Universal

Debugger Interface
(UDI)

Specification

Version 1.4, Revision 3

Universal Debugger Interface (UDI) Specification
Version 1.4, Revision 3
Last Update: August 17, 1995

© 1991, 1992, 1993, 1994, 1995 by Advanced Micro Devices, Inc. All rights

reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Advanced Micro Devices, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer
Software clause at 252.227-7013. Advanced Micro Devices, Inc., 5204 E. Ben
White Blvd., Austin, TX 78741-7399.

AMD is a registered trademark, and 29K, Am29000, Am29005, Am29030,
Am29035, Am29050, Am29200, Am29205, Am29240, Am29243, Am29245,
and MiniMON29K are trademarks of Advanced Micro Devices, Inc.

High C is a registered trademark of MetaWare, Inc.

All other brand and product names are used for identification only and may be
trademarks of their respective companies.

Advanced Micro Devices, Inc.
5204 E. Ben White Blvd.
Austin, TX 78741-7399

Contents

About the UDI Specification

UDI DOCUMENTALIONcutiiieiiiie ettt e et e e e e e e eeeaba e aees vii
About This SPECIfICAtION...........eviiiiiiii i vii
Suggested Reference Material............oovvvvviiiiiiiiiiiiii e iX
Documentation CONVENLIONS............cevvevuiiiiiiiiiiiieeeeeeeeeeeeiirin e eaeeeeaeaaaeeeenns X

Chapter 1 Introduction to the Universal Debugger
Interface (UDI)

L]0] I =T 1 1 1 TP 1-1
Problems UDI SOIVES.........couuiiiii et e e e e e e 1-1
1015 I @fo] gTol=T o K= AP P TP PTR PRI 1-2

Chapter 2 UDI Services Overview

UDI SeSSion ManagemMeNt.........c.uuiiiiiiiiiaeieeeiia e et e e e e eaia e e e eeeans 2-1
Process ManagemMeIL.......c.uu ittt e e et e e e e e e 2-2
RESOUIMCE ACCESSceuiiiiiiiiie et 2-5
Programmed /Oooeeiiiiiiiies e 2-5
Transparent MOGE.cooiiiiiiiiie e e e e e e e e e 2-6
Using UDIDFE calls in Transparent MOd€...........ccuuvvviiiiiiiiiiiiiiiiiiiiiniiiennnnnn, 2-9
3Vl oL] [ToN 1Y =T o] o 1T HS TS 2-9
TIP Access to DFE Screen 1/Q........ovovviiiiiiiieiiiieeeeeee 2:10

FULUIE GIOUPS. ... ittt et e et eeeeaan s 2-11.
Recommended USAgE...........oovvviiiiiiiiiiiiei e 2-11

Chapter 3 UDI Services

RELUIMN COURS.....eeiiiie e 3-1
Optional versus Required SEIVICES........ocuvvuuiiiiiiiiiieee et 3-1

Universal Debugger Interface Specification i

Contents

Values Reserved for Vendor—Specific USE.........ccooviiiviiiiiiiiiiiiiiiiiiiieeees 3-4
UDI Type DEfiNItiONSccvviiiiiiiiiiee e 3-4
UDICaPabiliti®S. . .uvveei i e e e e e e 3-11.
UDICIearBreakpOint.........cceiiiiiieiiiiiiiiiiieie e e et e e e e e e e e 3-13.
UDICONNECL... .. it 3:-14..
UDICOPY e ttteeeettttiee e e e e e e e e ettt ettt s s e e e e e e e e e e eeeastbebbe s e e aaeeeeaeeeeennres 3-17..
UDICreatePrOCESS. ... cu i 3:18.
UDIDESIIOYPIOCESS. ... cetieieteee ettt e e e e ees 3-19.
UDIDISCONNECT.vuieiiiieiieee ettt e e e e e e e e e e st eeea e e abaees 3-20.
UDIENUMEIAIE TIPS ...u it e 3-21.
UDIEXECULE. ...ttt e e e et e e e e et eaans 3:-22..
0]] o Vo TP 3:23..
UDIGEtEIOIMESSAGE. ... eeeeitieeeeeei e ettt e e e e e e eee 3-24
U] D[€= 1] (o [T o PR 3-25..
(0] D] [€1=) 1] (o (01U | AP PTRPPP 3-26..
UDIGEtTargetCoNnfig......ccovuui i 3-27.
UDIGEBITIANS. . ettt e e e e et e et e e e e e annas 3-28..
UDIINItIAliZEPIOCESSu v ciiii et 3-30.
UDIPULSEAIN ...t e e e 3:-32..
UDIPULTIANS ..ottt e e e e e e e e e e et e e e e ees 3:33...
UDIQUEIYBreakpOint.........uuiiieiieiie et e e e e 3-34.
L8] D] =T Lo PR TUTRN 3-36..
UDISEtBreakpOiNnt........cccuuuiieeiiiiii e eeeeiis e e e e e e e e e 3:37.
UDISetCurrentConNECHIQN..........eiiiieeiiiieeeie e 3:40
UDISEtCUIMENTPIOCESS. .. cvuiiiiiii ettt e e 341
UDISTAINMOUGE.ot e e e b 3-42.
L0 13 S (= o 3-43..
L0 13 5] (o] o 3:44..
UDITranSMOGE.cvuiiiieiiiieee e ettt e e e e b 3-45.
L0] 1Y 1 R 3-46..
L8]] 10 (T 3-50..
UDIDFE CallS.....ccoctiiieeieee ettt 3-51.
UDIDFEENATIPIO.......u et 3:-52.
UDIDFEEVAIEXPIESSION.uuuiiiiiie ettt 3-53
UDIDFEEVAIRESOUICE.uiiiiiiiee e e e 3-55
UDIDFEGEINPUL.....ccciiiiiieeeeie s e e e ee e 3:56.
UDIDFEPULOULPUL.vvtiiiee e e e 3:-58.

Chapter 4 UDI IPC Methods for DOS Hosts

Establishing the CONNECHIONiiiiiiiiii e 4-2
General Call Interface Informationccceeeeeieee 4-3
Typedefs Of UDI ParametlrS.......cooeeeiiiiieiiiiiiiiis et e e 4-4

Universal Debugger Interface Specification

Contents

Universal Debugger Interface Specification iii

Specific Calls and Parameters ... e 4:4
W[@r=To =1 o1 11T ST 4-6
UDICIEarBreakpPOint........ccoviiiieeeiiiiiiesiei e e e e e et e e e e e e e e e aeaaeaene s 4-7
UDICONNECL .. ettt ettt et e ettt e e e et e e et e e ean e eenaaaees 4-8
UDICOPY ettt ettt e e e e e e e e 4:12..
UDICrEatEPIOCESS. .. .cuiiieieeei ettt 4:13.
UDIDESIIOYPIOCESS......ccvuieiiiiiiiiieeeii e A2 LA
UDIDISCONNEC. ...t teeeieieeeeeittiee st e et e e e e e e e e e e e eaaenannnas 4-15.
UDIEXECULE ...ttt e et e e e et e e e eeaan s 4-16..
UDIFING....oiiieeee et 4-17...
UDIGELEITOIMESSAGE. ... eeeettieeee ettt eeed 4-18
0B CT] 5] (o (=] SRR PSSSRRPPY 4-19..
UDIGEESEUOULceviiiiiiiiee it e e e e 4-20..
UDIGEtTargetCONfig. ... e i e ettt 4-21
UDIGEETIANS. ..ttt ettt e et e e e e e e e eebea e A4-22..
UDIINItIAlIZEPTOCESS ... it 4-23.
UDIPULTIANS ..ttt e et e e e e et e e e eeees 4:25...
UDIQUEIYBreakpOint........uuuiiieiiriie e e e e aaaad 4-26.
UDIREAU.........eeiiieieeiiiiie ettt 4-27...
UDISEetBreakpoint.........ccevuuiie e e e e 4-28.
UDISEtCUIMTENTPIOCESS. ... eeeeetie ettt 4-29
UDISEAINMOTE. ..o e 4-30.
L0 1 153 (= o Y 4-31..
L0 15 15 (o] o 4-32..
UDITTanSMOUE......ccoiiiiiiiiiiiiiie e s 4-33.
UDIWRIL. ..ottt e e e 4-34..
UDIWIIE . ..ottt e e e e 4-35..
UDIDFE CallS.....ccii ittt 4-36..
UDIDFEENATIPIO......ciiiiiiiiiieeeeee e eeeeiiiieieeeeeeeeeeene e e e e e A3
UDIDFEEVAIEXPIESSION.uvtuiiiiiieeeeiieeieiiiiiiiiiis s 4:38
UDIDFEEVAIRESOUICE. iiiiiiie e eeeeii e et e e et e e e e e e e e e 4-39
UDIDFEGEINPUL ..ottt 4:40.
UDIDFEPULOULPUL. ...ceviviiiieieeeeeeeeeeeeeeceiiiiiiiiieeeeeeeeeeeeeeeee e e e DAL
Chapter 5 UDI IPC Methods for UNIX Hosts
Establishing the CONNECHIONiiiiiiiiii e 5-1
General Message Format INformationuueeeeiiiiiiiiiiineiiieri. 5-2
Endian Type of Fields iN MESSAQES.......uuiiiiiiiieiiiiiiiieieeiiiiies e eeeeeeeeaans 5-4
Request and ReSPONSE COUES.......occeviiviiiiiiiiiiiie et e e 5-5
Signals from the DFE tOthe TIP ..., 5-7
SpecCific MeSSage FOIMALS........couvviiiiiiiie et 5-8

Contents

UDICaPabilitieS.vueiieii e 5-9
UDICIearBreakpOint.........ccovviiiieiiiiiiiieiiee e eeee et e e e e e e e aa e 5-11.
L0] 51 (@0 o 1= ox A 5:12..
UDICOPY .. ttteeetttitiee s e e e e e e e ettt ettt s s e e e e e e e e e eeeeasabbb bt s e aaaeeeeaeeeeennnes 5-15..
UDICrEatePIOCESS. .. vu ittt a e 5:16.
UDIDESIIOYPIOCESS. ... cetiei ettt e e e e eees 5:11.
UDIDISCONNECT. ciiiiiieeeeie e e e e e et e e et e e e e et s e e e e aaanaeeeees 5-18.
UDIEXECULE. ..eu ittt et e e e e e e aes 5:19..
L0 | o o PSS UUPPPRPRPRT 5-20..
UDIGELEITOIMESSAGE. ... eeeeitieeeeeeii ettt e et e et e e e e e eee 5-22
(GBI CT=] 6] (o [¢ S PPTORRUPPPT 5-23..
(0] D11 6] (o [0 11 A 5-24..
UDIGetTargetCoONTfig. ... e i ettt 5-25.
01 11T = o I = g TP 5:26..
UDINItIaliZEPIOCESSciiiii e e 5-2.1.
L8] 6] (o 11 P 5:28..
L1 1|0 = 5:29...
UDIQUEINYBreakpOint.........uuiii i ce e e e e e e e e e 5-30.
UDIREAM. ... ettt e e e e e 5-31..
UDISEtBreakpOiNnt.........ccuuuiieeieiiie e e e e e e e e e 5:-32.
UDISEetCUIMENIPIOCESS. iiii i eeei et e e e e e e 533
L0115 o 19117 To [R 5-34.
L1 153 (=] o 5-35..
UDIWaIL. ..ttt e e e e e e eaann s 5-36..
UDIWIITE. ..ot e ettt e e e e e e e e eeeenes 5:37..
UDIDFE MESSAQES. ... cetueeiiieeiieeeieeeaenseeeaaeeeaeeeanneaeeaeeenaeeeenaeeanns 5:38.
UDIDFEENATIPIO......citiiiiiiiieee ittt 5:38.
UDIDFEEVAIEXPIrESSION. ...cccvieeiiiieiie e eeeeiie e ee e e e e e e et eaeeans 5:39
UDIDFEEVAIRESOUICE.iiiiiiiieeeeeii e et e e e e e e e e e e e eees 5-40
UDIDFEGEINPUL......cciiiiiiieieiiie et 5:40.
UDIDFEPULOULPUL.vvtiiiee e 5:41.

Chapter 6 UDI Developer’s Toolkit

The UDI Procedural Interface and the Sample IPC Code.........ccccoovveiiiiinieens 6-2
Directory Structure of the TOOIKIL..............covviiiiiiiii e 6-4
The Sample IPC Sources in SIC/Uiuuuuuueiiiiiiiiiiiiiiiiiiiirieeiieeereeeeneereenee. 6-6
Product and Company Codes Used by UDICapabilities...............cccccenn. 6-9
Notes for DFE DEVEIOPEIScccivviiiiiiiiiiieiie i 6:10

Notes for TIP DEVEIOPETS.coovuuiiiiiiiieieeee e 6:11

Notes for DOS DevelopmMENLt........coovvvuiiiiiiiiiiiee e 6-12

Notes for UNIX Development.........uuueiiiiieeieiiiiiieiiiiiiiiie e e e e eeeeeaens 6-14

Universal Debugger Interface Specification

Contents

Appendix A UDI Error Numbers

Appendix B UDI Configuration Files

UDI Configuration Files for MS—DOS HOSIS..........ccccuuuiiiriiiiiiiiieeeeiiiee, B-1
UDI Configuration Files for UNIX HOSLES.............uuvviiiiiiiieeiiinieeeiiiiiinn B-2

Appendix C 29K Family UDI Resource Spaces

Appendix D Compatibility of UDI 1.4, 1.3, and 1.2
DFEs and TIPs

Universal Debugger Interface Specification Y

About the UDI Specification

The Universal Debugger Interface (UDI) was created to provide an interface
between a debugger and a target which allows the two to be developed,
implemented, maintained, and shipped separately. In this specification, we
refer to these two separately built pieces as the Debugger Front End (DFE) and
the Target Interface Process (TIP). UDI allows any DFE and TIP to
communicate using a set of functions called UDI services. Figure 0-1
illustrates the communication which occurs between DFEs and TIPs through
UDI.

The UDI specification defines:

®* A C language procedural interface for each of the UDI services and
provides a description of the semantics of the service and each of its
parameters

® Inter—Process Communication (IPC) methods which provide the message
format for each UDI service and the message passing mechanism for a
particular host or operating system environment

The procedural interface and the semantics of both the services and the
parameters are the same for all IPC methods. The procedural interface is
defined in Chapters 2 and 3 of this specification.

UDI IPC methods have been defined for both DOS and UNIX hosts. These IPC
methods are described in Chapters 4 and 5 of this specification.

Universal Debugger Interface Specification Vi

Introduction to the Universal Debugger Interface (UDI)

UDI Documentation

This documentation is written for programmers using UDI to create portable
debuggers and target interface processes (TIPs). Anyone using UDI should
read Chapter 1 through Chapter 3.

AMD supplies sample IPC implementation code which maps the UDI
procedural interface to the IPC mechanism for the following host
environments: DOS IPC on DOS real-mode hosts, UNIX IPC on UNIX big—
endian hosts. Read Chapter 6 concerning the UDI Developer’s Toolkit if you
intend to use the IPC sample code provided. (If you plan to use the sample
code without modifying it, there is no need to read Chapters 4 and 5.)

If you want to modify the sample IPC code or port it to a different
environment, or if you simply want to understand more about IPC methods for
DOS hosts, read Chapter 4. For information on IPC methods for UNIX hosts,
read Chapter 5.

About This Specification

® Chapter 1: “Introduction” describes the fundamental concepts behind the
development of UDI.

® Chapter 2: “Services Overview” describes the services available with UDI.
® Chapter 3: “UDI Services” documents all UDI services.

® Chapter 4: “UDI IPC Methods for DOS Hosts” specifies how UDI DFEs
and TIPs communicate using the DOS IPC mechanism.

® Chapter 5: “UDI IPC Methods for UNIX Hosts” specifies how UDI DFEs
and TIPs communicate using the socket—based IPC mechanism.

® Chapter 6: “UDI Developer’s Toolkit” describes the toolkit available for
development of UDI-compliant DFEs or TIPs.

®* Appendix A: “UDI Errors” lists the error codes that UDI-conforming
services may return.

* Appendix B: “UDI Configuration Files” outlines the format of the UDI
configuration files for MS—DOS and UNIX hosts.

Universal Debugger Interface Specification vii

Introduction to the Universal Debugger Interface (UDI)

viii

Appendix C: “29K Family UDI Resource Spaces” describes the resource
spaces that are predefined when UDI is applied to targets using the AMD
29K Family of microprocessors.

Appendix D: “Compatibility of UDI 1.4, 1.3, and 1.2 DFEs and TIPs” lists

the precautions and restrictions involved with interoperations between
TIPs and DFEs from different versions of UDI.

Universal Debugger Interface Specification

Introduction to the Universal Debugger Interface (UDI)

Suggested Reference Material
The following AMD documents may be of interest:

* Am29000 and Am29006 User's Manualand Data Sheet
Advanced Micro Devices, order number 16914A.

®* Am2903@ and Am29036 Microprocessors User’'s Manual and Data
Sheet
Advanced Micro Devices, order number 15723B

® Am29050 Microprocessor User's Manual
Advanced Micro Devices, order number 14778A

* Am29050 Data Sheet
Advanced Micro Devices, order number 15039A.

®* Am2920@ RISC Microcontroller User's Manual and Data Sheet
Advanced Micro Devices, order number 16362B

®* Am2920% RISC Microcontroller Data Sheet
Advanced Micro Devices, order number 17198A

* Am2924Q , Am29245 , and Am29248 RISC Microcontrollers

User’s Manual and Data Sheet
Advanced Micro Devices, order number 17741A

Universal Debugger Interface Specification iX

Introduction to the Universal Debugger Interface (UDI)

Documentation Conventions

TheUniversal Debugger Interface (UD§pecificatioruses the conventions
shown in Table 0-1 (unless otherwise noted). These same conventions are used
in all the 29K Family support product manuals.

Symbol Usage

Boldface Indicates that characters must be entered
exactly as shown, except that the alphabetic case is
only significant when indicated.

Italic Indicates a descriptive term to be replaced with a
user—specified term.

Typewriter face Indicates computer text input or output in an
example or listing.

[1 Encloses an optional argument. To include the
information described within the brackets, type
only the arguments, not the brackets themselves.

{} Encloses a required argument. To include the
information described within the braces, type only
the arguments, not the braces themselves.

Indicates an inclusive range.
Indicates that a term can be repeated.

Separates alternate choices in a list — only one of
the choices can be entered.

= Indicates that the terms on either side of the sign
are equivalent.

Table 1. Notational Conventions

X Universal Debugger Interface Specification

Chapter 1 ‘

Introduction to the Universal Debugger Interface (UDI)

This chapter describes the terms used in this specification to describe various
parts of the overall solution the Universal Debugger Interface (UDI) provides,
the problems that UDI attempts to solve, and the fundamental concepts used to
solve those problems.

UDI Terms

This specification refers to the debugger as the Debugger Front End (DFE).
Early conversations about UDI revolved around splitting the debugger into a
front—end (user interface) and the target interface (execution interface). This
target interface later became known as the target interface process (TIP).
Referring to it as a process implied that the TIP was not linked with the DFE
into a single executable. UDI exclusively specifies the interface between the
DFE and the TIP. The tertargetrefers to the actual execution vehicle that
runs the program under control of the DFE, via the TIP. Only the TIP knows
how to control the target.

Hostrefers to the computer system on which the DFE resides. Usually, the TIP
also resides on the host, but the communications method defined for some
hosts may allow the TIP to reside on a different computer system. Throughout
this document, we assume the TIP and DFE run on the same computer (i.e.,
the host).

Problems UDI Solves

In many cases, a company provides multiple debuggers, targets, or both. The
problem such a company faces is that any time an update is made to a
complicated debugger, it must be rebuilt with the code that allows it to
communicate with each of the possible targets. All debugger/target
combinations must be retested and updates supplied to all affected customers.

Additionally, end customers of embedded systems inherently want to use
debuggers with their custom hardware. While in—circuit emulators have been
one solution to this problem in the lab, many customers would like to attach a
debugger to their hardware without an in—circuit emulator. Often, that
debugger does not support the only communications path to the hardware.

Universal Debugger Interface Specification 11

Introduction to the Universal Debugger Interface (UDI)

Finally, sometimes it is desirable to mix debuggers from one company with
targets from another. For example, an emulator company may not be able to
justify supporting a little—used debugger (or vice versa), but a customer may
decide that such a configuration is best.

The fundamental goal of UDI is to provide an interface between a debugger
and its target so that the two can be developed, implemented, maintained, and
shipped separately. It should be possible to use any UDI-compliant debugger
with any UDI-compliant target. Also, end users should be able to develop
either custom debuggers for use with standard targets or, more probably,
custom targets for use with standard debuggers.

UDI Concepts

1-2

Most of the companies involved in specifying UDI are concerned with cross—
debugging, that is, using a computer of one type to debug a system of a
different type. Cross—debugging involves communication between the
computer that the debugger runs on fthe) and the system that the program
the debugger is debugging runs on (togef). Unfortunately, there can be no
strict standards for this communications path. For example, some targets
communicate via the host computer’s bus, some via RS—232, some via
Ethernet, some via SCSI, and some have no communications path at all
(simulators).

UDI works by providing interprocess communication (IPC) methods, which
allow separately built DFEs and TIPs to communicate. The IPC method
defines the basic communication method and the message format for each UDI
service.

This specification describes a procedural interface for each of the UDI services
and defines the semantics of the service and each of its parameters. The
procedural interface and the semantics of the services are the same for all IPC
methods.

UDI IPC methods have been defined for the following hosts:
* DOS

® UNIX sockets
The UDI IPC methods are defined in Chapters 4 and 5.

AMD provides sample code that maps the procedural interface defined in this
specification to either of the two UDI IPC methods listed above. This sample
code is described in Chapter 6.

Universal Debugger Interface Specification

Introduction to the Universal Debugger Interface (UDI)

UDI attempts to solve some problems that at first may not be obvious, for
example:

® Using a single debugger to debug multiple processes running on a single
target processor

® Using a single debugger to debug processes running on multiple target
processors

® Using a target capable of supporting multiple debuggers

UDI should support a debugger that attaches to a running target. In—circuit
emulators usually support advanced logic analysis features and an attempt is
made to abstract a few of these capabilities. Finally, UDI should be usable in a
more conventional non—cross, non—remote environment.

One issue that UDI does not address is target access to host resources (other
than simple terminal access implemented in the programmed 1/O service
group). Because the TIP resides on the same host as the DFE, the TIP is
charged with managing host resource access from the target. Consequently,
UDI does not have to abstract wide operating system services across the
interface.

Universal Debugger Interface Specification 1-3

Chapter 2 ‘

UDI Services Overview

This chapter provides an overview of the services available with UDI.
Technically, the TIP and the DFE execute simultaneously. However,
debugging is usually an interactive process in which the DFE is in control of
the execution. Because of this, the majority of the UDI services are functions
that are available to the DFE and implemented by the TIP. Starting with UDI
1.3, a few new services were added in which the TIP calls back to the DFE.
These callback services can only be called by the TIP while the TIP is in the
process of servicing a UDI request from the DFE, not while the UDI
connection is quiet. In addition, the DFE, while servicing a UDI DFE callback
service, may occasionally need to call another UDI service to the TIP, thus
nesting one level further. Further nesting is theoretically possible, but is
unlikely.

All services, whether DFE to TIP or TIP to DFE, return as soon as the
requested information is available or the services are performed (except the
special case dIDIWait). Not all services or variations of parameters are
supported by all TIPs, while some functions are supported by every TIP. See
Chapter 3 for implementation requirements and options.

UDI Session Management

Session management establishes DFE—to—TIP connections. The methods
support one—to—one, one—to—many, many—-to—one, and many—to—-many DFE—-
to—TIP relationships. Some TIP configuration issues are handled here as well.

Universal Debugger Interface Specification 2-1

UDI Services Overview

Services in this group and their functions are:

UDIConnect Establishes initial connection.
UDIDisconnect Tears down a connection and frees the TIP.

UDISetCurrentConnection Used only by DFEs to identify multiple
connections. All other UDI services are
performed against the currently connected

TIP.

UDICapabilities Provides information between the DFE and
the TIP.

UDIEnumerateTIPs Used by DFEs to obtain a list of TIPs from the

TIP ID file to present to the user.

TIP configuration issues such as the name of the TIP program and TIP startup
parameters are specified in the configuration string passéit©onnect by

the DFE. The interpretation of the configuration string is specific to a
particular IPC method.

Process Management

Process management in UDI accommodates a wide range of DFE and TIP
design goals. Some TIPs are best thought of as raw machine debuggers,
providing complete access to all of the target’s resources. Simulators and
emulators are typically raw machine debuggers. Other TIPs provide access

only to resources created explicitly for a process or distinguish between raw
mode and a program debug mode via some other means. Similarly, some DFEs
are designed to be raw machine debuggers and others are better thought of as
program debuggers.

UDI uses the services in this section to allow access to either a single process
or to the raw machine. The distinction is made by the value of the current
process. When the current process is the special \di€rocessProcessar

then the resources accessed will be those of the raw machine. Note also that a
UDlInitializeProcess request, when the current process is
UDIProcessProcessaris a request to reset the entire target system (or come

as close as possible to a reset). Whether the TIP allows access to the raw
machine is, of course, something the TIP decides.

2-2 Universal Debugger Interface Specification

UDI Services Overview

Most debugging occurs in the context of a process. DFEs can create, initialize,
and destroy processes. Processes can be executed and stepped, and breakpoints
can be set within them. The services available to DFEs to control processes

are:

UDICreateProcess Is called when a DFE starts up a new
connectionUUDICreateProcessalso allows
multi—tasking TIPs to create a new process
context.

UDISetCurrentProcess Identifies to the TIP which of several possible
processes the rest of the UDI services should
apply against.

UDIDestroyProcess Indicates that debugging of the current process
is finished.

UDlInitializeProcess Restarts a process already established. Any
information the TIP maintains about the
process (such as pass counts remaining on
breakpoints) should be re—initialized when this
service is invoked.

UDIExecute Continues execution of the current process and
returns when execution has been started. (It
does not wait until execution is finished.)
Execution is concurrent with DFE execution.

UDIStep Executes one or more single steps of the
current process, possibly excluding calls to
other functions and/or traps.

UDIStop Stops execution of the current process
regardless of where it is.

UDIWait Is called when the DFE requests the current
state of TIP execution.

UDISetBreakpoint Establishes a breakpoint in the TIP.

UDIClearBreakpoint Clears a breakpoint. If Breakpoint ID = 0,
clears all breakpoints.

UDIQueryBreakpoint Determines the currently active breakpoints.

To provide the broadest possible range of connectivity between various DFEs
and TIPs, UDI defines a specific set of rules for process management.

Universal Debugger Interface Specification 2-3

UDI Services Overview

2-4

When a DFE starts up a new connection, it should always call
UDICreateProcess TIPs that support only raw machine debugging (type 0

TIPs) return a process ID (Pld) dDIProcessProcessarTIPs that support

only program debugging (type 1 TIPs) must return a different PId. TIPs that
differentiate between program and machine resources (type 2 TIPs) should also
return a Pld other thddDIProcessProcessarTIPs that return process
UDIProcessProcessom response to @DICreate call can still support OS
services. Note, also, thdDICreateProcesshas the side effect of setting the
current process as the one created.

In most cases, the DFE downloads the program to be debugged. In all cases,
the program to be debugged is downloaded into a process space compatible
with the TIP. If the current processU®IProcessProcessqrthe DFE simply

sets the PC to the downloaded program's entry point and is ready to execute.
(A UDlInitializeProcess when the process UDIProcessProcessoperforms

a target reset).

If the current process is NODIProcessProcessarthen the DFE should call
UDlInitializeProcess. The TIP initializes the process so that the next
instruction to be executed is the first instruction in the process (i.e., the entry
point). The TIP determines what happens to any dilgmitializeProcess
parameters.

DFEs that debug programs rather than the raw machine can now inspect the
PC (using UDI PC space). If the PC is not at the entry point of the program,
the DFE sets a breakpoint at the entry point and executes up to it. Otherwise,
stepping the TIP may result in executing one or more instructions that the DFE
did not download, and this may confuse the DFE.

As stated earliet)DICreateProcessalso allows multi—tasking TIPs to create

a new process context. For TIPs that allow multiple processes, but do not allow
run—time creation of processes, this call would still be used to determine
whether a process can be debugged. A process is executed in the context of an
operating environment. WhesDlInitializeProcess is called, command line
arguments for the process are passed. The TIP determines what to do with the
command line arguments.

BecausdJDIStep may possibly exclude calls to other functions and/or traps,
stepping may take a significant amount of time. As a reditStep, like
UDIExecute, returns as soon as stepping has begun. BotStep and
UDIExecute stop when a breakpoint is hit, when the TIP can no longer
continue executing the process, or whHdIStop is called.

Universal Debugger Interface Specification

UDI Services Overview

For some TIPs on some hosts (for example, a DOS machine with a simulator
for a TIP), all execution occurs when the DFE cHIBIWait . Consequently, a
DFE may not assume that any progress has been made by the sequence:
UDIExecute, long delayUDIStop (and a DFE must callDIWait to ensure
progress). If the process is stoppd@®|Wait returns the reason that the
process stopped.

Resource Access

The services in this group provide read and write access to target resources.
Services are available to move from host to target, to move from target to host,
to move from target to target, and to search target memory. A simple search of
target memory capability is also available.

The resource access functions are:

UDIRead andUDIWrite Provide access to TIP resourcescluding
memory and registers.

UDICopy Produces target copies between resources.
This can be used to copy or fill memory by use
of the direction parameter.

UDIFind Tells the TIP to report the occurrences of a
specified pattern in a given range of memory
or other resource. A pattern mask can be used
to further qualify the search.

Programmed I/O

Services in this group allow the user to communicate directly with a program
being debugged. Because the DFE ideally has complete control of the user
interface, while the TIP provides all target operating system services, the UDI
services in this group allow the DFE to manage the user interface for the
process.

! Some TIPs may include additional resources, such as queues or semaphores associated with
an operating system, or special hardware features associated with an emulator. A DFE must
be TIP—aware to use these additional resources.

Universal Debugger Interface Specification 2-5

UDI Services Overview

The programmed I/O functions are:

UDIGetStdout Is invoked wherUDIWait returns and indicates
that access to stdout is needed. The DFE then
performs I/O for the TIP.

UDIGetStderr Is invoked wherUDIWait returns and indicates
that access to stderr is needed. The DFE then
performs I/O for the TIP.

UDIPutStdin Is invoked wherUDIWait returns and indicates
that access to stdin is needed. The DFE then
performs I/O for the TIP.

UDIStdinMode Changes the mode by which characters are fetched
from the user.

WhenUDIWait returns, it may indicate that access to standard input, standard
output, or standard error is needed. The DFE then invokes the appropriate UDI
service and performs the 1/O for the TIP. Once the I/O is completed, the TIP
automatically continues execution (if it has stopped) and the DFE should again
call UDIWait .

UDIStdinMode changes the mode by which characters are fetched from the
user. Echoed and non—echoed input are supported. Line buffered and
unbuffered input are also supported. In the absence of a TIP requesting a
change, (which can occur only througbBIWait), the mode of input reverts to
line buffered and echoed each tiBlInitializeProcess is called.

Since programmed I/O provides support for standard 1/O services, I/O
redirection can be performed by the DFE. Note, however, that this does not
prevent the TIP from performing I/O redirection. In general, a DFE should
support redirection through its user interface, rather than by interpreting the
command line of the program being debugged. This helps avoid placing
unexpected constraints on the command line of a target operating system.

Transparent Mode

2-6

This group of services allows DFEs and TIPs to support more functionality
than the other groups of services provide. For example, if a target supports
profiling in one of its many forms, none of which are directly supported by
other UDI service groups, transparent mode can be used for communication.

Universal Debugger Interface Specification

UDI Services Overview

DFEs can provide access to these extended TIP services using a simple
terminal emulator written using transparent mode services. This set of
functions is arranged so that the TIP can manage the I/O process with the user.

In general, a DFE may invoke transparent mode in one of two ways:

® interactive transparent mode (during which the TIP's prompt is displayed
and the user can enter any number of commands),

®* immediate transparent mode (in which a single command is presented to
the TIP and the command's output is presented to the user).

The distinctions between interactive mode and immediate mode are handled
entirely on the DFE side. This is possible because the DFE can distinguish the
TIP's prompt output from the other TIP output. The code examples at the end
of this chapter show examples for both interactive transparent mode and
immediate transparent mode.

When a DFE leaves transparent mode, the DFE cannot know what changes
have occurred in the target state and thus should flush any cached values that it
has read from the target, poll the target state, query breakpoints, etc.

Universal Debugger Interface Specification 2-7

UDI Services Overview

2-8

The transparent mode functions are:

UDIGetTrans

UDIPutTrans

The DFE calldJDIGetTrans to find out if the TIP has
any output and the TIP also uses special returns from
UDIGetTrans to indicate:

» when the TIP requires input but is not at the prompt
(UDIErrorTransinputNeeded)

» when the TIP is returning the prompt
(UDIErrorTransPrompt). A TIP is not required to
have a prompt but if it has one it may only be
returned

e with UDIErrorTransPrompt .

* when the TIP is at the prompt waiting for input
(UDIErrorTransDone)

* when the TIP has parsed the transparent mode
"exit" command. DIErrorTransExit).

* when the TIP requires the DFE to change input
mode UDIErrorTransModeX).

In general, the DFE must continue calling
UDIGetTrans until the TIP indicates (through the
UDIGetTrans return code) that the DFE call another
transparent function.

The DFE can allow the user to exit from the transparent
mode session only when the TIP returns
UDIErrorTransDone or UDIErrorTransExit . A DFE
may callUDIStop during transparent mode and the TIP,
on receivingUDIStop, should try to clean up and return
UDIErrorTransDone as soon as possible, but the DFE
is required to continue callingDIGetTrans until
UDIErrorTransDone or UDIErrorTransExit is

returned.

If the TIP returndJDIErrorTransinputNeeded , the

DFE is required to acquire input from the user and call
UDIPutTrans, sending one block of data to the TIP.
Then the DFE should resume callid®IGetTrans.

If the TIP returndJDIErrorTransDone, the TIP is at
the prompt and the DFE is allowed to leave transparent

Universal Debugger Interface Specification

UDI Services Overview

mode. If the DFE does not wish to leave transparent
mode, it must acquire input from the user and call
UDIPutTrans, as described above.

A special usage dJDIPutTrans (called with a
Count=0) tells the TIP that the DFE wants to get the
prompt from the TIP on the neidtDIGetTrans call. If
the TIP has a prompt, it returns
UDIErrorTransPrompt to UDIPutTrans and then
returns the actual prompt on the nedR@IGetTrans call
(again with the returtDIErrorTransPrompt). If the
TIP has no prompt, it returtidDIErrorTransDone to
the UDIPutTrans (Count=0) call. If the TIP is notin a
state where a prompt is possible, i.e., if the TIP is not
between commands, etc., then it returns
UDIErrorCantAccept to theUDIPutTrans (Count=0)
call.

UDITransMode If UDIGetTrans requests a call tdDITransMode, the
DFE must calUDITransMode, the TIP will return the
new mode that it wishes the DFE to use and then the
DFE must resume callingDIGetTrans.

Using UDIDFE calls in Transparent Mode

A TIP is allowed to us&/DIDFEGetIinput andUDIDFEPutOutput with
IOType UDIIOTypeTip xxxwhen servicing transparent mode calls with the
exception that the prompt, if any, can only be returnedbiGetTrans.
OtherUDIDFE xxx calls may be used by the TIP without restriction during
transparent mode.

Because the TIP may mtDIDFEGetinput andUDIDFEPutOutput with
IOType UDIIOTypeTip xxxwith transparent mode handling, the DFE is
required to treat transparent mode 1/0 &lIOTypeTip xxxI/O in a similar
manner.

Symbolic Mapping

The functions in this group, new with version 1.3 of UDI, are implemented by
the DFE and called by the TIP. Generally, these functions would be used by a
TIP that is operating in transparent mode.

Universal Debugger Interface Specification 2-9

UDI Services Overview

It may be necessary for a TIP to allow a user to include symbolic expressions

in the transparent mode commands. The TIP can then ask the DFE (which
controls the symbol table) to map an expression to a value or an address.
Alternatively, the TIP, instead of displaying a raw address to the user in the
output of a transparent mode command, may need to map that raw address to a
symbolic expression. Again, only the DFE can provide this mapping. The TIP
asks the DFE to perform these services by “calling back” to the DFE.

The DFE may require TIP services (suctU@dRead) during its evaluation
and it is legal for the DFE to make any UDI call before returning the answer to
the TIP, as long as further transparent mode calls are avoided.

The symbolic mapping functions are:

UDIDFEEvalExpression Evaluates a symbolic expression returning
either a value or a resource address.

UDIDFEEvalResource Maps a resource address to an ASCII string of
the form “symbolname” or “symbolname +
offset”.

TIP Access to DFE Screen 1/O

This set of functions, new with version 1.3 of UDI, is implemented by the DFE
and called by the TIP. As with all UDI DFE callback functions, the TIP is only
allowed to call these functions while in the process of handling a request from
the DFE.

The DFE screen I/O services are:

UDIDFEPutOutput Directs output to the DFE screen. KdType
parameter indicates whether the output is from the
TIP itself or from a running target program.

UDIDFEGetInput Gets input from the DFE, and again,l@Type
parameter indicates whether the input is for the TIP
itself or for the target program.

UDIDFEENTIPIO Provides a way for the TIP to indicate a logical
boundary for a set of TIP—directed (as opposed to
target—directed) 1/O requests before returning from
the original UDI request made by the DFE.

Possible uses of the functions is this group are:

2-10 Universal Debugger Interface Specification

UDI Services Overview

® The TIP can present information to and get a response from the user to
determine how to proceed while handling a UDI request. Some parts of a
transparent mode session can be handled by using the
UDIDFEPutOutput andUDIDFEGetinput functions with IOType =
IOTypeTIPxxx. (The section on Transparent mode describes when
UDIDFEPutOutput andUDIDFEGetInput calls are allowed to be used
during transparent mode).

® The TIP can feed output from a running target program to the DFE or get
input from the DFE on behalf of a running target program. In this manner,
these calls are an alternative to returrilizjStdOutReady or
UDIStdInNeeded from UDIWait and waiting for the DFE to call
UDIGetStdout, UDIGetStderr, or UDIPutStdin.

Future Groups

This version of UDI supports basic debugging. Not all of the functionality of
some TIPs will be apparent in the current UDI specification. The IPC
mechanisms defined for each host are designed to support additional services
without invalidating the existing set.

Recommended Usage

The following is an outline of some important sections of code present in most
DFEs. It is intended to help implementors understand the relationship between
various services. (Error handling code is not shown.) The code shown is for a

simple, single—process program debugger.

Startup:

UDIConnect() [* Establish connection with the TIP. */
UDIWait() /* See if the connection is a
reconnection to

* a running target. */
UDICreateProcess() /* Simple TIPs return
UDIProcessProcessor,

* but the DFE does not care. */

UDIWrite()/UDICopy() /* As necessary to download the program,
if

* required. */
/* At this point control can be given to the user to examine or
* modify memory, set breakpoints, and so on. */

Universal Debugger Interface Specification 2-11

UDI Services Overview
To begin or restart execution from the entry point:

if (currentprocess == UDIProcessProcessor) {

UDIWrite(PC); /* set PC manually */
}
else {
UDlInitializeProcess() /* To pass any arguments to the
program,
* establish the entry point,
etc. */
UDIRead(PC); /* to check where PC is after
* UDlInitializeProcess */
if (PC not at EntryPoint) {
UDISetBreakPoint (EntryPoint);
UDIExecute();
UDIWait(); /* Until breakpoint is hit */
}
}

UDIExecute()/UDIStep() /* As required by the user's command. */
While executing:

After issuing aJDIExecute() or UDIStep() request, the DFE should execute
UDIWait() .

switch(StopReason){
case UDIStdOutReady:
case UDIStderrReady:
case UDIStdInNeeded:
case UDIStdinModeX: /* Perform requested I/O operation,
* then loop back to calling UDIWait().
*/

default: /* Report reason for stopping to user. Do

* whatever the user wants. */

}

Shutdown:

UDIDestroyProcess() /* Ignore the error code if ProcessID
* (returned from CreateProcess) is
* UDIProcessProcessor. */

UDIDisconnect() /* Frees resources & disconnects from TIP

*/

2-12 Universal Debugger Interface Specification

UDI Services Overview

Transparent mode Code Examples:

The following show code examples for both an interactive transparent mode
session, during which the TIP's prompt is displayed and the user can enter any
number of commands, and an immediate transparent mode session, in which a
single command is presented to the TIP and the command's output is presented
to the user.

Interactive_Transparent_Session()

/I Note: The TIP may have pending unsolicited transparent mode
output.

1 Thus, the DFE must call GetTrans before calling
UDIPutTrans.

{
while (1) {
switch (UDIGetTrans) {
case UDIErrorNoError :
display output;
break;

case UDIErrorTransinputNeeded :
Get a line of input from user;
Call UDIPutTrans();
break;

case UDITransModeX :
Call UDITransMode;
Change Input Mode as required;
break;

case UDIErrorTransDone :
Call UDIPutTrans with Count=0; // part of protocol for
getting prompt
Call UDIGetTrans() until status = UDIErrorTransDone; // to
get prompt
Display prompt to user.
/I DFE is allowed to break out of loop now (via DFE
exit method)
if (not breaking out of loop) {
Get a line of input;
Call UDIPutTrans with new transparent mode command.

break;

case UDIErrorTransExit :
/l DFE must break out of loop.

} *switch*/
} *while*/
}

Universal Debugger Interface Specification 2-13

UDI Services Overview

The immediate session is identical to the interactive session loop except for the
way that UDIErrorTransDone is handled. As in interactive mode, the TIP may
have pending transparent mode output. Since this is immediate mode, the user
may only expect to see the output from the immediate mode command, but the
DFE could mark this "pending" output, if any, to show that it is not the output
from the immediate mode command.

Immediate_Transparent_Session(command)
char *command; /l assumes immediate command is being passed as
a parameter
{
command_has_been_sent = false;
while (1) {
switch (UDIGetTrans) {
case UDIErrorNoError:
display output;
break;

case UDIErrorTransinputNeeded :
Get a line of input from user;
Call UDIPutTrans();
break;

case UDITransModeX :
Call UDITransMode;
Change Input Mode as required;
break;

case UDIErrorTransDone :
if (lcommand_has_been_sent) {
/l ready to send immediate

command.
PutTrans(command);
command_has_been_sent = true;
else {
/I command has been sent
&completed.
exit loop;
}
break;
case UDIErrorTransExit :
/I DFE must break out of loop.
} I*switch*/
Ywhile*/
}

2-14 Universal Debugger Interface Specification

Chapter 3 ‘

UDI Services

This chapter documents all UDI services. The services are defined in terms of
C language function prototypes, known as the UDI Procedural interface
(UDIP). These prototypes are independent of the underlying Inter—Process
Communication (IPC) mechanisms, which are defined in Chapters 4 and 5. We
recommend you use UDIP for creating DFEs and TIPs rather than using the
IPC mechanisms directly. By using UDIP, a DFE and TIP can be linked
together directly, allowing target—specific versions of debuggers to be created
in special situations (in some environments, this makes debugging the DFE or
TIP easier). Using UDIP also allows some changes to occur in the underlying
IPC mechanisms without causing major problems. Finally, using UDIP
provides a host-independent interface to UDI, thereby allowing one set of
sources to be used on hosts with different IPC mechanisms.

Return Codes

In the following detailed descriptions of the UDI services, the return codes that
are shown at the end of each call are those that are of interest for that call and
do not generally include those return codes that could be returned by any UDI
call. For more information on the meaning of error codes, see “Appendix B:
UDI Error Codes.”

Procedure Names

The procedural interfaces for the following functions changed from UDI 1.3 to
UDI 1.4: UDISetBreakpoint, UDIQueryBreakpoint, andUDIConnect. In

the descriptions of these functions in this chapter, we present both the old and
new procedural interfaces, differentiating them by appending eift8or 14

to the above names. Of course, in the UDI 1.3 procedural interface, these
functions were called simplyDISetBreakpoint, UDIQueryBreakpoint, and
UDIConnect.

Universal Debugger Interface Specification 3-1

UDI Services

Since the_14versions are supersets of tHE3versions, it is expected that
DFEs and TIPs will want to use the net procedural interfaces. The old
_13procedural interface is presented for the benefit of DFE and TIP
implementors who had used the 1.3 (or earlier) version of the UDI spec. For
backwards compatibility with existing 1.3 code, the sample procedural
interface implementation from AMD points the unqualified names at1Be
versions. These unqualified names can be modified to point tdthe

versions via a compile-time flag.

In general, throughout the rest of this specification, when we use the
unqualified namebIDISetBreakpoint, UDIQueryBreakpoint, and
UDIConnect, we mean either thel3 or the_14version.

Note that the new14 procedural interface can be used by a DFE, even if the
TIP happens to be an older TIP. It is the responsibility of the IPC code that
maps the procedural interfaces to messages to detect the version of the TIP, to
map the new procedure to an old message, if possible, and if not, to return an
error.

Note also that a 1.4 TIP must define both th8and_14versions of these
functions. This is because a 1.4 TIP may get connected to by a 1.3 DFE and
such a DFE can only send 1.3 messages. However, the sample IPC
implementation from AMD provides entry points for thE3 versions which
simply maps the 13requests to the supersédta functions and the TIP writer
using this IPC implementation need only supply thhdfunctions.

Optional versus Required Services

3-2

The following list documents which of the UDI services are optional for the
TIP and which of the UDI DFE callback services are optional for the DFE. All
other services are required. Any TIP or DFE which does not support an
optional service should retutdDIErrorUnsupportedService if the service is
invoked. Despite the optional nature of some services, TIP and DFE
implementors should strive to provide all of the documented services.

® UDIGetErrorMsg is required only if the TIP returns TIP—defined
(negative) error codes.

® UDIGetTargetConfig is not required.

® UDICopy is not required.

Universal Debugger Interface Specification

UDI Services

®* UDIStepis required, although only calls wiBtepTypequal to
UDIStepNatural are guaranteed to work.

® UDISetBreakpoint is not required.

®* UDIQueryBreakpoint andUDIClearBreakpoint must be supported if
UDISetBreakpoint is supported.

® UDIGetStdout must be implemented if a TIP retutd®IStdoutReady.

® UDIGetStderr, UDIPutStdin, andUDIStdinMode behave in a similar
manner.

® UDIGetTrans is optional. IfUDIGetTrans is supportedJDIPutTrans
andUDITransMode must be supported. In the casdJ@il TransMode
andUDIStdinMode, only buffered, echoed, line—oriented input (the
default mode) is guaranteed to be supported.

® UDIFind support in the TIP is optional. UDIFind is supported, the sub—
features of masking, “Stride != PatternSize, PatternCount != 1", reverse
searches, and “WhereToLook.Space != <a memory space>" are optional.
The errortUDIErrorUnsupportedServiceVariation can be used to mean,
“I have the service, but | can’t do that particular variation of it.”

®* UDIDFEEvalExpression andUDIDFEEvalResourceare optional in the
DFE.

* |n UDIDFEGetinput, only the buffered, echoed, line—oriented input (the
default mode) is guaranteed to be supported.

®* UDIEnumerateTIPS() is optional. Since this service is implemented
entirely in the DFE, it is optional by definition.

In general, no UDI services can be called from signal handlers except
UDIStop. TIPs and the IPC Layer are not required to be reentrant.

Universal Debugger Interface Specification 3-3

UDI Services

Values Reserved for Vendor—Specific Use

Except for those types that have been specifically defined to contain vendor—
specific values, a function parameter cannot have a value other than those
defined by UDI. Use of a value for any parameter other than those defined
here will result in undefined behavior and may render the DFE incompatible
with future UDI specifications. A summary of the parameters that have been
defined to contain vendor—specific values are:

CPUSpace Negative values are reserved for vendor—specific
definition.

UDIStepType Negative values are reserved for vendor—specific
definition.

UDIBreakType If the value is negative (i.e., the MSB is set) the
definition of all other bits is vendor—specified.

UDI Type Definitions

UDI defines many different data types. This section documents these data
types and provides specific values for the Am29000 microprocessor. Other
processors will need some modification of values in some fields and some may
even require new types.

UDISessionldis a handle that refers to a specific connection. It is returned
from aUDIConnect call and is used iblDISetCurrentConnection and
UDIDisconnectcalls.

typedef UDIInt UDISessionld;

UDIPId is a handle for processes. The spddialPId value,
UDIProcessProcessaqrrefers to the raw CPU. SeICreateProcessfor
more information about whddDIProcessProcessocan be used.

typedef UDIInt UDIPId;

UDIError is the type for the error code returned by each UDI service and for
the parameter supplied 4DIGetErrorMessage.

typedef UDIInt UDIError;

3-4 Universal Debugger Interface Specification

UDI Services

Many UDI services access target resources. All resources are identified via the
UDIResourcestructure, including target memory, target registers, and any
resources the TIP may provide, such as trace buffers or profiling data.
UDIResourceconsists of two members: a Space member, and an Offset
member. The Offset member is usually the width of the target CPU’s address,
although it may be wider. For the 29K FamiGRUOffsetis an unsigned 32—

bit integer. The Space memb@RUSpaceis of signed integer type, and is
generally a small integer. Negative value€®USpaceare reserved for
vendor—specific definition, i.e. a UDI specification cannot define a negative
CPUSpacevalue.

Each CPU-specific implementation provides its own value€RiSpaceo
access the various CPU—specific resources available. Note that CPU-specific
generally means CPU—family specific. All processors within a family that use
the same size addresses share space values and meanings.

Refer to Appendix C for 29K Family resource definitions.
The structure associated with a UDI resource is:

typedef struct

CPUSpace Space;

CPUOffset Offset;
} UDIResource;

Some services return or receive a range of resources sharing a common space.
These services have defind®IMemoryRange types.

typedef struct {

CPUSpace Space;
CPUOffset Offset;
CPUSizeT Size;

} UDIMemoryRange;

When stepping the target, several options are available. You can step
individual instructions or step over certain kinds of instructions (calls and
traps). You can request stepping until the program is outside a specified range
of instruction addresses. These various step types (shown below) can be ORed
together. Each TIP offers a default step mode, and DFEs are encouraged to
useUDIStepNatural to refer to the TIP when the user has not specifically
requested a type of step. Some TIPs, such as emulators and simulators,
naturally step into traps, while other TIPs do not. If you request a step type that
the TIP cannot support, you getU®IErrorUnsupportedStepType message.

If the value of a UDIStepType parameter is negative (i.e., the MSB is set), the
definition of all other bits is vendor-specified.

Universal Debugger Interface Specification 3-5

UDI Services

3-6

typedef UDIInt UDIStepType;

#define UDIStepOverTraps 0x0001
#define UDIStepOverCalls 0x0002
#define UDIStepIinRange 0x0004
#define UDIStepNatural 0x0000
typedef struct

CPUOffset Low;

CPUOffset High;

} UDIRange;

The function UDIWait returns the current status of the target in a parameter of
type UDIStopReason. It is defined as follows:

typedef UDIUINnt32 UDIStopReason;

#define UDIGrossState Oxff

#define UDITrapped 0 /* Fine state - which trap */
#define UDINotExecuting 1

#define UDIRunning 2

#define UDIStopped 3

#define UDIWarned 4

#define UDIStepped 5

#define UDIWaiting 6

#define UDIHalted 7

#define UDIStdoutReady 8 /* fine state - size */
#define UDIStderrReady 9 /* fine state - size */
#define UDIStdinNeeded 10 [* fine state - size */
#define UDIStdinModeX 11 /* fine state - mode */
#define UDIBreak 12 /* Fine state - Breakpoint Id */
#define UDIExited 13 /* Fine state - exit code */
#define UDINotResponding 14

#define UDIOutOfControl 15

#define UDIReset 16

#define UDINoPower 17

#define UDINoClock 18

UDIBreakinfo is a structure that describes the characteristics of a breakpoint.
It is an input folUDISetBreakpoint and an output fodDIQueryBreakpoint.
It is defined as:

struct UDIBreakinfo {
UDIBreakType_14 Type; /* break type */
UDIMemoryRange Region; /* breakpoint region: start addr
& size */
UDIInt32 PassCount; /* reload pass count */
UDIInt32 CntRemaining; /* effective pass count */
uDIUInt32 BufLen; /* Length of the Buf field
* used on vendor-specific bkpts
*/
char Buf[1]; [* Variable length Buffer for
vendor-specific breakpoints */
h

Note that theéBuffield is used only for vendor-specific breakpoints and its
actual length is reflected Buflen

Universal Debugger Interface Specification

UDI Services

UDIBreakType_14 specifies the type of breakpoint to be applied in a
UDISetBreakpoint_14call. If the value of &JDIBreakType_14 parameter is
negative (i.e., the MSB is set), the definition of all other bits is vendor—
specified. The various BreakFlags shown below can be OR'ed together to
make compound breaktypes.

typedef UDIInt32 UDIBreakType_14;

#define UDIBreakFlagExecute 0x0001

#define UDIBreakFlagRead 0x0002
#define UDIBreakFlagWrite 0x0004

#define UDIBreakFlagFetch 0x0008

#define UDIBreakFlagWidthByte 0x0010

#define UDIBreakFlagWidthHalfWord 0x0020

#define UDIBreakFlagWidthWord 0x0040
#define UDIBreakFlagGenSyncPulse 0x0080

#define UDIBreakFlagDoNotStopProcessor 0x0100

The semantics of these BreakType flags as well as the semantics of the other
fields of BreakInfo are described under thBlSetBreakpoint_14call.

Note: the older calUDISetBreakpoint_13used a subset of these breaktype
bits passed in BIDIBreakType_13type defined as follows:

typedef UDIInt UDIBreakType_13;

#define UDIBreakFlagExecute 0x0001
#define UDIBreakFlagRead 0x0002
#define UDIBreakFlagWrite 0x0004
#define UDIBreakFlagFetch 0x0008

The following are the legal return values for KiadOfAnswelparameter
returned byJDIDFEEvalExpression:

#define
#define
#define

UDIAnswerKindNone
UDIAnswerKindValue
UDIAnswerKindResource

0
1
2

ThelOTypeparameter is used withDIDFEPutOutput and
UDIDFEGetInput to specify whether the source of the I/O request (TIP or
target) and, for output, whether the destination is standard output or standard

error:

typedef
#define
#define
#define
#define
#define
#define

UDIUInt UDIIOType
UDIIOTypeTIPStdout 0
UDIIOTypeTIPStderr 1
UDIIOTypeTIPStdin 2
UDIIOTypeTargetStdout 3
UDIIOTypeTargetStderr 4
UDIIOTypeTargetStdin 5

Universal Debugger Interface Specification

3-7

UDI Services

UDIDFEEvalExpression can return &ypeparameter (of type
UDIExprType) if the expression evaluates to a value. This parameter is a
simplified indicator of the C language type of the returned value. The
following section from theidiproc.h file defines the possible return types.

typedef UDIInt UDIExprType;

#define UDITypeUnknown 0 /* type not applicable, or DFE
* doesn'’t support types */
#define UDITypeOther 1 [* type is known but does not
* match one in the UDI list */
#define UDITypeChar 2 /* an 8-bit ASCII character */
#define UDITypelnt 3 /* an integral type with
* Size, handles short, int,
*long */
#define UDITypeFloat 4 /* with Size, handles float,

* double, long double */

The end—of-line (EOL) character for all strings used in Programmed 1/O
Services, Transparent Mode Services, and DFE Access to TIP I/O Services is
LF (Oah). It is the responsibility of the DFE (or its libraries) to do any host
mapping of this EOL to the host—specific line termination.

3-8 Universal Debugger Interface Specification

Table 2.

UDI Services

UDI Services in Alphabetical Order

Name
UDICapabilities

UDIClearBreakpoint
UDIConnect

UDICopy
UDICreateProcess

UDIDestroyProcess

UDIDisconnect

UDIEnumerateTIPs
UDIExecute

UDIFind

UDIGetErrorMessage

UDIGetStderr

UDIGetStdout

UDIGetTargetConfig

UDIGetTrans

UDlInitializeProcess
UDIPutStdin
UDIPutTrans

Description

Allows TIPs and DFEs to be aware of3-11
the other’s capabilities

Page

Clears identified breakpoint 3-13

Connects a TIP to a DFE and confirn&14
communication

Duplicates a block of objects at the TIP 3-17
3-18
3-19

Creates a process context

Informs the TIP that no further
debugging will occur

Called when a DFE is finished with a3-20

connection
Informs DFE of available TIPs 3-21

Causes execution to continue from thga-22
current program counter location

Finds one or more occurrences of a 3-23
specified pattern

Retrieves the text associated with a 3-24
TIP-specific error

Called when TIP needs to send outpl&-25
to the user via stderr

Called when TIP needs to send outpl8-26
to the user via stdout

Provides configuration information 3-27
about target

Is the heart of transparent mode 3-28
operation for DFEs

Initializes or reinitializes a process 3-30
Obtains input from the user 3-32

Called during transparent mode to 3-33
send characters from the DFE to the
TIP

Universal Debugger Interface Specification 3-9

UDI Services

3-10

UDIQueryBreakpoint
UDIRead
UDISetBreakpoint
UDISetCurrent
Connection
UDISetCurrentProcess
UDIStdinMode
UDIStep

UDIStop

UDITransMode

UDIWait

UDIWrite

Allows a DFE to obtain the state of 3-34
breakpoints on the TIP

Transfers objects from the TIP to the 3-36
DFE

Sets a breakpoint in the current process 3-37

Used by DFEs that support multiple 3-40
connections to switch between
connected TIPs

Is used by DFEs that can handle 3-41
multiple processes

Is called to change the method used By42
DFE for obtaining input from the user

Causes execution to continue one 3-43
instruction at a time

Requests that the TIP return as soon3d4
possible

Called when TIP wants to alter the 3-45
way DFE obtains data from the user
for transparent mode

Returns when either a process stops 846
MaxTimehas elapsed

Same as UDIRead, except data flows3-50
from DFE to TIP

Universal Debugger Interface Specification

UDI Services

UDICapabilities

Call
UDIError UDICapabilities (

UDIUINnt32 *TIPId,
uDIUInt32 *Targetld,
UDIUINnt32 DFEId,
UDIUINnt32 DFE,
UDIUINnt32 *TIP,
UDIUINnt32 *DFEIPCId,
UDIUInt32 * TIPIPCId,
char * TIPString,
UDISizeT BufSize,
UDISizeT * CountDone
)i

Description

/* Out */
/* Out */
I*In*/

I*In */

/* Out */

/* Out */
/* Out */
/* Out */
/*In */

[* Out */

UDICapabilities allows TIPs and DFEs to be aware of one another’s
capabilities. As of UDI 1.3, the DFE is required to call this function

immediately aftetJDIConnect. A DFE that does not cdllDICapabilities
immediately aftetJDIConnect can be assumed to be a UDI 1.2 DFE.

The TIP, Target, DFE, DFEIPC, and TIPIPC Id fields are divided into three

sections:

® The 16 most—significant bits are a company code, assigned by AMD.

® The next 4 bits are a product code, assigned by the company.

® The least-significant 12 bits are a version number assigned by the
company. These twelve bits are broken into three 4-bit fields comprising a
major version number, minor version number and point version number.

For common display purposes, the version number should be displayed as
three four-bit values. Any component not present has a 0 Id. The TIP (always
present) zeroes the IPC Id fields, and the IPC Layer fills them in after the TIP

has finished.

Universal Debugger Interface Specification

3-11

UDI Services

® As a special case, bit 31 of the DFEIPCId and TIPIPCId parameters are
used to indicate the endianness of the DFE or TIP. Bit 31 set indicates a
little-endian DFE or TIP, Bit 31 clear indicates a big-endian DFE or TIP.
At the procedural interface, a DFE or TIP usually need only be concerned
with the endianness of the other side for vendor-specific extensions where
non-byte quantities are being sent.

The DFE parameter indicates to the TIP what version of UDI the DFE prefers,
i.e., the latest version number the DFE understands. The TIP examines the
DFE’s UDI version and determines whether it can support that version. If the
TIP is capable of supporting the DFE at the DFE’s preferred UDI level, the
TIP returns that level in the TIP parameter. If the TIP's UDI version is lower
than the DFE'’s, the TIP returns the TIP’s version in the TIP parameter. If the
TIP's UDI version is higher than the DFE’s, but the TIP cannot support
obsolete features of the DFE’s version, the TIP returns O imlithparameter.
Upon returning, the DFE should examine the TIP’s UDI version. If the TIP’s
UDI version is the same as the DFE’s, communication can take place without
problems. If the TIP’s UDI version is 0, the DFE should immediately
disconnect because further communication is unlikely. If the TIP’s UDI
version is other than O or the DFE’s version, the DFE can communicate with
the TIP at the TIP’s level.

TheTIPStringparameter is a buffer &ufSizecharacters that the TIP fills

with information that may further modify the TIP identification information,
settingCountDoneo the number of bytes (including the null terminator)
returned. A typical example of the kind of information returned in TIPString
would be a human-readable listing of the TIP and/or target’s configuration. If
CountDoneis equal tdBufSizethe DFE should continue calling
UDICapabilities to get the rest of thEIPString It is recommended that DFEs
provide aTIPStringbuffer of at least 1Kbyte to avoid multiple calls to the TIP.
The TIP is allowed to have embedded end—of-line characters in the returned
TIPString It is recommended that DFEs display this information on a line by
itself immediately following a line where the varidgsfields have been
displayed.

3-12 Universal Debugger Interface Specification

UDI Services

UDIClearBreakpoint

Call

UDIError UDIClearBreakpoint (
UDIBreakld Breakld /*In */

)i
Description
UDIClearBreakpoint clears the identified breakpoint. If no such breakpoint

exists,UDIErrorinvalidBreakld is returned. If Breakpoint ID =0,
UDIClearBreakpoint clears all breakpoints.

Return Codes

UDIErrorinvalidBreakld

Universal Debugger Interface Specification 3-13

UDI Services

UDIConnect

Call

UDIError UDIConnect_14 (

char *Configuration, /*In */
UDISessionld *Session /* Out */
UDIUint32 DFE /*In*/

);

UDIError UDIConnect_13 (
char *Configuration, /*In */
UDISessionld ~ *Session /* Out */

)i

Description

3-14

UDIConnect connects a TIP to a DFE and confirms that the DFE and the TIP
can communicate. No other action (such as initializing the target) is
performed. If the TIP is not active at the time of the connection, the UDI DFE
IPC Layer starts the TIP.

The DFE parameter has the same semantics as the DFE parameter in the
UDICapabilities call; it indicates to the TIP what version of UDI the DFE
prefers, i.e., the latest version number the DFE understands. Adding the
parameter to thelDIConnect_14call allows the TIP to decide whether it can
use some of the newer callback services dudbgConnect_14

If the DFE parameter indicates a version that is older than what the TIP wishes
to support, the TIP can either "step down" to that level or else can refuse to
accept the connection. If the DFE parameter is newer than the TIP's the TIP
must still accept the connection, because the DFE may be willing to "step
down" to the TIP's level, which negotiation can't happen until the
UDICapabilities exchange.

UDIConnect_13is the older version of this call. It is identical to
UDIConnect_14except that the DFE parameter is not passed. The rest of this
description applies to either version.

Universal Debugger Interface Specification

UDI Services

The way theConfigurationparameter is translated for DOS hosts and for
UNIX hosts is described in detail in Appendix B. In general, IPC layers use a
configuration file where each line contains the configuration name, the TIP
program name, and other TIP—specific options. For example, a simulator TIP
might have several lines in the file where each line represents different
configurations of the simulator that the user has set up and named.

Sessiorpoints to an object that will be used to identify this DFE-TIP
connection in future session management UDI calls.

After a successfulDIConnect, the current connection is the one just
connected and the current process for that connection is
UDIProcessProcessarlf an error is returned, the connection was not
established. If the error is negative, the DFE candliGetErrorMsg and

must callUDIDisconnect No other service requests are permitted if an error is
returned.

To solve certain problems, the IPC Layer (prior to spawning a new TIP and
calling the new TIP’&JDIConnect function) can calUDIConnect at each
currently running TIP that has the same executable file name as the desired
configuration. Because TIPs may need exclusive access to either TIP or target
resources, TIPs may need to either prevent or force the IPC Layer to spawn a
new TIP.

One such example is a TIP that communicates with a private target. The TIP
should ensure that no other TIPs are spawned that might contend for the same
target. Such TIPs, when calledblConnect for a configuration that would
create the contention, should retwBIErrorConnectionUnavailable. The

IPC Layer will recognize this error and return to the DFE immediately, rather
than attempting to find or spawn another TIP to satisfy the request.

In another example, a TIP that can support multiple connections by spawning
multiple TIPs, like a simulator, needs to return only

UDIErrorTryAnotherTIP . This causes the IPC Layer to check other installed
TIPs and, if necessary, attempt to spawn another instance of the same TIP.

Universal Debugger Interface Specification 3-15

UDI Services

Return Codes

3-16

UDIErrorTryAnotherTIP
UDIErrorNoSuchConfiguration
UDIErrorCantConnect
UDIErrorCantOpenConfigFile
UDIErrorCantStartTIP
UDIErrorConnectionUnavailable
UDIErrorTryAnotherTIP
UDIErrorExecutableNotTIP
UDIErrorinvalid TIPOption

Universal Debugger Interface Specification

UDI Services

UDICopy
Call
UDIError UDICopy (

UDIResource From, /*In*/
UDIResource To, [*In */
UDICount Count, /*In */
UDISizeT Size, /*In */
UDICount * CountDone, /* Out */

UDIBool Direction [*1n */

);
Description

UDICopy duplicates a block of objects at the TIP. Dieection parameter
indicates whether the copy occurs from lower—to-higher addresses or vice
versa. The parameter is used regardless of whether the copy involves
overlapping objects. A non—zero value indicates a lower—to—higher copy, while
a 0 value specifies a higher—to—lower copy.

UDICopy can be used to fill an area with a pattern by writing the pattern once
at the base of the fill area and then calling copy, specifying a lower—to—higher
copy with the source as the base of the fill area and the destination as the
address of the second copy. The TIP must guarantee that the copy is performed
as if it were done one object at a time. The actual transfer width used is TIP-
specific.

Unlike UDIRead andUDIWrite , there are no restrictions &ize Like

UDIRead andUDIWrite , if the count of objects requested cannot be
performed, thefCountDoneindicates the number of objects completely copied
andUDICopy returnsUDIErrorincomplete . The result offo pointing into

the middle of the firsErom object is undefined. Not all memory spaces
support all object sizes. An attempt to access a resource with an unsupported
object size returngDIErrorinvalidSize .

Return Codes

UDIErrorUnknownResourceSpace
UDIErrorinvalidResource
UDIErrorResourceNotWriteable

Universal Debugger Interface Specification 3-17

UDI Services

UDICreateProcess

Call

UDIError UDICreateProcess (
UDIPId *Pld /* Out */
)i

Description

UDICreateProcesscreates a process context. See the Process Management
section on page 2-2 for details on simple process management strategies. Note
that each connection manages processes separately. This means that two
sessions may return the saRld value. It also means that changing

connections (usingDISetCurrentConnection) changes the “current”

process, because each connection maintains its own current process state. After
a successfulDICreateProcesscall, the newly created process is the current
process for that connection.

Return Codes
UDIErrorCantCreateProcess

3-18 Universal Debugger Interface Specification

UDI Services

UDIDestroyProcess

Call

UDIError UDIDestroyProcess (
UDIPId Pld I*In*/

)i
Description

UDIDestroyProcessinforms the TIP that no further debugging will occur
against the indicated process. DFEs should call this service for all processes
(exceptUDIProcessProcessqrbefore shutting down. If theld passed to
UDIDestroyProcessis the currenPld for the connection, then
UDIProcessProcessobecomes the current process.

Return Codes
UDIErrorNoSuchProcess

Universal Debugger Interface Specification 3-19

UDI Services

UDIDisconnect

Call
UDIError UDIDisconnect (
UDISessionld Session, /*In*/
UDIBool Terminate /¥ In */
);
Description

When a DFE is finished with a connection, it must b Disconnect There
are two types of disconnection:

® The primary disconnectiof érminate= UDITerminateSessior)
terminates the TIP, possibly causing any target action to be lost.

® The second type of disconnectidre(minate= UDIContinueSession
allows subsequent reconnection (UBIConnect).

A user might want to reconnect in order to switch DFEs at a certain point in a
program, for example. Or, if the host cannot support a DFE resident with other
applications that the user wants to run, the user may want to leave a target
executing while running the other application.

The terminate type ddDIDisconnectallows a graceful shutdown of the
connection, and, on some hosts, returns critical resources used by the IPC
Layer.

The non—termination form aJDIDisconnectalso permits a graceful

shutdown of the connection, although in some cases the TIP may not be able to
return some critical resources because they are needed to maintain execution
of the target.

In the event that/DIDisconnectreturns an error, the connection is still
established (unless the errotdBIErrorNoSuchConnection, in which case
the connection was never established).

Return Codes

UDIErrorCantDisconnect
UDIErrorNoSuchConnection

3-20 Universal Debugger Interface Specification

UDI Services

UDIEnumerateTIPs

Call
UDIError UDIEnumerateTIPs (
UDlIInt (*UDIET Callback) (char *Configuration)
/*In In to callback */
)i
Description

If a DFE wants to know what TIPs are available, it should call
UDIEnumerateTIPs. For each TIP configuration on the system,
UDIEnumerateTIPs calls the callback function identified by the
UDIETCallbackparameter. That function receives a single parameter that is a
pointer to a string containing the name of the configuration. If the DFE wants
to preserve the name, it must copy it from the indicated area into a DFE—
managed space. This is becaUfEnumerateTIPs can be implemented

with only one buffer into which it points for each configuration.

In all circumstances, the callback function must return to
UDIEnumerateTIPs. If the callback function does not want to be called for
additional configurations, it can return the valliel TerminateEnumeration.
Otherwise, it should retutdDIContinueEnumeration.

Note: UDIEnumerateTips is not a service provided by the TIP, itis an
optional service provided by the procedural interface and
implemented entirely in the DFE side.

Universal Debugger Interface Specification 3-21

UDI Services

UDIExecute

Call

UDIError UDIExecute (
void

);

Description

UDIExecute causes execution to continue from the current program counter
location. Progress is guaranteed by the TIP. The implementation of the
guarantee is as if one single step occurs, then all breakpoints are installed,
followed by unbounded execution. The single step that occurs is of the
StepNatural variety (sdgDIStep). This may occasionally cause execution to
stop at the breakpoint again even though the instruction at the breakpoint has
not yet been executed. This occurs on emulators when interrupts are pending.
The natural step that takes place before breakpoints are installed does not step
the current PC, but rather steps the first instruction of the interrupt handler.

UDIExecute returns as soon as execution has begun on the target, usually just
after breakpoints are installed and the process is let go. For some TIPs on some
hosts, all execution occurs when the DFE ddldWait . Consequently, a

DFE may not assume that any progress has been made by the sequence:
UDIExecute, long delayUDIStop (and a DFE must callDIWait to ensure
progress).

Calling UDIExecute when the target is already running will cause the error
UDIErrorTargetAlreadyRunning .

Return Codes

3-22

UDIErrorTargetAlreadyRunning

Universal Debugger Interface Specification

UDI Services

UDIFind
Call
UDIError UDIFind (

UDIMemoryRange WhereToLook, [*In*/
uDIInt32 Stride, [*1In */
UDIHostMemPtr Pattern, /*1In */
UDIHostMemPtr PatternMask, [*In */
UDICount PatternCount, [*1In */
UDISizeT PatternSize, /*In */
UDIBool PatternHostEndian, /*In*/
UDICount MaxToFind, [*In */
UDICount * CountFound, /* Out */
CPUOffset FoundAtOffset[] /* Out */
UDIHostMemPtr FoundValues][] /* Out */

)i
Description

UDIFind is used to find one or more occurrences of a specified pattern in a
specifiedUDIMemoryRangeThe DFE specifies the memory range to search, a
Pattern and the maximum occurrences to report. The pattern consists of
PatternCounbbijects, each of siZeatternSizeand an endian type of
PatternHostEndian(The pattern may be further qualified biPatternMask

such that a match is found only if, for each object in the patfEangetMem

& PatternMask==Pattern& PatternMask A PatternMaskof NULL

indicates no masking, i.e., it is equivalent tBaternMaskwhose bits are all
ones.

The Strideparameter specifies how much to move the target offset pointer for
each step of the search (this will usually be the sarRatsrnSizg When

Strideis negative, a reverse search oveMtrereToLookange is specified.

The TIP always reports the number of matches found and the offsets at which
they were found. If th@atternMaskis not null, the TIP also reports the actual
data that was found at the offsets. UsingfbandAtOffseandFoundValues
arrays, the DFE is responsible for ensuring thaFthendAtOffseaind
FoundValuesduffers are large enough to hdlthxToFindanswers. The data
returned inFoundValuesf of endian typePatternHostEndian

Return Codes

UDIErrorUnknownResourceSpace
UDIErrorinvalidResource

Universal Debugger Interface Specification 3-23

UDI Services

UDIGetErrorMessage

Call

UDIError UDIGetErrorMsg (

Description

UDIError ErrorCode, /*In */
UDISizeT MsgSize, [*In*/
char * Msg, /* Out */
UDISizeT * CountDone /* Out */

);

UDIGetErrorMessage retrieves the text associated with a TIP—specific error.
MsgSizeandicates the size of the buffer the DFE has allocated to hold the error
message. The DFE should keep calliiglGetErrorMessage until

CountDones less thaMsgSize

UDIGetErrorMessage returnsUDIErrorUnknownError

if ErrorCodeis not

a TIP-specific error code.

Multiple calls toUDIGetErrorMessage with the same error code will not
necessarily return the same string. Thus, negative error code strings should not
be cached by the DFE.

3-24

Universal Debugger Interface Specification

UDI Services

UDIGetStderr

Call
UDIError UDIGetStderr (
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /*In*/
UDISizeT * CountDone /* Out */
);
Description

UDIGetStderr is analogous tt/DIGetStdout (on page 3-26) except that data
comes from the TIP’s standard error channelldbéwWait returns
UDIStderrReady.

Universal Debugger Interface Specification 3-25

UDI Services

UDIGetStdout

Call
UDIError UDIGetStdout (
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /*In*/
UDISizeT * CountDone /* Out */
);
Description

When the TIP needs to send output to the user via the conventional standard
output meandJDIWait will have returned &topReasoonf UDIStdoutReady

with a fine state of the number of characters available. The DFE should then
call UDIGetStdout to acquire the data and then display it for the user by
whatever means the DFE uses for program 1/O.

The DFE should passBufSizeas large as practical even though it knows how
many characters were available whébIWait returned. The program may

have added characters to the standard output stream since then and
UDIGetStdout can acquire those as well. In any case, the DFE should call
UDIGetStdout until the returnec€ountDoneis less thaBufSize The

characters should be made immediately available to the user, although deferral
until certain other conditions (such @BIStdinNeededor UDIExited) occur

should work as well. After all output data have been obtained, the DFE should
resume callindgJDIWait .

In the event the DFE calldDIGetStdout and no data are available from the
TIP, it should simply return @ountDoneof O rather than a UDI error.

3-26 Universal Debugger Interface Specification

UDI Services

UDIGetTargetConfig

Call
UDIError UDIGetTargetConfig (

UDIMemoryRange KnownMemory(], /* Out */
UDlInt * NumberOfRanges, [* In/Out */
uDIUINnt32 ChipVersions]], [* Out */
UDlIInt * NumberOfChips /* In/Out */
)i

Description

Call UDIGetTargetConfig to determine matters such as the size of various
memory spaces and the type of CPU-related chips installed. The DFE passes
the address of an array dDIMemoryRangestructures (using C semantics, a
pointer to a singl&DIMemoryRangestructure). The size of the array is passed
by the DFE aNumberOfRangedhe TIP fills in as many of the structures as
necessary, returning the number filled ilNaimberOfRangedf the function
returnsUDIErrorincomplete , the TIP tries to return more ranges than

available space allows, and the DFE is encouraged to call
UDIGetTargetConfig again with a larger array to retrieve all of the data.

The same array/count technique is used for various chips that may be
encountered in the system. For each target CPU family type, specific elements
of the array are defined to correspond to specific chips that may be present in
the system. For the 29K Family, element 0 is the CPU PRL (the entire
configuration register, since future members may expand the configuration
register towards the LSB) and element 1 is the coprocessor (Am29027—PRL
fetched from precision register). A chip not present in the system should have
its element filled in with the CPU—family defined value
UDIxxxCPUChipNotPresent (xxxis CPU-family dependent. For the 29K
Family, for example, the constant’s nam&3I129KChipNotPresent.)

Universal Debugger Interface Specification 3-27

UDI Services

UDIGetTrans

Call
UDIError UDIGetTrans (
UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, /*In*/
UDISizeT * CountDone /* Out */
);
Description

UDIGetTrans is the heart of transparent mode operation for DFEs. DFEs
generally calUDIGetTrans until UDIGetTrans requests (via a return value)
that one of the other transparent mode functions be cél@GetTrans
returnsUDINoOError when it has transparent mode data to give to the user.
The amount of data is indicated by theuntDonereturn argument.

The TIP also uses special returns frolIGetTrans to indicate:

* when the TIP requires input but is not at the prompt
(UDIErrorTransinputNeeded)

® when the TIP is returning the prompi@IErrorTransPrompt). A TIP is
not required to have a prompt but if it has one it may only be returned
with UDIErrorTransPrompt .

®* when the TIP is at the prompt waiting for inpldD|ErrorTransDone)

* when the TIP has parsed the transparent mode "exit" command.
(UDIErrorTransExit).

®* when the TIP requires the DFE to change input mode
(UDIErrorTransModeX).

TIPs that do not support transparent mode should return
UDIErrorUnsupportedService. Note that TIPs that have a small transparent
command set that does not produce any output must still implement
UDIGetTrans if they implementUDIPutTrans. Such a TIP would always
returnUDIErrorTransDone whenUDIGetTrans is called.

3-28 Universal Debugger Interface Specification

UDI Services

Return Codes

UDIErrorTransDone
UDIErrorTransinputNeeded
UDIErrorTransModeX
UDIErrorTransExit
UDIErrorTransPrompt

Universal Debugger Interface Specification 3-29

UDI Services

UDlInitializeProcess

Call

UDIError UDlInitializeProcess (
UDIMemoryRange ProcessMemoryT(], /*In */
UDlIInt NumberOfRanges, /*In */
UDIResource EntryPoint, [*In*/
CPUSizeT StackSizes[], [*In*/
UDlIInt NumberOfStacks, /*1n*/
char * ArgString [*In*/
)i

Description

3-30

UDlInitializeProcess initializes or reinitializes a process. If

UDlInitializeProcess is performed against procdd®IProcessProcessqra

target system reset is performed, if permitted. Against other processes,
UDlInitializeProcess performs whatever steps are necessary to get the process
to the stage where the next instruction to be executed is the entry point. This
service should also initialize any files or other process—specific operating
system state. After @DlInitializeProcess on a 29K Family target, the state of
the CPS and CFG registers is TIP—specific.

This call also identifies to the TIP the range of addresses used by the program
image(s). Execution of the program may result in additional memory being
allocated to the process. Since some processors (notably, the 29K) have more
than one stack, we provide as many stacks as the processor family may need.
Each processor family defines which element of the array of stack sizes
corresponds to which stack. For the 29K, stack 0 is the register stack and stack
1 is the memory stack. Zero is used for any stack size where the default values
should be used (default values are TIP—defined). The argument string is passed
and can be parsed according to TIP operating system rules. If the DFE wishes
to pass embedded whitespace in arguments, those arguments should be
enclosed in quotes. If no arguments are supplied, a NULL can be passed.

WhenUDlIntializeProcessis called (including the case when it is performed
against UDIProcessProcessor) all breakpoints remain enabled. If the target
system is reset manually via a reset button, breakpoints must also persist
although it is permitted that breakpoint passcounts be reset to their initial
values.

Universal Debugger Interface Specification

UDI Services

After UDlIntializeProcessis called, DFEs that debug programs rather than the
raw machine can now inspect the PC (using UDI PC space). If the PC is not at
the entry point of the program, the DFE sets a breakpoint at the entry point and
executes up to it. Otherwise, stepping the TIP may result in executing one or

more instructions that the DFE did not download, and this may confuse the
DFE.

Return Codes

UDIErrorNoSuchProcess
UDIErrorUnknownResourceSpace
UDIErrorinvalidResource

Universal Debugger Interface Specification 3-31

UDI Services

UDIPutStdin
Call
UDIError UDIPutStdin (
UDIHostMemPtr Buf, [*In*
UDISizeT Count, /*1In */
UDISizeT * CountDone /* Out */

)i
Description

UDIPutStdin obtains input from the user. This can occur in either of two
ways:

* |f the TIP wants user input, it returtiDIStdinNeededfrom UDIWait ,
and the number of characters it is prepared to receive.

OR

® The user supplies data for the program’s 1/O.

Note that even though thé¢DIWait returnsUDIStdinNeeded it does not
necessarily imply that the process is no longer running. If the TIP’s operating
system supports asynchronous /O, it may still be running.

The result of data sent to a TIP that does not support buffering of data for user
programs is TIP—defined. If the TIP cannot accept the data, it should return
UDIErrorCantAccept . The TIP is required to accept at least the number of
characters requested by tBmpReasofrom UDIWait if the most recent

UDIWait call has returnedDIStdinNeeded After providing the TIP with

input data in response tdIWait StopReasoonf UDIStdinNeeded the

DFE should resume callingDIWait .

Return Codes
UDIErrorCantAccept

3-32 Universal Debugger Interface Specification

UDI Services

UDIPutTrans

Call
UDIError UDIPutTrans (
UDIHostMemPtr Buf, /*In*/
UDISizeT Count, /*1In */
UDISizeT * CountDone /* Out */
);
Description

The DFE can support transparent mode access to the TIP. If so, when the DFE
wants to send characters to the TIP, it sends them via UDIPutTrans.

WhenUDIGetTrans returnsUDIErrorTransinputNeeded , the DFE must

send transparent mode input to the TIP. WUBMGetTrans returns
UDIErrorTransDone (indicating it is at a logical break between commands),
the DFE may present transparent mode input or may exit transparent mode.
For any other returns frodDIGetTrans, the DFE may not call

UDIPutTrans.

If UDIPutTrans is called with Count=0, this is a request for the TIP to return
the prompt on the nextDIGetTrans call. If the TIP has a prompt, it returns
UDIErrorTransPrompt to UDIPutTrans and then returns the actual prompt

on the nextUDIGetTrans call (again with the return

UDIErrorTransPrompt). If the TIP has no prompt, it returns
UDIErrorTransDone to theUDIPutTrans (Count=0) call. If the TIP is not

in a state where a prompt is possible, i.e., if the TIP is not between commands,
etc., then it returneIDIErrorCantAccept to theUDIPutTrans (Count=0)

call.

TIPs that do not support transparent mode should return
UDIErrorUnsupportedService.

Return Codes

UDIErrorCantAccept
UDIErrorTransPrompt

Universal Debugger Interface Specification 3-33

UDI Services

UDIQueryBreakpoint

Call

UDIError UDIQueryBreakpoint_14 (
UDIBreakld Breakld, /*1n */
UDISizeT BufSize, /*In*/
UDIBreakinfo * BreakInfo, /* Out */
UDIBreakld * NextBreakld /* Out */
);

UDIError UDIQueryBreakpoint_13 (

UDIBreakld Breakld, [*In */
UDIResource *Addr, /* Out */
UDIInt32 *PassCount, /* Out */
UDIBreakType_13 *Type, /* Qut */
UDIInt32 *CurrentCount /* Out */
)

Description

3-34

UDIQueryBreakpoint_14 allows a DFE to obtain the state of breakpoints on
the TIP. The DFE can do so even though it does not know vinedkid

values are valid. This is useful when a DFE connects to an unterminated TIP.
(SeeUDIDisconnecton page 3-20.)

Since the size of a returned breakinfo structure can vary (because of the
variable length vendor-specific Buf field), the DFE uses the parameter BufSize
to specify the maximum size of the BreakInfo.Buf that it is using to receive the
BreakInfo structure. If this is not big enough for the breakpoint that is being
queried, the TIP returns an error, UDIErrorincomplete, and fills in
BreakInfo.BufLen as to what the actual required BufLen is. The DFE can then
requery with a larger Breakinfo.Buf if it desires.

To query all breakpoints, the DFE can start at Breakld 1 and continue until
UDIQueryBreakpoint returns UDIErrorNoMoreBreaklds. If the DFE queries a
Breakld values not currently in use, but with higher Breakld values in use, the
TIP will instead return UDIErrorinvalidBreakld. In all cases, the TIP returns
the next valid Breakld in NextBreakld and the DFE should use this for its next
query. In this way, the DFE can acquire all of the breakpoints installed on the
TIP without keeping any state locally.

Note that the CntRemaining field of the returned BreaklInfo structure shows the
number of passes remaining until the breakpoint triggers. That is, it is a
downcounter which starts from the Passcount parameter passed in by
UDISetBreakpoint.

Universal Debugger Interface Specification

UDI Services

UDIQueryBreakpoint_13 is the old version of this call.

Return Codes

UDIErrorinvalidBreakld
UDIErrorNoMoreBreaklds
UDIErrorincomplete

Universal Debugger Interface Specification 3-35

UDI Services

UDIRead

Call

UDIError UDIRead (

UDIResource From, /*In*/
UDIHostMemPtr To, /* Out */
UDICount Count, [*In */
UDISizeT Size, [*In*/
UDICount * CountDone, /* Out */
UDIBool HostEndian [*1In */

);

Description

UDIRead transfers objects from the TIP to the DFE. The DFE specifies the
source resource addre§sdm) and its base object siz8i¢g. Countobjects

are moved from the source to DFE memoryatlf the resource is not as
large as the requested transfer requitegintDonendicates how many
objects were completely moved ad®IErrorincomplete is returned.

If the DFE wants the TIP to ensure that the data is in host byte order, it should
setHostEndianto a non-zero value. AldostEndianargument causes the TIP

to return the data in target order (as opposed to non—host order). It is assumed
that both the DFE and the TIP know the target order. Target order will be
either big endian (MSB first for all size objects) or little endian (LSB first for

all size objects). The only valid object sizes at this time are 1, 2, 4, 8, 10, and
16. Not all memory spaces support all object sizes. An attempt to access a
resource with an unsupported object size retUDErrorinvalidSize .

Return Codes

3-36

UDIErrorUnknownResourceSpace
UDIErrorinvalidResource

Universal Debugger Interface Specification

UDI Services

UDISetBreakpoint

Call
UDIError UDISetBreakpoint_14 (
UDIBreakinfo *Breakinfo, /*1n */
UDIBreakld *Breakld /* Out */
);
UDIError UDISetBreakpoint_13 (
UDIResource Addr, [*In */
UDIInt32 PassCount, /*In */
UDIBreakType_13 Type, [*In */
UDIBreakld *Breakld /* Out */
);
Description

UDISetBreakpoint_14sets a breakpoint in the current process. The
characteristics of the breakpoint are defined in the BreaklInfo structure.

TheUDIBreakType_14 Type field of the BreaklInfo structure can contain one
or more of the following flags:

The flags UDIBreakFlagExecute, UDIBreakFlagRead, UDIBreakFlagWrite
and UDIBreakFlagFetch qualify the type of access to break on.

UDIBreakFlagExecute Is the ordinary execution breakpoint.

UDIBreakFlagRead Indicates that the process should break when the
given address is read.

UDIBreakFlagWrite Indicates that the process should break when the
given address is written.

UDIBreakFlagFetch Is used when fetching an address should cause
the process to break. Fetching is distinguished
from reading based on whether the CPU is
seeking an instruction or a datum.

The flagsUDIBreakFlagWidthByte , UDIBreakFlagWidthHalfword and
UDIBreakFlagWidthWord qualify the width of an access (These are usually
used with a Read, Write or Fetch access).

Universal Debugger Interface Specification 3-37

UDI Services

3-38

The flagsUDIBreakFlagGenSyncPulseand
UDIBreakFlagDoNotStopProcessorenable special actions that some
processors suppotiDIBreakFlagGenSyncPulsecauses the processor to
generate a sync pulse for external triggering when the breakpoint condition is
hit. UDIBreakFlagDoNotStopProcessoiindicates that the processor should

not stop execution when this breakpoint is hit. Note that some processors
support these two flags only in the combinations of both set or both clear.

In general, any combination of the BreakType flags can be OR'ed together to
make a more complex breakpoint although some combinations may not be
supported on a particular TIP or particular processor. All TIPs are guaranteed
to support UDIBreakFlagExecute against instruction spaces that are writeable.
All other breakpoint combinations may be invalid against a TIP. If any part of
a breakpoint is invalid, the breakpoint is not set and
UDIErrorCantSetBreakpoint is returned.

The other fields of Breakinfo have the following meaning:

The Region field qualifies the address range of the breakpoint. For example, a
BreakType of UDIBreakFlagWrite will break when any address in the Region
is written.

The CntRemaining field of the BreakInfo structure shows the number of passes
remaining until the breakpoint next triggers.

The PassCount field specifies whether the CntRemaining should be reloaded
after triggering as well as what value it should be reloaded with. If PassCount
is greater than 0, the breakpoint is sticky. Each time the CntRemaining
expires, the process stops and the CntRemaining for this breakpoint is
reinitialized to the PassCount value. The breakpoint persists until
UDIClearBreakpoint is called against the returned Breakld. If PassCount is 0,
the breakpoint automatically clears when execution stops (UDIWait returns
UDIBreak, UDIStepped, or UDIExited for the current process) after the next
UDIStep or UDIExecute call. If PassCount is less than 0, the breakpoint is
non-sticky. When CntRemaining has expired, the process stops and the
breakpoint is removed. Of course, if execution stops earlier, the breakpoint
persists unless UDIClearBreakpoint is called. In no event will a non-sticky
breakpoint have its CntRemaining reinitialized.

The CntRemaining field can be set to any value by UDISetBreakpoint. The
usual usage is to set it to the absolute value of PassCount. Note that by using
the sequence

UDIQueryBreakpoint(id, &info);
UDIClearBreakpoint(id);

Universal Debugger Interface Specification

UDI Services

and then some time later

UDISetBreakpoint(info, &id);

a breakpoint can be disabled and then reenabled without changing its
PassCount and current CntRemaining status.

The Buf field, whose length is set in the BufLen field, is not used for the
standard breakpoints described in this section but can be optionally used for
vendor specific breakpoints.

Breakld values returned by UDISetBreakpoint are required to be non-zero and
are generally small positive integers. This makes it easier for pre-UDI1.4 TIPs
to query the breakpoints (UDIQueryBreakpoint did not return a NextBreakld
field before UDI 1.4).

The result of more than one breakpoint of the same type set against the same
address is TIP-defined (that is, the TIP must document what it does). A TIP
can limit the number of breakpoints it allows to be set. When any such limit is
reachedUDIErrorTooManyBreakpoints is returned.

The mechanism used to implement breakpoints should be hidden from the
DFE if possible. For example, if an execute breakpoint is implemented by
replacing an instruction with a special breakpoint instruction, subsequent calls
to UDIRead should continue to report the original instruction.

UDISetBreakpoint_13is the old version of this call. It allowed a subset of
the breakpoint types allowed by UDISetBreakpoint_14. See the description of
UDISetBreakType_13at the beginning of Chapter 3.

Return Codes

UDIErrorCantSetBreakpoint
UDIErrorTooManyBreakpoints
UDIErrorUnknownResourceSpace
UDIErrorinvalidResource

Universal Debugger Interface Specification 3-39

UDI Services

UDISetCurrentConnection

Call

UDIError UDISetCurrentConnection (
UDISessionld Session [*In*/

)i
Description

DFEs that support multiple concurrent connections use
UDISetCurrentConnection to switch between the various connected TIPs.
DFEs that do not support multiple concurrent connections do not need to call
UDISetCurrentConnection.

TIPs should be aware that this function may be called apparently without
reason and more frequently than expected because of the way that multiple
connections may be managed in some IPC implementations.

Return Codes
UDIErrorNoSuchConnection

3-40 Universal Debugger Interface Specification

UDI Services

UDISetCurrentProcess

Call

UDIError UDISetCurrentProcess (
UDIPId PId *1n*/

)i
Description

UDISetCurrentProcessis used by DFEs that can handle multiple processes.

As pointed out in Chapter 2, even non—multitasking TIPs can support two
different processes. DFEs that debug strictly raw machines or strictly programs
do not need to be concerned with this call. All TIPs should validatelthe
argument, even those TIPs that support only one process.

Return Codes
UDIErrorNoSuchProcess

Universal Debugger Interface Specification 3-41

UDI Services

UDIStdinMode

Call

UDIError UDIStdinMode (
UDIMode *Mode /* Out */

);

Description

3-42

When the TIP wants to change the method used by the DFE for obtaining input
from the user, it causédDIStdinMode to be called by returning

UDIStdinModeX from UDIWait . The default mode for input is line—buffered

and echoed with editing. Other modes to be supported are unbuffered (vs. line—
buffered), raw (vs. cooked), and non—echoing (vs. echoing). The TIP returns
the desired mode iModeafterUDIStdinMode is called. The TIP also returns

the desired mode in théDIWait call as the fine state for the

UDIStdinModeX gross state. DFEs should endeavor to support all the modes,
but currently are required to support only the default mode. After calling
UDIStdinMode, the DFE should resume callitiPIWait .

Universal Debugger Interface Specification

UDI Services

UDIStep
Call
UDIError UDIStep (
uDIUInt32 Steps, [*In */
UDIStepType StepType, [*In */
UDIRange Range [*In*/

)i
Description

UDIStep causes execution to continue one instruction at a time. The number
of instructions executed is specified by Btepsargument. That number of
steps is executed unless a breakpoint is encountered first. Additionally, the
StepTypearameter can modify which instructions count and which do not.
Specifically,UDIStepOverCalls causes instructions that are executed as a
result of a call not to be counted. SimilalyDIStepOverTraps causes
instructions in interrupt and trap handlers not to be counted. Not all targets
support all step types (monitors, for example, have problemawitstepping
over traps) and when a requested step type is unavailable,
UDIErrorUnsupportedStepType is returned.

An additional step type idDIStepInRangewhich executes until the step
count is exhausted, a breakpoint is hit, or the PC is ouRsdge The last

step type i4JDIStepNatural, which allows the TIP to step naturally. It is the
only StepTypevalue that is guaranteed to be supported by all TIPs. Note that
like UDIExecute, progress is guaranteed using the “same step, install
breakpoints, more steps” process.

UDIStep returns as soon as the TIP is informed of the number of steps to be
executed. Conceptually, no steps are performed until after control returns from
UDIStep. As a practical matter, on non—multitasking hosiB|Step does the

first step and installs breakpoints before returning.

If UDIStep is called when the target is already running, it should cause the
target to stop and the nedDIWait call should return
StopReasorlUDIStepped

Return Codes

UDIErrorUnsupportedStepType
UDIErrorUnknownResourceSpace
UDIErrorinvalidResource

Universal Debugger Interface Specification 3-43

UDI Services

UDIStop

Call

void UDIStop (
void

);

Description

3-44

UDIStop requests that the TIP should return as soon as possible. If the TIP is
currently performing a transfer operation, it should be aborted and the TIP
should returrUDIErrorAborted to the DFE. If no transfer is in progress, but
transparent mode data transfer is in progress, then th&Dé&etTrans call

should returrUDIErrorTransDone , if possible. If transparent mode can not

be exited at the time of théDIStop request, the next call tdDIGetTrans

should return text specifying why transparent mode can not be exited and what
can be done to put transparent mode in a state from which it can exit. If no
transfer or transparent mode transfer is in progress, but the TIP is executing or
stepping, execution should stop and the hBtWait call should return
UDIStopped. In all other cases, the TIP ignoregBIStop request. It is safe

to callUDIStop from a signal handlelJDIStop is unique in that it does not

have a return code.

Universal Debugger Interface Specification

UDI Services

UDITransMode

Call
UDIError UDITransMode (
UDIMode *Mode /* Out */
)i
Description

If UDIGetTrans returnsUDIErrorTransModeX , the DFE must call
UDITransMode, and the TIP will return the new mode that it wishes the DFE

to use. The DFE must then resume calliigiGetTrans.

In all other respects, this call is identicaliBIStdinMode on page 3-42.

Universal Debugger Interface Specification 3-45

UDI Services

UDIWait
Call
UDIError UDIWait (
uDIInt32 MaxTime, *In*/
UDIPId * Pid, /* Out */
uDIUInt32 * StopReason /* Qut */

)i
Description

UDIWait returns when either the target’s state changes or when approximately
MaxTimemilliseconds have elapsed.MaxTimeis the special value
UDIWaitForever, thenUDIWait returns only when the target’s state changes.
UDIWait returns the state of the targetdtopReasariWhenUDIWait returns

any StopReasonther tharlJDIRunning, then the process that stopped is
returned irPld and this process also becomes the “current process” for the
connection.

The TIP must return immediately frooDIWait (without waiting for the
expiration of theMaxTimeparameter timer) for the following conditions:

® |f the gross state is n@tDIRunning .

* |If the StopReasofcombination of gross state and fine state) has changed
since the last/DIWait return—with the exception that if the state change
has been fromnpt UDIRunning + fine state anything) taJDIRunning +
fine state 0). The logic here is that the transition froai DIRunning)
to UDIRunning can only come from a DFE action (for example,
UDIExecute) and that UDIRunning + fine state 0) would be the next
expected state anyway.

If UDIWait is called before any calls tdDIExecute or UDIStep are made, it
returnsUDINotExecuting as a reason..

For some TIPs (for example, a simulator TIP on a DOS host), all actual target
execution progress occurs when the DFE d¢idWait . Consequently, a DFE
may not assume that any progress has been made by the sequence:
UDIExecute, long pauselDIStop (and a DFE must callDIWait to ensure
progress).

3-46 Universal Debugger Interface Specification

UDI Services

In generalUDIWait returns an error code only when it cannot determine the
true state of the target (an example might be
UDIErrorTargetNotResponding). If UDIWait can determine the true state of
the target, it should instead retwDINoError and return the state in
StopReasarStopReasors divided into two parts: the lower 8 bits indicate a
gross process state and the upper 24 bits indicate a fine process state. The
following table shows the gro&topReasonthat are defined and their
meanings. Som8topReasongse the fine state field to return further
information and that is defined below as well.

StopReason Meaning

UDIBreak Breakpoint was hit. UDIBreak is returned
with the upper 24 bits indicating which
breakpoint was hit.

UDIExited Program stopped executing because it exited
(or its equivalent). Upper 24 bits give the exit
code.

UDIHalted CPU has halted. Fine state can be 0 or any

UDINotExecuting

UDIRunning

UDIStdoutReady
UDIStderrReady
UDIStdinNeeded
UDIStdinModeX

UDIStepped

UDIStopped

UDITrapped

from the fine state table below. Target will
not leave UDIHalted state without DFE
intervention.

If UDIWait is called before any calls to
UDIExecute or UDIStep are made on a
connection, it returngDINotExecuting as a
reason.

CPU is running. Fine state can be 0 or any
from the fine state table below.

TIP needs to perform 1/O (usually on behalf of
the program). Upper 24 bits indicate how
much output is needed, how much input can
be accepted, or what mode is desired
(whichever is applicable).

Step count from the currebtDIStep call
expired.

Target stopped because DFE called
UDIStop.

Invalid or unexpected trap was taken. Upper
24 bits of StopReason indicate which trap was

Universal Debugger Interface Specification 3-47

UDI Services

taken.
UDIWaiting CPU is in wait mode.
UDIWarned CPU was warned.

The twoStopReasons&JDIRunning andUDIHalted, are special. They can
return a fine state of 0, or if the TIP wants to return additional information,
they can use a fine state from the following list of predefined fine states or a
TIP-defined negative fine state. Note that in all cases, grosdJfétkalted
means that the target will remain halted until some action by the DFE (for
example UDIExecute) is taken to restart it.

Fine Staté Meaning

UDIResetAsserted Reset is currently asserted.

UDITransientReset Target went through a reset but is not currently
reset.

UDINoClock Indicates the target has no clock.

Any negative value Fine state is TIP defined. DFE can call

UDIGetErrorMessage, passing the fine state as an
argument to get a textual description for the fine
state.

The following are some combinations of gross state with these fine states and
how they would be interpreted:

UDIRunning + UDITransientReset Target is executing but went through a transient
Reset since the lastDIWait call.

UDIRunning + UDIResetAsserted Target is currently Reset but may resume execution
at any time.

UDIHalted + UDIResetAsserted Target is currenly Reset and will not resume
execution until some action is taken by the DFE to
restart it. (If reset deasserts, will enter UDIHalted +
UDITransientReset state).

UDIHalted + UDITransientReset Target is not currently reset but is halted (until
further DFE action is taken) because reset had been
asserted earlier and the target is configured such that
resets cause it to enter a halted state.

2 Used withUDIHalted or UDIRunning

3-48 Universal Debugger Interface Specification

UDI Services
UDIRunning + UDINoClock A static target, for example, may still be “running”
even though it has no clock.

Note that whetJDIWait returns any particulddDIHalted StopReasarit

does not imply whether any other UDI call to the target will succeed or fail.
For example, returnindJDIHalted + UDIResetAsserted does not imply that
an attemptedUDIRead will fail. If the TIP, for example, cannot satisfy a
UDIRead because reset is asserted, it returd®EErrorResetAsserted error
onUDIRead. If a TIP can, in fact, satisfy tHéDIRead even when reset is
asserted, it would just retut$DINoError on UDIRead.

Universal Debugger Interface Specification 3-49

UDI Services

UDIWTrite
Call
UDIError UDIWrite (

UDIHostMemPtr From, /*In */
UDIResource To, /*1In*/
UDICount Count, [*In */
UDISizeT Size, [*In*/
UDICount * CountDone, /* Out */
UDIBool HostEndian [*In */

)i
Description

UDIWrite is the same adDIRead (on page 3-36), except data flows from the
DFE to the TIP.

Return Codes

UDIErrorUnknownResourceSpace
UDIErrorinvalidResource
UDIErrorResourceNotWriteable

3-50 Universal Debugger Interface Specification

UDI Services

UDIDFE calls

The UDIDFE calls on the following pages are all provided by the DFE and
called by the TIP. The TIP is only allowed to call these services while in the
process of handling a request from the DFE. The DFE, on receiving one of
these calls, may make any UDI call to the TIP with the exception of
transparent mode calls.

Universal Debugger Interface Specification 3-51

UDI Services

UDIDFEENdTIPIO

Call

UDIDFEENdTIPIO UDIParams((
void

)

Description

3-52

The call toUDIDFEENdTIPIO provides a way for the TIP to indicate a
logical boundary for a set of I/O requests. If there have been any
UDIIOTypeTIP xxx I0Typecalls made by the TIP during the handling of a
UDI request, this call must be made before returning from the original UDI
request. The DFE may find it useful to close a special /0 window.

Note that on any call todDIDFEPutOutput or UDIDFEGetInput, the DFE

may returnUDIErrorAborted , indicating that the user wants to terminate this
“TIP Screen I/O session” and the TIP should thendBIDFEENdTIPIO

and should try to finish the original UDI request without further input and

output requests. (Remember that these calls can only be made by the TIP while
it is servicing some UDI request from the DFE.)

Universal Debugger Interface Specification

UDI Services

UDIDFEEvalExpression

Call
UDIDFEEvalExpression (

char * Expression, [*In*/
UDlInt KindofAnswer, /* Out */
UDIResource * AnswerResource, /* Out */
UDIHostMemPtr AnswerBuf, [* Out */
UDISizeT BufSize, /*In */
UDICount * CountDone, /* Out */
UDISizeT * Size, /* Out */
UDIExprType * Type, [* Out */
);

Description

By calling UDIDFEEvalExpression, the TIP is asking the DFE to evaluate an
expression. The input parameEepressionwill contain the zero—terminated
ASCII string to be evaluated. The TIP, not knowing whether the expression
will evaluate to a value or a resource address, can providesmerBufand
AnswerResourcéptionally, eitheAnswerBubr AnswerResourcean be set

to NULL if the TIP is not interested in that kind of answer. (The DFE will then
return an error if the expression did in fact evaluate to the kind of answer that
was set to NULL.) IfAnswerBufs provided, the TIP also passes the size of the
AnswerBuin bytes.

The DFE treats the string as an expression, and evaluates it using its own
expression evaluation rules.

Universal Debugger Interface Specification 3-53

UDI Services

If the expression evaluates to a value or a set of valuiledOfAnswelis set to
UDIExprKindValue and the values are returneddinswerBuf (The
AnswerResourcparameter is not used in this caggountDonendicates the
number of values returnefljizeindicates the size of each value in bytes, and
Typecontains simple type information for the expression. The endian type of
the objects is always host—-endian (i.e. the data is in host byte order). Note that
the DFE is constrained to return a sin§leedescriptor. Thus, while arrays of
scalar values could be returned, structures which mixed size fields could not.
The Typeinformation returned is fairly basic, being one of the following:

UDITypeUnknown /* type not applicable, or DFE doesn’t
* support types */
UDITypeOther [* type is known but does not match one
in
* the UDI list */
UDITypeChar /* an 8-bit ASCII character */
UDITypelnt /* an integral type. With Size, handles
* short, int, long */
UDITypeFloat /* with Size, handles float, double, long
* double */

If BufSizewas not big enough to hold the values, €euntDone* Size>

BufSiz¢, the DFE leaves the buffer unfilled and returns the error
UDIDFEErrorBufTooSmall but still set€CountDone Size andTypeas if the
buffer had been big enough. This allows the TIP to reissue the request with a
large enough buffer if it so desires.

If the expression evaluates to an “addreK&tofAnsweiis set to
UDIExprKindResource and the resource description (class and offset) is
returned inAnswerResourcg The AnswerBufparameter is not used in this
case). If the DFE knows the type of the data that the address is pointing at, it
should seffype Count andSizeappropriately. If the DFE does not know the
type, size, or count of the data that the address is pointing at, it can return:
Type= UDITypeUnknown andCountor Size= 0.

Return Codes

UDIDFEErrorCouldNotEvaluate
UDIDFEErrorEvaluatedToValue
(This could happen if the supplied
AnswerBuf was NULL.)
UDIDFEErrorEvaluatedToResource
(This could happen if the supplied
AnswerResource was NULL.)
UDIDFEErrorBufTooSmall

3-54 Universal Debugger Interface Specification

UDI Services

UDIDFEEvalResource

Call
UDIDFEEvalResource UDIParams((

UDIResource ResourceToEval, [*1n */
UDIBool ExactEval, /*In */
char * SymbolAnswer, [* Out */
UDISizeT BufSize, /*In */
B

Description

This function is provided by the DFE and called by the TIP. The TIP is only
allowed to call this function while in the process of handling a request from
the DFE. By callingJDIDFEEvalResource the TIP is asking the DFE to
map the resourc@esourceToEvab a symbolic expression. The DFE should
map this resource to an ASCII string of the faymbolnamer symbolname-
offset wheresymbolnamés the nearest symbol whose space is the same as
resource.spacand whose offset is less thasource.offset

If ExactEvalis true, the symbol name’s offset must matchréseurce.offset
exactly. The DFE returns the answer in the form of a null-terminated ASCII
string in theSymbolAnsweparameterBufSizeindicates the maximum size of
the SymbolAnswebuffer in bytes. If the resource cannot be mapped to a
string, a null string is returned along with one of the errors listed below.

Return Codes

UDIDFEErrorCouldNotEvaluate
UDIDFEErrorNoExactEval
UDIDFEErrorBufTooSmall
UDIErrorUnknownResourceSpace
UDIErrorinvalidResource

Universal Debugger Interface Specification 3-55

UDI Services

UDIDFEGetInput

Call

UDIDFEGetIinput UDIParams((
UDIHostMemPtr Buf, /* Out */
UDIIOType I0Type, [*In */
UDISizeT BufSize, /*In */
UDIMode Mode I*In */
UDISizeT * CountDone /* Out */

)k

Description

3-56

This function is provided by the DFE and called by the TIP. The TIP is only
allowed to call this function while in the process of handling a request from
the DFE.Bufis a set of maximurBufSizebytes that the TIP wants the DFE to
fill with input from the userModeindicates the mode to be used to get the
input, the default is line-buffered, echoed, with editing. Other modes are
described under the description of thBIStdinMode call. IOTypecan be one
of the following:

* UDIIOTypeTIPStdin

® UDIIOTypeTargetStdin

In other words|OTypeindicates the destination of the input (TIP or Target). A
DFE may want to get input from the user differently, depending on the

IOType for example, a windowed debugger may get TIP input and target input
from different windows. On return, the DFE s€suntDoneto indicate how

many bytes were actually input from the user.

UsingUDIIOTypeTIPStdin allows the TIP to get a response from the user to
let the TIP know how to proceed while handling a UDI request. It is often used
together withUDIDFEPutOutput (with parametetUDIIOTypeTIPStdout),

which presents TIP—specific information to the user.

UsingUDIIOTypeTargetStdin allows the TIP to get input from the DFE for a
running program. This represents an alternative to retutdidiGtdinNeeded
from UDIWait and waiting for the DFE to cdllDIPutStdin. For some TIPs,
this may be a simpler alternative.

Universal Debugger Interface Specification

UDI Services

Return Codes
UDIErrorAborted

Universal Debugger Interface Specification 3-57

UDI Services

UDIDFEPutOutput

Call
UDIDFEPutOutput (

UDIHostMemPtr Buf, /*In*/
UDIIOType I0Type, [*In */
UDISizeT Count, /*In */
UDISizeT * CountDone /* Out */
);

Description

This function is provided by the DFE and called by the TIP. The TIP is only
allowed to call this function while in the process of handling a request from
the DFE.Bufcontains a set dountbytes that the TIP wants the DFE to
present to the uselOTypecan be one of the following:

* UDIIOTypeTIPStdout
®* UDIIOTypeTIPStderr
®* UDIIOTypeTargetStdout

®* UDIIOTypeTargetStderr

UsingUDIIOTypeTIPStdout (or TIPStderr) allows the TIP to present TIP-
specific status information to the user. When used together with
UDIDFEGetInput (with parametetJDIIOTypeTIPStdin), the TIP can get a
response from the user indicating how to proceed while handling a UDI
request.

UsingUDIIOTypeTargetStdout (or TargetStderr) allows the TIP to feed
output from a running program to the DFE . This represents an alternative to
returningUDIStdOutReady or UDIStderrReady from UDIWait and waiting

for the DFE to calUDIGetStdout or UDIGetStderr. For some TIPs, this may
be a simpler alternative.

Return Codes
UDIErrorAborted

3-58 Universal Debugger Interface Specification

Chapter 4 ‘

UDI IPC Methods for DOS Hosts

This chapter specifies how UDI DFEs and TIPs communicate using the DOS
IPC mechanism. The UDI version covered is UDI 1.4 but compatibility with
previous versions of UDI (back to version 1.2) is also discussed. (For complete
information on compatibility and interoperability of different version TIPs and
DFEs, please see page D-1.)

NOTE: Refer back to Chapter 3 for semantics on most of the fields of the
calls.

In the DOS IPC mechanism, the TIP makes itself resident in memory along
with a table of pointers to its UDI service routines. The DFE locates this table
and calls through the table to the TIP routines. The DFE and TIP thus use a
shared memory scheme and can pass real-mode pointers to each other.

The sections below describe how the DFE connects to the TIP, and the calling
conventions and the format of the stack when the DFE wants to call a routine
in the TIP or vice versa.

NOTE: All pointers in this specification are real-mode FAR pointers
consisting of a 16-bit offset followed by a 16—bit segment. All data,
unless otherwise noted, are in little—endian format. In particular, on
calls that use BlostEndianparameter (liké&JDIRead and
UDIWrite), HostEndian= 1 implies little endian.

Universal Debugger Interface Specification 4-1

UDI IPC Methods for DOS Hosts

Establishing the Connection

4-2

The TIP places itself in memory in some manner that is not defined by UDI
(usually using DOS terminate and stay—resident calls). A TIP has a
TIPVecRecstructure which the DFE uses to communicate with the TIP. The
format of theTIPVecRecstructure is:

struct TIPVecRec {
union rec recognizer; [* Oxcf, 'u’, 'd’, 'I" */
struct UDIVecRec FAR *Next; /* Pointer to next TIP */
struct UDIVecRec FAR *Prev; /* Pointer to previous TIP */
char FAR *exeName; /* Name that the DFE uses when
* searching for a TIP and the
* remainder of the structure
* are far pointers to the UDI
* routines in the TIP */
/* These routines are described separately below */
UDIConnect_12,
UDIDisconnect,
UDISetCurrentConnection,
UDICapabilities_12,
UDIGetErrorMsg,
UDIGetTargetConfig,
UDICreateProcess,
UDISetCurrentProcess,
UDIDestroyProcess,
UDlInitializeProcess,
UDIRead,
UDIWrite,
UDICopy,
UDIExecute,
UDIStep,
UDIStop,
UDIWait,
UDISetBreakpoint_13,
UDIQueryBreakpoint_13,
UDIClearBreakpoint,
UDIGetStdout,
UDIGetStderr,
UDIPutStdin,
UDIStdinMode,
UDIPutTrans,
UDIGetTrans,
UDITransMode
/* Fields below this did not exist in UDI 1.2 TipVecRec */

Signature_1.3 /* characters "1.3\0", identifies the
* newer TipVecRec structure */
TIPIPCId /* so DFE can identify UDI level from

* structure */
UDIConnect_13
UDIFind
UDICapabilities_13
UDIConnect_14
UDISetBreakpoint_14
UDIQueryBreakpoint_14

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

Before becoming resident, the TIP linksTi®VecRec structure into the UDI
chain. The UDI chain consists of a doubly linked lisTt®VecRecstructures
anchored at a single interrupt vector between 60h and 66h.

The UDI chain is located through the following process:

Each interrupt vector from 60h to 66h is inspected in turn. If the interrupt
vector points to a location whose first four bytes contairTiP&/ecRec
signature, that is assumed to be the UDI chain anchor. If no interrupt vector
from 60h to 66h matches tiAéPVecRec signature, (as would be true for the
first TIP) then the first vector in that 60h through 66h group that equals NULL
is selected as the UDI chain anchor.

TheexeNamdield of theTIPVecRec points to a “TIP identifier” string which

the TIP uses to identify itself and which the DFE uses when it searches down
the UDI chain for a particular TIP. The way the TIP chooses this TIP identifier
string and the manner in which the DFE learns the TIP identifier string is
outside the scope of this specification. (In the sample AMD implementation,
the DFE actually spawns the TIP and the TIP assumes argv[1] is the identifier
string.)

When the DFE locates the UDI chain and finds a TIP with the correct TIP
identifier string, it must first call the TIPYDIConnect routine. The
parameters for theDIConnect routine are discussed below. Notice that one
of the things the DFE passes to the TIRBIConnecttime is a pointer to a
DFEVecRecstructure. Thd®FEVecRecstructure contains call entry points
for the UDIDFE calls. The TIP uses ti$EVecRecstructure to call back
into the DFE. The structure of tHi¥-EVecRecis:
struct DFEVecRec {

UDIDFEEvalExpression /* all FAR pointers */

UDIDFEEvalResource

UDIDFEGetinput

UDIDFEPutOutput
UDIDFEENdTIPIO

}

General Call Interface Information

The information here applies to both DFE—to-TIP calls and to TIP-to—DFE
calls. The processor must be in real mode at the time of the call. On entry, the
called routine may not assume the contents of any registers except CS, IP, SS,
and SP. In all respects, the calling convention is that for Microsoft C compiled
large model using the compiler option—Alfu (DS != SS). Refer to Microsoft
documentation for further details on this calling convention.

Universal Debugger Interface Specification 4-3

UDI IPC Methods for DOS Hosts

Typedefs of UDI Parameters

The following type definitions are used in many of the routine descriptions of

the specific calls and parameters (starting on page 4-6).

typedef unsigned long UDIUINnt32; /* unsigned integers */
typedef unsigned short UDIUINt16;

typedef unsigned char UDIUINt8;

typedef long UDIInt32; /* 32-bit integer */
typedef short UDIInt16; /* 16-bit integer */
typedef char UDIInt8; /* unreliable signedness
*/

typedef UDIINt16 UDlInt;

typedef UDIUINt16 UDIUlInt;

typedef UDIUINt16 UDISizeT,;

typedef UDIInt UDIError;

typedef UDIInt UDISessionld;

typedef UDIInt UDIPId;

typedef UDIInt
typedef UDIInt

UDIStepType;
UDIBreakType;

typedef UDIUInt UDIBreakld;

typedef UDIUInt UDIMode;

typedef void UDIVoid; [* void type */
typedef void * UDIVoidPtr; /* void pointer type */

typedef void FAR*
*/

UDIHostMemPtr; /* arbitrary mem pointer

typedef UDIInt16 UDIBool;

typedef UDIStruct
CPUSpace Space;
CPUOffset Offset;

} UDIResource;

typedef UDIStruct
CPUOffset Low;
CPUOffset High;

} UDIRange;

typedef UDIStruct
CPUSpace Space;
CPUOffset Offset;
CPUSizeT Size;

} UDIMemoryRange;

Specific Calls and Parameters

4-4

This section describes the parameters for each call that the DFE can make into
the TIP. The calls are arranged alphabetically on the following pages for easy

access. In most cases, the semantics of each field of the messages is described

in Chapter 3. Message field descriptions not found in Chapter 3 are located in
the descriptions of the specific messages on the following pages.

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

NOTE: Two calls described in Chapter 3 are handled entirely on the DFE side
and do not result in calls across the IPC interface to the TIP. These
calls ardUDIEnumerateTIPs andUDISetCurrentConnection.

NOTE: (For UDI 1.2) On all calls exceftDIConnect andUDIDisconnect
theconnection_idield appears as the last parameter to the call. This
parameter is new to UDI 1.3 and later versions and was not defined in
UDI 1.2. Because of the calling convention, it can be sent without
harm to a 1.2 TIP but the TIP will ignore it. Also, it will not be valid
for calls from a 1.2 DFE and must be ignored.

Universal Debugger Interface Specification 4-5

UDI IPC Methods for DOS Hosts

UDICapabilities

Call
UDIError (FAR *UDICapabilities_12) UDIParams((
UDIUINt32 far * TIPId, * Out */
UDIUINnt32 far * Targetld, /* Out */
UDIUInt32 DFEId, *1n %/
UDIUINt32 DFE, *1n %/
UDIUINt32 far * TIP, /* Out */
UDIUINt32 far * DFEIPCId, I* out */
UDIUINt32 far * TIPIPCId, * out */
char far * TIPString [* Out */
DK
UDIError (FAR *UDICapabilities_13) UDIParams((
UDIUInt32 far * TIPId, * Out */
UDIUINnt32 far * Targetld, [* Out */
UDIUInt32 DFEId, 7 1n %/
UDIUINt32 DFE, *1n %/
UDIUINt32 far * TIP, * Out */
UDIUINt32 far * DFEIPCId, I* Out */
UDIUINt32 far * TIPIPCId, * Oout */
char far * TIPString /* Out */
UDISizeT BufSize, /* In - not used
in1.2%
UDISizeT far * CountDone, /* Out - not used
in1.2%
UDISessionld connection_id
D&
Description
The semantics of the parameters above are described on page 3-11 and the
following additional information should also be noted. The first call from the
DFE to the TIP must bel@dDIConnect call. If theUDIConnect request
succeeds, the second message mustli@l@apabilities request.
UDICapabilities_12 will only be called by 1.2 DFEsUDICapabilities_13
will only be called by 1.3 DFEs.
With the UDI 1.3UDICapabilities call, the maximum length of the returned
TIPStringis limited toRgMsg.BufSizeharacters (including the terminator). If
exactlyBufSizecharacters are returned, this indicates that the TIP may have
more characters to return in 8P Stringand the DFE must then send another
UDICapabilities request and the TIP must return the i@xiSizecharacters.
With the UDI 1.2UDICapabilities request, the maximum length of the
returnedTIPStringis limited to 80 characters (including the terminator).
4-6 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIClearBreakpoint

Call
UDIError (FAR *UDIClearBreakpoint) UDIParams((
unsigned int Breakld [*In */
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-11.

Universal Debugger Interface Specification 4-7

UDI IPC Methods for DOS Hosts

UDIConnect
Call
UDIError (FAR *UDIConnect_12) UDIParams((
char far* tip_parameters /*In */
UDISessionld far* connection_id, /* Out */
struct DOSTerm far* TermStruct I*In*/

Dk
UDIError (FAR *UDIConnect_13) UDIParams((

char far* tip_parameters /*In */

UDISessionld far* connection_id, /* Out */

struct DOSTerm far* TermStruct /*In*/

uDIUINnt32 DFEIPCId /* In -- not used
in1.2%

uDIUINnt32 far* TIPIPCId /* Out -- not used
in1.2%

struct DFEVecRec far * VecRec /*1In -- not used
in1.2%

UDISessionld DFESessionld /*In -- new with
1.3%

D&
UDIError (FAR *UDIConnect_14) UDIParams((

char far * tip_parameters /* In */

UDISessionld far * connection_id, /* Out*/

struct DOSTerm far * TermStruct /*In */

uDIUINnt32 DFEIPCId /* In -- not used
in1.2*

uDIUINnt32 far * TIPIPCId /* Out -- not used
in1.2%

struct DFEVecRec far * VecRec /*1In -- not used
in1.2*

UDISessionld DFESessionld /* In -- new with
1.3%

uDIUINnt32 DFE /* In -- new with
1.4%

B

where:

tip_parameters This is an ASCII string which

the TIP should interpret as TIP—specific
configuration parameters.

connection_id This uniquely defines this UDI
connection for this TIP. It is passed on
every call after UDIConnect by UDI 1.3
DFEs. (See noteson UDI 1.2, 1.3, and 1.4
compatibility on page D-1).

4-8 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

TermStruct It is a requirement of UDI that all
UDIxxx calls return to the DFE, even a
call where the TIP chooses to remove
itself from memory. A TIP might remove
itself from memory on either a failing
UDIConnect oron a UDIDisconnect of the
last connection.

The TermStruct parameter provides a way
for the TIP to remove itself from memory

and still return back to the DFE. The
TermStruct parameter has the following
format:

UDIStruct DOSTerm {
void (far *TermFunc)(void);
UDIUINnt16 sds;
UDIUINt16 sss;
UDIUINt16 ssi;
UDIUINt16 sdi;
UDIUInt16 ssp;
UDIUINt16 retval,

UDIUINt16 sbp;
h

The semantics are such that if the TIP
stores the DS, SS, SI, SP, and BP
registers, which exist at the entry point
to the call (UDIConnect or
UDIDisconnect), into the sds, sss, ssi,
ssp, retval, and sbp fields, stores the
return error code into the retval field,
and also sets TermFunc as its PSP exit
function (offset 16 in the PSP) before
calling the DOS exit function, then flow
will return properly to the DFE caller
after the DOS exit by the TIP.

If the TIP is not removing itself from
memory, TermStruct can be ignored.

Universal Debugger Interface Specification 4-9

UDI IPC Methods for DOS Hosts

4-10

DFEIPCId The lowest 12 bits define the DFE IPC
version number. For UDI1.2 DFEs, this
will be 0x12N. For UDI1.3 DFEs, this will
be 0x13N. In each case, N is a minor
version indicator and should be ignored
by the TIP. This parameter is present so
that in future versions of UDI, the TIP
will know the UDI version of the DFE.

DFESessionld
This is a number that uniquely identifies
this connection for the DFE. This is
passed by the DFE to the TIP at connect
time and then used by the TIP on each of
the callbacks and allows the DFE to
distinguish which TIP the callback came
from.

DFE The DFE parameter has the same semantics
as the DFE parameter in the
UDICapabilities call; it indicates to the
TIP what version of UDI the DFE prefers,
i.e., the latest version number the DFE
understands. (This parameter appears in
the UDIConnect 1.4 procedural interface).

NOTE: When the return value frotdDIConnect is negative, the TIP must
stay in memory and the DFE must ddDIGetErrorMessage to get
the error text. See Appendix A for descriptions of UDI errors,
including UDIErrorTryAnotherTIP and
UDIErrorConnectionUnavailable.?

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts
Description

The first call from the DFE to the TIP must b&BIConnect call. There are
three different UDIConnect entries in the call table,UB#Connect_12entry

is used only by 1.2 DFEs; théDIConnect_13entry is used only by 1.3 and
later DFEs and theDIConnect_14adds the DFE parameter supported by the
UDIConnect_14 procedural interface. Because a TIP must have installed its
TIPVecRectable in memory before a DFE tries to connect to it, a DFE can
tell the IPC version of the TIP by looking for tBeggnature_1.3ield and the
TIPIPCIdin theTIPVecRec. The absence of ti&ignature_1.3ield marks

the TIP as 1.2.

A TIP knows the IPC version of the DFE by looking at the DFEIPCId
parameter of the connect request. A 1.2 DFE can be detected because it is the
only one who will call the ol€onnect_12entry point.

Universal Debugger Interface Specification 4-11

UDI IPC Methods for DOS Hosts

UDICopy

Call

UDIError (FAR *UDICopy) UDIParams((

UDIResource
UDIResource
UDICount
UDISizeT
UDICount far *
UDIBool
UDISessionld

)

Description

From, /*In*/
To, [*1In*/
Count, [*In */
Size, /*In */
CountDone, [* Out */
direction, /*In */

connection_id

The semantics of the parameters are described on page 3-17.

4-12

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDICreateProcess

Call
UDIError (FAR *UDICreateProcess) UDIParams((
UDIPId far * Id, /* Out */
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-18.

Universal Debugger Interface Specification 4-13

UDI IPC Methods for DOS Hosts

UDIDestroyProcess

Call
UDIError (FAR *UDIDestroyProcess) UDIParams((
UDIPId PId /*In*/
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-19.

4-14 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIDisconnect

Call
UDIError (FAR *UDIDisconnect) UDIParams((
UDISessionld connection_id, [*In*/
UDIBool Terminate, [*In*/
struct DOSTerm far* TermStruct /* In - not seen
in UDIP */
D
where:
connection_id Is the one returned by
UDIConnect .
Description

The semantics of the parameters are described on page 3-20.

NOTE: For TermStructsee the description undgblConnect on page 4-8.

Universal Debugger Interface Specification 4-15

UDI IPC Methods for DOS Hosts

UDIExecute

Call

UDIError (FAR *UDIExecute) UDIParams((
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-22.

4-16 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIFind

Call

UDIError UDIFind UDIParams((
UDIMemoryRange

)k

Description

uDIInt32
UDIHostMemPtr
UDIHostMemPtr
UDICount
UDISizeT
UDIBool
UDICount
UDICount *
CPUOffset
UDIHostMemPtr
UDISessionld

WhereToLook,

Stride,

Pattern,
PatternMask,
PatternCount,
PatternSize,
PatternHostEndian,
MaxToFind,

CountFound,
FoundAtOffset][],

FoundValues][],

connection_id

/*In*/
/*In */
I*In*/
/*In*/
I*In*/
I*In */

I*In*/

/*In */

/* Out */
/* Out */
/* Out */

The semantics of the parameters are described on page 3-23.

Universal Debugger Interface Specification

4-17

UDI IPC Methods for DOS Hosts

UDIGetErrorMessage

Call
UDIError (FAR *UDIGetErrorMsg) UDIParams((

UDIError ErrorCode, [*In*/
UDISizeT MsgSize, [*In*/
char far * Msg, /* Qut */
UDISizeT far * CountDone /* Out */
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-24.

4-18

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIGetStderr

Call
UDIError (FAR *UDIGetStderr) UDIParams((

UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, *In*/
UDISizeT far * CountDone /* Out */
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-25.

Universal Debugger Interface Specification 4-19

UDI IPC Methods for DOS Hosts

UDIGetStdout

Call
UDIError (FAR *UDIGetStdout) UDIParams((

UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, *In*/
UDISizeT far * CountDone /* Out */
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-26.

4-20 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIGetTargetConfig

Call
UDIError (FAR *UDIGetTargetConfig) UDIParams((

UDIMemoryRange far KnownMemory(], /* Out */
UDlIInt far * NumberOfRanges, [* In/Out */
UDIUINnt32 far ChipVersions][], /* Out */
UDlIInt far * NumberOfChips, /* In/Out */
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-27.

Universal Debugger Interface Specification 4-21

UDI IPC Methods for DOS Hosts

UDIGetTrans

Call
UDIError (FAR *UDIGetTrans) UDIParams((

UDIHostMemPtr Buf, /* Out */
UDISizeT BufSize, *In*/
UDISizeT far * CountDone /* Out */
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-28.

4-22 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDlInitializeProcess

Call
UDIError (FAR *UDlInitializeProcess) UDIParams((

UDIMemoryRange far ProcessMemoryT(],
UDlIInt NumberOfRanges,
UDIResource EntryPoint,
CPUSizeT far StackSizes[],
UDlIInt NumberOfStacks,
char far * ArgString,
UDISessionld connection_id
D&

Description

I*In*/
1In/
I*In*/
/*In*/
/*In*/
/*In */

The semantics of the parameters are described on page 3-30.

Universal Debugger Interface Specification

4-23

UDI IPC Methods for DOS Hosts

UDIPutStdin

Call

UDIError (FAR *UDIPutStdin) UDIParams((

Description

UDIHostMemPtr

UDISizeT far *

Buf, /*In */
Count, /*1In */
CountDone /* Out */

connection_id

The semantics of the parameters are described on page 3-32.

4-24

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIPutTrans

Call
UDIError (FAR *UDIPutTrans) UDIParams((

UDIHostMemPtr Buf, /*In */
UDISizeT Count, [*In*/
UDISizeT far * CountDone /* Out */
UDISessionld connection_id
D&

Description

The semantics of the parameters are described on page 3-33.

Universal Debugger Interface Specification 4-25

UDI IPC Methods for DOS Hosts

UDIQueryBreakpoint

Call

UDIError (FAR *UDIQueryBreakpoint 1.2) UDIParams((
UDIBreakld Breakld, I*In*/
UDIResource far * Addr, /* Out */
UDIInt32 far * PassCount, /* Out */
UDIBreakType far * Type, /* Out */
UDIInt32 far * CountRemaining,/* Out */
UDISessionld connection_id

)k

UDIError (FAR *UDIQueryBreakpoint_14) UDIParams((
UDIBreakld Breakld,
UDISizeT BufSize,
UDIBreakinfo far * Breaklnfo,
UDIBreakld far * NextBreakld
UDISessionld connection_id

)

I*In*/
1In/
/* Out */
/* Out */

Description

The semantics of the parameters are described on page 3-34.

The UDIQueryBreakpoint_13 call returns a subset of the information returned
by UDIQueryBreakpoint_14. Ranges are not supported. Only the low 4 bits

of Type are defined. Any information in the vendor-specific Buf field of a 1.4

breakpoint cannot be returned to UDIQueryBreakpoint_13.

In actual practice it is unlikely that these mapping problems will arise since
they require a new DFE to set up breakpoints on a new TIP, then disconnect
(without terminating the TIP) and have an old DFE connect and query the
breakpoints on the TIP.

4-26

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIRead
Call
UDIError (FAR *UDIRead) UDIParams((

UDIResource From,
UDIHostMemPtr To,
UDICount Count,
UDISizeT Size,
UDICount far * CountDone,
UDIBool HostEndian,
UDISessionld connection_id

)k

Description

I*In*/
/* Out */
/*In*/
I*In */
/* Out */
I*In*/

The semantics of the parameters are described on page 3-36.

Universal Debugger Interface Specification

4-27

UDI IPC Methods for DOS Hosts

UDISetBreakpoint

Call
UDIError (FAR *UDISetBreakpoint_13) UDIParams((
UDIResource Addr, [*In*/
UDIInt32 PassCount, /*In */
UDIBreakType Type, /*In */
UDIBreakld far * Breakld , /* Qut */
UDISessionld connection_id
D&
UDIError (FAR *UDISetBreakpoint_14) UDIParams((
UDIBreakinfo *Breaklnfo, [*In*/
UDIBreakld far *Breakld, /* Out */
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-37.

The UDISetBreakpoint_13call allows setting breakpoints with a subset of the
information that is possible witDISetBreakpoint_14 Ranges are not
supported. Only the low 4 bits of Type are defined. ChentRemaining

must be initialized to the absolute value of BessCount No vendor-specific
Buf field is supported.

4-28 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDISetCurrentProcess

Call
UDIError (FAR *UDISetCurrentProcess) UDIParams((
UDIPId PId /*In*/
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-41.

Universal Debugger Interface Specification 4-29

UDI IPC Methods for DOS Hosts

UDIStdinMode

Call
UDIError (FAR *UDIStdinMode) UDIParams((
UDIMode far* Mode [* Out */
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-42.

4-30 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIStep
Call
UDIError (FAR *UDIStep) UDIParams((
uDIUInt32 Steps, /*In */
UDIStepType StepType, [*In*/
UDIRange Range [*In*/
UDISessionld connection_id

B
Description

The semantics of the parameters are described on page 3-43.

Universal Debugger Interface Specification 4-31

UDI IPC Methods for DOS Hosts

UDIStop

Call

UDIVoid (FAR *UDIStop) UDIParams((
UDISessionld connection_id

B
Description

The semantics of the parameters are described on page 3-44.

NOTE: UDIStop is unique in that it can be called by the DFE even before the
TIP has returned from the previous UDI call. (It can also be called
after aUDIExecute and before &DIWait).

4-32 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDITransMode

Call
UDIError (FAR *UDITransMode) UDIParams((
UDIMode far * Mode, [* Out */
UDISessionld connection_id
D
Description

The semantics of the parameters are described on page 3-45.

Universal Debugger Interface Specification 4-33

UDI IPC Methods for DOS Hosts

UDIWait
Call
UDIError (FAR *UDIWait) UDIParams((
uDIInt32 MaxTime, *In*/
UDIPId far * Pid, /* Out */
UDIUINnt32 far * StopReason, /* Out */
UDISessionld connection_id

i
Description

The semantics of the parameters are described on page 3-46.

4-34 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIWTrite
Call
UDIError (FAR *UDIWrite) UDIParams((

UDIHostMemPtr From,
UDIResource To,
UDICount Count,
UDISizeT Size,
UDICount far * CountDone,
UDIBool HostEndian,
UDISessionld connection_id

)k

Description

I*In*/
In/
/*In*/
I*In */
/* Out */
I*In*/

The semantics of the parameters are described on page 3-50.

Universal Debugger Interface Specification

4-35

UDI IPC Methods for DOS Hosts

UDIDFE calls

The calls on the following pages are made from the TIP to the DFE. All
UDIDFExxxcalls can only be made by the TIP while it is in the middle of
servicing some UDI request from the DFE (i.e., before it has returned from the
UDI call). In addition, while the DFE is servicing the UDIDB& request, the
DFE can issue a new UDI request to the TIP. The call traffic in this last case
would be:

--> UDIxxxcalled by DFE

<-- UDIDFEyyycalled by TIP

--> UDI zzzcalled by DFE

<-- UDIzzzreturns

--> UDIDFEyyyreturns

<-- UDIxxxreturns

4-36 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIDFEENdTIPIO

Call

UDIDFEENdTIPIO UDIParams((
UDISessionld connection_id
Dk

Description

The semantics of the parameters are described on page 3-52.

Universal Debugger Interface Specification 4-37

UDI IPC Methods for DOS Hosts

UDIDFEEvalExpression

Call

UDIDFEEvalExpression UDIParams((

char * Expression, [*In*/

UDlIInt KindofAnswer, /* Out (None, Resource,
Value) */

UDIResource * AnswerResource, /* Out (used when Kind =
Resource) */

UDIHostMemPtr AnswerBuf, /* Out (used when Kind =
Value) */

UDIHostMemPtr AnswerBuf, /* Out (used when Kind =
Value) */

UDISizeT BufSize, /*In (size of AnswerBuf
in bytes)*/

UDICount * CountDone, /* Out (used when Kind =
Value) */

UDISizeT * Size, /* Out (used when Kind =
Value) */

UDIExprType * Type, /* Out (used when Kind =
Value) */

UDISessionld connection_id
D&

Description

Each response specifies (KindOfAnswey either anAnswerResourcer an
AnswerBufwith CountDone Size andType

Any data inAnswerBufonsists of objects of sifizeand is always in the
same endian format as the target.

4-38 Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIDFEEvalResource

Call
UDIDFEEvalResource UDIParams((
UDIResource ResourceToEval, [*1n*/
UDIBool ExactEval, [*In, true if Exact
* Evaluation Desired */
char * SymbolAnswer, [* Out */
UDISizeT BufSize, [*In*/
UDISessionld connection_id
)1
Description

The semantics of the parameters are described on page 3-55.

Universal Debugger Interface Specification 4-39

UDI IPC Methods for DOS Hosts

UDIDFEGetInput

Call

UDIDFEGetIinput UDIParams((
UDIHostMemPtr

)

Description

UDIMode Mode

connection_id

[* Out */
I*In*/
In/
/*In*/
[* Out */

The semantics of the parameters are described on page 3-56.

4-40

Universal Debugger Interface Specification

UDI IPC Methods for DOS Hosts

UDIDFEPutOutput

Call
UDIDFEPutOutput UDIParams((
UDIHostMemPtr Buf, /*In */
UDIIOType I0Type, [*In */
UDISizeT Count, [*In*/
UDISizeT * CountDone, /* Out */
UDISessionld connection_id
Dk
Description

The semantics of the parameters are described on page 3-58.

Universal Debugger Interface Specification 4-41

Chapter 5 ‘

UDI IPC Methods for UNIX Hosts

This chapter specifies how UDI DFEs and TIPs communicate using the
socket—based IPC mechanism. The UDI version covered is UDI 1.4 but
compatibility with previous versions of UDI (back to version 1.2) is also
discussed. (For complete information on compatibility and interoperability of
different version TIPs and DFEs, please see page D-1.)

NOTE: Refer back to Chapter 3 for semantics on most of the fields of the
messages.

In the socket-based IPC mechanism, the DFE establishes a socket connection
to the TIP. The DFE and TIP then exchange requests and responses by sending
messages over that socket. Also, for a few unusual asynchronous situations, the
DFE can send a signal to the TIP.

The sections below describe how the DFE connects to the TIP, the format of
the request and response messages that are sent between the DFE and TIP on
the socket, and the signals that the DFE can send to the TIP.

NOTE: In this chapter, when a reference is made to a UDIConnect request
message, it means "eithet®IConnect_12request message or a
UDIConnect_14request message" unless otherwise noted.

Establishing the Connection

The TIP and DFE communicate over a socket. The socket may be based on
any of the socket address families. The method by which the TIP chooses a
socket to listen on and the way the DFE learns the socket address and address
family of the TIP is outside the scope of this specification. (As an example, the
TIP and DFE could take the socket name as a startup parameter. In some
cases, the DFE might actually spawn the TIP.)

The TIP callssocket() bind(), listen(), andaccept() After anaccept()
establishes a socket descriptor, the TIP expects all data for that connection
from the DFE to arrive on that same socket descriptor.

Universal Debugger Interface Specification 5-1

UDI IPC Methods for UNIX Hosts

For each connection the DFE wants to make, even if it is another connection to
the same TIP, the DFE caliscket()andconnect() creating a new socket
descriptor. All messages for that connection are then sent over that same
socket descriptor.

Note that a TIP which needs to support more than one connection will have to
listen for messages from more than one socket, and the socket that a message
arrives on implies its connection ID.

General Message Format Information

Each request or response message consists of a string of bytes. The fields of
each message are described below using the structure syntax. The fields of the
messages are always packed on byte boundaries; there are no padding bytes
between the fields.

The following field descriptors are used in the specific message formats which
start on page 5-9. The endian type of the various fields is specified on page 5-
4.

UDIUInt32 An unsigned 32-bit integer sent as 4
bytes (endian type specified on page 5-
4).

uUDIInt32 A signed 32-bit integer sent as 4 bytes
(endian type specified on page 5-4).

UDIByteArray A string of bytes. The length
or dimension of the array is always
implicit from other information and is
not sent as part of the array. (See the
dimension = comments in the specific
requests.) For the UDIRead, UDIWrite |,
UDIFind and UDIDFEEvalExpression
requests, it is possible that the objects
specified by the byte array are not
actually bytes. In these cases, the
endian type of the objects is described
in the notes for each specific request.

5-2 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIString This is shorthand for:
struct {
UDIUInt32 Len;
UDIByteArray Buf;
}
A Len of zero is permitted. When the
UDIString deals with actual ASCII
strings, the null terminator byte is
always included in both the length and

the array.
UDIRange This is shorthand for:
struct {
UDIUInt32 Low;
UDIUInt32 High;
}
UDIResource This is shorthand for:
struct {
UDIUInt32
Space;
UDIUInt32
Offset;
}
UDIMemoryRange
This is shorthand for:
struct {
UDIUInt32
Space;
UDIUInt32
Offset;
UDIUInt32 Size;
}
UDIBreakinfo
This is shorthand for:
struct {
uUDIUInt32 Type;
UDIMemoryRange Region;
UDIInt32 PassCount;
UDIInt32 CntRemaining;
UDIString Buf;
}

Universal Debugger Interface Specification 5-3

UDI IPC Methods for UNIX Hosts

UDIUINt32Array

This is a string of UDIUInt32 fields. The
number of fields is not sent explicitly

in the message but is implied by other
parts of the request or response message.
(See the

dimension = comments in the specific
requests.)

UDIMemoryRangeArray

This is a string of UDIMemoryRange

fields. The number of fields is not sent
explicitly in the message but is implied

by other parts of the request or response
message. (See the dimension = comments in
the specific requests.)

Endian Type of Fields in Messages

5-4

There are two types of fields in UNIX socket IPC messages:

Target—Endian fields

These are the buffers used in UDIRead,
UDIWrite , et cetera, that are explicitly

specified to be target—endian by a UDI

parameter i.e., HostEndian parameter set
to FALSE.

Host—Endian fields

All other fields in all IPC messages

including those buffers used in UDIRead,
UDIWrite , et cetera, for which the

HostEndian parameter is set to TRUE.

The target—endian fields are always sent target—endian. It is assumed that both
the DFE and TIP know the target—-endian type.

The following discussion applies to the endian type of host—endian fields in
socket IPC messages.

In UDI 1.3 and earlier, all host-endian fields are sent big—endian regardless of
the endian type of either the DFE or TIP.

In UDI 1.4, the following rules apply which make it more efficient when both
the DFE and TIP are little endian:

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

®* |n theUDIConnectRgMsgand until thdJDIConnectRespMsgis
received, all fields in all messages are always sent big endian.

¢ UDIConnectRgMsghas aDFEIPCIdfield andUDIConnectRespMsg
has aTIPIPCId field.

* Bit 31 of eactkxxIPCldfield, if set, indicates a little—enidan host (bits 30-
0 are the usudPCld format).

* After theUDIConnectRespMsghas been sent, both sides know the
endian type of the other end of the connection. In the case where both
ends are little endian, all following messages on that connection use little—
endian format for “host—endian” fields. If either end is big endian, all
following messages on that connection use big—endian format for “host—
endian” fields.

Request and Response Codes

The following table defines the codes for requests from the DFE to the TIP.

Universal Debugger Interface Specification 5-5

UDI IPC Methods for UNIX Hosts
Table5_1 Codes for Requests from DFE to TIP

Request Code
UDIConnect_12 ¢ 0
UDIDisconnect_c 1
Reserved 2
UDICapabilities_12_c 3
UDIEnumerateTIPs_c 4
UDIGetErrorMsg_c 5
UDIGetTargetConfig_c 6
UDICreateProcess_c 7
UDISetCurrentProcess_c 8
UDIDestroyProcess_c 9
UDlInitializeProcess_c 10
UDIRead_c 11
UDIWrite_c 12
UDICopy_c 13
UDIExecute_c 14
UDIStep_c 15
UDIStop_c 16
UDIWait_c 17
UDISetBreakpoint_13 ¢ 18
UDIQueryBreakpoint_13 ¢ 19
UDIClearBreakpoint_c 20
UDIGetStdout_c 21
UDIGetStderr_c 22
UDIPutStdin_c 23
UDIStdinMode_c 24
UDIPutTrans_c 25

5-6 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIGetTrans_c 26
UDITransMode c 27
Reserved 28
Reserved 29
UDIFind_c 30

UDICapabilities_13 ¢ 31
UDIConnect_14 ¢ 32
UDISetBreakpoint_14 ¢ 33
UDIQueryBreakpoint_14 ¢ 34

The following table defines the codes for requests from the TIP to the DFE.

Table 5_2. Codes for Requests from TIP to DFE

Request Code
UDIDFEEvalExpression_c 1000
UDIDFEEvalResource c 1001
UDIDFEGetInput_c 1002
UDIDFEPutOutput_c 1003
UDIDFEENdTIPIO_c 1004

For both UDI and UDIDFE requests, a response code is always a 32—bit
unsigned integer equal to the request code but with the high bit set.

NOTE: The response message format for UDI 1.2 is slightly different. The
response_codfeld is always omitted. The DFE always assumes that
the first message that comes back on the socket is the response to the
request. (This works because, in UDI 1.2, UDIDFE requests from the
TIP to the DFE are not allowed.).

Signals from the DFE to the TIP

The DFE sends a “signal” to the TIP to implementUWi#Stop functionality
as described in Chapter 3.

Universal Debugger Interface Specification 5-7

UDI IPC Methods for UNIX Hosts

On AF_UNIX sockets, the UNIX signal, SIGUSR1, is sent totihepid
which the TIP returns in theDIConnectRespMsg

On AF_INET sockets, an “out—of-bound” message is sent on the socket, which
causes a SIGURG signal at the TIP.

Upon the receipt of either of these signals, the TIP should take the actions
described undddDIStop in Chapter 3. No response as such is sent for the
signal. If the TIP was in the middle of handling some UDI request when the
signal came in, a response to that UDI request is sent back to the DFE with the
errorUDIErrorAborted . If the TIP was executing a target program, execution
stops and the nextDIWaitRgMsg from the DFE should get a response with
UDIStopped.

Specific Message Formats

5-8

The format of each request and response message between the DFE and the
TIP are provided on the following pages. The messages are arranged
alphabetically for easy access. In most cases, the semantics of each field of the
messages is described in Chapter 3. Message field descriptions not found in
Chapter 3 are located in the descriptions of the specific messages on the
following pages.

NOTE: A few calls described in Chapter 3 do not result in request messages.
These aréJDIEnumerateTIPs andUDISetCurrentConnection.
Also, theUDIStop call results in a signal rather than a message.
These signals are described in the preceding section.

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDICapabilities

Message
struct UDICapabilities_13_RqMsg {
UDIInt32 service_id;
UDIUINnt32 DFEId;
UDIUINnt32 DFE;
UDIUINnt32 BufSize;
}
struct UDICapabilities_13_RespMsg {
UDIInt32 response_id;
UDIUINnt32 TIPId;
uDIUInt32 Targetld;
UDIUINnt32 TIP;
uDIUInt32 Unused;
UDIUINnt32 TIPIPCId;
UDIString TIPString;
uDIUInt32 err,
}
Description

The semantics of the parameters are described in Chapter 3 and the following
additional information should also be noted. The first message on the socket
connection from the DFE to the TIP must be@IConnect message. If the
UDIConnect request succeeds, the second message must be a
UDICapabilities request.

With the UDI 1.3UDICapabilities request, the maximum length of the
returnedTIPStringis limited toRqMsg.BufSizeharacters (including the
terminator). If exacthBufSizecharacters are returned, this indicates that the
TIP may have more characters to return imflRSTringand the DFE must
then send anoth&fDICapabilities request and the TIP must return the next
BufSizecharacters.

Universal Debugger Interface Specification 5-9

UDI IPC Methods for UNIX Hosts

When either side of the connection is UDI 1.2 (as determined by the
connection request IPC IDs), the following message format is used instead:

struct UDICapabilities_12_RqMsg {

UDIInt32 service_id;
uUDIUInt32 DFEId,;
uDIUInt32 DFE;

}

struct UDICapabilities_12_RespMsg {
UDIInt32 response_id;
uDIUInt32 TIPId;
uDIUInt32 Targetld;
uDIUInt32 TIP;
uUDIUInt32 Unused;
uDIUInt32 TIPIPCId,;
UDIString TIPString;
uDIUInt32 err,

}

With the UDI 1.2UDICapabilities request, the maximum length of the
returnedTIPStringis limited to 80 characters (including the terminator).

5-10 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIClearBreakpoint

Message
struct UDIClearBreakpointRgMsg {
uDIUInt32 service_id;
uDIUInt32 Breakld;
}
struct UDIClearBreakpointRespMsg {
UDIInt32 response_id;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-13.

Universal Debugger Interface Specification 5-11

UDI IPC Methods for UNIX Hosts

UDIConnect

Message

struct UDIConnect_14_RqMsg {

UDIInt32 service_id;
uUDIUInt32 DFEIPCId,;
UDIString tip_parameters;
uUDIUInt32 DFE; /* New with 1.4 */

}

struct UDIConnect_14_RespMsg {
UDIInt32 response_id;
uDIUInt32 TIPIPCId,;
uDIUInt32 tip_pid;
uUDIUInt32 tip_id;
uDIUInt32 err,

}

The older format of this message is:

struct UDIConnect_12_RqMsg {

UDIInt32 service_id;
UDIUINnt32 DFEIPCId;
UDIString tip_parameters;

}

with the response message being identichléConnect_14 RespMsg

where:

DFEIPCId The lowest 12 bits define the DFE IPC
version number. For UDI 1.2 DFEs, this
will be 0x12N. For UDI 1.3 DFEs, this
will be 0x13N. In each case, N is a minor
version indicator and should be ignored
by the TIP.

tip_parameters This is an ASCII string which
the TIP should interpret as TIP—specific
configuration parameters.

TIPIPCId The lowest 12 bits define the DFE IPC
version number. For UDI 1.2 TIPs, this
will be 0x12N. For UDI 1.3 TIPs, this
will be 0x13N. In each case, N is a minor
version indicator and should be ignored
by the DFE.

5-12 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

tip_pid The UNIX PID of the TIP. For AF_UNIX
sockets, this is used to signal the TIP
for UDIStop functionality (see signals
below). For other address family sockets,
this parameter is ignored.

tip_id This uniquely defines the UDI connection
for this TIP. It is used by the DFE in
the UDIDisconnect message.

errno When the errno is negative, the TIP
socket connection must remain open and
the DFE must send a UDIGetErrorMessage
request to get the error text. See
Appendix A for descriptions of
UDIErrorTryAnotherTIP and
UDIErrorConnectionUnavailable

DFE The DFE parameter has the same semantics
as the DFE parameter in the
UDICapabilities call; it indicates to the
TIP what version of UDI the DFE prefers,
i.e., the latest version number the DFE
understands.

Description

The first message on the socket connection from the DFE to the TIP must be a
UDIConnect_12 message. This is because older TIPs will not know how to
respond to later vintage UDIConnect messages and the DFE cannot tell the
version of the TIP until it sends some UDIConnect message. This
complication is handled in the following manner:

If the TIP is a pre-1.4 TIP, the TIP acts on the UDIConnect_12 message and
sends a UDIConnect_12 response. This concludes the UDIConnect activity for
older TIPs.

Similarly, if the TIP is 1.4 or later, and the TIP gets a UDIConnect_12

message from a pre-1.4 DFE (as detected in the DFEIPCId), the TIP acts on
the UDIConnect_12 message and sends a UDIConnect_12 response. . This
concludes the UDIConnect activity for older DFEs connecting to newer TIPs.

Universal Debugger Interface Specification 5-13

UDI IPC Methods for UNIX Hosts

5-14

However, if the TIP is 1.4 or later, and the TIP gets a UDIConnect_12 message
from a 1.4 or later DFE, the TIP does not act on the UDIConnect_12 message
but instead sends a UDIConnect_12 response that has the TIPIPCId field filled
in and also contains the special error code, UDIErrorIPCConnectincomplete.
The 1.4 or later DFE who receives UDIErrorIPCConnectincomplete then

knows the TIP’s IPCid and the DFE must then complete the Connect
transaction by sending a second request. This second request is the one the
TIP acts upon This second request can be either a UDIConnect_14 message
or a UDIConnect_12 message.

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDICopy
Message
struct UDICopyRgMsg {
uDIUInt32 service_id;
UDIResource From;
UDIResource To;
uDIUINnt32 Count;
uDIUInt32 Size;
uDIUInt32 Direction;
}
struct UDICopyRespMsg {
UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;
}
Description

The semantics of the parameters are described on page 3-17.

Universal Debugger Interface Specification 5-15

UDI IPC Methods for UNIX Hosts

UDICreateProcess

Message
struct UDICreateProcessRqMsg {
uDIUInt32 service_id;
struct UDICreateProcessRespMsg {
UDIInt32 response_id;
uDIUInt32 Pld;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-18.

5-16 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIDestroyProcess

Message
struct UDIDestroyProcessRgMsg {
uDIUInt32 service_id;
uDIUInt32 Pld;
struct UDIDestroyProcessRespMsg {
UDIInt32 response_id;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-19.

Universal Debugger Interface Specification 5-17

UDI IPC Methods for UNIX Hosts

UDIDisconnect

Message
struct UDIDisconnectRqMsg {
uDIUInt32 service_id;
uDIUInt32 tip_id; /* see UDIConnect */
uUDIUInt32 Terminate;
struct UDIDisconnectRespMsg {
UDIInt32 response_id;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-20.

5-18 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIExecute

Message

struct UDIExecuteRqMsg {
uDIUInt32 service_id;
}

struct UDIExecuteRespMsg {
UDIInt32 response_id;
uDIUInt32 err,

}
Description

The semantics of the parameters are described on page 3-22.

Universal Debugger Interface Specification 5-19

UDI IPC Methods for UNIX Hosts

/* dimension =
* PatternCount *

[* either zero or
* PatternCount *

UDIFind
Messag e
struct UDIFindRgMsg {
uDIUInt32 service_id;
UDIMemoryRange WhereToLook;
uDIInt32 Stride;
UDIUInt32 PatternCount;
uDIUInt32 PatternSize;
uDIUInt32 PatternHostEndian;
uDIUINnt32 MaxToFind;
UDIByteArray Pattern;
PatternSize */
uDIUInt32 PatternMaskLen;
PatternSize */
UDIByteArray PatternMask;

PatternMaskLen */

}

struct UDIFindRespMsg {
uDIUInt32 response_id;
uDIUInt32 CountFound,;

/* dimension =

UDIUInt32Array FoundAtOffset; /* dimension = CountFound */

UDIByteArray FoundValues;

PatternSize */

UDIUInt32 err;
}

Description

/* if PatternMaskLen = 0

* dimension = 0 else
* dimension =
* CountFound * PatternCount *

The semantics of the parameters are described on page 3-23.

Notes:

If the PatternHostEndiarflag is 1,

the 29K data idDIFindRgMsg.Patternin

UDIFindRgMsg.PatternMaskf any), and inUDIFindRespMesg.FoundValues
(if any) must be in big—endian format (keeping in mind that the size of each
object in each field is specified by t®IFindRgMsg.Siz@arameter). Note
that in this case, at the procedural interface this data is required to be in

HostEndianformat.

5-20

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

If the PatternHostEndiarilag is 0, the 29K data idDIFindRgMsg.Patternin
UDIFindRgMsg.PatternMaskf any), and inUDIFindRespMesg.FoundValues
(if any) must be imrargetEndiarformat. It is assumed that both the DFE and
the TIP know the endian type of the target. Note that in this case, the data in
these buffers is unmodified by the IPC for the procedural interface.

Universal Debugger Interface Specification 5-21

UDI IPC Methods for UNIX Hosts

UDIGetErrorMessage

The semantics of the parameters are described on page 3-24.

Message
struct UDIGetErrorMessageRqMsg {
uDIUInt32 service_id;
uDIUInt32 ErrorCode;
uDIUINnt32 MsgSize;
}
struct UDIGetErrorMessageRespMsg {
UDIInt32 response_id;
UDIString Message;
uDIUInt32 CountDone;
uDIUInt32 err,
}
Description
5-22

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIGetStderr

Message
struct UDIGetStderrRgMsg {
uDIUInt32 service_id;
uDIUInt32 BufSize;
}
struct UDIGetStderrRespMsg {
UDIInt32 response_id;
uDIUInt32 CountDone;
UDIByteArray Buf;
uDIUInt32 err,
}
Description

/* dimension = CountDone */

The semantics of the parameters are described on page 3-25.

Universal Debugger Interface Specification

5-23

UDI IPC Methods for UNIX Hosts

UDIGetStdout

/* dimension = CountDone */

The semantics of the parameters are described on page 3-26.

Message
struct UDIGetStdoutRgMsg {
uDIUInt32 service_id;
uDIUInt32 BufSize;
}
struct UDIGetStdoutRespMsg {
UDIInt32 response_id;
uDIUInt32 CountDone;
UDIByteArray Buf;
uDIUInt32 err,
}
Description
5-24

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIGetTargetConfig

Message

struct UDIGetTargetConfigRqMsg {
uDIUInt32 service_id;
uDIUInt32 MaxNumberOfRanges;
uDIUInt32 MaxNumberOfChips;

}
struct UDIGetTargetConfigRespMsg {
UDIInt32 response_id;
UDIMemoryRangeArray KnownMemory; [* size =
* MaxNumberOfRanges */
uDIUInt32 NumberOfRanges;
uDIUInt32 NumberOfChips;
UDIInt32Array ChipVersions; /* size =
* NumberOfChips */
uDIUInt32 err,

where:

MaxNumberOfRanges
Specifies the maximum number of ranges
that the TIP can return.

MaxNumberOfChips
Specifies the maximum number of chips
that the TIP can return.

Description

For theUDIGetTargetConfigRespMsg note that th&nownMemoryand
ChipVersionsarrays are handled differently. The dimension of the
KnownMemonyarray isMaxNumberOfRanggshe DFE limit) whereas the
dimension of theChipVersionsarray isNumberOfChipgthe actual TIP
number).

Universal Debugger Interface Specification 5-25

UDI IPC Methods for UNIX Hosts

UDIGetTrans

/* dimension = CountDone */

The semantics of the parameters are described on page 3-28.

Message
struct UDIGetTransRqMsg {
uDIUInt32 service_id;
uDIUInt32 BufSize;
}
struct UDIGetTransRespMsg {
UDIInt32 response_id;
uDIUInt32 CountDone;
UDIByteArray Buf;
uDIUInt32 err,
}
Description
5-26

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDlInitializeProcess

Message
struct UDlInitializeProcessRgMsg {
uDIUInt32 service_id;
uDIUInt32 NumberOfRanges;
UDIMemoryRangeArray ProcessMemory; /* dimension =
* NumberOfRanges
*/
UDIResource EntryPoint;
uDIUINnt32 NumberOfStacks;
UDIUInt32Array StackSizes; /* dimension =
* NumberOfStacks */
UDIUINnt32 Pld;
}
struct UDlInitializeProcessRespMsg {
UDIInt32 response_id;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-30.

Universal Debugger Interface Specification 5-27

UDI IPC Methods for UNIX Hosts

UDIPutStdin

Message

struct UDIPutStdinRqMsg {
uDIUInt32 service_id;
UDIUINnt32 Count;
UDIByteArray Buf;

}
struct UDIPutStdinRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;
}
Description

/* dimension = Count */

The semantics of the parameters are described on page 3-32.

5-28

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIPutTrans

Message
struct UDIPutTransRgMsg {
uDIUInt32 service_id;
uDIUInt32 Count;
UDIByteArray Buf;
}
struct UDIPutTransRespMsg {
UDIInt32 response_id;
uDIUInt32 CountDone;
uDIUInt32 err,
}
Description

/* dimension = Count */

The semantics of the parameters are described on page 3-33.

Universal Debugger Interface Specification

5-29

UDI IPC Methods for UNIX Hosts

UDIQueryBreakpoint

Message

struct UDIQueryBreakpoint_14 RgMsg {
uDIUInt32 service_id;
uDIUInt32 Breakld;
UDIUINnt32 BufSize;

}

struct UDIQueryBreakpoint_13_RespMsg {
UDIInt32 response_id;
UDIBreakinfo Breaklnfo;
uDIUInt32 NextBreakld;
uDIUInt32 err;

}

The older format of this message is as follows:

struct UDIQueryBreakpoint_13 RgMsg {
uDIUInt32 service_id;
uDIUInt32 Breakld;

}

struct UDIQueryBreakpoint_13_RespMsg {
UDIInt32 response_id;
UDIResource Addr;
UDIInt32 PassCount;
uDIUInt32 Type;
UDIInt32 CountRemaining;
uDIUInt32 err,

}

Description

5-30

The semantics of the parameters are described on page 3-34.

The UDIQueryBreakpoint_13 call returns a subset of the information
returned byJDIQueryBreakpoint_14. Ranges are not supported. Only the
low 4 bits of Type are defined. Any information in the vendor-specific Buf
field of a 1.4 breakpoint cannot be returnedd@lQueryBreakpoint_13.

In actual practice it is unlikely that these mapping problems will arise since
they require a new DFE to set up breakpoints on a new TIP, then disconnect
(without terminating the TIP) and have an old DFE connect and query the
breakpoints on the TIP.

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIRead
Message
struct UDIReadRgMsg {

uDIUInt32 service_id;
UDIResource From;
uDIUInt32 Count;
uDIUINnt32 Size;
uDIUInt32 HostEndian;

}
struct UDIReadRespMsg {

UDIInt32 response_id;

uDIUInt32 CountDone;

UDIByteArray Buf; /* dimension = CountDone*Size */
uDIUInt32 err,

}
Description

The semantics of the parameters are described on page 3-36.
Notes:

If the HostEndiarflag is 1, the 29k data in thiéDIReadRespMsg.Bufust be

in big—endian format (keeping in mind that the size of each object in the buffer

is specified by th&JDIReadRespMsg.Sipamrameter). Note that in this case, at
the procedural interface this data is required to béostEnidanformat.

If the HostEndianflag is 0, the 29k data in théDIReadRespMsg.Bufiust be
in TargetEndiarformat. It is assumed that both the DFE and the TIP know the
endian type of the target. Note that in this case, the data in this buffer is
unmodified by the IPC for the procedural interface.

Universal Debugger Interface Specification 5-31

UDI IPC Methods for UNIX Hosts

UDISetBreakpoint

Message

struct UDISetBreakpoint_14_RqgMsg {
uDIUInt32 service_id;
UDIBreakinfo Breakinfo;

}
struct UDISetBreakpoint_14_RespMsg {

UDIInt32 response_id;
uDIUInt32 Breakld;
uDIUInt32 err;

}

The older format of this message is as follows:

struct UDISetBreakpoint_13_RqgMsg {

uDIUInt32 service_id;
UDIResource Addr;
UDIInt32 PassCount;
uDIUInt32 Type;

}

struct UDISetBreakpoint_13_RespMsg {
uDIInt32 response_id;
uDIUInt32 Breakld;
UDIUInt32 err;

}
Description

The semantics of the parameters are described on page 3-37.

The UDISetBreakpoint_13call allows setting breakpoints with a subset of the
information that is possible witDISetBreakpoint_14 Ranges are not
supported. Only the low 4 bits of Type are defined. The CountRemaining
must be initialized to the absolute value of the PassCount. No vendor-specific
Buf field is supported.

5-32 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDISetCurrentProcess

Message
struct UDISetCurrentProcessRqMsg {
uDIUInt32 service_id;
uDIUInt32 Pld;
struct UDISetCurrentProcessRespMsg {
UDIInt32 response_id;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-40.

Universal Debugger Interface Specification 5-33

UDI IPC Methods for UNIX Hosts

UDIStdinMode

Message
struct UDIStdinModeRgMsg {
uDIUInt32 service_id;
}
struct UDIStdinModeRespMsg {
UDIInt32 response_id;
UDIUINnt32 Mode;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-42.

5-34 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIStep
Message
struct UDIStepRqMsg {
uDIUInt32 service_id;
uDIUInt32 Steps;
uDIUInt32 StepType;
UDIRange Range;

struct UDIStepRespMsg {

UDIInt32 response_id;

UDIUInt32 err;
}

Description

The semantics of the parameters are described on page 3-43.

Universal Debugger Interface Specification

5-35

UDI IPC Methods for UNIX Hosts

UDIWait
Message
struct UDIWaitRgMsg {
uDIUInt32 service_id;
uDIUInt32 MaxTime;
}
struct UDIWaitRespMsg {
UDIInt32 response_id;
UDIUINnt32 Pld;
uDIUInt32 StopReason;
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-46.

5-36

Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIWrite
Message
struct UDIWriteRqMsg {
uDIUInt32 service_id;
UDIResource To;
uUDIUInt32 Count;
uDIUInt32 Size;
uDIUInt32 HostEndian;
UDIByteArray Buf; /* dimension = Count*Size */

}
struct UDIWriteRespMsg {

UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;

}
Description

The semantics of the parameters are described on page 3-50.

Notes:

If the HostEndianflag is 1, the 29K data in tHéDIWriteRqMsg.Bufnust be

in big—endian format (keeping in mind that the size of each object in the buffer
is specified by th&DIWriteRgMsg.Sizparameter). Note that in this case, at

the procedural interface this data is required to bdostEndianformat.

If the HostEndianflag is 0, the 29K data in tHéDIWriteRgMsg.Bumust be

in the same endian format as the target. It is assumed that both the DFE and
the TIP know the endian type of the target. Note that in this case, the data in
this buffer is unmodified by the IPC for the procedural interface.

Universal Debugger Interface Specification 5-37

UDI IPC Methods for UNIX Hosts

UDIDFE Messages

The messages on the following pages are requests from the TIP to the DFE.

All UDIDFExxxrequests can only be made by the TIP while it is in the middle
of servicing some UDI Request from the DFE (i.e., before it has returned the

UDI response). In addition, while the DFE is servicing the UDIRBE

request, it is possible for the DFE to make a new UDI request to the TIP. The
message traffic in this last case would be:

-->UDIxxxrequest

<-- UDIDFEyyyrequest
--> UDIzzzrequest

<-- UDlzzzresponse

--> UDIDFEyyyresponse

<-- UDIxxxresponse

UDIDFEENdTIPIO

Message

struct UDIDFEENdTIPIORgMsg {
uDIUInt32 service_id;

}

struct UDIDFEENdTIPIORespMsg {
UDIInt32 response_id;
uDIUInt32 err,

}
Description

The semantics of the parameters are described on page 3-52.

5-38 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIDFEEvalExpression

Message
struct UDIDFEEvalExpressionRgMsg {
uDIUInt32 service_id;
UDIString Expression;
UDIUINnt32 BufSize;
}
struct UDIDFEEvalExpressionRespMsg {
UDIInt32 response_id;
UDIInt KindofAnswer;
UDIResource AnswerResource;
uDIUInt32 CountDone;
UDIUINnt32 Size;
UDIUINnt32 Type;
UDIByteArray AnswerBuf; /* dimension = 0 when
* KindOfAnswer = Resource */
UDIUINnt32 Type;
UDIByteArray AnswerBuf; /* dimension = 0 when
* KindOfAnswer = Resource
* dimension = CountDone*Size
when
* KindOfAnswer = Value */
uDIUInt32 err;
}
Description
The semantics of the parameters are described on page 3-53.
Notes:

Although each response specifies KigdOfAnswey either an

AnswerResourcer anAnswerBufvith CountDone Size andType all
components are sent in the IPC message. Thus, the IPC software need not
inspect the value dfindOfAnswer

Any data inUDIDFEEvalExpressionRespMsg.AnswerBahsists of objects of
sizeUDIDFEEvalExpressionRespMsg.Sined is always in big—endian

format. Note that at the procedural interface this data is required to be in host—

endian format (i.e. the data is in host byte order).

Universal Debugger Interface Specification

5-39

UDI IPC Methods for UNIX Hosts

UDIDFEEvalResource

Message
struct UDIDFEEvalResourceRgqMsg {
uDIUInt32 service_id;
UDIResource ResourceToEval;
uDIUInt32 ExactEval,
uDIUInt32 BufSize;
}
struct UDIDFEEvalExpressionRespMsg {
UDIInt32 response_id;
UDIString SymbolAnswer;
UDIUInt32 err;
}
Description

The semantics of the parameters are described on page 3-55.

UDIDFEGetInput

Message
struct UDIDFEGetIinputRgMsg {
uDIUInt32 service_id;
UDIUINnt32 I0Type;
UDIUINnt32 BufSize;
UDIUINnt32 Mode;
}
struct UDIDFEGetInputRespMsg {
UDIInt32 response_id;
uDIUInt32 CountDone;
UDIByteArray Buf; /* dimension = CountDone */
uDIUInt32 err,
}
Description

The semantics of the parameters are described on page 3-56.

5-40 Universal Debugger Interface Specification

UDI IPC Methods for UNIX Hosts

UDIDFEPutOutput

Message
struct UDIDFEPutOutputRgMsg {
uDIUInt32 service_id;
uDIUInt32 I0Type;
uDIUInt32 Count;
UDIByteArray Buf;
}
struct UDIDFEPutOutputRespMsg {
UDIInt32 response_id;
UDIUInt32 CountDone;
UDIUInt32 err;
}
Description

/* dimension = Count */

The semantics of the parameters are described on page 3-58.

Universal Debugger Interface Specification

5-41

Chapter 6 ‘

UDI Developer’s Toolkit

The UDI Developer’s Toolkit provides source files, executables, and
documentation that enables software tools developers for the 29K Family to
develop and debug UDI-compliant DFEs or TIPs without having to be
concerned with the details of the IPC methods. We assume that those using the
toolkit are familiar with the general issues of developing debugger tools for the
29K Family and, in particular, are familiar with the UDI procedural interface,
which is defined in Chapters 2 and 3 of this specification. Knowledge of the

IPC methods in Chapters 4 and 5 is not required to use the UDI Developer’s
Toolkit.

This chapter describes the various pieces of the UDI Developer’s Toolkit, with
special emphasis on the sample IPC source code and its structure. The
limitations of this sample IPC source code are described, as well as how to use
the sample IPC source code in your own DFE or TIP. Finally, there is a
discussion on how to use the utilities that are included with the toolkit, which
can aid in the development of your DFE or TIP.

The UDI Developer’s Toolkit consists of:
® The UDI Specification

® Sample IPC source code for:
* UNIX Socket IPC method for big—endian DFEs and TIPs
* DOS IPC method for real-mode DFEs and TIPs
* DOS IPC method for protected—mode DFEs and TIPs

®* The executables, source, makefile, and man pages for two UDI
development tools: a TIP tester and a UDI trace utility.

® The complete source, makefiles, and executables for AMD’s
MiniMON29K product. The MiniMON29K product includes a UDI-
compliant DFE and TIP so the source for these may be useful to other
DFE and TIP developers.

Universal Debugger Interface Specification 6-1

UDI Developer’s Toolkit

® The executables fasstip. This is an instruction set simulator-based TIP
normally distributed with AMD’s High € 29Kt product. Since it is self-
contained and does not require actual target hardware, it may be a
convenient test TIP to connect to for DFE developers. Note that the source
for isstip is not provided.

The UDI Procedural Interface and the Sample IPC Code

The most important part of the toolkit to UDI developers is the sample IPC
source code. This sample IPC source code maps the UDI procedural interface
(as defined in Chapters 2 and 3) to one of the two defined IPC methods: the
DOS IPC method and the UNIX socket IPC method.

This chapter assumes that the DFE or TIP developer will write code using the
UDI procedural interface and will then link with the sample IPC source code
supplied in the toolkit. The advantages of this approach are:

® The procedural interface provides a host—independent interface to UDI.

® For testing and debugging purposes, developers can link a DFE and TIP
together into one executable if both use the UDI procedural interface.

®* Developers can save time by using the existing IPC implementation code
provided in this toolkit since they will not have to be concerned with IPC
details.

We refer to the IPC code in this toolkit as “sample” IPC code because the use

of this code is in no way required to meet UDI interoperability. Developers

could always write their own IPC code and even define a different procedural
interface and it would be interoperable as long as it meets the IPC

specifications described in Chapters 4 and 5 and the semantics described in
Chapters 2 and 3. However, the sample IPC source code should meet the needs
of most developers. The limitations of the sample IPC source code are
described in the next section.

Limitations of the Sample IPC Code

The sample IPC source code has been built and tested in the following host
development environments:

® UNIX socket IPC code
e SunOS 4.1.x bundled C compiler

6-2 Universal Debugger Interface Specification

UDI Developer’s Toolkit
* HP/UX bundled C compiler

®* DOS IPC code, real-mode DFEs and TIPs
* Microsoft C 7.0

® DOS IPC code, protected—mode DFEs and TIPs

» MetaWare High € 386 3.1 compiler plus Phar Lap 4.0 linker,
assembler, and DOS extender

* Watcom 386 9.x compiler and linker plus Phar Lap 4.0 assembler and
DOS extender

NOTE: The DOS IPC code for protected—-mode DFEs and TIPs is dependent
on the Phar Lap DOS extender.

If you plan to use a different host development environment and you find that
modifications to the IPC source code are necessary to get it to build in that
environment, please send e-mail to udi@amd.com and any such changes can
be folded into the next version of the sources.

The sample IPC source code also has some limitations based on making some
simplifying assumptions about the DFE or TIP:

® The UNIX socket IPC source code assumes that the host is big—endian. If
you want to use this code on a little—endian host, you will have to swap
the endian type of the appropriate fields when building the IPC messages.
See the discussion in Chapter 5 on the endianness of fields in socket IPC
messages.

¢ Although the IPC methods allow multiple TIPs per DFE and multiple
DFEs per TIP, both the UNIX socket IPC source code and the DOS IPC
source code assume that a DFE connects to, at most, one TIP and that a
TIP gets connected to, at most, one DFE. On DOS IPC, the sender of a
message always includes the propamnection_idn the message but the
receiver of a message does not checlctimnection_idOn UNIX IPC,
messages are always sent on the correct socket but DFEs and TIPs only
listen on a single socket when listening for replies. Thus, DFEs and TIPs
built with the sample IPC code should interoperate properly with TIPs and
DFEs that do support multiple connections.

Universal Debugger Interface Specification 6-3

UDI Developer’s Toolkit

® When built with the DOS IPC source code, both the real-mode DFEs and
TIPs and protected—mode DFEs and TIPs will interoperate in all four
combinations. This is true for both plain MS—DOS and in a DOS window
initiated from within Microsoft Windowts. However, a limitation of
DPMI 0.90 (which is the protected mode interface implemented by
Microsoft Windows) allows, at most, one DOS extender in a DOS window
initiated from within Microsoft Windows. The sample code has a special
work—around for this limitation if both the protected—mode DFE and
protected—mode TIP are built with the Phar Lap DOS extender. We do not
know of a solution when the protected—mode DFE and protected—mode
TIP are built with two different DOS extenders.

®* The DOS IPC code cannot be used to build DFEs and TIPs that are true
Microsoft Windows applications.

Directory Structure of the Toolkit
src/udi
This directory contains the sample IPC source code for both the DOS IPC
method and the UNIX socket IPC method. These incladiees, .h files, and a
few .asmfiles (for the DOS IPC method). Developers building their own DFE
or TIP would link with thesedi files. See below for more detail on these files.
src/uditools
These are the source files used to build the TIP tasdéeét) and the UDI
trace utility (ditrace). Developers building their own DFE or TIP would not
link with these files, but may wish to use them for testing and debugging.
src/minimon
The directory structure of the MiniMONZ29K source tree is described in the

MiniMON29K documentation. The discussion below describes only those
parts of the tree which are relevant to UDI development.

6-4 Universal Debugger Interface Specification

UDI Developer’s Toolkit

src/minimon/host
MiniMON29K consists of target code and host code. Here we are concerned
only with the host code. The host code builds two executahtaslfe and
montip. Themondfe executable provides a monitor—level user interface and
generates UDI requests. T®ntip executable basically takes UDI requests

and maps them to MiniMON29K target messages and sends them to the target.
The montip—to—target communication is not defined by UDI.

src/minimon/host/dfe

This directory contains the source files for buildmgndfe. Note that all UDI
calls are made in the single modutani2udi.c.

src/minimon/host/tip

These are the source files for buildimgntip. In montip, all UDI calls are
implemented in the single modulg]i2mtip.c.

src/minimon/host/include

This directory contains the generalfiles used bynmondfe andmontip. These
.h files are independent of UDI.

bin_host
These are the executables fioondfe, montip, isstip, uditest, anduditrace.
There is ain directory for bottrsun4 andpc.
lib
This directory contains the support files used by the above executables.
man
These are the man pages fieondfe, montip, isstip, uditest, anduditrace.
Theudi(5) man page, which describes the format of the TIP configuration file,
is also included.
doc

This directory contains the UDI Specification (in Postscript format).

Universal Debugger Interface Specification 6-5

UDI Developer’s Toolkit

The Sample IPC Sources in src/udi

This section describes the individual files in tik directory. Thesrc/udi

directory contains the include files that TIPs and DFEs use to define the UDI
procedural interface, and it also includes the IPC implementation code for the
two hosts, UNIX and DOS. Note that because the IPC mechanism under UDI
is host—specific, many of the files in this directory are host—specific. In
addition, some IPC files are used only with DFEs and others are used only
with TIPs. The makefiles iarc/minimon/host show howmondfe andmontip

make use of the various files in théi directory. The makefiles in

src/uditools also show how thedi files are used.

Files Common to all Hosts

udiproc.h
Defines the procedural interface for all of the UDI functions and defines all of
the UDI data types. Thadiproc.h file is the only include file that a DFE or
TIP needs to include. Theliproc.h file is actually independent of the host
and target architecture. The host—specific and target architecture—specific
features are broken out into the subsidiary include files listed below. In the
current implementation, two host types exist (UNIX and DOS) and one target
architecture (29K).

udiphcfg.h
Included byudiproc.h. Includes eitheudiphdos.h or udiphsun.h.

udiptcfg.h
Included byudiproc.h. For now, always includasdipt29k.h.

udipt29k.h
Defines UDI data types specific to the 29K Family architecture.

udiids.h
Is optional and can be included by your DFE or TIP to help build the ID codes
that are sent in theDICapabilities call. Theudiids.h file is described in
more detail below.

6-6 Universal Debugger Interface Specification

UDI Developer’s Toolkit

udimapdf.c, udimapdf.h
This file is specific to DFEs. It is used for UDI services where the procedural
interface has changed between UDI versions (for example, UDISetBreakpoint
between 1.3 and 1.4). This file contains routines that map the newer versions
of calls to the older versions of calls (or returns an error if mapping is not
possible). This is needed when a newer DFE connects to an older TIP but still
wants to be able to use the newer procedural interface.

udimaptp.c
This file is specific to TIPs and its use is optional. It is used for UDI services
where the procedural interface has changed between UDI versions (for
example, UDISetBreakpoint between 1.3 and 1.4). This file contains entry
points for the older versions of such calls and maps them to the newer versions
of the calls (or returns an error if mapping is not possible). The TIP procedural
interface writer must provide implementations of the newer versions of the

calls but can optionally either link with this file to get the older services or can
write his own implementations of the older services.

Files Specific to DOS Hosts

udiphdos.h

Included byudiproc.h. Defines UDI data type sizes for DOS hosts.
udip2dos.c, dosdfe.asm

IPC code used by DFEs on all DOS hosts, both real and protected.
dos2udip.c, dostip.asm

IPC code used by TIPs on all DOS hosts, both real and protected.
udidos.h, udidos.ah

Include files used by IPC code on all DOS hosts, both real and protected.
d386cmnc.c, d386cmna.asm, realcopy.c

Additional IPC code used only by protected—mode (DOS386) DFEs and TIPs
but common to both DFEs and TIPs.

Universal Debugger Interface Specification 6-7

UDI Developer’s Toolkit
d386cmnc.h, d386cmna.ah

Include files used by IPC code for protected—mode (DOS386) DFEs and TIPs
but common to both DFEs and TIPs.

d386dfe.c, d386dfe.h

Additional IPC code used only by protected—mode (DOS386) DFEs.

The following summarizes the source files used by various DOS TIPs and

DFEs:

Real-mode DFEs udip2dos.c, dosdfe.asm, udimapdf.c

Real-mode TIPs dos2udip.c, dostip.asm,
udimaptp.c (optional)

Protected—mode DFEs udip2dos.c, dosdfe.asm, d386cmnc.c,
d386cmna.asm, realcopy.c, d386dfe.c,
udimapdf.c

Protected—mode TIPs dos2udip.c, dostip.asm, d386cmnc.c,

d386cmna.asm, realcopy.c
udimaptp.c (optional)

Files Specific to UNIX Hosts

udip2soc.c

IPC code for DFEs for UNIX hosts. Opens a socket to the TIP, builds

messages which are then sent over that socket, and waits for response
messages on the socket. If, instead of a response, a UDIDFE request is
received, dispatches the routine, sends the response back to the TIP, and waits
for the response to the original UDI call.

soc2udip.c

IPC code for TIPs for UNIX hosts. Listens on a socket for messages from the
DFE and sends response messages back to the DFE. If the TIP makes a
UDIDFE call to the DFE in the process of handling a UDI call, the TIP sends it
to the DFE and waits for a response.

6-8 Universal Debugger Interface Specification

UDI Developer’s Toolkit
udr.c

IPC code used for both DFEs and TIPs on UNIX hosts. Contains routines for
marshalling and unmarshalling various data types in the socket messages.

udisoc.h
Include file used by IPC layer on UNIX hosts.
udiphsun.h

Included byudiproc.h. Defines UDI data type sizes for Sun hosts.

The following summarizes the source files used by various UNIX TIPs and

DFEs:
UNIX DFEs udip2soc.c, udr.c, udimapdf.c
UNIX TIPs soc2udip.c, udr.c, udimaptp.c (optional)

Product and Company Codes Used by UDICapabilities

AMD DFEs and TIPs use thsrc/mimimon/host/udi/udiids.hfile to generate
the company, product, and version codes us&fDiIfCapabilities. Listed
below are the recommendations for the various fields used in the
UDICapabilities calls:

Company Code in TIPId, DFEId, and Targetid

AMD will act as the central source of UDI company codes. Contact AMD via
e—mail at udi@amd.com for your code (or codes if you need more than one).

Product Codes in TIPId, DFEId, and Targetid

Assigned by you.

Version Codes in TIPId, DFEId, and Targetld

Assigned by you.

Universal Debugger Interface Specification 6-9

UDI Developer’s Toolkit
DFE and TIP Parameters

Only the version numbers are significant in these parameters. These are UDI
version numbers that the DFE or TIP can handle. The UDI specification
describes how the TIP should inspect the input param2fdt, and supply the
output parameteffIP. If your DFE or TIP is building with the current toolkit,
your version parameter should remain at 0x140 (UDI 1.4.0). This is the
UDILatestVersiordefinition inudiids.h.

DFEIPCId and TIPIPCId Parameters

These consist of the normal company, product, and version fields. These are
filled in by the IPC layers, and, in this toolkit, are defined in the IPC source
files: udip2dos.¢ dos2udip.¢ udip2soc.¢ andsoc2udip.c If you use the IPC
sources from this toolkit unchanged, the IPClds should be left unchanged as
well. If you modify the IPC sources before you use them, please change the
company code to your company’s code, and change the IPCld version number
and IPCId product codes for your own tracking purposes.

Notes for DFE Developers

6-10

As of UDI 1.3, a DFE is both a UDI client (making UDI calls) and a UDI
server (implementing UDIDFE calls).

As a UDI client, a DFE may use whatever subset of the UDI services that it
requires. Be aware that TIPs are not required to implement all of the UDI
services, so a DFE should be written to be reasonably workable with a
minimum TIP. See page 3-1 for a discussion of which UDI services a TIP is
required to implement.

You will also find a list of which UDIDFE services a DFE is required to
implement on page 3-1.

To make the TIP implementations somewhat simpler, there are some
requirements made on the sequencing of UDI calls by the DFE. These are
discussed elsewhere in this specification, but we list them here as a reminder:

* After callingUDIGetErrorMessage, the DFE must continue calling it
until Countdones less thaMsgSize

® After calling UDIGetStdout or UDIGetStderr, the DFE must continue

calling it until Countdonas less thaBufSize unless the DFE calls
UDIStop.

Universal Debugger Interface Specification

UDI Developer’s Toolkit

®* The DFE must calUDIWait to ensure that execution actually takes place.
This is true not only aftddDIExecute andUDIStep but also after
UDIGetStdout or UDIGetStderr. On some TIPs, execution may actually
start before the call toDIWait, but it is not required to.

®* The DFE must calUDIWait afterUDIStop to ensure that execution has
really stopped.

The toolkit does not contain a test program that tests a DFE for UDI
compliance. You can, however, use isip (an Instruction Set Simulator

TIP which ships with AMD’s High C 29K product) to test your DFE’s
behavior.isstip is easy to use because it is self—contained and requires no real
target hardware. For further testing, the TIP from the MiniMON29K product,
montip can be ordered from AMD.

If your DFE does not behave as expected when connected to any TIP, the
uditrace tool can be used to show all the UDI and UDIDFE calls going back
and forth between the DFE and the TIP. Th#race tool can also be useful

in pointing out inefficiencies, for example, a DFE that uses a separate UDI call
to read each register. See thtbtrace(1) man page for instructions on how to
useuditrace.

Notes for TIP Developers

As of UDI 1.3, a TIP is both a UDI server (implementing UDI calls) and a UDI
client (making UDIDFE calls).

See page 3-1for a discussion of which of the UDI services a TIP is required to
implement.

Theuditest tool can be used as a DFE to test your TIP. Seeditest(1) man
page for a description of how to ruditest. Theuditest tool is mostly silent
unless it encounters an errorutfitest does report an error and the error
message does not fully explain the error, you should probably usditrece
tool (placinguditrace betweeruditest and your TIP) to show exactly what
UDI call caused the problem. Thieitrace tool can be used to diagnose the
traffic between any DFE and your TIP. Seeuldédrace(1) man page for
instructions on usingditrace.

The source code farditest is also provided and can be used to more fully
understand the action that caused the error. If you have suggestions for further
tests that should be addeduditest.c, please send those suggestions via e—

mail to udi@amd.com.

Universal Debugger Interface Specification 6-11

UDI Developer’s Toolkit

Notes for DOS Development

You can use the UDI Toolkit to develop both real-mode and protected—mode
DFEs and TIPs for PC hosts.

Real-Mode DFEs and TIPs

The targetsdosdfe/smalldfe.exeanddostip/smalltip.exe under
src/uditools/makefile.pccan be used as templates for real-mode DFE and TIP
development on PC hosts. Further examples are availablenmrtmeon tree

in thesrc/minimon/host/makepc.batfile.

All the sources provided in this toolkit have been compiled on DOS using the
Microsoft C 7.0 compiler.

The memory model of the DFE is not critical since the IPC code will force far
calls with far pointer parameters to the TIP. The DFE stack is used for the
duration of a UDI call so you may want to increase the DFE stack size.

The memory model of the TIP must be large model. Also, because the TIP
procedures are basically called using the DFE’s stack pointer, the model flags
Alfu (DS loaded on procedure entry; DS != SS) must be used.

The TIP’s stack should be as small as possible (it is not used once the TIP
becomes resident). Note also the use of the /CP:1 parameter in the link
command line fomontip. This greatly reduces the footprint of the TIP.

When the DFE disconnects from the TIP with thHelTerminateSession

parameter, you should find that the TIP has been removed from memory by the
IPC layer. If it has not been removed, either the DFE did not call disconnect or
the TIP returned an error &DIDisconnect

Protected—Mode DFEs and TIPs

The toolkit can also be used to build 386 protected—mode DFEs and TIPs.
Real-mode and protected—mode DFEs and TIPs all use the same real-mode
DOS IPC method and so all combinations can intercommunicate. In addition,
both the real-mode and the protected— mode DFEs and TIPs can work in a
DOS window initiated from within Microsoft Windows 3.0 or later.

6-12 Universal Debugger Interface Specification

UDI Developer’s Toolkit

The targetsgdos386/smalldfe.exanddos386/smalltip.exeunder
src/uditools/makefile.pccan be used as templates for protected—-mode DFE
and TIP development on PC hosts. The support assumes the use of the
MetaWare High C 386 (or Watcom compiler) and Phar Lap DOS extender.
Theisstip.exeexecutable (which requires access to large amounts of memory
at runtime to simulate 29K memory) has, in fact, been built using this method.

To build a 386 protected—mode TIP:

® Compile your own TIP code with the MetaWare High C 386 compiler.

® Similarly compiledos2udip.¢ d386cmn.¢ andrealcopy.cwith the
MetaWare High C 386 ompiler, including:

DMSDOS -DDOS386

on the command line.

®* Assembladostip.asmandd386cmna.asmwith the Phar Lap 386
assembler with the command line:

386asm -DDOS386 xxx.asm
Link all the aboveobjs using the Phar Lap 386 linker command file shown in
src/uditools/makefile.pc You should assume that all the linker directives
shown in that example are important. It is also required that the sections
defined in theasmfiles, dostip.asm andd386cmna.asmappear in the first

64 K of the final link. This can be done by placing thexgs first in the link
order.

To build a 386 protected—mode DFE:

® Compile your own DFE code with the MetaWare High C compiler.

® Similarly compileudip2dos.¢ d386dfe.¢ d386cmn.¢ andrealcopy.c
with the MetaWare High C compiler, including:

DMSDOS -DDOS386

on the command line.

®* Assembladosdfe.asmandd386cmna.asnmwith the Phar Lap 386
assembler with the command line:

386asm -DDOS386 xxx.asm

Universal Debugger Interface Specification 6-13

UDI Developer’s Toolkit

Link all the aboveobjs using the Phar Lap 386 linker command file shown in
src/uditools/makefile.pc You should assume that all the linker directives
shown in that example are important. It is also required that the sections
defined in theasmfiles, dosdfe.asmandd386cmna.asmappear in the first
64K of the final link. This can be done by placing thexss first in the link
order.

Notes for UNIX Development

6-14

The makefiles fosmalldfe andsmalltip undersrc/uditools can be used as
templates for DFE and TIP development on UNIX hosts. Further examples are
available as the targetrsondfe andmontip in src/minimon/host/makefile

Also note that the target “minimon” Brc/minimon/host/makefileis an

example of the DFE and TIP code linked together to form a single executable
(for example, for testing purposes).

All the sources in this toolkit have been compiled using the bundled cc
compiler from SunOS 4.1. or from HP/UX version 9.01.

When the DFE disconnects from the TIP with the parameter,
UDITerminateSession you should find that the TIP process has been killed
and the socket file has been deleted. If this does not happen, either the DFE
did not call disconnect or the TIP returned an errodbtDisconnect Also,

if the TIP remains alive and the socket file has not been deleted, then an
attempt to connect to that TIP configuration again will usually hang. In such a
case, kill the TIP and manually delete the socket file to recover.

Universal Debugger Interface Specification

Appendix A

&

UDI Error Numbers

In general, each service accepts a number of parameters and returns a UDI
error code. UDI error codes other than the valéNoError (which has the

value 0) indicate an error has occurred. If the error code is negative, it is a
TIP—specific error that is not documented as a UDI error in general. Such error
codes can be passeddbIGetErrorMessage() to retrieve a textual
representation of the error. Positive UDI error codes are defined here.

Number Error Name

Description

0 UDINoError

1 UDIErrorNoSuchConfiguration
2 UDIErrorCantHappen

3 UDIErrorCantConnect

4 UDIErrorNoSuchConnection

5 UDIErrorNoConnection

Universal Debugger Interface Specification

No errors have occurred.

Indicates that the requested configuration is
not present in the configuration file. Returned
only fromUDIConnect().

Indicates the existence of some condition
internal to the IPC Layer that, theoretically,
can't happen. This error should never occur.

The IPC Layer is incapable of supporting the
connection. This may occur, for example, if
the IPC Layer imposes a limit on the number
of concurrent connections that can be
supported and the limit has been reached.
This error is returned only when a IPC—
imposed limitation is reached.

Indicates that the Session parameter is
invalid. It can be returned only from functions
that accept a Session parameter.

Is returned from functions that require a pre—
established connection (virtually all UDI
functions), if no connection is currently
established. This error, then, can occur only
before dJDIConnect call, or after a
UDIDisconnectthat has closed the current
connection.

A-1

UDI Developer’s Toolkit

6

10

11

12

13

A-2

UDIErrorCantOpenConfigFile

UDIErrorCantStartTIP

UDIErrorConnectionUnavailable

UDIErrorTryAnotherTIP

UDIErrorExecutableNotTIP

UDIErrorinvalidTIPOption

UDIErrorCantDisconnect

UDIErrorUnknownError

The IPC Layer associates a configuration
name (the first parameter tiDIConnect)

with a TIP and its parameters by means of a
configuration file. The IPC Layer was unable
to open the file. This error can occur only
during aUDIConnect call.

The host operating system has failed to start
the TIP at the IPC Layer’s request. The reason
the OS failed is not indicated. Generally, the
OS fails because of resource limitations or a
failure to find the TIP’s executable file
executable. This error can occur only during a
UDIConnect call.

This error is returned from a TIP that should
connect, but cannot because the requested
target is already in use. It is returned only by
UDIConnect.

Returned by a TIP in response to a
UDIConnect request if the TIP cannot service
the UDIConnect, but does not know whether
another running TIP is able to service it. This
error should never be seen by the DFE.

The executable file identified in the
configuration file entry for the requested
configuration is not a TIP. This error can
occur only during &DIConnect call.

The configuration passed td#IConnect

call has options identified in the configuration
file that the associated TIP finds invalid. This
can be simply an unrecognized option or a
combination of options that is inconsistent,
for example requesting a simulation of the
Am29000 and the Am29050 simultaneously.

Indicates that the TIP is incapable of
disconnecting at this time; for example, the
TIP is temporarily unable to notify other
processes of the disconnection. The error can
occur only during UDIDisconnect calls.

Is returned fromUDIGetErrorMsg if the

Universal Debugger Interface Specification

14 UDIErrorCantCreateProcess

15 UDIErrorNoSuchProcess

16 UDIErrorUnknownResourceSpace
17 UDIErrorinvalidResource

18 UDIErrorUnsupportedStepType
19 UDIErrorCantSetBreakpoint

20 UDIErrorTooManyBreakpoints

21 UDIErrorinvalidBreakld

22 UDIErrorNoMoreBreaklds

23 UDIErrorUnsupportedService

Universal Debugger Interface Specification

UDI Developer’s Toolkit
passed—in error code is unknown.

Indicates a problem honoring a
UDICreateProcessrequest.

If a call is made to a UDI function expecting a
Pld, but the passed PId is not valid,
UDIErrorNoSuchProcessis returned.

Any UDI function expecting &DIResource
can return this error if the resource’s Space
member is not known to the callee.

TIPs may enforce restrictions on valid offsets
within resource spaces. This error is returned
by such a TIP if an offset is invalid within the
associated space. Any UDI function expecting
aUDIResourcecan return this error.

A TIP that does not support a StepType
requested in BDIStep request returns this
error.

A TIP that cannot honor a
UDISetBreakpoint request returns this error.
The error can be caused by resource
limitations at the TIP, the inability to set
certain types of breakpoints, or an invalid
parameter.

UDISetBreakpoint returns this error if the
breakpoint cannot be set because a limit on
the number of breakpoints the TIP supports
has been reached.

Functions expecting a Breakld return this
error if the passed Breakld is invalid.

UDIQueryBreakpoint returns this error code
instead olUDIErrorinvalidBreakld if the
Breakld queried is not only invalid, but also
greater than any valid Breakld.

Since not all UDI functions must be
implemented in each TIP and not all UDIDFE
functions must be implemented in each DFE,
a request to perform an unsupported service
draws this error if the callee is incapable of

A-3

UDI Developer’s Toolkit

24

25

26

27

28

A-4

UDIErrorTryAgain

UDIErrorIPCLimitation

UDIErrorincomplete

UDIErrorAborted

UDIErrorTransDone

the requested service.

This error code is returned when a temporary
condition prevents honoring a request. If the
same condition persists for more than five
attempts, the TIP assumes the condition is not
temporary and returns a different error
indication.

Some IPCs impose limitations of their own.

For example, early socket IPC
implementations did not support read or write
requests greater than a specific size. When the
IPC imposes a limitation that a request
exceeds, the IPC returns this error.

If a data movement operation requested by the
DFE cannot be completely satisfied, the TIP
returnsUDIErrorincomplete . Each call

where this error is possible supports a
CountDone parameter that provides the DFE
with information about how much of the
request was completed.

If a data movement operation requested by the
DFE is aborted by the DFE (by calling
UDIStop), the TIP returns

UDIErrorAborted . Each call where this

error is possible supports a CountDone
parameter that provides the DFE with
information about how much of the request
was completed.

WhenUDIGetTrans is called, if the TIP is in
a position to allow the DFE to resume normal
UDI operations, the TIP returns
UDIErrorTransDone . The DFE can either
leave transparent mode by calling any other
UDI service or it can remain in transparent
mode by calling eitheDIGetTrans or
UDIPutTrans. The TIP continues to return
UDIErrorTransDone in response to
UDIGetTrans calls subsequent to any one
that returnedJDIErrorTransDone if no

other UDI service has been called.

Universal Debugger Interface Specification

29 UDIErrorCantAccept

30 UDIErrorTransinputNeeded

31 UDIErrorTransModeX

32 UDIErrorinvalidSize

33 UDIErrorBadConfigFileEntry

34 UDIErrorIPCinternal

35 UDIErrorUnsupportedService
Variation

36 UDIErrorResourceNotWriteable

37 UDIErrorCouldNotEvaluate

38 UDIErrorNoExactEval

39 UDIErrorBufTooSmall

Universal Debugger Interface Specification

UDI Developer’s Toolkit

UDIPutStdin andUDIPutTrans returns
UDICantAccept if the TIP cannot accept
more data from the DFE. The data sent with
the UDIPutStdin andUDIPutTrans requests
that received the error can be complete,
partially complete, or ignored. The
CountDone parameter indicates exactly how
much data was taken.

Returned byJDIGetTrans when the TIP
requires transparent mode input from the
DFE.

Returned byJDIGetTrans when the TIP
requests a change of terminal operating mode.

Returned byJDIRead, UDIWrite ,

UDICopy, andUDIFind if the TIP is unable
to perform the requested operation because
the object size does not correlate with the
resource specified.

Returned byDIConnect when the
configuration file line for the requested
configuration is incorrect.

Returned by any call if the IPC Layer detects
an internal error during an operation other
thanUDIConnect.

Indicates that a service is supported but the
particular variation of that service being
requested is not supported.

Some resource spaces are read—only. TIPs
may return this error from any request that
tries to write into a read—only resource (e.qg.,
UDIWrite or UDICopy).

Returned byyDIDFEEvalExpressionif the
supplied expression could not be evaluated.

Returned byyDIDFEEvalResourceif
ExactEval was true but the resource did not
match any symbol exactly.

Returned byyDIDFEEvalResourceif the

A-5

UDI Developer’s Toolkit

40

41

42

43

44

45

46

UDIErrorEvaluatedToValue

UDIErrorEvaluatedToResource

UDIErrorResetAsserted

UDIErrorNoPower

UDIErrorNoClock

UDIErrorTargetNotResponding

UDIErrorTargetAlreadyRunning

resource could be evaluated but the buffer
supplied by the TIP was not large enough to
hold the string.

Returned byJDIDFEEvalExpressionif the
supplied expression evaluated to a Value but
AnswerBuf was a NULL pointer.

Returned byJDIDFEEvalExpressionif the
supplied expression evaluated to a Resource
(address) but AnswerResource was a NULL
pointer.

The TIP could not satisfy the request because
Reset was asserted on the target.

The TIP could not satisfy the request because
the target had no power.

The TIP could not satisfy the request because
the target had no clock.

The TIP could not satisfy the request because
the target was not responding.

The TIP could not satisfy the request because
it was already running.

A-6

Universal Debugger Interface Specification

Appendix B ‘

UDI Configuration Files

A UDI-conformant debugger front end (DFE) specifies the target interface
process (TIP) to connect to, and the options to pass to that TIP, by referencing
a configuration in the UDI configuration file. This appendix explains the

format of the UDI configuration files for MS—DOS and UNIX hosts.

UDI Configuration Files for MS—DOS Hosts

The DFE searches in the following order to locate the UDI configuration file:

The complete filename specified by the environment varialidCONF .
Theudiconfs.txt file in the current directory.
Theudiconfs.txt file in the directory where the DFE is located.

Theudiconfs.txt file in each of the directories specified by BwTH
environment variable.

Each line of theudiconfs.txt file consists of the following fields:

tip_config_name tip_executable [tip_options]

where:

tip_config_name
Is an arbitrary name which the DFE will use to refer to this
configuration. Each line in thediconfs.txt file must have a
uniquetip_config_namdield.

tip_executable
Is the name of the TIP executable file. The DFE will use the
tip_executabldilename to create the TIP if the TIP is not already
running. If a full pathname is not specified, haTH
environment variable is used to locate the executable file.

Universal Debugger Interface Specification B-1

UDI Developer’s Toolkit

Example

tip_options
Are the options for the TIP being used. The rest of the line after
thetip_executabl@mame is passed to the TIP at connect time.

The following is an example of an entry in the UDI configuration file for MS—
DOS hosts.

ser38400 montip -t serial -baud 38400

In the above exampleer38400is the name chosen to refer to the
configuration. Use this configuration name whenever invoking this
configuration from a DFE. The user could have chosen any name for this
configuration.

The TIP executable imontip. The user's?ATH variable will be searched to
find themontip executable.

The options “-t serial -baud 38400” are passechomtip when it is invoked.

UDI Configuration Files for UNIX Hosts

B-2

The DFE searches in the following order to locate the UDI configuration file:

The complete filename specified by the environment varialidCONF .
Theudi_socfile in the current directory.
Theudi_socfile in the directory where the DFE is located.

Theudi_socfile in each of the directories specified by ##&TH environment
variable.

A line of udi_soccan have two different formats depending on whether the
address family i\F_UNIX or AF_INET. The two formats are as follows:

tip_config_name AF_UNIX socket_name tip_executable [tip_options]

tip_config_name AF_INET host_name port_number [tip_options]

Universal Debugger Interface Specification

UDI Developer’s Toolkit

where:

tip_config_name
Is an arbitrary name which the DFE will use to refer to this
configuration. Each line in the UDI configuration file must have
a differenttip_config_namdield.

AF_UNIX This address family should be used when the DFE and TIP are
running on the same host. This is the typical case.

AF_INET This address family should be used when the DFE and TIP are
running on different hosts.

socket_name
Used only with AF_UNIX configurations. Specifies the socket
filename that will be used to communicate between the DFE and
TIP. The special socket name * indicates that a unique socket
filename should be generated automatically by the IPC layer.
This is useful if the user wants to have multiple DFEs connecting
to the same configuration name. If gecket_nameés specified
explicitly, be aware that if any two AF_UNIX TIP configurations
are being used simultaneously, they must have unique
socket_nameg$-or DFEs that want to disconnect from a TIP and
then reconnect to that same TIP at some later time, an explicit
socket_nameés required.

tip_executable
Used only with AF_UNIX configurations. The DFE will use the
tip_executabldilename to spawn the TIP if the TIP is not already
running and listening at the indicatedcket_namdf a full
pathname is not specified, tRATH environment variable is
used to locate the executable file. Note that when the
socket_names*, a new TIP executable is always created.

host_name Used only with AF_INETconfigurations. This specifies the name
of the host where the TIP is running.

port_number
Used only with AF_INET configurations. This specifies the
port_numberat which the TIP on the remote host is listening.
Note that in an AF_INET configuration, the TIP cannot be
created by the DFE and must already be running at the time of
the connection. The TIP on the remote host should be started with
a command line of:

Universal Debugger Interface Specification B-3

UDI Developer’s Toolkit

tip_executable_name AF_INET port_number

tip_options Valid with both AF_UNIX and AF_INET configurations. This
optional string of parameters is passed through to the TIP at
connect time and is usually interpreted by the TIP as a set of
startup parameters.

The following are examples of entries in the UDI Configuration file on UNIX
hosts.

Example
ser38400 AF_UNIX * montip -t serial -baud 38400

In the above exampleer38400is the name chosen to refer to the
configuration. Use this configuration name whenever invoking this
configuration from a DFE. The user could have chosen any name for this
configuration.

AF_UNIX is the address family for the socket used to communicate between
the DFE and the TIP. ThHeindicates that a unique socket name will be chosen
for this connection. See the UDI man page for more information on address
family and socket name options.

The TIP executable montip (the TIP shipped with AMD’s MiniMON29K
product). The user'BATH variable will be searched to find theontip
executable.

The options “-t serial -baud 38400” are passechémtip when it is invoked.

Example
iss50_remote AF_INET fasthost 7000 -29050 -r osboot

The above entry assumes that some TIP is already running on the host named
fasthostand listening at port 7000. For exampéstip could have been started
onfasthostwith the command line:

isstip AF_INET 7000

The parameters “-29050 -r osboot” will be passed to the remote TIP at connect
time.

B-4 Universal Debugger Interface Specification

Appendix C ‘

29K Family UDI Resource Spaces

This appendix describes the resource spaces that are predefined when UDI is
applied to targets using the AMD 29K Family of microprocessors. These
definitions are used in tigpacefield of anyUDIResource(for example, the

To parameter itJDIWrite , theFrom parameter itJDIRead, etc.). Each

space is defined along with the meaning of the offsets within the space. In the
sample IPC sources from AMD, these spaces are defined udifit29k.h

file.

Remember also that negative value&JBfiResource.Spacean be used for
vendor—specific definitions for resources that are not covered by these
predefined resource spaces.

#define UDI29KDRAMSpace 0

Data RAM space.
Offsets are from bytes 0 to 4G.

#define UDI29KIOSpace 1

I/O address space (not implemented on all 29K Family members).
Offsets are from bytes 0 to 4G.

#define UDI29KCPSpace0 2

CoprocessorSpac® (not implemented on all 29K Family members).
Offsets are from bytes 0 to 4G.

#define UDI29KCPSpacel 3

CoprocessorSpacd (not implemented on all 29K Family members).
Offsets are from bytes 0 to 4G.

#define UDI29KIROMSpace 4

On 29K family members that have an RE bit, this is the instruction ROM
space. Offsets are from bytes 0 to 4G.

#define UDI29KIRAMSpace 5

On 29K Family members that have an RE bit, this is the instruction RAM
space. Offsets are from bytes 0 to 4G.

Universal Debugger Interface Specification B-1

UDI Developer’s Toolkit

B-2

#defineUDI29KLocalRegs 8

Local registers (each 32 bits in size).
Offset 0 = LRO
Offset 127 = LR127

#defineUDI29KGlobalRegs 9

Global registers (each 32 bits in size).

Offset 0 = GRO

Offset 127 = GR127

(Offsets 2 through 63 are not implemented on all 29K Family members.)

#define UDI29KRealRegs 10

Real registers (each 32 bits in size).

Offset 0 = GRO

Offset 127 = GR127

Offset 128 = absolute register 128

Offset 255 = absolute register 255

128 through 255 map to local registers depending on the value of GR1.
(Offsets 2 through 63 are not implemented on all 29K Family members.)

#define UDI29KSpecialRegs 11

Special registers.
Offset 0 = SRO
Offset 255 = SR255
Note: A particular special register may not be implemented on every 29K
Family member.

#define UDI29KTLBRegs 12

Offset 0 = TLBO
Offset 255 = TLB255
(Not implemented on all 29K Family members.)

#define UDI29KACCRegs 13

Accumulator registers.

Offset 0 = ACCO

Offset 3 = ACC3

(Implemented only on the Am29050 microprocessor.)

#define UDI29KICacheSpace 14

Universal Debugger Interface Specification

UDI Developer’s Toolkit

Instruction cache space.

Not available on all 29K Family members. These reference the cache
entries (as opposed to the tag words). Offsets are byte addressable (but
will almost always be read and written as words). For each family
member, the sets are ordered and the first word of set s follows the last
word of set s-1. Thus, assuming sets have size N:

Offset 0 = first byte, first word, first set
Offset 4 = first byte, second word, first set
Offset N-1 = last byte, last word, first set
Offset N = first byte, first word, second set

Offset 2*N-1 = last byte, last word, second set, etc.

#define UDI29KAM29027Regs 15 /* When available */
#define UDI29KPC 16

Offset 0 = Real PC1
Offset 1 = Resource space of Real PC1
Offset 2 = Real PCO

NOTE: On aUDIWrite to UDI29KPC space, if Offset 0 (Real PC1) is
specified, but Offset 2 (Real PCO) is not specified, then the TIP will
set
Real PCO = Real PC1 + 4.

#define UDI29KDCacheSpace 17

Data cache space.
Not available on all 29K Family members. These reference the cache
entries (as opposed to the tag words). Offsets are as defined for instruction
cache.

#define UDI29KICacheTagsSpace 18 /* When available

*|
Instruction cache tags.
Used together witkUDI29KICacheSpace Size is always 32 bits.
Assuming sets have M blocks with each block having 1 tag, the offsets
are:

Offset 0 = first tag, first set

Offset 1 = second tag, first set

Universal Debugger Interface Specification B-3

UDI Developer’s Toolkit
Offset M-1 = last tag, first set
Offset M = first tag, second set

Offset 2*M-1 = last tag, second set, etc.

#define UDI29KDCacheTagsSpace 19 /* When available
*

Data cache tags.
Used together wityDI29KDCacheSpace Size is always 32 bits. Offsets
are as defined und&iDI29KICacheTagsSpace

B-4 Universal Debugger Interface Specification

Appendix D ‘

Compatibility of UDI 1.4, 1.3, and 1.2 DFEs and TIPs

At the IPC level, UDI 1.4 TIPs can recognize a UDI 1.2 or UDI 1.3 DFE
because the version part of the incoming param€tarnect. DFEIPCldwill
indicate an earlier version of UDI. For the special case of UDI 1.2 DOS IPC,
UDI 1.2 DFEs actually called a different procedure in the call table and can be
recognized that way.

UDI 1.4 DFEs can recognize a UDI 1.2 or UDI 1.3 TIP because the version
part of the returned paramet@onnect. TIPIPCldwill indicate an earlier
version of UDI. For the special case of UDI 1.2 DOS IPC, UDI 1.2 DFEs
recognize a 1.2 TIP because of the absence @itmature_13field in the
TIPVecRec

UDI 1.4 DFEs and TIPs can interoperate with UDI 1.2 and UDI 1.3 DFEs and
TIPs if the following precautions are taken:

® DFEstalking to 1.3 TIPs:
e Can only use offset 0 (Real PC1)UDI29KPC space.

* For the UNIX Socket IPC, all host—endian fields are sent big endian
(even when both the DFE and TIP are little endian).

» UDISetBreakpoint_14, UDIQueryBreakpoint_14 and UDIConnect_14
calls cannot be used. If used at the procedural interface of the AMD
sample implementation, the IPC will attempt to map to the
corresponding _13 call, returning an error if unable to map.

® DFEstalking to 1.2 TIPs have all the above 1.3 restrictions, plus:
e Cannot us&JDIFind (newly introduced at UDI 1.3).

* Will get back, at most, 80 charactersTiiP String of
UDICapabilities.

* For the DOS IPC, the DFE cannot use any of the functions below the
Signature_13ield. The DFE must use théDIConnect_12and the
UDICapabilities_12table entries rather than their 1.3 and later
entries.

Universal Debugger Interface Specification B-1

UDI Developer’s Toolkit

B-2

For the DOS IPC, 1.2 TIPs did not support multiple connections.
They will ignore theconnection_idield except on the
UDIDisconnectcall.

For the UNIX Socket IPC, in a response message from the 1.2 TIP,
theresponse_codteld will not be present. Since the 1.2 TIP will not
make anyUDIDFE xxxrequests, the DFE knows the first message that
comes back on the socket is the response.

For the UNIX Socket IPC, thdDIFind andUDICapabilities_13
requests cannot be used.

For the UNIX Socket IPC, 1.2 TIPs do not support multiple
connections.

TIPs talking to 1.3 DFEs:

For the UNIX Socket IPC, all host—endian fields are sent big endian
(even when both the DFE and TIP are little endian).

Cannot pass a fine state in lHBIWait .StopReasowhen the gross
state iSUDIRunning or UDIHalted. Cannot use negative fine states.

Only UDI error numbers through 41 can be returned.

TIPs talking to 1.2 DFEs have all the above 1.3 restrictions, plus:

Cannot use any of tHéDIDFE xxx calls.
Can return, at most, 80 character3iRStringof UDICapabilities.
Only UDI error numbers through 34 can be returned.

For the DOS IPC, only one 1.2 DFE connection should be allowed.
Theconnection_idparameter from a 1.2 DFE is not valid (except on
UDIDisconnec) and must be ignored on other calls.

For the DOS IPC, the 1.2 DFE will cADIConnect_12and the
UDICapabilities_12 table entries rather than their 1.3 and later
entries.

For the UNIX Socket IPC, theesponse_codield must be omitted in

all response messages back to the DFE. Since you cannot make any
UDI DFE requests, the DFE knows the first message that comes back
on the socket is the response.

Universal Debugger Interface Specification

UDI Developer’s Toolkit

* For the UNIX Socket IPC, the DFE will makiDICapabilities_12
requests rather thasDICapabilities_13 requests.

Universal Debugger Interface Specification B-3

