFE (as detected in the DFEIPCId), the TIP acts on
the UDIConnect_12 message and sends a UDIConnect_12 response. . This
concludes the UDIConnect activity for older DFEs connecting to newer TIPs.

UDI IPC Methods for UNIX Hosts

5-14 Universal Debugger Interface Specification

However, if the TIP is 1.4 or later, and the TIP gets a UDIConnect_12 message
from a 1.4 or later DFE, the TIP does not act on the UDIConnect_12 message
but instead sends a UDIConnect_12 response that has the TIPIPCId field filled
in and also contains the special error code, UDIErrorIPCConnectIncomplete.
The 1.4 or later DFE who receives UDIErrorIPCConnectIncomplete then
knows the TIP’s IPCid and the DFE must then complete the Connect
transaction by sending a second request. This second request is the one the
TIP acts upon This second request can be either a UDIConnect_14 message
or a UDIConnect_12 message.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-15

 UDICopy

 Message

struct UDICopyRqMsg {
UDIUInt32 service_id;
UDIResource From;
UDIResource To;
UDIUInt32 Count;
UDIUInt32 Size;
UDIUInt32 Direction;

 }

struct UDICopyRespMsg {
UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-17.

UDI IPC Methods for UNIX Hosts

5-16 Universal Debugger Interface Specification

 UDICreateProcess

 Message

struct UDICreateProcessRqMsg {
UDIUInt32 service_id;

 }
struct UDICreateProcessRespMsg {

UDIInt32 response_id;
UDIUInt32 PId;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-18.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-17

 UDIDestroyProcess

 Message

struct UDIDestroyProcessRqMsg {
UDIUInt32 service_id;
UDIUInt32 PId;

 }
struct UDIDestroyProcessRespMsg {

UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-19.

UDI IPC Methods for UNIX Hosts

5-18 Universal Debugger Interface Specification

 UDIDisconnect

 Message

struct UDIDisconnectRqMsg {
UDIUInt32 service_id;
UDIUInt32 tip_id; /* see UDIConnect */
UDIUInt32 Terminate;

 }
struct UDIDisconnectRespMsg {

UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-20.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-19

 UDIExecute

 Message

struct UDIExecuteRqMsg {
UDIUInt32 service_id;

 }

struct UDIExecuteRespMsg {
UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-22.

UDI IPC Methods for UNIX Hosts

5-20 Universal Debugger Interface Specification

 UDIFind

 Message

struct UDIFindRqMsg {
UDIUInt32 service_id;
UDIMemoryRange WhereToLook;
UDIInt32 Stride;
UDIUInt32 PatternCount;
UDIUInt32 PatternSize;
UDIUInt32 PatternHostEndian;
UDIUInt32 MaxToFind;
UDIByteArray Pattern; /* dimension =

 * PatternCount *
PatternSize */

UDIUInt32 PatternMaskLen; /* either zero or
 * PatternCount *
PatternSize */

UDIByteArray PatternMask; /* dimension =
PatternMaskLen */
}
struct UDIFindRespMsg {

UDIUInt32 response_id;
UDIUInt32 CountFound;
UDIUInt32Array FoundAtOffset; /* dimension = CountFound */
UDIByteArray FoundValues; /* if PatternMaskLen = 0

 * dimension = 0 else
 * dimension =
 * CountFound * PatternCount *

PatternSize */
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-23.

 Notes:

If the PatternHostEndian flag is 1, the 29K data in UDIFindRqMsg.Pattern, in
UDIFindRqMsg.PatternMask (if any), and in UDIFindRespMesg.FoundValues
(if any) must be in big–endian format (keeping in mind that the size of each
object in each field is specified by the UDIFindRqMsg.Size parameter). Note
that in this case, at the procedural interface this data is required to be in
HostEndian format.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-21

If the PatternHostEndian flag is 0, the 29K data in UDIFindRqMsg.Pattern, in
UDIFindRqMsg.PatternMask (if any), and in UDIFindRespMesg.FoundValues
(if any) must be in TargetEndian format. It is assumed that both the DFE and
the TIP know the endian type of the target. Note that in this case, the data in
these buffers is unmodified by the IPC for the procedural interface.

UDI IPC Methods for UNIX Hosts

5-22 Universal Debugger Interface Specification

 UDIGetErrorMessage

 Message

struct UDIGetErrorMessageRqMsg {
UDIUInt32 service_id;
UDIUInt32 ErrorCode;
UDIUInt32 MsgSize;

 }
struct UDIGetErrorMessageRespMsg {

UDIInt32 response_id;
UDIString Message;
UDIUInt32 CountDone;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-24.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-23

 UDIGetStderr

 Message

struct UDIGetStderrRqMsg {
UDIUInt32 service_id;
UDIUInt32 BufSize;

 }
struct UDIGetStderrRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIByteArray Buf; /* dimension = CountDone */
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-25.

UDI IPC Methods for UNIX Hosts

5-24 Universal Debugger Interface Specification

 UDIGetStdout

 Message

struct UDIGetStdoutRqMsg {
UDIUInt32 service_id;
UDIUInt32 BufSize;

 }

struct UDIGetStdoutRespMsg {
UDIInt32 response_id;
UDIUInt32 CountDone;
UDIByteArray Buf; /* dimension = CountDone */
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-26.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-25

 UDIGetTargetConfig

 Message

struct UDIGetTargetConfigRqMsg {
UDIUInt32 service_id;
UDIUInt32 MaxNumberOfRanges;
UDIUInt32 MaxNumberOfChips;

 }
struct UDIGetTargetConfigRespMsg {

UDIInt32 response_id;
UDIMemoryRangeArray KnownMemory; /* size =

 * MaxNumberOfRanges */
UDIUInt32 NumberOfRanges;
UDIUInt32 NumberOfChips;
UDIInt32Array ChipVersions; /* size =

 * NumberOfChips */
UDIUInt32 err;

 }

 where:

MaxNumberOfRanges
Specifies the maximum number of ranges
that the TIP can return.

MaxNumberOfChips
Specifies the maximum number of chips
that the TIP can return.

 Description

For the UDIGetTargetConfigRespMsg, note that the KnownMemory and
ChipVersions arrays are handled differently. The dimension of the
KnownMemory array is MaxNumberOfRanges (the DFE limit) whereas the
dimension of the ChipVersions array is NumberOfChips (the actual TIP
number).

UDI IPC Methods for UNIX Hosts

5-26 Universal Debugger Interface Specification

 UDIGetTrans

 Message

struct UDIGetTransRqMsg {
UDIUInt32 service_id;
UDIUInt32 BufSize;

 }
struct UDIGetTransRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIByteArray Buf; /* dimension = CountDone */
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-28.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-27

 UDIInitializeProcess

 Message

struct UDIInitializeProcessRqMsg {
UDIUInt32 service_id;
UDIUInt32 NumberOfRanges;
UDIMemoryRangeArray ProcessMemory; /* dimension =

 * NumberOfRanges
*/

UDIResource EntryPoint;
UDIUInt32 NumberOfStacks;
UDIUInt32Array StackSizes; /* dimension =

 * NumberOfStacks */
UDIUInt32 PId;

 }

struct UDIInitializeProcessRespMsg {
UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-30.

UDI IPC Methods for UNIX Hosts

5-28 Universal Debugger Interface Specification

 UDIPutStdin

 Message

struct UDIPutStdinRqMsg {
UDIUInt32 service_id;
UDIUInt32 Count;
UDIByteArray Buf; /* dimension = Count */

}
struct UDIPutStdinRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-32.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-29

 UDIPutTrans

 Message

struct UDIPutTransRqMsg {
UDIUInt32 service_id;
UDIUInt32 Count;
UDIByteArray Buf; /* dimension = Count */

}
struct UDIPutTransRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-33.

UDI IPC Methods for UNIX Hosts

5-30 Universal Debugger Interface Specification

 UDIQueryBreakpoint

 Message

struct UDIQueryBreakpoint_14_RqMsg {
UDIUInt32 service_id;
UDIUInt32 BreakId;
UDIUInt32 BufSize;

 }
struct UDIQueryBreakpoint_13_RespMsg {

UDIInt32 response_id;
UDIBreakInfo BreakInfo;
UDIUInt32 NextBreakId;
UDIUInt32 err;

 }

The older format of this message is as follows:

struct UDIQueryBreakpoint_13_RqMsg {
UDIUInt32 service_id;
UDIUInt32 BreakId;

 }
struct UDIQueryBreakpoint_13_RespMsg {

UDIInt32 response_id;
UDIResource Addr;
UDIInt32 PassCount;
UDIUInt32 Type;
UDIInt32 CountRemaining;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-34.

The UDIQueryBreakpoint_13 call returns a subset of the information
returned by UDIQueryBreakpoint_14. Ranges are not supported. Only the
low 4 bits of Type are defined. Any information in the vendor-specific Buf
field of a 1.4 breakpoint cannot be returned to UDIQueryBreakpoint_13.

In actual practice it is unlikely that these mapping problems will arise since
they require a new DFE to set up breakpoints on a new TIP, then disconnect
(without terminating the TIP) and have an old DFE connect and query the
breakpoints on the TIP.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-31

 UDIRead

 Message

struct UDIReadRqMsg {
UDIUInt32 service_id;
UDIResource From;
UDIUInt32 Count;
UDIUInt32 Size;
UDIUInt32 HostEndian;

 }

struct UDIReadRespMsg {
UDIInt32 response_id;
UDIUInt32 CountDone;
UDIByteArray Buf; /* dimension = CountDone*Size */
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-36.

 Notes:

If the HostEndian flag is 1, the 29k data in the UDIReadRespMsg.Buf must be
in big–endian format (keeping in mind that the size of each object in the buffer
is specified by the UDIReadRespMsg.Size parameter). Note that in this case, at
the procedural interface this data is required to be in HostEnidan format.

If the HostEndian flag is 0, the 29k data in the UDIReadRespMsg.Buf must be
in TargetEndian format. It is assumed that both the DFE and the TIP know the
endian type of the target. Note that in this case, the data in this buffer is
unmodified by the IPC for the procedural interface.

UDI IPC Methods for UNIX Hosts

5-32 Universal Debugger Interface Specification

 UDISetBreakpoint

 Message

struct UDISetBreakpoint_14_RqMsg {
UDIUInt32 service_id;
UDIBreakInfo BreakInfo;

}
struct UDISetBreakpoint_14_RespMsg {

UDIInt32 response_id;
UDIUInt32 BreakId;
UDIUInt32 err;

 }

The older format of this message is as follows:

struct UDISetBreakpoint_13_RqMsg {
UDIUInt32 service_id;
UDIResource Addr;
UDIInt32 PassCount;
UDIUInt32 Type;

 }
struct UDISetBreakpoint_13_RespMsg {

UDIInt32 response_id;
UDIUInt32 BreakId;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-37.

The UDISetBreakpoint_13 call allows setting breakpoints with a subset of the
information that is possible with UDISetBreakpoint_14. Ranges are not
supported. Only the low 4 bits of Type are defined. The CountRemaining
must be initialized to the absolute value of the PassCount. No vendor-specific
Buf field is supported.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-33

 UDISetCurrentProcess

 Message

struct UDISetCurrentProcessRqMsg {
UDIUInt32 service_id;
UDIUInt32 PId;

 }
struct UDISetCurrentProcessRespMsg {

UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-40.

UDI IPC Methods for UNIX Hosts

5-34 Universal Debugger Interface Specification

 UDIStdinMode

 Message

struct UDIStdinModeRqMsg {
UDIUInt32 service_id;

 }
struct UDIStdinModeRespMsg {

UDIInt32 response_id;
UDIUInt32 Mode;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-42.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-35

 UDIStep

 Message

struct UDIStepRqMsg {
UDIUInt32 service_id;
UDIUInt32 Steps;
UDIUInt32 StepType;
UDIRange Range;

 }

struct UDIStepRespMsg {
UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-43.

UDI IPC Methods for UNIX Hosts

5-36 Universal Debugger Interface Specification

 UDIWait

 Message

struct UDIWaitRqMsg {
UDIUInt32 service_id;
UDIUInt32 MaxTime;

 }

struct UDIWaitRespMsg {
UDIInt32 response_id;
UDIUInt32 PId;
UDIUInt32 StopReason;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-46.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-37

 UDIWrite

 Message

struct UDIWriteRqMsg {
UDIUInt32 service_id;
UDIResource To;
UDIUInt32 Count;
UDIUInt32 Size;
UDIUInt32 HostEndian;
UDIByteArray Buf; /* dimension = Count*Size */

}

struct UDIWriteRespMsg {
UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-50.

 Notes:

If the HostEndian flag is 1, the 29K data in the UDIWriteRqMsg.Buf must be
in big–endian format (keeping in mind that the size of each object in the buffer
is specified by the UDIWriteRqMsg.Size parameter). Note that in this case, at
the procedural interface this data is required to be in HostEndian format.

If the HostEndian flag is 0, the 29K data in the UDIWriteRqMsg.Buf must be
in the same endian format as the target. It is assumed that both the DFE and
the TIP know the endian type of the target. Note that in this case, the data in
this buffer is unmodified by the IPC for the procedural interface.

UDI IPC Methods for UNIX Hosts

5-38 Universal Debugger Interface Specification

 UDIDFE Messages

The messages on the following pages are requests from the TIP to the DFE.
All UDIDFExxx requests can only be made by the TIP while it is in the middle
of servicing some UDI Request from the DFE (i.e., before it has returned the
UDI response). In addition, while the DFE is servicing the UDIDFExxx
request, it is possible for the DFE to make a new UDI request to the TIP. The
message traffic in this last case would be:

-->UDIxxx request

<-- UDIDFEyyy request

--> UDIzzz request

<-- UDIzzz response

--> UDIDFEyyy response

<-- UDIxxx response

 UDIDFEEndTIPIO

 Message

struct UDIDFEEndTIPIORqMsg {
UDIUInt32 service_id;

 }
struct UDIDFEEndTIPIORespMsg {

UDIInt32 response_id;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-52.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-39

 UDIDFEEvalExpression

 Message

struct UDIDFEEvalExpressionRqMsg {
UDIUInt32 service_id;
UDIString Expression;
UDIUInt32 BufSize;

 }
struct UDIDFEEvalExpressionRespMsg {

UDIInt32 response_id;
UDIInt KindofAnswer;
UDIResource AnswerResource;
UDIUInt32 CountDone;
UDIUInt32 Size;
UDIUInt32 Type;
UDIByteArray AnswerBuf; /* dimension = 0 when

 * KindOfAnswer = Resource */
UDIUInt32 Type;
UDIByteArray AnswerBuf; /* dimension = 0 when

 * KindOfAnswer = Resource
 * dimension = CountDone*Size

when
 * KindOfAnswer = Value */

UDIUInt32 err;
 }

 Description

The semantics of the parameters are described on page 3-53.

 Notes:

Although each response specifies (by KindOfAnswer) either an
AnswerResource or an AnswerBuf with CountDone, Size, and Type, all
components are sent in the IPC message. Thus, the IPC software need not
inspect the value of KindOfAnswer.

Any data in UDIDFEEvalExpressionRespMsg.AnswerBuf consists of objects of
size UDIDFEEvalExpressionRespMsg.Size and is always in big–endian
format. Note that at the procedural interface this data is required to be in host–
endian format (i.e. the data is in host byte order).

UDI IPC Methods for UNIX Hosts

5-40 Universal Debugger Interface Specification

 UDIDFEEvalResource

 Message

struct UDIDFEEvalResourceRqMsg {
UDIUInt32 service_id;
UDIResource ResourceToEval;
UDIUInt32 ExactEval;
UDIUInt32 BufSize;

 }
struct UDIDFEEvalExpressionRespMsg {

UDIInt32 response_id;
UDIString SymbolAnswer;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-55.

 UDIDFEGetInput

 Message

struct UDIDFEGetInputRqMsg {
UDIUInt32 service_id;
UDIUInt32 IOType;
UDIUInt32 BufSize;
UDIUInt32 Mode;

 }
struct UDIDFEGetInputRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIByteArray Buf; /* dimension = CountDone */
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-56.

UDI IPC Methods for UNIX Hosts

Universal Debugger Interface Specification 5-41

 UDIDFEPutOutput

 Message

struct UDIDFEPutOutputRqMsg {
UDIUInt32 service_id;
UDIUInt32 IOType;
UDIUInt32 Count;
UDIByteArray Buf; /* dimension = Count */

}
struct UDIDFEPutOutputRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;

 }

 Description

The semantics of the parameters are described on page 3-58.

Universal Debugger Interface Specification 6-1

Chapter 6

6 UDI Developer’s Toolkit

The UDI Developer’s Toolkit provides source files, executables, and
documentation that enables software tools developers for the 29K Family to
develop and debug UDI–compliant DFEs or TIPs without having to be
concerned with the details of the IPC methods. We assume that those using the
toolkit are familiar with the general issues of developing debugger tools for the
29K Family and, in particular, are familiar with the UDI procedural interface,
which is defined in Chapters 2 and 3 of this specification. Knowledge of the
IPC methods in Chapters 4 and 5 is not required to use the UDI Developer’s
Toolkit.

This chapter describes the various pieces of the UDI Developer’s Toolkit, with
special emphasis on the sample IPC source code and its structure. The
limitations of this sample IPC source code are described, as well as how to use
the sample IPC source code in your own DFE or TIP. Finally, there is a
discussion on how to use the utilities that are included with the toolkit, which
can aid in the development of your DFE or TIP.

The UDI Developer’s Toolkit consists of:

• The UDI Specification

• Sample IPC source code for:

• UNIX Socket IPC method for big–endian DFEs and TIPs

• DOS IPC method for real–mode DFEs and TIPs

• DOS IPC method for protected–mode DFEs and TIPs

• The executables, source, makefile, and man pages for two UDI
development tools: a TIP tester and a UDI trace utility.

• The complete source, makefiles, and executables for AMD’s
MiniMON29K product. The MiniMON29K product includes a UDI–
compliant DFE and TIP so the source for these may be useful to other
DFE and TIP developers.

UDI Developer’s Toolkit

6-2 Universal Debugger Interface Specification

• The executables for isstip. This is an instruction set simulator–based TIP
normally distributed with AMD’s High Cr 29Kt product. Since it is self–
contained and does not require actual target hardware, it may be a
convenient test TIP to connect to for DFE developers. Note that the source
for isstip is not provided.

 The UDI Procedural Interface and the Sample IPC Code

The most important part of the toolkit to UDI developers is the sample IPC
source code. This sample IPC source code maps the UDI procedural interface
(as defined in Chapters 2 and 3) to one of the two defined IPC methods: the
DOS IPC method and the UNIX socket IPC method.

This chapter assumes that the DFE or TIP developer will write code using the
UDI procedural interface and will then link with the sample IPC source code
supplied in the toolkit. The advantages of this approach are:

• The procedural interface provides a host–independent interface to UDI.

• For testing and debugging purposes, developers can link a DFE and TIP
together into one executable if both use the UDI procedural interface.

• Developers can save time by using the existing IPC implementation code
provided in this toolkit since they will not have to be concerned with IPC
details.

We refer to the IPC code in this toolkit as “sample” IPC code because the use
of this code is in no way required to meet UDI interoperability. Developers
could always write their own IPC code and even define a different procedural
interface and it would be interoperable as long as it meets the IPC
specifications described in Chapters 4 and 5 and the semantics described in
Chapters 2 and 3. However, the sample IPC source code should meet the needs
of most developers. The limitations of the sample IPC source code are
described in the next section.

 Limitations of the Sample IPC Code

The sample IPC source code has been built and tested in the following host
development environments:

• UNIX socket IPC code

• SunOS 4.1.x bundled C compiler

UDI Developer’s Toolkit

Universal Debugger Interface Specification 6-3

• HP/UX bundled C compiler

• DOS IPC code, real–mode DFEs and TIPs

• Microsoft C 7.0

• DOS IPC code, protected–mode DFEs and TIPs

• MetaWare High Cr 386 3.1 compiler plus Phar Lap 4.0 linker,
assembler, and DOS extender

• Watcom 386 9.x compiler and linker plus Phar Lap 4.0 assembler and
DOS extender

NOTE: The DOS IPC code for protected–mode DFEs and TIPs is dependent
on the Phar Lap DOS extender.

If you plan to use a different host development environment and you find that
modifications to the IPC source code are necessary to get it to build in that
environment, please send e–mail to udi@amd.com and any such changes can
be folded into the next version of the sources.

The sample IPC source code also has some limitations based on making some
simplifying assumptions about the DFE or TIP:

• The UNIX socket IPC source code assumes that the host is big–endian. If
you want to use this code on a little–endian host, you will have to swap
the endian type of the appropriate fields when building the IPC messages.
See the discussion in Chapter 5 on the endianness of fields in socket IPC
messages.

• Although the IPC methods allow multiple TIPs per DFE and multiple
DFEs per TIP, both the UNIX socket IPC source code and the DOS IPC
source code assume that a DFE connects to, at most, one TIP and that a
TIP gets connected to, at most, one DFE. On DOS IPC, the sender of a
message always includes the proper connection_id in the message but the
receiver of a message does not check the connection_id. On UNIX IPC,
messages are always sent on the correct socket but DFEs and TIPs only
listen on a single socket when listening for replies. Thus, DFEs and TIPs
built with the sample IPC code should interoperate properly with TIPs and
DFEs that do support multiple connections.

UDI Developer’s Toolkit

6-4 Universal Debugger Interface Specification

• When built with the DOS IPC source code, both the real–mode DFEs and
TIPs and protected–mode DFEs and TIPs will interoperate in all four
combinations. This is true for both plain MS–DOS and in a DOS window
initiated from within Microsoft Windowst . However, a limitation of
DPMI 0.90 (which is the protected mode interface implemented by
Microsoft Windows) allows, at most, one DOS extender in a DOS window
initiated from within Microsoft Windows. The sample code has a special
work–around for this limitation if both the protected–mode DFE and
protected–mode TIP are built with the Phar Lap DOS extender. We do not
know of a solution when the protected–mode DFE and protected–mode
TIP are built with two different DOS extenders.

• The DOS IPC code cannot be used to build DFEs and TIPs that are true
Microsoft Windows applications.

 Directory Structure of the Toolkit

 src/udi

This directory contains the sample IPC source code for both the DOS IPC
method and the UNIX socket IPC method. These include .c files, .h files, and a
few .asm files (for the DOS IPC method). Developers building their own DFE
or TIP would link with these udi files. See below for more detail on these files.

 src/uditools

These are the source files used to build the TIP tester (uditest) and the UDI
trace utility (uditrace). Developers building their own DFE or TIP would not
link with these files, but may wish to use them for testing and debugging.

 src/minimon

The directory structure of the MiniMON29K source tree is described in the
MiniMON29K documentation. The discussion below describes only those
parts of the tree which are relevant to UDI development.

UDI Developer’s Toolkit

Universal Debugger Interface Specification 6-5

 src/minimon/host

MiniMON29K consists of target code and host code. Here we are concerned
only with the host code. The host code builds two executables, mondfe and
montip. The mondfe executable provides a monitor–level user interface and
generates UDI requests. The montip executable basically takes UDI requests
and maps them to MiniMON29K target messages and sends them to the target.
The montip–to–target communication is not defined by UDI.

 src/minimon/host/dfe

This directory contains the source files for building mondfe. Note that all UDI
calls are made in the single module, mini2udi.c.

 src/minimon/host/tip

These are the source files for building montip. In montip, all UDI calls are
implemented in the single module, udi2mtip.c.

 src/minimon/host/include

This directory contains the general .h files used by mondfe and montip. These
.h files are independent of UDI.

 bin_host

These are the executables for mondfe, montip, isstip, uditest, and uditrace.
There is a bin directory for both sun4 and pc.

 lib

This directory contains the support files used by the above executables.

 man

These are the man pages for mondfe, montip, isstip, uditest, and uditrace.
The udi(5) man page, which describes the format of the TIP configuration file,
is also included.

 doc

This directory contains the UDI Specification (in Postscript format).

UDI Developer’s Toolkit

6-6 Universal Debugger Interface Specification

 The Sample IPC Sources in src/udi

This section describes the individual files in the udi directory. The src/udi
directory contains the include files that TIPs and DFEs use to define the UDI
procedural interface, and it also includes the IPC implementation code for the
two hosts, UNIX and DOS. Note that because the IPC mechanism under UDI
is host–specific, many of the files in this directory are host–specific. In
addition, some IPC files are used only with DFEs and others are used only
with TIPs. The makefiles in src/minimon/host show how mondfe and montip
make use of the various files in the udi directory. The makefiles in
src/uditools also show how the udi files are used.

 Files Common to all Hosts

 udiproc.h

Defines the procedural interface for all of the UDI functions and defines all of
the UDI data types. The udiproc.h file is the only include file that a DFE or
TIP needs to include. The udiproc.h file is actually independent of the host
and target architecture. The host–specific and target architecture–specific
features are broken out into the subsidiary include files listed below. In the
current implementation, two host types exist (UNIX and DOS) and one target
architecture (29K).

 udiphcfg.h

Included by udiproc.h. Includes either udiphdos.h or udiphsun.h.

 udiptcfg.h

Included by udiproc.h. For now, always includes udipt29k.h.

 udipt29k.h

Defines UDI data types specific to the 29K Family architecture.

 udiids.h

Is optional and can be included by your DFE or TIP to help build the ID codes
that are sent in the UDICapabilities call. The udiids.h file is described in
more detail below.

UDI Developer’s Toolkit

Universal Debugger Interface Specification 6-7

 udimapdf.c, udimapdf.h

This file is specific to DFEs. It is used for UDI services where the procedural
interface has changed between UDI versions (for example, UDISetBreakpoint
between 1.3 and 1.4). This file contains routines that map the newer versions
of calls to the older versions of calls (or returns an error if mapping is not
possible). This is needed when a newer DFE connects to an older TIP but still
wants to be able to use the newer procedural interface.

 udimaptp.c

This file is specific to TIPs and its use is optional. It is used for UDI services
where the procedural interface has changed between UDI versions (for
example, UDISetBreakpoint between 1.3 and 1.4). This file contains entry
points for the older versions of such calls and maps them to the newer versions
of the calls (or returns an error if mapping is not possible). The TIP procedural
interface writer must provide implementations of the newer versions of the
calls but can optionally either link with this file to get the older services or can
write his own implementations of the older services.

 Files Specific to DOS Hosts

 udiphdos.h

Included by udiproc.h. Defines UDI data type sizes for DOS hosts.

 udip2dos.c, dosdfe.asm

IPC code used by DFEs on all DOS hosts, both real and protected.

 dos2udip.c, dostip.asm

IPC code used by TIPs on all DOS hosts, both real and protected.

 udidos.h, udidos.ah

Include files used by IPC code on all DOS hosts, both real and protected.

 d386cmnc.c, d386cmna.asm, realcopy.c

Additional IPC code used only by protected–mode (DOS386) DFEs and TIPs
but common to both DFEs and TIPs.

UDI Developer’s Toolkit

6-8 Universal Debugger Interface Specification

 d386cmnc.h, d386cmna.ah

Include files used by IPC code for protected–mode (DOS386) DFEs and TIPs
but common to both DFEs and TIPs.

 d386dfe.c, d386dfe.h

Additional IPC code used only by protected–mode (DOS386) DFEs.

The following summarizes the source files used by various DOS TIPs and
DFEs:

Real–mode DFEs udip2dos.c, dosdfe.asm, udimapdf.c

Real–mode TIPs dos2udip.c, dostip.asm,
udimaptp.c (optional)

Protected–mode DFEs udip2dos.c, dosdfe.asm, d386cmnc.c,
d386cmna.asm, realcopy.c, d386dfe.c,
udimapdf.c

Protected–mode TIPs dos2udip.c, dostip.asm, d386cmnc.c,
d386cmna.asm, realcopy.c
udimaptp.c (optional)

 Files Specific to UNIX Hosts

 udip2soc.c

IPC code for DFEs for UNIX hosts. Opens a socket to the TIP, builds
messages which are then sent over that socket, and waits for response
messages on the socket. If, instead of a response, a UDIDFE request is
received, dispatches the routine, sends the response back to the TIP, and waits
for the response to the original UDI call.

 soc2udip.c

IPC code for TIPs for UNIX hosts. Listens on a socket for messages from the
DFE and sends response messages back to the DFE. If the TIP makes a
UDIDFE call to the DFE in the process of handling a UDI call, the TIP sends it
to the DFE and waits for a response.

UDI Developer’s Toolkit

Universal Debugger Interface Specification 6-9

 udr.c

IPC code used for both DFEs and TIPs on UNIX hosts. Contains routines for
marshalling and unmarshalling various data types in the socket messages.

 udisoc.h

Include file used by IPC layer on UNIX hosts.

 udiphsun.h

Included by udiproc.h. Defines UDI data type sizes for Sun hosts.

The following summarizes the source files used by various UNIX TIPs and
DFEs:

UNIX DFEs udip2soc.c, udr.c, udimapdf.c

UNIX TIPs soc2udip.c, udr.c, udimaptp.c (optional)

 Product and Company Codes Used by UDICapabilities

AMD DFEs and TIPs use the /src/mimimon/host/udi/udiids.h file to generate
the company, product, and version codes used in UDICapabilities. Listed
below are the recommendations for the various fields used in the
UDICapabilities calls:

 Company Code in TIPId, DFEId, and TargetId

AMD will act as the central source of UDI company codes. Contact AMD via
e–mail at udi@amd.com for your code (or codes if you need more than one).

 Product Codes in TIPId, DFEId, and TargetId

Assigned by you.

 Version Codes in TIPId, DFEId, and TargetId

Assigned by you.

UDI Developer’s Toolkit

6-10 Universal Debugger Interface Specification

 DFE and TIP Parameters

Only the version numbers are significant in these parameters. These are UDI
version numbers that the DFE or TIP can handle. The UDI specification
describes how the TIP should inspect the input parameter, DFE, and supply the
output parameter, TIP. If your DFE or TIP is building with the current toolkit,
your version parameter should remain at 0x140 (UDI 1.4.0). This is the
UDILatestVersion definition in udiids.h.

 DFEIPCId and TIPIPCId Parameters

These consist of the normal company, product, and version fields. These are
filled in by the IPC layers, and, in this toolkit, are defined in the IPC source
files: udip2dos.c, dos2udip.c, udip2soc.c, and soc2udip.c. If you use the IPC
sources from this toolkit unchanged, the IPCIds should be left unchanged as
well. If you modify the IPC sources before you use them, please change the
company code to your company’s code, and change the IPCId version number
and IPCId product codes for your own tracking purposes.

 Notes for DFE Developers

As of UDI 1.3, a DFE is both a UDI client (making UDI calls) and a UDI
server (implementing UDIDFE calls).

As a UDI client, a DFE may use whatever subset of the UDI services that it
requires. Be aware that TIPs are not required to implement all of the UDI
services, so a DFE should be written to be reasonably workable with a
minimum TIP. See page 3-1 for a discussion of which UDI services a TIP is
required to implement.

You will also find a list of which UDIDFE services a DFE is required to
implement on page 3-1.

To make the TIP implementations somewhat simpler, there are some
requirements made on the sequencing of UDI calls by the DFE. These are
discussed elsewhere in this specification, but we list them here as a reminder:

• After calling UDIGetErrorMessage, the DFE must continue calling it
until Countdone is less than MsgSize.

• After calling UDIGetStdout or UDIGetStderr , the DFE must continue
calling it until Countdone is less than BufSize, unless the DFE calls
UDIStop.

UDI Developer’s Toolkit

Universal Debugger Interface Specification 6-11

• The DFE must call UDIWait to ensure that execution actually takes place.
This is true not only after UDIExecute and UDIStep but also after
UDIGetStdout or UDIGetStderr . On some TIPs, execution may actually
start before the call to UDIWait , but it is not required to.

• The DFE must call UDIWait after UDIStop to ensure that execution has
really stopped.

The toolkit does not contain a test program that tests a DFE for UDI
compliance. You can, however, use the isstip (an Instruction Set Simulator
TIP which ships with AMD’s High C 29K product) to test your DFE’s
behavior. isstip is easy to use because it is self–contained and requires no real
target hardware. For further testing, the TIP from the MiniMON29K product,
montip can be ordered from AMD.

If your DFE does not behave as expected when connected to any TIP, the
uditrace tool can be used to show all the UDI and UDIDFE calls going back
and forth between the DFE and the TIP. The uditrace tool can also be useful
in pointing out inefficiencies, for example, a DFE that uses a separate UDI call
to read each register. See the uditrace(1) man page for instructions on how to
use uditrace.

 Notes for TIP Developers

As of UDI 1.3, a TIP is both a UDI server (implementing UDI calls) and a UDI
client (making UDIDFE calls).

See page 3-1for a discussion of which of the UDI services a TIP is required to
implement.

The uditest tool can be used as a DFE to test your TIP. See the uditest(1) man
page for a description of how to run uditest. The uditest tool is mostly silent
unless it encounters an error. If uditest does report an error and the error
message does not fully explain the error, you should probably use the uditrace
tool (placing uditrace between uditest and your TIP) to show exactly what
UDI call caused the problem. The uditrace tool can be used to diagnose the
traffic between any DFE and your TIP. See the uditrace(1) man page for
instructions on using uditrace.

The source code for uditest is also provided and can be used to more fully
understand the action that caused the error. If you have suggestions for further
tests that should be added to uditest.c, please send those suggestions via e–
mail to udi@amd.com.

UDI Developer’s Toolkit

6-12 Universal Debugger Interface Specification

 Notes for DOS Development

You can use the UDI Toolkit to develop both real–mode and protected–mode
DFEs and TIPs for PC hosts.

 Real–Mode DFEs and TIPs

The targets, dosdfe/smalldfe.exe and dostip/smalltip.exe, under
src/uditools/makefile.pc can be used as templates for real–mode DFE and TIP
development on PC hosts. Further examples are available in the minimon tree
in the src/minimon/host/makepc.bat file.

All the sources provided in this toolkit have been compiled on DOS using the
Microsoft C 7.0 compiler.

The memory model of the DFE is not critical since the IPC code will force far
calls with far pointer parameters to the TIP. The DFE stack is used for the
duration of a UDI call so you may want to increase the DFE stack size.

The memory model of the TIP must be large model. Also, because the TIP
procedures are basically called using the DFE’s stack pointer, the model flags -
Alfu (DS loaded on procedure entry; DS != SS) must be used.

The TIP’s stack should be as small as possible (it is not used once the TIP
becomes resident). Note also the use of the /CP:1 parameter in the link
command line for montip. This greatly reduces the footprint of the TIP.

When the DFE disconnects from the TIP with the UDITerminateSession
parameter, you should find that the TIP has been removed from memory by the
IPC layer. If it has not been removed, either the DFE did not call disconnect or
the TIP returned an error on UDIDisconnect.

 Protected–Mode DFEs and TIPs

The toolkit can also be used to build 386 protected–mode DFEs and TIPs.
Real–mode and protected–mode DFEs and TIPs all use the same real–mode
DOS IPC method and so all combinations can intercommunicate. In addition,
both the real–mode and the protected– mode DFEs and TIPs can work in a
DOS window initiated from within Microsoft Windows 3.0 or later.

UDI Developer’s Toolkit

Universal Debugger Interface Specification 6-13

The targets, dos386/smalldfe.exe and dos386/smalltip.exe, under
src/uditools/makefile.pc can be used as templates for protected–mode DFE
and TIP development on PC hosts. The support assumes the use of the
MetaWare High C 386 (or Watcom compiler) and Phar Lap DOS extender.
The isstip.exe executable (which requires access to large amounts of memory
at runtime to simulate 29K memory) has, in fact, been built using this method.

To build a 386 protected–mode TIP:

• Compile your own TIP code with the MetaWare High C 386 compiler.

• Similarly compile dos2udip.c, d386cmn.c, and realcopy.c with the
MetaWare High C 386 ompiler, including:

DMSDOS -DDOS386

on the command line.

• Assemble dostip.asm and d386cmna.asm with the Phar Lap 386
assembler with the command line:

386asm -DDOS386 xxx.asm

Link all the above .objs using the Phar Lap 386 linker command file shown in
src/uditools/makefile.pc. You should assume that all the linker directives
shown in that example are important. It is also required that the sections
defined in the .asm files, dostip.asm, and d386cmna.asm, appear in the first
64 K of the final link. This can be done by placing these .objs first in the link
order.

To build a 386 protected–mode DFE:

• Compile your own DFE code with the MetaWare High C compiler.

• Similarly compile udip2dos.c, d386dfe.c, d386cmn.c, and realcopy.c
with the MetaWare High C compiler, including:

DMSDOS -DDOS386

on the command line.

• Assemble dosdfe.asm and d386cmna.asm with the Phar Lap 386
assembler with the command line:

386asm -DDOS386 xxx.asm

UDI Developer’s Toolkit

6-14 Universal Debugger Interface Specification

Link all the above .objs using the Phar Lap 386 linker command file shown in
src/uditools/makefile.pc. You should assume that all the linker directives
shown in that example are important. It is also required that the sections
defined in the .asm files, dosdfe.asm and d386cmna.asm, appear in the first
64K of the final link. This can be done by placing these .objs first in the link
order.

 Notes for UNIX Development

The makefiles for smalldfe and smalltip under src/uditools can be used as
templates for DFE and TIP development on UNIX hosts. Further examples are
available as the target’s mondfe and montip in src/minimon/host/makefile.
Also note that the target “minimon” in src/minimon/host/makefile is an
example of the DFE and TIP code linked together to form a single executable
(for example, for testing purposes).

All the sources in this toolkit have been compiled using the bundled cc
compiler from SunOS 4.1. or from HP/UX version 9.01.

When the DFE disconnects from the TIP with the parameter,
UDITerminateSession, you should find that the TIP process has been killed
and the socket file has been deleted. If this does not happen, either the DFE
did not call disconnect or the TIP returned an error on UDIDisconnect. Also,
if the TIP remains alive and the socket file has not been deleted, then an
attempt to connect to that TIP configuration again will usually hang. In such a
case, kill the TIP and manually delete the socket file to recover.

Universal Debugger Interface Specification A-1

Appendix A

A UDI Error Numbers

In general, each service accepts a number of parameters and returns a UDI
error code. UDI error codes other than the value UDINoError (which has the
value 0) indicate an error has occurred. If the error code is negative, it is a
TIP–specific error that is not documented as a UDI error in general. Such error
codes can be passed to UDIGetErrorMessage() to retrieve a textual
representation of the error. Positive UDI error codes are defined here.

Number Error Name Description

0 UDINoError No errors have occurred.

1 UDIErrorNoSuchConfiguration Indicates that the requested configuration is
not present in the configuration file. Returned
only from UDIConnect().

2 UDIErrorCantHappen Indicates the existence of some condition
internal to the IPC Layer that, theoretically,
can’t happen. This error should never occur.

3 UDIErrorCantConnect The IPC Layer is incapable of supporting the
connection. This may occur, for example, if
the IPC Layer imposes a limit on the number
of concurrent connections that can be
supported and the limit has been reached.
This error is returned only when a IPC–
imposed limitation is reached.

4 UDIErrorNoSuchConnection Indicates that the Session parameter is
invalid. It can be returned only from functions
that accept a Session parameter.

5 UDIErrorNoConnection Is returned from functions that require a pre–
established connection (virtually all UDI
functions), if no connection is currently
established. This error, then, can occur only
before a UDIConnect call, or after a
UDIDisconnect that has closed the current
connection.

UDI Developer’s Toolkit

A-2 Universal Debugger Interface Specification

6 UDIErrorCantOpenConfigFile The IPC Layer associates a configuration
name (the first parameter to UDIConnect)
with a TIP and its parameters by means of a
configuration file. The IPC Layer was unable
to open the file. This error can occur only
during a UDIConnect call.

7 UDIErrorCantStartTIP The host operating system has failed to start
the TIP at the IPC Layer’s request. The reason
the OS failed is not indicated. Generally, the
OS fails because of resource limitations or a
failure to find the TIP’s executable file
executable. This error can occur only during a
UDIConnect call.

8 UDIErrorConnectionUnavailable This error is returned from a TIP that should
connect, but cannot because the requested
target is already in use. It is returned only by
UDIConnect.

9 UDIErrorTryAnotherTIP Returned by a TIP in response to a
UDIConnect request if the TIP cannot service
the UDIConnect, but does not know whether
another running TIP is able to service it. This
error should never be seen by the DFE.

10 UDIErrorExecutableNotTIP The executable file identified in the
configuration file entry for the requested
configuration is not a TIP. This error can
occur only during a UDIConnect call.

11 UDIErrorInvalidTIPOption The configuration passed to a UDIConnect
call has options identified in the configuration
file that the associated TIP finds invalid. This
can be simply an unrecognized option or a
combination of options that is inconsistent,
for example requesting a simulation of the
Am29000 and the Am29050 simultaneously.

12 UDIErrorCantDisconnect Indicates that the TIP is incapable of
disconnecting at this time; for example, the
TIP is temporarily unable to notify other
processes of the disconnection. The error can
occur only during UDIDisconnect calls.

13 UDIErrorUnknownError Is returned from UDIGetErrorMsg if the

UDI Developer’s Toolkit

Universal Debugger Interface Specification A-3

passed–in error code is unknown.

14 UDIErrorCantCreateProcess Indicates a problem honoring a
UDICreateProcess request.

15 UDIErrorNoSuchProcess If a call is made to a UDI function expecting a
PId, but the passed PId is not valid,
UDIErrorNoSuchProcess is returned.

16 UDIErrorUnknownResourceSpace Any UDI function expecting a UDIResource
can return this error if the resource’s Space
member is not known to the callee.

17 UDIErrorInvalidResource TIPs may enforce restrictions on valid offsets
within resource spaces. This error is returned
by such a TIP if an offset is invalid within the
associated space. Any UDI function expecting
a UDIResource can return this error.

18 UDIErrorUnsupportedStepType A TIP that does not support a StepType
requested in a UDIStep request returns this
error.

19 UDIErrorCantSetBreakpoint A TIP that cannot honor a
UDISetBreakpoint request returns this error.
The error can be caused by resource
limitations at the TIP, the inability to set
certain types of breakpoints, or an invalid
parameter.

20 UDIErrorTooManyBreakpoints UDISetBreakpoint returns this error if the
breakpoint cannot be set because a limit on
the number of breakpoints the TIP supports
has been reached.

21 UDIErrorInvalidBreakId Functions expecting a BreakId return this
error if the passed BreakId is invalid.

22 UDIErrorNoMoreBreakIds UDIQueryBreakpoint returns this error code
instead of UDIErrorInvalidBreakId if the
BreakId queried is not only invalid, but also
greater than any valid BreakId.

23 UDIErrorUnsupportedService Since not all UDI functions must be
implemented in each TIP and not all UDIDFE
functions must be implemented in each DFE,
a request to perform an unsupported service
draws this error if the callee is incapable of

UDI Developer’s Toolkit

A-4 Universal Debugger Interface Specification

the requested service.

24 UDIErrorTryAgain This error code is returned when a temporary
condition prevents honoring a request. If the
same condition persists for more than five
attempts, the TIP assumes the condition is not
temporary and returns a different error
indication.

25 UDIErrorIPCLimitation Some IPCs impose limitations of their own.
For example, early socket IPC
implementations did not support read or write
requests greater than a specific size. When the
IPC imposes a limitation that a request
exceeds, the IPC returns this error.

26 UDIErrorIncomplete If a data movement operation requested by the
DFE cannot be completely satisfied, the TIP
returns UDIErrorIncomplete . Each call
where this error is possible supports a
CountDone parameter that provides the DFE
with information about how much of the
request was completed.

27 UDIErrorAborted If a data movement operation requested by the
DFE is aborted by the DFE (by calling
UDIStop), the TIP returns
UDIErrorAborted . Each call where this
error is possible supports a CountDone
parameter that provides the DFE with
information about how much of the request
was completed.

28 UDIErrorTransDone When UDIGetTrans is called, if the TIP is in
a position to allow the DFE to resume normal
UDI operations, the TIP returns
UDIErrorTransDone . The DFE can either
leave transparent mode by calling any other
UDI service or it can remain in transparent
mode by calling either UDIGetTrans or
UDIPutTrans . The TIP continues to return
UDIErrorTransDone in response to
UDIGetTrans calls subsequent to any one
that returned UDIErrorTransDone if no
other UDI service has been called.

UDI Developer’s Toolkit

Universal Debugger Interface Specification A-5

29 UDIErrorCantAccept UDIPutStdin and UDIPutTrans returns
UDICantAccept if the TIP cannot accept
more data from the DFE. The data sent with
the UDIPutStdin and UDIPutTrans requests
that received the error can be complete,
partially complete, or ignored. The
CountDone parameter indicates exactly how
much data was taken.

30 UDIErrorTransInputNeeded Returned by UDIGetTrans when the TIP
requires transparent mode input from the
DFE.

31 UDIErrorTransModeX Returned by UDIGetTrans when the TIP
requests a change of terminal operating mode.

32 UDIErrorInvalidSize Returned by UDIRead, UDIWrite ,
UDICopy, and UDIFind if the TIP is unable
to perform the requested operation because
the object size does not correlate with the
resource specified.

33 UDIErrorBadConfigFileEntry Returned by UDIConnect when the
configuration file line for the requested
configuration is incorrect.

34 UDIErrorIPCInternal Returned by any call if the IPC Layer detects
an internal error during an operation other
than UDIConnect.

35 UDIErrorUnsupportedService
Variation

Indicates that a service is supported but the
particular variation of that service being
requested is not supported.

36 UDIErrorResourceNotWriteable Some resource spaces are read–only. TIPs
may return this error from any request that
tries to write into a read–only resource (e.g.,
UDIWrite or UDICopy).

37 UDIErrorCouldNotEvaluate Returned by UDIDFEEvalExpression if the
supplied expression could not be evaluated.

38 UDIErrorNoExactEval Returned by UDIDFEEvalResource if
ExactEval was true but the resource did not
match any symbol exactly.

39 UDIErrorBufTooSmall Returned by UDIDFEEvalResource if the

UDI Developer’s Toolkit

A-6 Universal Debugger Interface Specification

resource could be evaluated but the buffer
supplied by the TIP was not large enough to
hold the string.

40 UDIErrorEvaluatedToValue Returned by UDIDFEEvalExpression if the
supplied expression evaluated to a Value but
AnswerBuf was a NULL pointer.

41 UDIErrorEvaluatedToResource Returned by UDIDFEEvalExpression if the
supplied expression evaluated to a Resource
(address) but AnswerResource was a NULL
pointer.

42 UDIErrorResetAsserted The TIP could not satisfy the request because
Reset was asserted on the target.

43 UDIErrorNoPower The TIP could not satisfy the request because
the target had no power.

44 UDIErrorNoClock The TIP could not satisfy the request because
the target had no clock.

45 UDIErrorTargetNotResponding The TIP could not satisfy the request because
the target was not responding.

46 UDIErrorTargetAlreadyRunning The TIP could not satisfy the request because
it was already running.

Universal Debugger Interface Specification B-1

Appendix B

B UDI Configuration Files

A UDI–conformant debugger front end (DFE) specifies the target interface
process (TIP) to connect to, and the options to pass to that TIP, by referencing
a configuration in the UDI configuration file. This appendix explains the
format of the UDI configuration files for MS–DOS and UNIX hosts.

 UDI Configuration Files for MS–DOS Hosts

The DFE searches in the following order to locate the UDI configuration file:

The complete filename specified by the environment variable, UDICONF .

The udiconfs.txt file in the current directory.

The udiconfs.txt file in the directory where the DFE is located.

The udiconfs.txt file in each of the directories specified by the PATH
environment variable.

Each line of the udiconfs.txt file consists of the following fields:

tip_config_name tip_executable [tip_options]

 where:
tip_config_name

Is an arbitrary name which the DFE will use to refer to this
configuration. Each line in the udiconfs.txt file must have a
unique tip_config_name field.

 tip_executable
Is the name of the TIP executable file. The DFE will use the
tip_executable filename to create the TIP if the TIP is not already
running. If a full pathname is not specified, the PATH
environment variable is used to locate the executable file.

UDI Developer’s Toolkit

B-2 Universal Debugger Interface Specification

 tip_options
Are the options for the TIP being used. The rest of the line after
the tip_executable name is passed to the TIP at connect time.

The following is an example of an entry in the UDI configuration file for MS–
DOS hosts.

 Example

ser38400 montip -t serial -baud 38400

In the above example, ser38400 is the name chosen to refer to the
configuration. Use this configuration name whenever invoking this
configuration from a DFE. The user could have chosen any name for this
configuration.

The TIP executable is montip. The user’s PATH variable will be searched to
find the montip executable.

The options “-t serial -baud 38400” are passed to montip when it is invoked.

 UDI Configuration Files for UNIX Hosts

The DFE searches in the following order to locate the UDI configuration file:

The complete filename specified by the environment variable, UDICONF .

The udi_soc file in the current directory.

The udi_soc file in the directory where the DFE is located.

The udi_soc file in each of the directories specified by the PATH environment
variable.

A line of udi_soc can have two different formats depending on whether the
address family is AF_UNIX or AF_INET. The two formats are as follows:

tip_config_name AF_UNIX socket_name tip_executable [tip_options]

tip_config_name AF_INET host_name port_number [tip_options]

UDI Developer’s Toolkit

Universal Debugger Interface Specification B-3

 where:
tip_config_name

Is an arbitrary name which the DFE will use to refer to this
configuration. Each line in the UDI configuration file must have
a different tip_config_name field.

AF_UNIX This address family should be used when the DFE and TIP are
running on the same host. This is the typical case.

AF_INET This address family should be used when the DFE and TIP are
running on different hosts.

socket_name
Used only with AF_UNIX configurations. Specifies the socket
filename that will be used to communicate between the DFE and
TIP. The special socket name * indicates that a unique socket
filename should be generated automatically by the IPC layer.
This is useful if the user wants to have multiple DFEs connecting
to the same configuration name. If the socket_name is specified
explicitly, be aware that if any two AF_UNIX TIP configurations
are being used simultaneously, they must have unique
socket_names. For DFEs that want to disconnect from a TIP and
then reconnect to that same TIP at some later time, an explicit
socket_name is required.

tip_executable
Used only with AF_UNIX configurations. The DFE will use the
tip_executable filename to spawn the TIP if the TIP is not already
running and listening at the indicated socket_name. If a full
pathname is not specified, the PATH environment variable is
used to locate the executable file. Note that when the
socket_name is * , a new TIP executable is always created.

host_name Used only with AF_INET configurations. This specifies the name
of the host where the TIP is running.

port_number
Used only with AF_INET configurations. This specifies the
port_number at which the TIP on the remote host is listening.
Note that in an AF_INET configuration, the TIP cannot be
created by the DFE and must already be running at the time of
the connection. The TIP on the remote host should be started with
a command line of:

UDI Developer’s Toolkit

B-4 Universal Debugger Interface Specification

 tip_executable_name AF_INET port_number

tip_options Valid with both AF_UNIX and AF_INET configurations. This
optional string of parameters is passed through to the TIP at
connect time and is usually interpreted by the TIP as a set of
startup parameters.

The following are examples of entries in the UDI Configuration file on UNIX
hosts.

 Example

ser38400 AF_UNIX * montip -t serial -baud 38400

In the above example, ser38400 is the name chosen to refer to the
configuration. Use this configuration name whenever invoking this
configuration from a DFE. The user could have chosen any name for this
configuration.

AF_UNIX is the address family for the socket used to communicate between
the DFE and the TIP. The * indicates that a unique socket name will be chosen
for this connection. See the UDI man page for more information on address
family and socket name options.

The TIP executable is montip (the TIP shipped with AMD’s MiniMON29K
product). The user’s PATH variable will be searched to find the montip
executable.

The options “-t serial -baud 38400” are passed to montip when it is invoked.

 Example

iss50_remote AF_INET fasthost 7000 -29050 -r osboot

The above entry assumes that some TIP is already running on the host named
fasthost and listening at port 7000. For example, isstip could have been started
on fasthost with the command line:

isstip AF_INET 7000

The parameters “-29050 -r osboot” will be passed to the remote TIP at connect
time.

Universal Debugger Interface Specification B-1

Appendix C

C 29K Family UDI Resource Spaces

This appendix describes the resource spaces that are predefined when UDI is
applied to targets using the AMD 29K Family of microprocessors. These
definitions are used in the Space field of any UDIResource (for example, the
To parameter in UDIWrite , the From parameter in UDIRead, etc.). Each
space is defined along with the meaning of the offsets within the space. In the
sample IPC sources from AMD, these spaces are defined in the udipt29k.h
file.

Remember also that negative values of UDIResource.Space can be used for
vendor–specific definitions for resources that are not covered by these
predefined resource spaces.

#define UDI29KDRAMSpace 0

Data RAM space.
Offsets are from bytes 0 to 4G.

#define UDI29KIOSpace 1

I/O address space (not implemented on all 29K Family members).
Offsets are from bytes 0 to 4G.

#define UDI29KCPSpace0 2

CoprocessorSpace 0 (not implemented on all 29K Family members).
Offsets are from bytes 0 to 4G.

#define UDI29KCPSpace1 3

CoprocessorSpace 1 (not implemented on all 29K Family members).
Offsets are from bytes 0 to 4G.

#define UDI29KIROMSpace 4

On 29K family members that have an RE bit, this is the instruction ROM
space. Offsets are from bytes 0 to 4G.

#define UDI29KIRAMSpace 5

On 29K Family members that have an RE bit, this is the instruction RAM
space. Offsets are from bytes 0 to 4G.

UDI Developer’s Toolkit

B-2 Universal Debugger Interface Specification

#defineUDI29KLocalRegs 8

Local registers (each 32 bits in size).
Offset 0 = LR0
Offset 127 = LR127

#defineUDI29KGlobalRegs 9

Global registers (each 32 bits in size).
Offset 0 = GR0
Offset 127 = GR127
(Offsets 2 through 63 are not implemented on all 29K Family members.)

#define UDI29KRealRegs 10

Real registers (each 32 bits in size).
Offset 0 = GR0
Offset 127 = GR127
Offset 128 = absolute register 128
Offset 255 = absolute register 255
128 through 255 map to local registers depending on the value of GR1.
(Offsets 2 through 63 are not implemented on all 29K Family members.)

#define UDI29KSpecialRegs 11

Special registers.
Offset 0 = SR0
Offset 255 = SR255
Note: A particular special register may not be implemented on every 29K
Family member.

#define UDI29KTLBRegs 12

Offset 0 = TLB0
Offset 255 = TLB255
(Not implemented on all 29K Family members.)

#define UDI29KACCRegs 13

Accumulator registers.
Offset 0 = ACC0
Offset 3 = ACC3
(Implemented only on the Am29050 microprocessor.)

#define UDI29KICacheSpace 14

UDI Developer’s Toolkit

Universal Debugger Interface Specification B-3

Instruction cache space.
Not available on all 29K Family members. These reference the cache
entries (as opposed to the tag words). Offsets are byte addressable (but
will almost always be read and written as words). For each family
member, the sets are ordered and the first word of set s follows the last
word of set s-1. Thus, assuming sets have size N:

Offset 0 = first byte, first word, first set

Offset 4 = first byte, second word, first set

Offset N-1 = last byte, last word, first set

Offset N = first byte, first word, second set

Offset 2*N-1 = last byte, last word, second set, etc.

#define UDI29KAm29027Regs 15 /* When available */
#define UDI29KPC 16

Offset 0 = Real PC1
Offset 1 = Resource space of Real PC1
Offset 2 = Real PC0

NOTE: On a UDIWrite to UDI29KPC space, if Offset 0 (Real PC1) is
specified, but Offset 2 (Real PC0) is not specified, then the TIP will
set
Real PC0 = Real PC1 + 4.

#define UDI29KDCacheSpace 17

Data cache space.
Not available on all 29K Family members. These reference the cache
entries (as opposed to the tag words). Offsets are as defined for instruction
cache.

#define UDI29KICacheTagsSpace 18 /* When available
*/

Instruction cache tags.
Used together with UDI29KICacheSpace. Size is always 32 bits.
Assuming sets have M blocks with each block having 1 tag, the offsets
are:

Offset 0 = first tag, first set

Offset 1 = second tag, first set

UDI Developer’s Toolkit

B-4 Universal Debugger Interface Specification

Offset M-1 = last tag, first set

Offset M = first tag, second set

Offset 2*M-1 = last tag, second set, etc.

#define UDI29KDCacheTagsSpace 19 /* When available
*/

Data cache tags.
Used together with UDI29KDCacheSpace. Size is always 32 bits. Offsets
are as defined under UDI29KICacheTagsSpace.

Universal Debugger Interface Specification B-1

Appendix D

D Compatibility of UDI 1.4, 1.3, and 1.2 DFEs and TIPs

At the IPC level, UDI 1.4 TIPs can recognize a UDI 1.2 or UDI 1.3 DFE
because the version part of the incoming parameter, Connect.DFEIPCId, will
indicate an earlier version of UDI. For the special case of UDI 1.2 DOS IPC,
UDI 1.2 DFEs actually called a different procedure in the call table and can be
recognized that way.

UDI 1.4 DFEs can recognize a UDI 1.2 or UDI 1.3 TIP because the version
part of the returned parameter, Connect.TIPIPCId, will indicate an earlier
version of UDI. For the special case of UDI 1.2 DOS IPC, UDI 1.2 DFEs
recognize a 1.2 TIP because of the absence of the Signature_13 field in the
TIPVecRec.

UDI 1.4 DFEs and TIPs can interoperate with UDI 1.2 and UDI 1.3 DFEs and
TIPs if the following precautions are taken:

• DFEs talking to 1.3 TIPs:

• Can only use offset 0 (Real PC1) in UDI29KPC space.

• For the UNIX Socket IPC, all host–endian fields are sent big endian
(even when both the DFE and TIP are little endian).

• UDISetBreakpoint_14, UDIQueryBreakpoint_14 and UDIConnect_14
calls cannot be used. If used at the procedural interface of the AMD
sample implementation, the IPC will attempt to map to the
corresponding _13 call, returning an error if unable to map.

• DFEs talking to 1.2 TIPs have all the above 1.3 restrictions, plus:

• Cannot use UDIFind (newly introduced at UDI 1.3).

• Will get back, at most, 80 characters in TIPString of
UDICapabilities.

• For the DOS IPC, the DFE cannot use any of the functions below the
Signature_13 field. The DFE must use the UDIConnect_12 and the
UDICapabilities_12 table entries rather than their 1.3 and later
entries.

UDI Developer’s Toolkit

B-2 Universal Debugger Interface Specification

• For the DOS IPC, 1.2 TIPs did not support multiple connections.
They will ignore the connection_id field except on the
UDIDisconnect call.

• For the UNIX Socket IPC, in a response message from the 1.2 TIP,
the response_code field will not be present. Since the 1.2 TIP will not
make any UDIDFExxx requests, the DFE knows the first message that
comes back on the socket is the response.

• For the UNIX Socket IPC, the UDIFind and UDICapabilities_13
requests cannot be used.

• For the UNIX Socket IPC, 1.2 TIPs do not support multiple
connections.

• TIPs talking to 1.3 DFEs:

• For the UNIX Socket IPC, all host–endian fields are sent big endian
(even when both the DFE and TIP are little endian).

• Cannot pass a fine state in the UDIWait .StopReason when the gross
state is UDIRunning or UDIHalted . Cannot use negative fine states.

• Only UDI error numbers through 41 can be returned.

• TIPs talking to 1.2 DFEs have all the above 1.3 restrictions, plus:

• Cannot use any of the UDIDFExxx calls.

• Can return, at most, 80 characters in TIPString of UDICapabilities.

• Only UDI error numbers through 34 can be returned.

• For the DOS IPC, only one 1.2 DFE connection should be allowed.
The connection_id parameter from a 1.2 DFE is not valid (except on
UDIDisconnect) and must be ignored on other calls.

• For the DOS IPC, the 1.2 DFE will call UDIConnect_12 and the
UDICapabilities_12 table entries rather than their 1.3 and later
entries.

• For the UNIX Socket IPC, the response_code field must be omitted in
all response messages back to the DFE. Since you cannot make any
UDI DFE requests, the DFE knows the first message that comes back
on the socket is the response.

UDI Developer’s Toolkit

Universal Debugger Interface Specification B-3

• For the UNIX Socket IPC, the DFE will make UDICapabilities_12
requests rather than UDICapabilities_13 requests.

