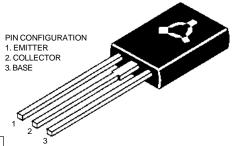
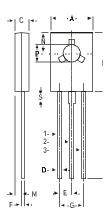


Continental Device India Limited




TO-126 (SOT-32) Plastic Package

C42C2

C42C2 NPN PLASTIC POWER TRANSISTOR

Complementary C43C series General Purpose Applications

DIM	MIN.	MAX.		
A	7.4	7.8		
₿	10.5	10.8		
C	2.4	2.7		
D	0.7	0.9		
Ε	2.25 TYP			
F	0.49	0.75		
G	4.5	TYP.		
L	15.7	TYP.		
М	1.27 TYP.			
N	3.75 TY P .			
P	3.0	3.2		
S	2.5	TYP.		

ALL DIMENSIONS IN MM

ABSOLUTE MAXIMUM RATINGS

Collector-emitter voltage (V _{BE} =0)	$V_{C\!E\!S}$	max.	40 V
Collector-emitter voltage (open base)	$V_{C\!E\!O}$	max.	30 V
Collector current	I_C	max.	3 A
Total power dissipation up to $T_C = 25^{\circ}C$	P_{tot}	max.	12.5 W
Junction temperature	T_i	max.	150 ℃
Collector-emitter saturation voltage	J		
$I_C = 1 A$; $I_B = 50 mA$	V_{CEsat}	max.	0.5 V
D.C. current gain			
$I_C = 200 \text{ mA}; V_{CE} = 1 \text{ V}$	h_{FE}	min.	100
-		max.	220

RATINGS (at T_A =25°C unless otherwise specified)

Limining values			
Collector-emitter voltage (V _{BE} =0)	$V_{C\!E\!S}$	max.	40 V
Collector-emitter voltage (open base)	$V_{C\!E\!O}$	max.	30 V
Emitter-base voltage (open collector)	V_{EBO}	max.	5.0 V
Collector current (DC)	I_C	max.	3.0 A

Collector current (Peak)*	I_{CM}	max.	5 A
Base current	I_B	max.	2 A
Total power dissipation up to $T_A = 25^{\circ}C$	P_{tot}	max.	2.1 W
Total power dissipation up to $T_C = 25^{\circ}C$	P_{tot}	max.	12.5 W
Junction temperature	T_j	max.	150 °C
Storage temperature	\check{T}_{stg}	-65 to	+150 °C
THERMAL RESISTANCE			
From junction to case	$R_{th j-c}$	=	10 CW
From junction to ambient	R _{th j-a}	=	60 CW
Trom function to unisient	run j-a	_	00 011
CHARACTERISTICS			
$T_C = 25^{\circ}C$ unless otherwise specified			
Collector cutoff current			
$V_{BE} = 0$; $V_{CE} = Rated V_{CES}$	I_{CES}	max.	$10 \mu A$
Emitter cut-off current	020		•
$I_C = 0$; $V_{EB} = 5 V$	I_{EBO}	max.	$100 \mu A$
Breakdown sus. voltages			
$I_C = 100 \text{ mA}; I_B = 0$	$V_{CEO(sus)}^*$	min.	30 V
Saturation voltages	, ,		
$I_C = 1 A; I_B = 50 mA$	V_{CEsat}^*	max.	0.5 V
$I_C = 1 A$; $I_B = 100 \text{ mA}$	V_{BEsat}^*	max.	1.3 V
D.C. current gain			
$I_C = 200 \text{ mA}; V_{CE} = 1 \text{ V}$	$h_{\!F\!E}^*$	min.	100
		max.	220
$I_C = 2 A$; $V_{CE} = 1 V$	hFE*	min.	20
Transition frequency			
$I_C = 20 \text{ mA}; V_{CE} = 4 \text{ V}$	f_T	typ.	50 MHz
Collector capacitance			
$V_{CB} = 10 \ V; I_E = 0; f = 1 \ MHz$	C_{cbo}	max.	100 pF
Switching time			
Delay time + Rise time			
$I_C = 1 A$; $I_{B1} = I_{B2} = 0.1 A$	$t_{d} + t_{\Gamma}$	typ.	100 ns
Change than Fall than			
Storage time + Fall time	4	tren	500 ns
V_{CC} = 30 V; t_p = 25 μsec	t_S	typ.	500 ns 75 ns
	t_f	typ.	73 115

^{*} Pulsed test: $P_W = 300$ ms; duty cycle = 2%.

Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-579 6150 Fax + 91-11-579 9569, 579 5290
e-mail sales@cdil.com www.cdil.com