

<u>C9815</u>

Low EMI Clock Generator for Intel® 133MHz/2DIMM Chipset Systems

Product Features

- Meets Intel's 133MHz/SDRAM chipset specification
- 3 copies of CPU Clock (CPU[0:1] and CPU2_ITP)
- 9 copies of SDRAM Clock (SDRAM[0:7] and DCLK)
- 7 copies of PCI Clock
- 3 copies of 3V66 Clock
- 2 copies of IOAPIC Clock
- 1 REF Clock
- 1 USB Clock (Non SSC)
- 1 DOT Clock (Non SSC)
- Cypress Spread Spectrum for best EMI reduction
- SMBUS Support with read back
- 56 Pin SSOP package

Block Diagram

Frequency Table (MHz)

SEL2	SEL1	SEL0	CPU	SDRAM	PCI	
Х	0	0		Tri-state		
Х	0	1	Test Mode			
0	1	0	66.6 MHz	100 MHz*	33.3	
0	1	1	100 MHz	100 MHz*	33.3	
1	1	0	133.3 MHz	133.3 MHz	33.3	
1	1	1	133.3 MHz	100 MHz*	33.3	
Table 1						

Note: The following clocks remain fixed frequencies except in Test Mode: 3V66=66.6MHz, USB/DOT=48MHz, REF=14.318MHz and IOAPIC=33.3MHz. *SMBUS programmable to 133 MHz, Byte 3, Bit 0

Pin Configuration

Pin Description

PIN No.	Pin Name	PWR	I/O	Description
1	SEL2/REF	VDD	I/O	This is a bi-directional pin (see app. note, p.5). At power up, it is an input pin
				Sel2 for selecting the CPU/SDRAM frequencies (see table 1 p.1). When the
				power reaches the rail, the state of Sel2 is latched, and this pin becomes REF, a
				buffer output of the signal applied at Xin, typically 14.318MHz. This pin has an
				Internal Pull-Down. Typical 50K Ω (range 20K Ω to 70K Ω)
3	XIN	VDD	I	On-chip reference oscillator input pin. Requires either an external parallel
4	VOUT			resonant crystal (nominally 14.318 MHz) or externally generated reference signal
4	XOUT	VDD	0	Un-chip reference oscillator pin. Drives an external parallel resonant crystal.
				unconnected.
12,13,15,	PCI0 ICH	VDD	0	3.3V PCI clock outputs. They are Synchronous to CPU clocks. See fig.3, page4.
16,18,19, 20	PCI(16)			
7, 8, 9	3V66(0:2)	VDD	0	3.3V Fixed 66.6 MHz clock outputs. See fig.3 page 4.
25	USB	VDD	0	3.3V Fixed 48 MHz clock outputs
26	DOT	VDD	0	3.3V Fixed 48 MHz clock outputs
28, 29	SEL(0,1)	VDD	I	3.3V LVTTL inputs for logic selection. This pin has an Internal Pull-Up. Typical
				250KΩ (range 200KΩ to 500KΩ)
30	SDATA	VDD	I/O	Serial data input pin. Conforms to the SMBUS specification of a Slave
				Receive/Transmit device. This pin is an input when receiving data. It is an open
				drain output when acknowledging or transmitting data. See SMBUS function
24				description, pp.6,7,8.
31	SCLN		1	Senal clock input pin. Conforms to the SMBOS specification.
32	PD#	VDD	1	3.3V LVTTL compatible input. When held LOW, the device enters a power down
				mode. See description page 3. This pin has an internal Pull-Up. Typical 250K12
24			0	(range 200KM to 500KM)
34	DCLK	VDD	0	5.5V SDRAW leeuback clock. See lable1, p.1 for frequency selection. See lig.5,
26 27 20 40		VDDS	0	2.21/ SDRAM DIMM clocks. See table1 in 1 for frequency selection. See fig 2
<i>42 43 45 46</i>	SDRAIN(70)	1003	0	nage 4 for timing relationship
49 50 52	CPU(2) ITP C	VDDC	0	2.5V Host clock outputs. See table 1 p. 1 for frequency selection
10, 00, 02	PU(1,0)	1000	Ŭ	
54, 55	IOAPIC(1,0)	VDDI	0	2.5V IOAPIC clock outputs. See fig.3 p.4 for timing relationship.
2,10, 11, 21,	VDD	-		3.3V Common Power Supply
27, 33				
22	VDDA	-		Analog circuitry 3.3V Power Supply
23	VSSA	-		Analog circuitry power supply Ground pins.
51, 53	VDDC, VDDI	-		2.5V Power Supply's
5, 6, 14, 17,	VSS	-		Common Ground pins.
24, 35, 41,				
41, 40, 00	VDDC			2.2V newer support for SDRAM clock sutput drivers
30, 44	1 1002	-		3.3 v power support for SDRAW clock output drivers.

A bypass capacitor (0.1 μ F) should be placed as close as possible to each positive power pin. If these bypass capacitors are not close to the pins their high frequency filtering characteristic will be cancelled by the lead inductance of the traces.

Test Mode Function

Test Mode Functionality

SEL2	SEL1	SEL0	CPU	SDRAM	3V66	PCI	USB/DOT	REF	IOAPIC
х	0	1	TCLK/2	TCLK/2	TCLK/3	TCLK/6	TCLK/2	TCLK	TCLK/6
					Table 2				

Note: TCLK is a test clock over driven on the XIN input during test mode.

Power Management Functions

Power Management on this device is controlled by a single pin, PD# (pin32). When PD# is high (default) the device is in normal running mode and all signals are active.

When PD# is asserted (forced) low, the device is in shutdown (or in power down) mode and all power supplies (3.3V and 2.5V except for VDDA/pin 27) may be removed. When in power down, all outputs are synchronously stopped in a low state (see Fig.2 below), all PLL's are shut off, and the crystal oscillator is disabled. When the device is shutdown, the I²C function is also disabled.

Power Management Timing

Power Management Current

PD#, SEL2, SEL1, SEL0	Maximum 2.5 Volt Current Consumption (VDDC = VDDI =2.625)	Maximum 3.3 Volt Current Consumption (VDD = VDDA = VDDS = 3.465 V)
0XXX (Power down)	10mA	10mA
1010 (66MHz)	70 mA	280 mA
1011 (100MHz)	100 mA	280 mA
1101 (133MHz)	133 mA	365 mA

Table 3

When exiting the power down mode, the designer must supply power to the VDD pins first, a minimum of 200mS before releasing the PD# pin high.

IOAPIC Clock Synchronization and Phase Alignment

This device incorporates IOAPIC clock synchronization. With this feature, the IOAPIC clocks are derived from the CPU clock. The IOAPIC clock lags the CPU clock by the specified 1.5 to 3.5 nSec. Figure 3 shows the relationship between the CPU and IOAPIC clocks.

Clock Phase Relationships

Fig.3

Group Timing Relationships and Tolerances

	CPU = 66.6 MHz, SDRAM = 100 MHz						
	Offset (nS)	Tolerance (pS)	Conditions				
CPU to SDRAM	2.5	500	SDRAM Leads				
CPU to 3V66	7.5	500	180 degrees phase shift				
SDRAM to 3V66	0	500	When rising edges line-up				
3V66 to PCI	1.5-3.5	500	3V66 leads				
PCI to IOAPIC	0	1000					
		CPU = 100 MH	Iz, SDRAM = 100 MHz				
	Offset (nS)	Tolerance (pS)	Conditions				
CPU to SDRAM	5	500	180 degrees phase shift				
CPU to 3V66	5	500	CPU leads				
SDRAM to 3V66	0	500	When rising edges line-up				
3V66 to PCI	1.5-3.5	500	3V66 leads				
PCI to IOAPIC	0	1000					
	CPU = 133.3 MHz, SDRAM = 100 MHz						
	Offset (nS)	Tolerance (pS)	Conditions				
CPU to SDRAM	0	500	When rising edges line-up				
CPU to 3V66	0	500					
SDRAM to 3V66	0	500	When rising edges line-up				
3V66 to PCI	1.5-3.5	500	3V66 leads				
PCI to IOAPIC	0	1000					
	CPU = 133.3 MHz, SDRAM = 133.3 MHz						
	Offset (nS)	Tolerance (pS)	Conditions				
CPU to SDRAM	3.75	500	180 degrees phase shift				
CPU to 3V66	0	500					
SDRAM to 3V66	3.75	500					
3V66 to PCI	1.5-3.5	500	3V66 leads				
PCI to IOAPIC	0	1000					

Power on Bi-Directional Pins

Power Up Condition:

Pin1 is a Power up bi-directional pin and is used for selecting the host frequency in page 1, table 1. During power-up of the device, this pin is in input mode (see Fig 4, below), therefore; it is considered input select pin, Sel2 internal to the IC. After a settling time, the selection data is latch into the internal control register and this pin becomes a clock output.

Strapping Resistor Options:

The power up bi-directional pin has a large value pulldown ($50K\Omega + / -20K\Omega$), therefore, a selection "0" is the default. If the system uses a slow power supply (over 10mS settling time), then **it is recommended** to use an external Pull-down (Rdn) in order to insure a low selection. In this case, the designer may choose one of two configurations, see Fig.5A and 5B.

Fig. 5A represents an additional pull down resistor $5K\Omega$ connected from the pin to the power line, which allows a faster down to a high level.

If a selection "1" is desired, then a jumper is placed on JP1 to a 1 K Ω resistor as shown in Fig.5A. Please note the selection resistors (Rup and Rdn) are placed before the Damping resistor (Rd) close to the pin.

Fig. 5B represent a single resistor $5K\Omega$ connected to a 3-way jumper, JP2. When a "1" selection is desired, a jumper is placed between leads1 and 3. When a "0" selection is desired, a jumper is placed between leads 1 and 2.

2-Wire SMBUS Control Interface

The 2-wire control interface implements a read/write slave only interface according to SMBus specification. (See Fig. 6 below). The device can be read back by using standard SMBUS command bytes. Sub addressing is not supported, thus all <u>preceding bytes must be sent</u> in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled. 100 Kbits/second (standard mode) data transfer is supported.

During normal data transfer, the SDATA signal only changes when the SCLK signal is low, and is stable when SCLK is high. There are two exceptions to this. A high to low transition on SDATA while SCLK is high is used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SCLK is high indicates the end of a data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledge is generated. The first byte of a transfer cycle is an 8-bit address. The LSB address Byte = 0 in write mode.

The device will respond to transfers of 10 bytes (max) of data. The device will generate an acknowledge (low) signal on the SDATA wire following reception of each byte. Data is transferred MSB first at a max rate of 100kbits/S. This device will also respond to a $\underline{D3}$ address which sets it in a read mode. It will not respond to any other control interface conditions, and previously set control registers are retained.

Figure 6 SMBUS Communications Waveforms

C9815

Low EMI Clock Generator for Intel[®] 133MHz/2DIMM Chipset Systems

Serial Control Registers

NOTE: The Pin# column lists the relevant pin number where applicable. The @Pup column gives the default state at power up.

Following the acknowledge of the Address Byte, two additional bytes must be sent:

1) "Command Code " byte, and

2) "Byte Count" byte.

Although the data (bits) in these two bytes are considered "don't care"; they must be sent and will be acknowledged.

After the Command Code and the Count bytes have been acknowledged, the sequence described below (Byte 0, Byte 1, and Byte 2) will be valid and acknowledged.

Byte 0: CPU Clock Register (1=Enable, 0=Disable)

Bit	@Pup	Pin#	Description
7	0	-	Reserved
6	0	-	Reserved
5	0	-	Reserved
4	0	-	Reserved
3	0	-	Spread spectrum mode
2	1	26	DOT
1	1	25	USB
0	1	49	CPU2_ITP

Byte 2: PCI Clock Register (1=Enable, 0=Disable)

Bit	@Pup	Pin#	Description
7	1	9	3V66-2 (AGP)
6	1	20	PCI6
5	1	19	PCI5
4	1	18	PCI4
3	1	16	PCI3
2	1	15	PCI2
1	1	13	PCI1
0	0	-	Reserved

Byte 1: SDRAM Clock Register (1=Enable, 0=Disable)

Bit	@Pup	Pin#	Description
7	1	36	SDRAM7
6	1	37	SDRAM6
5	1	39	SDRAM5
4	1	40	SDRAM4
3	1	42	SDRAM3
2	1	43	SDRAM2
1	1	45	SDRAM1
0	1	46	SDRAM0

Byte 3: Reserved Register

Bit	@Pup	Pin#	Description
7	0	-	RESERVED
6	0	-	RESERVED
5	0	-	RESERVED
4	0	-	RESERVED
3	0	-	RESERVED
2	0	-	RESERVED
1	0	-	RESERVED
0	0	-	0 = SDRAM runs at 100MHz
			1= SDRAM runs at 133.3MHz

Byte 4: Reserved Register

Byte 5: SSCG Control Register

Bit	@Pup	Pin#	Description
7	0	-	Spread Mode (0=down, 1=center)
6	0	-	Selects spread bandwidth. Ref. Table 4
5	0	-	Selects spread bandwidth. Ref. Table 4
4	0	-	Reserved
3	0	-	Reserved
2	0	-	Reserved
1	0	-	Reserved
0	0	-	Reserved

SMBUS Test Circuitry

Fig.7

Note: Buffer is 7407 with VCC @ 5.0 V

Spread Spectrum Clock Generation (SSCG)

Spread Spectrum is a modulation technique applied here for maximum efficiency in minimizing Electro-Magnetic Interference radiation generated from repetitive digital signals mainly clocks. A clock accumulates EM energy at the center frequency it is generating. Spread Spectrum distributes this energy over a small frequency bandwidth therefore distributing an even amount of energy over a wider spectrum. This technique is achieved by modulating the clock either down (Fig.8A) or around the center (Fig.8B) of its resting frequency by a certain percentage (which also determines the energy distribution bandwidth). In this device, Spread Spectrum is enabled by setting SMBUS byte0, bit3 = 1. The default of the device at power up keeps the Spread Spectrum disabled, it is therefore, important to have SMBUS accessibility to turn-on the Spread Spectrum function. Once the Spread Spectrum is enabled, the spread bandwidth option is selected by SST(0:2) in SMBUS byte 5, bits 5, 6 & 7 following tables 4A, and 4B below.

In Down Spread mode the center frequency is shifted down from its rested (non-spread) value by ½ of the total spread %. (eg.: assuming the center frequency is 100MHz in non-spread mode; when down spread of -0.5% is enabled, the center frequency shifts to 99.75MHz.).

Low EMI Clock Generator for Intel[®] 133MHz/2DIMM Chipset Systems

In Center Spread mode, the Center frequency remains the same as in the non-spread mode.

Spread Spectrum Selection Tables

I ² C BYTE5 Bit[7:5]	Spread %			
000	- 0.5			
001	- 0.7			
010	- 1.0			
011	- 0.25			
T - 1 - 1 - 4 A				

Table 4A

Maximum Ratings

Maximum Input Voltage Relative	to VSS: VSS - 0.3V
Maximum Input Voltage Relative	to VDD: VDD + 0.3V
Storage Temperature:	-65°C to + 150°C
Operating Temperature:	0°C to +85°C
Maximum ESD protection	2KV
Maximum Power Supply:	5.5V

I ² C BYTE5	Spread
Bit[7:5]	%
100	± 0.25
101	± 0.35
110	± 0.5
111	+/- 0.125

Table 4B

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

DC Parameters (All outputs loaded per table 5 below) (VDD=VDDS = $3.3V \pm 5\%$, VDDC = VDDI = $2.5 \pm 5\%$,

	Sympol	Min	Tum	Mox	Unito	Conditions
Characteristic	Symbol	WIIN	тур	wax	Units	Conditions
Input Low Voltage	VIL1	-	-	1.0	Vdc	Note 1
Input High Voltage	VIH1	2.0	-	-	Vdc	
Input Low Voltage	VIL2	-	-	1.0	Vdc	Note 2
Input High Voltage	VIH2	2.2	-	-	Vdc	
Input Low Current (@VIL = VSS)	IIL1	-66		-5	μA	For internal Pull up resistors.
Input High Current (@VIL =VDD)	IIH1			5	μA	Note 6
Input Low Current (@VIL = VSS)	IIL2				μA	For internal Pull Down resistors,
Input High Current (@VIL = VDD)	IIH2				μA	Note 6
Tri-State leakage Current	loz	-	-	10	μA	
Dynamic Supply Current	ldd3.3V	-	-	280	mA	Sel2 = 0, Sel1 = Sel0 = 1
Dynamic Supply Current	ldd2.5V	-	-	100	mA	Sel2 = 0, Sel1 = Sel0 = 1
Static Supply Current	Isdd	-	-	10	mA	Sel1 = Sel0 = x, PD# = 0
Input pin capacitance	Cin	-	-	5	pF	
Output pin capacitance	Cout	-	-	6	pF	
Pin inductance	Lpin	-	-	7	nH	
Crystal pin capacitance	Cxtal	32	34	38	pF	Measured from Pin to Ground. Note 5
Crystal DC Bias Voltage	VBIAS	0.3Vdd	Vdd/2	0.7Vdd	V	
Crystal Startup time	Txs	-	-	40	μS	From Stable 3.3V power supply.

Note1: Applicable to input signals: Sel(0:1), PD# (pull up), SEL2 (pull down)

Note2: Applicable to Sdata, and Sclk.

Note3: Although internal pull-up resistors have a typical value of 250K, this value may vary between 200K and 500K.

Note5: Although the device will reliably interface with crystals of a 17pF – 20pF C_L range, it is optimized to interface with a typical C_L = 18pF crystal specifications.

Note6: Internal Pull up and Pull down resistors have a typical value of 50k (it may vary between 30K and 70K).

Clock Name	Max Load (in pF)
CPU(0:2), IOAPIC(0:1), REF, USB	20
PCI(0:6), SDRAM(0:7), DCLK, 3V66(0:2)	30
DOT	15

Table 5.

C9815

Low EMI Clock Generator for Intel[®] 133MHz/2DIMM Chipset Systems

AC Parameters

		133 MH	Iz Host	100 MH	Iz Host	66 MH		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
TPeriod	CPU(0:2) period ^{5,8}	7.5	8.0	10.0	10.5	14.75	15.25	nS
THIGH	CPU(0:2) high time ¹⁰	1.87	-	3.0	-	5.2	-	nS
TLOW	CPU(0:2) low time ¹¹	1.67	-	2.8	-	5.0	-	nS
Tr / Tf	CPU(0:2) rise and fall times ⁷	0.4	1.6	0.4	1.6	0.4	1.6	nS
TSKEW	CPU0 to CPU Skew ^{6,9}	-	175	-	175	-	175	pS
TCCJ	CPU(0:2) Cycle to Cycle Jitter ^{6,9}	-	250	-	250	-	250	pS
TPeriod	SDRAM(0:7) and DCLK period ^{5,6}	7.5	8.0	10.0	10.5	10.0	10.5	nS
THIGH	SDRAM(0:7) and DCLK high time ¹⁰	1.87	-	3.0	-	3.0	-	nS
TLOW	SDRAM(0:7) and DCLK low time ¹¹	1.67	-	2.8	-	2.8	-	nS
Tr / Tf	SDRAM(0:7) and DCLK rise and fall times ⁷	0.4	1.6	0.4	1.6	0.4	1.6	nS
TSKEW	SDRAM(0:7) and DCLK Skew ^{6,9}	-	250	-	250	-	250	рS
TCCJ	SDRAM(0:7), DCLK Cycle to Cycle Jitter ^{6,9}	-	250	-	250	-	250	pS
TPeriod	IOAPIC(0:1) period ^{5,6}	30.0	-	30.0	-	30.0	-	nS
THIGH	IOAPIC(0:1) high time ¹⁰	12.0	-	12.0	-	12.0	-	nS
TLOW	IOAPIC(0:1) low time ¹¹	12.0	-	12.0	N/S	12.0	-	nS
Tr / Tf	IOAPIC(0:1) rise and fall times ⁷	0.4	1.6	0.4	1.6	0.4	1.6	nS
TCCJ	IOAPIC(0:1) Cycle to Cycle Jitter ^{6,9}	-	500	-	500	-	500	pS
TPeriod	3V66-(0:2) period ^{5,6}	15.0	16.0	15.0	16.0	15.0	16.0	nS
THIGH	3V66-(0:2) high time ¹⁰	5.25	-	5.25	-	5.25	-	nS
TLOW	3V66-(0:2) low time ¹¹	5.05	-	5.05	-	5.05	-	nS
Tr / Tf	3V66-(0:2) rise and fall times ⁷	0.5	2.0	0.5	2.0	0.5	2.0	nS
TSKEW	(Any 3V66) to (any 3V66) Skew ^{6,9}	-	175	-	175	-	175	pS
TCCJ	3V66-(0:2) Cycle to Cycle Jitter ^{6,9}	-	500	-	500	-	500	pS
TPeriod	PCI(0:6) period ^{5,6}	30.0	-	30.0	-	30.0	-	nS
THIGH	PCI(0:6) period ¹⁰	12.0	-	12.0	-	12.0	-	nS
TLOW	PCI(0:6) low time ¹¹	12.0	-	12.0	-	12.0	-	nS
Tr / Tf	PCI(0:6) rise and fall times ⁷	0.5	2.0	0.5	2.0	0.5	2.0	nS
TSKEW	(Any PCI) to (Any PCI) Skew ^{6,9}	-	500	-	500	-	500	pS
TCCJ	PCI(0:6) Cycle to Cycle Jitter ^{6,9}	-	500	-	500	-	500	pS
TPeriod	DOT & USB period (conforms to +167ppm max) ^{5,6}		20.8333	20.8299	20.8333	20.829	20.833	nS
Tr / Tf	DOT & USB rise and fall times ⁷	1.0	4.0	1.0	4.0	1.0	4.0	nS
TCCJ	DOT & USB Cycle to Cycle Jitter ^{6,9}	-	500	-	500	-	500	pS

		133 MHz	z Host	100 MH	z Host	66 MH	z Host	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
TPeriod	REF period ^{5,6}	69.8413	71.0	69.8413	71.0	69.8413	71.0	nS
Tr / Tf	REF rise and fall times ⁷	1.0	4.0	1.0	4.0	1.0	4.0	nS
TCCJ	REF Cycle to Cycle Jitter ⁶	-	1000	-	1000	-	1000	pS
tpZL, tpZH	Output enable delay (all outputs) ⁸	1.0	10.0	1.0	10.0	1.0	10.0	nS
tpLZ, tpHZ	Output disable delay (all outputs) ¹³	1.0	10.0	1.0	10.0	1.0	10.0	nS
tstable	All clock Stabilization from power-up ¹²		3		3		3	mS
Tduty	Duty Cycle for All outputs ¹⁴	45	55	45	55	45	55	%

Note 5: This parameter is measured as an average over 1uS duration, with a crystal center frequency of 14.31818MHz

Note 6: All outputs loaded as per table 5, page 11. Probes are placed on the pins and taken at 1.5V levels for 3.3V signals and at 1.25V for 2.5V signals (figs. 9A and 9B).

Note 7: Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals and between 0.4V and 2.0V for 2.5V signals (see Fig.9A and Fig.9B)

- Note 8: Measured from when both SEL1 and SEL0 are switched to high (enable).
- Note 9: This measurement is applicable with Spread ON or Spread OFF.

Note 10: Probes are placed on the pins, and measurements are acquired at 2.4V for 3.3V signals and at 2.0V for 2.5V signals, (see Figs. 9A & 9B)

Note 11: Probes are placed on the pins, and measurements are acquired at 0.4V.

Note 12: The time specified is measured from when all VDD's reach their respective supply rail (3.3V and 2.5V) till the frequency output is stable and operating within the specifications

Note 13: Measured from when both SEL1 and SEL0 are switched to low (disable).

Note 14: Device designed for Typical Duty Cycle of 50%.

Output Buffer Characteristics (VDD=VDDS=3.3V ±5%, VDDC=VDDI=2.5±5%, TA=0 to 85°C) CPU and IOAPIC

Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Pull-Up Current	IOH₁	-15	-31	-51	mA	Vout =VDDC - 0.5V (or VDDI -0.5V)
Pull-Up Current	IOH ₂	-26	-58	-101	mA	Vout = 1.2 V
Pull-Down Current	IOL ₁	12	24	40	mA	Vout = 0.4 V
Pull-Down Current	IOL ₂	27	56	93	mA	Vout = 1.2 V

PCI, 3V66 and DOT

Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Pull-Up Current	IOH₁	-20	-25	-33	mA	Vout =VDD - 1.0 V
Pull-Up Current	IOH ₂	-30	-54	-184	mA	Vout = 1. 5 V
Pull-Down Current	IOL ₁	9.4	18	38	mA	Vout = 0.4 V
Pull-Down Current	IOL ₂	28	55	148	mA	Vout = 1.5 V

USB and REF

Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Pull-Up Current	IOH₁	-12	-20	-30	mA	Vout =VDD - 1.0 V
Pull-Up Current	IOH ₂	-27	-43	-92	mA	Vout = 1. 5 V
Pull-Down Current	IOL ₁	9	13	27	mA	Vout = 0.4 V
Pull-Down Current	IOL ₂	26	39	79	mA	Vout = 1.5 V

Buffer Characteristics for SDRAM

Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Pull-Up Current	IOH₁	-30	-40	-60	mA	Vout =VDD - 1.0 V
Pull-Up Current	IOH ₂	-68	-110	-188	mA	Vout = 1.4 V
Pull-Down Current	IOL ₁	23	34	53	mA	Vout = 0.4 V
Pull-Down Current	IOL ₁	64	98	159	mA	Vout = 1.5 V

Test and Measurement Condition

Low EMI Clock Generator for Intel[®] 133MHz/2DIMM Chipset Systems

Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Frequency	F。	12.00	14.31818	16.00	MHz	
Tolerance	Tc	-	-	+/-100	PPM	Note 1
	Τs	-	-	+/- 100	PPM	Stability (T _A -10 to +60C) Note 1
	T _A	-	-	5	PPM	Aging (first year @ 25C) Note 1
Operating Mode	-	-	-	-		Parallel Resonant, Note 1
Load Capacitance	C_{XTAL}	-	20	-	pF	The crystal's rated load. Note 1
Effective Series Resistance (ESR)	R_{ESR}	-	40	-	Ohms	Note 2

Suggested Oscillator Crystal Parameters

Note1: For best performance and accurate frequencies from this device, It is recommended but not mandatory that the chosen crystal meets or exceeds these specifications

Note 2: Larger values may cause this device to exhibit oscillator startup problems

To obtain the maximum accuracy, the total circuit loading capacitance should be equal to C_{XTAL} . This loading capacitance is the effective capacitance across the crystal pins and includes the clock generating device pin capacitance (C_{FTG}), any circuit traces (C_{PCB}), and any onboard discrete load capacitors (C_{DISC}).

The following formula and schematic may be used to understand and calculate either the loading specification of a crystal for a design or the additional discrete load capacitance that must be used to provide the correct load to a known load rated crystal.

$C_{L} = (C_{XINPCB} + C_{XINFTG} + C_{XINDISC}) X (C_{XOUTPCB} + C_{XOUTFTG} + C_{XOUTDISC})$

 $(C_{XINPCB} + C_{XINFTG} + C_{XINDISC}) + (C_{XOUTPCB} + C_{XOUTFTG} + C_{OUTDISC})$

Where:

 C_{XTAL} = the load rating of the crystal

 $C_{XOUTFTG}$ = the clock generators XIN pin effective device internal capacitance to ground

 $C_{XOUTFTG}$ = the clock generators XOUT pin effective device internal capacitance to ground

 C_{XINPCB} = the effective capacitance to ground of the crystal to device PCB trace

 $C_{XOUTPCB}$ = the effective capacitance to ground of the crystal to device PCB trace

 $C_{XINDISC}$ = any discrete capacitance that is placed between the XIN pin and ground

 $C_{XOUTDISC}$ = any discrete capacitance that is placed between the XOUT pin and ground

Suggested Oscillator Crystal Parameters (Cont.)

As an example, and using this formula for this datasheet's device, a design that has no discrete loading capacitors (C_{DISC}) and each of the crystal to device PCB traces has a capacitance (C_{PCB}) to ground of 4pF (typical value) would calculate as:

 $C_{L} = \frac{(4pF + 36pF + 0pF) \times (4pF + 36pF + 0pF)}{(4pF + 36pF + 0pF) + (4pF + 36pF + 0pF)} = \frac{40 \times 40}{40 + 40} = \frac{1600}{80} = 20pF$

Therefore to obtain output frequencies that are as close to this data sheets specified values as possible, in this design example, you should specify a parallel cut crystal that is designed to work into a load of 20pF.

Package Drawing and Dimensions

		INCHES			LIMETE	RS
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	0.095	0.102	0.110	2.41	2.59	2.79
A ₁	0.008	0.012	0.016	0.203	0.305	0.406
A2	0.088	-	0.092	2.24	-	2.34
В	0.008	-	0.0135	0.203	-	0.343
С	0.005	-	0.010	0.127	-	0.254
D	0.720	0.725	0.730	18.29	18.42	18.54
E	0.291	0.295	0.299	7.39	7.49	7.60
е	(0.025 BS0	C	C	.635 BS	С
н	0.395	-	0.420	10.03	-	10.67
L	0.020	-	0.040	0.508	-	1.016
а	0°	-	8º	0°	-	8º

56 Pin SSOP Outline Dimensions

Ordering Information

Part Number	Package Type	Production Flow
C9815DY	56 PIN SSOP	Commercial, 0 to 85°C

Marking: Example: Cypress C9815DY Date Code, Lot #

Notice

Cypress Semiconductor Corporation reserves the right to make changes to its products in order to improve design, performance or reliability. Cypress Semiconductor Corporation assumes no responsibility for the use of its products in life supporting and medical applications where the failure or malfunction of the product could cause failure of the life supporting and medical systems. Products are not authorized for use in such applications unless a written approval is requested by the manufacturer and an approval is given in writing by Cypress Semiconductor Corporation for the use of its products in the life supporting and medical applications.

Document Title: C9815 Low EMI Clock Generator for Intel® 133 MHz/2DIMM Chipset Systems				
Document Number: 38-07054				
Rev.	ECN No.	Issue	Orig. of	Description of Change
		Date	Change	
**	107062	06/11/01	IKA	Convert from IMI to Cypress