Openbus Interface Components - Spanner User Manual

2 Functional Description

2.1 Introduction

The block diagram in Figure 2.1 on page 2-3 shows the different data paths in the Spanner in
its function as 68K target and PCI target. The figure also illustrates its role in translating
during interrupts from 68K interrupters to the PCI bus. Detailed discussion of each of these
functions is found in:

“Spanner as 68K Target (PCI Initiator)” on page 2-4
“Spanner as PCI Target (68K Initiator)” on page 2-8
“PCI Address Decoding” on page 2-12

“Interrupts” on page 2-14

“Register Access” on page 2-16

The various data paths in the Spanner are also described briefly below in the Functional
Overview.

2.1.1 Functional Overview

The Spanner bridges a PCI bus to a 68040 compatible bus, with initiator and target
capabilities on both interfaces. Most transactions between the 68K bus and the PCI bus are
coupled, meaning that the source bus must wait for data acknowledgment from the destination
bus. However, write transactions from the 68K bus to the PCI bus are decoupled using a
posted write FIFO (PWFIFO). Data transfer through the Spanner is maximized for reads and
writes originating from a 68K initiator. This allows for optimum throughput to and from
high-bandwidth PCI-based slave devices.

Access from the 68040 Bus

Through the Spanner chip, 68K initiators can access 4 Gbytes of Memory space on the PCI
bus (I/O space and Configuration space cannot be accessed by a 68K initiator). The Spanner
does not provide programmable slave images on the 68K interface, so the user must supply
external logic on the 68K side for address decoding.

Newbridge Microsystems 2-1

Powered by ICminer.com Electronic-Librarv ServiceEanhﬁEZ&§ 1’ D]" D D D 3 3 l:’ ? ? D ? -

Introduction Spanner User Manual

Writes to the PCI bus are all performed through a PWFIFO, which is a longword (32 bits)
wide and four entries deep. This optimizes the transfer of burst line transactions across the
68K interface. Reads are coupled, and burst-line read transactions from a 68K initiator are
directly translated into a single PCI transaction with 4 longword data beats. Flow control on
the PCI side is performed with IRDY#. Since the data acknowledgment on the 68K bus lags
behind the PCI read by only one clock cycle, data transfer from the PCI side is virtually
uninterrupted by the Spanner.

Interrupts from a 68K source are translated to the PCI bus as a single PCI interrupt signal,
INTA#. The interrupt controller on the PCI bus generates an IACK cycle on the 68K bus by
accessing a special 2 Kbyte address space in the Spanner’s Fixed Offset PCI slave image.

Access from the PCI Bus

The Spanner chip provides 2 programmable images on the PCI interface. These images can be
mapped anywhere, and to any size, within the available 4 Gbytes (with a granularity of 64
Kbytes). The Spanner programmable PCI images are in PCI memory space, so only PCI
memory transactions are decoded by the Spanner. The Spanner also provides a 62 Kbyte
Fixed Offset slave image which can be accessed in PCI Memory and/or I/O space. PCI
transactions are mapped to a single transaction type on the 68K bus (corresponding to a 68040
normal supervisor data access). The only exception to this occurs during an access to a special
space in the Fixed Offset image, which results in an IACK cycle on the 68040 bus.

Since there is no guarantee that data acknowledgment from the 68K side will meet PCI
latency requirements, the Spanner chip performs a target disconnect after the first data beat of
every PCI transaction. This means that all transactions from a PCI master are broken into
single cycle transfers.

Endian Issues

The names for the two formats of data storage, big endian and little endian, come from a war
described in Jonathan Swift’s “Gulliver’s Travel’s”, where thousands died in a dispute over
whether to break eggs from the little end or the big end. Motorola®’s architecture is big
endian, while PCI (from an Intel® origin) is little endian.

The Spanner maps between these two endian systems using Address Invariance. With Address ‘
Invariance, data structures and arrays maintain their order in memory independent of the

endian architecture in which they reside. For example, when transferring a string of characters

like “this will be legible”, each character and word is in the same relative position after it is

transferred to the other endian system. A CPU on either bus can still read back the text

regardless of whether it was transferred byte by byte or word by word. The Spanner swaps

byte lanes during transfers between the two buses to ensure Address Invariance is preserved.

22 Newbridge Microsystems
B L588101 00033L8 L43 WM

Powered bv ICminer.com Electronic-Librarv Service Copv

R R R R R BB RRRRRRRRRRRRRRRRRRRRRRERNR

Spanner User Manual Introduction

68040
Arbiter

68040 Bus PCI Bus
32-bit Address and Data 32-bit Address and Data
(Multiplexed)
Spanner
68K Slave Channel
; Read 5
' y Cycle '
' Write H
: G)
68K Initiator r - -] S L PCI Target
E PWFIFO .
S S
Interrupt Channel
68K Interrupter, N PCI .
] 1 interrupter H
' ! Interrupt Controller
: IACK - :
Interrupt Vector : Registers | T !
PCI Slave Channel
E [ovas | Address E
68K Target g o Cycle | o Decode PCI Initiator
: enerator and :
E translation E

Register Channel
[TTTTTTRSmSTToTommmmmmoommmomemeomoy
3 :
; Spanner E N
: Control ‘ PC! Imtlg’gor
H and - {or 68K Initiator
! Status : via Spanner)
! Ragisters |
' :
' '
')

Figure 2.1 : Functional Block Diagram for the Spanner Chip

Newbridge Microsystems 2-3

Powered by ICminer.com Electronic-Librarv Service Coanlqt!:k’Z%(g B l U]' D D D ‘-’ 3 E' q 5 B T -

Spanner as 68K Target (PCI Initiator) Spanner User Manual

2.2 Spanner as 68K Target (PCI Initiator)

The Spanner becomes a 68K Target and PCI initiator when a 68K initiator attempts to access a
PCI resource. In order for the Spanner to serve as PCI initiator, it must be enabled accordingly
by setting the MASTR bit in the PCICOM register (Table A.4). Read transactions are coupled,
while write transactions are always decoupled using the Posted Write FIFO. The Spanner’s
68K port uses a synchronous 68040 protocol.

Note that if the Spanner requests the PCI bus and is granted it while another PCI master has
ownership, then the Spanner will hold REQ# asserted until both FRAME# and IRDY# are
sampled negated. On the rising edge of CLK when these two signals are sampled inactive, the
Spanner negates REQ# and asserts FRAME#.

2.2.1 Address Phase

The Spanner becomes 68K target when LTS is asserted. Since the Spanner does not provide
programmable images on the 68K interface (see “PCI Address Decoding” on page 2-12), the
user needs to provide external address decoding for the Spanner on the 68K bus. Note that
since there is no Spanner chip select pin, the user must use LTS to qualify 68K accesses to the
Spanner.

The address bits on the 68K bus are mapped directly through to the PCI bus (no translation
offsets are used by the Spanner with 68K-initiated transactions). All but the lower 2 bits of the
address on the 68K bus are latched by the Spanner, on the rising edge of CLK where LTS is
asserted,. However, all address and transfer attributes must be held valid until LTA or LTEA is
asserted by the Spanner. The Spanner maps all 68K transactions to PCI Memory space.

2.2.2 Data Phase

All read transactions are handled by the Spanner as coupled (also called “pass-through”, see
Figure 2.2 below). Note that since TA lags behind TRDY# by only one clock cycle, a
burst-line read from a 68K initiator is directly translated to a single PCI transaction (with 4
longword data beats).

24 Newbridge Microsystems
b588101 0003370 2T1 A

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

e

Spanner User Manual Spanner as 68K Target (PCI Initiator)

CLK

LA[31:0) —] | E—
LRwW — I
Lts = |]
LD [31:0]]
LTA
rReQ# — |]
GNT#
AD [31:0] — — —
C/BE {3:0] ‘N —
FRAME#
IRDY# [
TRDY#
STOP#
DEVSEL# . T

Figure 2.2 : 68040-Initiated Read Transaction

Write transactions from a 68K initiator are always sent to the PCI bus through a Posted Write
FIFO (PWFIFO). The 68K initiator writing to the Spanner receives immediate data
acknowledgment once the transaction is latched by the Spanner and does not need to wait for
data acknowledgment from the PCI bus (see Figure 2.3 below).

address, then the burst write on the PCI bus may or may not be linear
depending on the response of the PCI target. For example, in a linear burst the
next longword address after 0x0C is Ox10. However, if the address wraps then
the next longword address after Ox0C is 0x00. The address will wrap only if the
PCI target breaks up the burst (through a target disconnect) on a wrappable
boundary. For example, consider a burst transaction with longword addresses
0x04, 0x08. 0x0C, and Ox10. If the PCI target breaks the transaction into two
double longword bursts, then the address will not wrap. However, if the PCI
target breaks the transaction into single longword transactions, then the
address will wrap (data appears at addresses 0x04, 0x08. 0x0C, and 0x00).

it If a line write from a 68040 initiator is attempted at a non-32 byte aligned

Newbridge Microsystems 2-5
M L5588101 0D03371 1338 W

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

Spanner as 68K Target (PCI Initiator) Spanner User Manual

Clk _ L [L L
LA[31:0] — }
LR.W —]
LTS
Lb{@310) — '}
LTA L
REQ# _
GNT# I
AD[31:0] | T
C/BE [3:0] I
FRAME# 1
IRDY#]
TRDY#
STOP#

DEVSEL# L

Figure 2.3 : 68040-Initiated Write Transactions

The PWFIFO is a longword (32 bits) wide and 4 entries deep. The Spanner writes to a PCI
target from the PWFIFO until the FIFO is empty. Note that there is no packing/unpacking
performed by the PWFIFO. Only one transaction is held in the PWFIFO at one time, and the
Spanner inserts wait states on the 68K bus (bus keeping LTA negated) if a 68K initiator
attempts to write to the PWFIFO before it is empty.

Byte lanes from the 68K bus are automatically byte swapped to the appropriate byte lanes on
the PCT bus so that Address Invariance is maintained between the big-endian and little-endian
memory structures. In addition, the Spanner directly maps byte lane activity on the 68040 bus
to the PCI bus by enabling the appropriate PCI byte lanes.

The Spanner generates parity on the PCI bus during a write as PCI initiator, but does not
monitor parity during reads.

2.2.3 Terminations

Since write transactions are decoupled, errors from the PCI target are not passed back to the
68K initiator. However, note that if PCI transactions terminate with Target Abort or Master
Abort, then this will be recorded in the PCI Command and Status register (Table A.4). If the
Spanner terminates with a master abort, it sets the RCVMTA bit in the PCICS register

(Table A.4). Similarly, if it receives a target abort while it is PCI initiator, it sets the RCTVA
bit in the PCICS register. These status bits are cleared by writing a “1”” to them. During read
transactions (which are coupled), PCI terminations are translated to the 68K bus according to
Table 2.1 below.

2-6 Newbridge Microsystems
B L588101 0003372 074 MW

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

Spanner User Manual Spanner as 68K Target (PCI Initiator)

Table 2.1 : Translation of PCI Terminations to the 68K Interface

PCI Termination Slg:ﬂ:ﬂo:cﬁesx

Target Disconnect TA
Target Abort TEA
Target Retry see text below

If there is a target retry on a 68040-initiated read or write, then the Spanner continues to retry
the PCI target until it receives TRDY# or a target abort. If the retry occurs during a read, then
the acknowledgment from the PCI bus (when it is eventually received) is relayed to the 68040
bus. The 68040 initiator must not be backed off or retried once an access is made to the
Spanner until the Spanner responds with LTA or LTEA to terminate the transaction. For retries
during write transactions, any subsequent cycles from the 68K bus to the PCI bus are blocked
until the retried transaction is completed.

& Caution: A 68K time-out cannot be used to halt PCI retries.

Newbridge Microsystems 27
L588101 0003373 TOO M

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

Spanner as PCI Target (68K Initiator) Spanner User Manual

2.3 Spanner as PCI Target (68K Initiator)

The Spanner becomes PCI target when a PCI initiator accesses one of the Spanner’s two
programmable images, its Fixed Offset image, or the Spanner register space. Since register
access is discussed elsewhere (see “Register Access” on page 2-16), this section only
describes transactions where a PCl initiator is accessing a 68K resource through the Spanner’s
PCI images.

All accesses from the PCI bus to the 68K bus are coupled (single cycle) transactions. Note
that the operation of the 68K interface is essentially identical to the 68040 protocol.

2.3.1 Address Phase

The Spanner decodes any access to its two programmable PCI slave images or its one Fixed
Offset slave image (see “PCI Address Decoding™ on page 2-12). The two programmable
images can be located anywhere within the 4 Gbytes of PCI Memory space (dual address
cycles are ignored). The 62 Kbyte Fixed Offset image can be located together with the
Spanner’s register space in Memory and/or 1/0 space with a base address programmed by the
MEMBASE and IOBASE registers, respectively.

The Spanner’s two programmable images decode Memory Reads and Memory Writes on the
PCI bus. Memory Read Line transactions are accepted as Memory Reads. Memory Write Line
and Memory Write Invalidate transactions are accepted as Memory Writes. The Fixed Offset
image decodes Memory reads and writes and/or I/O reads and writes. All decoded PCI
transactions (to the programmable images or the Fixed Offset image) are mapped to a single
address space on the 68K bus (function code lines are set as LTT[1:0]=0 and LTM[2:0]=5,
equivalent to normal supervisor data access on a 68040 bus). The only exception to this is
during accesses to the upper 2 Kbytes of the Fixed Offset image. In this case, the LTT[1:0]
and LTM[2:0] lines are set to generate an IACK cycle on the 68040 bus (see “Interrupt
Acknowledgment” on page 2-14).

according to the translation offset programmed for that PCI image (see “PCI Address
Decoding” on page 2-12). The translation offset allows the user to map the PCI image
anywhere within the 4 Gbytes of 68K address space.

|
|
|
|
The address decoded by the two programmable images is modified for the 68040 bus J
The Spanner does not decode LOCK# on the PCI interface. |

1

\

2-8 Newbridge Microsystems
6588101 0003374 94?7 IR

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

1

Spanner User Manual Spanner as PCI Target (68K Initiator)

2.3.2 Arbitration on the 68K Bus

The Spanner has an internal arbiter which can arbitrate between three devices on the 68K bus
(including itself). The three request inputs are ABR[2:0] and the three request outputs are
ABG[2:0]. The arbiter follows 68040 priority arbitration protocol where abr2 has the highest
priority and abrQ has the lowest. Note that the Spanner’s internal arbiter does not support
locking, so users may wish to employ an external arbiter for 68K designs using a locking
protocol.

If an external arbiter is implemented, the Spanner asserts its bus request signal (LBR) and
should receive the bus grant signal (LBG) in accordance to 68040 protocol. The Spanner will
become master of the 68040 bus once LBG has been sampled low, and will drive the bus when
LBB has been released by the previous master. Once it obtains the bus, it asserts the 68040 bus
busy signal (LBB), and holds it asserted until completion of the single outstanding PCI access.

Parking the 68040 bus at the Spanner has no effect other than speeding up acquisition of the
bus for the next transaction. If the bus is parked at the Spanner, then the Spanner starts driving
the 68040 bus on the next rising clock edge after it drives the bus request.

233 Data Phase

All transactions from a PCI initiator are treated as coupled (also called “pass-through’), which
means that the PCI transaction only terminates after the 68040 transaction has completed.
After the address phase, the PCI bus lies idle while the Spanner establishes a coupled
connection with the 68K resource. Once the coupled connection is established, the first data
beat is sent to the 68K bus. For aligned data transfers, the Spanner performs beat-for-beat
translation between the two buses. However, if the byte lane enabling on the PCI bus does not
correspond to an aligned 68K transaction (i.e. unaligned transfers, or PCI transactions with
noncontiguous byte enables), then the Spanner breaks the PCI transaction into multiple 68K
transactions as required (see byte lane mapping in Table 2.2 below). If the transaction is
broken into two 68040 cycles, then bus busy is held during the two 68K transactions (the 68K
bus is held between the two cycles). Once the final 68K transfer has been acknowledged with
LTA (or LTEA), the Spanner asserts TRDY# (or target abort) to acknowledge the PCI data beat.

Newbridge Microsystems 2.9
BN L588101 0003375 483 N

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

5t e —

Spanner as PCI Target (68K Initiator) Spanner User Manual

Note also that the Spanner performs byte swapping such that Address Invariance is preserved
between the two endian systems (big endian on the 68K bus versus little endian on the PCI
bus).

Table 2.2 : Byte Lane Mapping for PCI to 68K Transactions

Active 68040 Byte Lanes
BE[3:0}# “;I;‘sn‘:;:i:“ LSIZ1 | LSIZ0 | LAl | Lao LD LD 1D LD
[31:24] | [23:16] | [15:08] | [07:00]
1110 1 0 1 0 0 X ; . -
1101 I 0 1 0 1 ; X . .
1011 1 0 1 1 0 - - X -
o111 1 0 1 1 1 . - . X
1100 1 1 0 1 0 - . X X
1001 1 0 1 0 1 - X - -
2 0 1 1 0 ; - X]
0011 1 1 0 1 0 . ; X X
0110 1 0 1 0 0 X - - -
2 0 1 1 1 - i - X
1000 1 1 0 0 0 X X - -
2 0 1 1 0 . - X -
0001 1 0 1 0 1 - X
2 1 0 1 0 - ; X X
0101 1 0 1 0 1 ; X - .
2 0 1 1 1 : B . X
0010 1 0 1 0 0 X . . R
2 1 0 1 0 ; . X X
0100 1 1 0 0 0 X X - -
2 0 1 1 1 ;] . X
1010 1 0 1 0 0 X - :
2 0 1 1 0 . i X]
0000 1 0 0 0 0 X X X X
1111 1 Note 1

Notes:

1. No 68040 transaction is initiated and the Spanner performs a target disconnect on the PCI side.

2-10 Newbridge Microsystems

Powered bv ICminer.com EIeclronic-LiM Sehcéélﬁl%bm ;503 D U D 3 3 ? l: ?]" T -

Spanner User Manual Spanner as PCI Target (68K Initiator)

Since there is no guarantee that PCI latency requirements can be met on the 68K bus, the
Spanner performs a target disconnect on the PCI bus during the first data beat of every
transaction by asserting STOP# together with TRDY#. This means that all transactions from a
PCI initiator are broken into single cycle transactions.

The Spanner generates parity during reads as a PCI target, but does not monitor parity during
writes.

234 Terminations

Terminations from the 68K interface are translated to the PCI initiator according to Table 2.3
below.

Table 2.3 : Translation of 68K Terminations

68 K Termination PCI Termination
TA Target Disconnect

TEA Target Abort

TA + TEA (Retry) Target Retry

Note that if the Spanner terminates the PCI transaction with target abort on the PCI bus, it sets
the SIGTA bit in the PCICS register (Table A.4). Clear this status bit by writing a “1” to it. As
PCI target, the Spanner will also terminate with target retry if it encounters deadlock due to
simultaneous access by a 68K initiator to the PCI bus.

Newbridge Microsystems 211
L588101 0003377 b5 IH

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

PCI Address Decoding Spanner User Manual

24 PCI Address Decoding

The Spanner recognizes two types of accesses on the PCI interface: accesses destined for a
68K resource, and accesses to its own register space. Address decoding for the Spanner’s
register space is described in “Register Access” on page 2-16. This section describes how to
program the PCI images for 68K accesses.

24.1 Programmable PCI Slave Images

The Spanner provides two programmable images which can be mapped anywhere within the
4 Gbytes of PCI Memory space. Each of these images is enabled by setting its corresponding
enable bit in the PCI Slave Image Control register (see Table A.11 or Table A.13).The two
programmable images can be any size with 64 Kbyte granularity as long as their combined
size does not exceed the 4 Gbyte limit. The most significant 16 bits for the PCI base address is
programmed with the PCI Slave Image Base and Bound register (see Table A.10 or

Table A.12). The upper 16 bits of the bound address of the PCI image is programmed with the
same register. For example, if PCIBS is programmed as 0x2000 and PCIBD is programed
with 0x2FFF, then the Spanner decodes any access between 0x2000 0000 and 0x2FFF FFFF.

When the PCI access is mapped to the 68K bus, an address offset can be used to translate the
PCI address to any 68K address. This can be done using the PCI Slave Image Control register
(see Table A.11 or Table A.13). The address on the 68K bus is the sum of the offset value and
the original PCI address. In the event of overlap in the programming of the slave images, the
register access image takes priority followed by PCI slave image 0.

24.2 The Fixed Offset Slave Image

The Fixed Offset slave image is programmed together with the Spanner’s register space into

Memory space and/or I/O space according to the base address set in the MEMBASE or

IOBASE registers (see “Address Mapping for the Fixed Offset Image” on page 2-13). This

fixed image is enabled in Memory and/or I/O space using the MEMSP and IOSP bits in the

PCI Command register (Table A.4). Access to the lower 60 Kbytes of the Fixed Offset image

results in a 68040 cycle similar to one produced by an access to the programmable PCI slave

images (LTT[1:0}=0 and LTM[2:0]=5, equivalent to normal supervisor data access). However,

access to the upper 2 Kbytes of the Fixed Offset image can be used to generate IACK cycles }

on the 68040 bus. See “Interrupt Acknowledgment” on page 2-14 for a description of how this ‘

2 Kbyte range is used for 68040 IACK cycle generation. Accesses to the Fixed Offset image

are mapped to 68K address such that the address is always aligned to FFF4 0000. ‘
|

2-12 Newbridge Microsystems 1
BN L583101 0003378 592 WA

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

5

Spanner User Manual

62 Kbyte
FIXED OFFSET IMAGE

IOBASE or MEMBASE + FFFF

— IOBASE or MEMBASE + F7FF

IOBASE or MEMBASE + FO00

- |OBASE or MEMBASE + 0000

PCI
CONFIGURATION
REGISTERS

TT[1:0]=3
TM[2:0] = interrupt
level

TT1:0]=0
TM[2:0] =5

I

- FFF4 0000

PCI Address Decoding

_ FFF4 F7FF

e

USED TO GENERATE
AN (ACK CYCLE

TRANSLATED

TO THIS RANGE
IN 68040
ADDRESS SPACE

P

AN

N/

Figure 2.4 : Address Mapping for the Fixed Offset Image

Newbridge Microsystems

Powered by ICminer.com Electronic-Librarv ServiLH

hSAALDL 0003379 429 W

4 Gbytes
OF
68040
ADDRESS
SPACE

2-13

Deadlock Resolution Spanner User Manual W

2.5 Deadlock Resolution

A deadlock occurs when the Spanner is being accessed as PCI target and 68K target
simultaneously. When deadlocks occur (where a PCI and 68040 initiator attempt to reach the
other bus at the same time), the deadlock is always resolved by retrying the PCI initiator. The
68K initiator will complete its cycle (read or write) on the PCI bus after the incoming PCI
cycle is retried.

2.6 Interrupts

2.6.1 Interrupt Mapping

The Spanner bridges 68K interrupters to the PCI bus (interrupts are not relayed in the other
direction). If interrupt mapping is enabled (with the IEN bit in the INTCS register,

Table A.14), then an interrupt received on the 68K interrupt lines (LTPL[2:0]) causes the
Spanner to synchronously assert INTA# on the PCI bus. Any asserted combination of
LIPL[2:0] is accepted as a valid interrupt. The incoming interrupt level decoded from the
LIPL[2:0] lines is reflected by the ILVL bits in the INTCS register. The value of the ILVL bits
reflects the most recent interrupt received from the 68K bus. The PCI bus interrupt is negated
once the IPL lines are negated regardless of whether an IACK cycle has occurred on the 68040
bus or not.

Caution LIPL{2:0] are sampled synchronously on a rising clock edge and as
such must not be treated as asynchronous signals.

2.6.2 Interrupt Acknowledgment

When an interrupt from the 68040 bus is passed through to the PCI bus, the Spanner passes

the incoming interrupt level to the ILVL bits in the Interrupt Control and Status (INTCS)

register (Table A.14). The interrupt controller on the PCI bus must use this interrupt level to 1
determine the address it needs to access in the upper 2 Kbytes of the Spanner’s Fixed Offset |
image. The address which is accessed in this 2 Kbyte range controls the IACK cycle type that |
the Spanner generates on the 68040 bus (LTT[1:0]=3, and LTM[2:0]= interrupt level). The |

2-14 Newbridge Microsystems |

s L588101 0003380 140 .

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

Spanner User Manual Interrupts

relationship between the Fixed Offset access and the resulting 68040 cycle is shown in

Table 2.4 below. (Table 2.4 provides offsets for single byte offset cycles. For other IACK data
widths, use the cycle mapping information in Table 2.2.) Essentially, the value presented on
the PCI lines AD[4:2] are directly translated to the value generated on the 68040 lines
LTM[2:0] to represent the interrupt level.

Table 2.4 : Using the Fixed Offset Image to Generate Single Byte 68040 IACK Cycles

Fixed Offset from 68040 Cycle
IOBASE or Corresponding IACK Level
MEMBASE LTT[1:0] LTM[2:0]
xxxx FOO7 IACK Level 1 3 1
xxxx FOOB TACK Level 2 3 2
xxxx FOOF IACK Level 3 3 3
xxxx FO13 IACK Level 4 3 4
xxxx FO17 TACK Level 5 3 5
xxxx FO1B IACK Level 6 3 6
xxxx FO1F TACK Level 7 3 7
xxxx F020 - xxxx F7FF IACK Levels Repeated 3 IACK Levels
Repeated

Note that a 68K IACK cycle is only generated if the PCI initiator reads from the appropriate
address in the upper 2 Kbytes of the Fixed Offset image. The interrupt vector is returned to the
PCI interrupt controller according to the byte enable setting on the PCI bus. Writes are not
screened and will appear on the 68040 bus with LTT[1:0] and LTM[2:0] lines set for an IACK
cycle. In addition, the rules for cycle mapping listed in Table 2.2 on page 2-10 apply for any
access to the Fixed Offset image. If an unaligned access is attempted to the upper 2 Kbytes of
the Fixed Offset image, then it will be translated as two separate cycles on the 68040 bus with
the LTT[1:0] and LTM[2:0] lines set according to Table 2.4 above.

Newbridge Microsystems 2-15
M Lcaal0l 0003381 087 HM

Powered bv ICminer.com Electronic-Librarv Service

Register Access Spanner User Manual

'\
\
2.7 Register Access

271 Control and Status Registers

The 2 Kbytes of the Spanner chip’s Control and Status Registers (SCSR) are used to program
PCI settings as well as all of the Spanner’s operating parameters (see Figure 2.4 on page 2-13
for the location of the Spanner’s control and status registers and Table 2.5 on page 2-18 for the
Spanner register map). The SCSRs are accessible in PCI Configuration space at power up,
which means that the configuration access is externally decoded and the Spanner is selected
with IDSEL# (much like a standard chip select signal).

The SCSRs can be configured together with the Fixed Offset image (see “The Fixed Offset
Slave Image” on page 2-12) so that they are also accessible in Memory and/or I/O space. The
SCSRs are located in Memory and/or I/O space as address offsets from MEMBASE or
TIOBASE, respectively (see Figure 2.5 below). IOBASE and MEMBASE are programmed
using the IOBASE and MEMBASE registers (see Table A.7 and Table A.8, respectively). The
SCSRs are enabled as Memory and/or I/O images through the MEMSP and IOSP bits in the
PCI Command register (Table A.4).

IOBASE or MEMBASE + FFFF

ACCESSIBLE FROM MEMORY PCI ACCESSIBLE FROM
AND/OR /O SPACE CONFIGURATION PCI
REGISTERS CONFIGURATION
IOBASE or MEMBASE + F800 SPACE

Figure 2.5: Accessing Control and Status Register in Configuration, I/0 and
Memory Space

A 68040 initiator accesses the SCSR space through the PCI bus. This means that the 68040
initiator must first gain ownership of the PCI bus (Spanner as PCI thitiator) before reaching
the SCSRs (making the Spanner PCI target as well). Since all 68040 transactions are mapped
to PCI memory space by the Spanner, the SCSR space is accessible to a 68040 initiator only in
PCI memory space.

In order for a 68K initiator to gain access to the SCSRs, they must first be programmed by a
PCI host so that the registers are accessible in memory space. In addition, the Spanner must be
enabled at power up as a PCI master (see Appendix C for external logic that enables a 68K
initiator to access the Spanner registers and PCI configuration space without a PCI host).

2-16 Newbridge Microsystems
L584101 0003382 TL3 M

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

R R R R R

Spanner User Manual Register Access

If a PCI initiator attempts burst reads or writes to the SCSRs, then the Spanner performs target
disconnects after the first data beat of every transaction. This is also true if a 68040 initiator
attempts a line read or line write to the Spanner’s registers through the PCI bus (i.c. via the
Spanner). The Spanner as PCI initiator attempts to perform a four longword burst write, but
the Spanner (as PCI target) performs a target disconnect after the first data beat forcing the
burst to be broken into 4 single data beat transactions. (Note also that the address will wrap in
this case, see page 2-4.)

27.2 Register Maps

Register offsets in Table 2.5 and Table 2.4 below are given with the upper 21 address bits as
variables (e.g. xxxx xx0A). The upper 21 address bits vary depending upon whether the PCI
Configuration registers are accessed from Memory or I/O space, or from PCI Configuration
space.

If the PCI Configuration registers are accessed from Memory space, then the upper 21 address
bits will be MEMBASE + 0000 F8xx, with the lower 11bits supplied from the PCI bus
address lines. Likewise, if the PCI Configuration registers are accessed from I/O space, then
the upper 21 address bits will be IOBASE + 0000 F8xx, with the lower 11bits supplied from
the PCI bus address lines.

If the PCI Configuration registers are accessed through PCI Configuration space, then the
upper 21 address bits will depend upon the implementation of IDSEL# and the mapping of the
SCSRs in the PCI Configuration space.

Newbridge Microsystems 2-17
‘28:55568]:0]: gop3383 957 A

Powered bv ICminer.com Electronic-Librarv Service Conv!lqh

Register Access Spanner User Manual

Table 2.5 : Spanner PCI Configuration Map

Device ID Vendor ID 00
Status Command 04 T
Class Code Revision ID 08 |
BIST Header Type Latency Timer Cache Line Size oC 1
IO Map Base Address and Control 10
Memory Base Address and Control 14
Not Supported 18
Not Supported 1C
Not Supported 20
Not Supported 24
Reserved 28
Reserved 2C |
Not Supported 30 i
Reserved 34
Not Supported 38
Max Latency Minimum Grant Interrupt Pin Interrupt Line 3C
PCI Slave Bound 0 PCI Slave Base Address 0 40
Reserved (Address Offset and Enable bit for PCI Slave Image 0 44
PCT Slave Bound 1 | PCT Slave Base Address 43
Reserved] Address Offset and Enable bit for PCI Slave Image 1 4c
Reserved Interrupt 50
Enable and
Level
|
2-18 Newbridge Microsystems

B L584101 0003384 89: W |

Powered bv ICminer.com Electronic-Librarv Service CopvRiaht 2003

Spanner User Manual Clocks and Resets

Table 2.6 : Spanner PCI Configuration Registers

Register Address Register Name
xxxx xx00 ID Register D
xxxx xx04 PCI Command and Status PCICSR
xxxx xx08 Configuration Class Register CLASS
xxxx xx0C Miscellaneous Configuration Register 0 MISCONO
xxxx xx10 PCI IO Base Address IOBASE
xxxx xx14 PCI Memory Base Address MEMBASE
xxxx xx3C Miscellaneous Configuration Register 1 MISCON1
xxxx xx40 PCI Slave Image Base/Bound 0 SI0_BSBD
XXXX XX44 PCI Slave Image 0 Control SI0O_CTL
XXXX Xx48 PCI Slave Image Base/Bound 1 SI1_BSBD
xxxx xx4C PCI Slave Image 1Control SI1_CTL
XXXX XX50 Interrupt Status and Control INTSC

2.8 Clocks and Resets

2.8.1 Clocking

Timing for the Spanner is taken only from the PCI bus on the CLK input. Since the Spanner is
a synchronous part, this means that it expects both buses to operate at the same clock
frequency.

2.8.2 Reset

The Spanner has a single reset input from the PCI bus. When RST is asserted, all Spanner
signals (on the PCI and 68K interfaces) go inactive and tristate. There is no specific logic for
reset. All outputs are tri-stated upon assertion of RST# and all register values return to their
default state (see App A).

Newbridge Microsystems 2-19

Powered by ICminer.com Electronic-Librarv SeMCo[bRﬁ]ﬁ QO.I_" D]’ D D D 3 3 B 5 ? E E -

.,

Openbus Interface Components - Spanner User Manual

Appendix F Mechanical and
Ordering Information

F.1 Mechanical Information

“d* diameter

3 PLAGES Controlling Dimensions in mm
1514 13 12 11109 B 7 & 5 4 3 2 1
Dimension| Min Nom Max
Q0000000000000 C0 A A 1.80 200 230
[00C00C0OD0000CCOO0O0 8 Al 0.50 0.60 0.70
b & 0C0O0O0DO0OO0O0DO0OODOOQOOOQO ¢
[$[poxec[a®]B @) 000000 O0O0D0DOO0OO0OO o A2 112 117 1.22
0O0CO0O0DOCODOOOO0ODO0O E
0000000000000 O0 E D 26.80 27.00 27.20
1 C0DODO0ODDOOOOOOOOD G DA 2400 | 24.70
, — [©000000000000000 H
—4 000 00C0C000C000O0O0 J E 26.80 | 27.00 | 27.20
1 O0DO0DODOQOOCOO0OOO0O0 K
0000000000000 OO L E1 24.00 | 2470
]
00000000 OO0OOOOO | 3.00 REF
0C0Q0O0CO00D0OO0O00D N
l C0O00O0O0O0O0DO0OO00O0O0OD P J 3.00 REF
0 0000000000000 O0 R
J I f] M 18
! 1
t | H b 060 | 076 | 090
e |e— @ .
PIN #1 1.D. —- - | = c 0.28 0.32 0.38
1.0 mm diametar L
T Toi27 A d 1.00 BREF
) ® 1.50 REF
: f 8.05 REF
[}
2 aaa 0.15
3
&
g bbb 0.15
! g
w o @«
p
p
p
p
b
p
AN b
I L
B. \— 45° CHAMFER
! i 4PLACES !
— -V-‘-—Az
o1 L] T
A
D — A
=]
|
|
Figure F.1 : Mechanical Dimensions for 225-Pin PBGA
Newbridge Microsystems AppF-1
Powered by ICminer.com Electronic-Librarv !erviCP!-:CODVRiqht 2003

Ordering Information Spanner User Manual

F.2 Ordering Information

Newbridge Microsystems products are designated by a Product Code. When ordering, refer to
products by their full code. For detailed mechanical drawings or alternative packaging
requirements, please contact our factory directly

CA91C068-X Y Z
Packaging
E - Plastic BGA
Part Number
Speed
33 MHz Temperature
C - Commercial (0° to 70°C)
(for industrial or Mil screening, please
contact the factory)
App F-2 Newbridge Microsystems

01 0003459 511 HE

Powered bv ICminer.com Eleclronic-Mrv Sb\?‘i'r!Mn;hlqht 2003

	btnStamp:
	copyright2:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	P1:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P2:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P3:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P4:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P5:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P6:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P7:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P8:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P9:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P10:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P11:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P12:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P13:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P14:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P15:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P16:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P17:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P18:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P19:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P20:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

	P21:
	pmtemplate:
	copyright: Powered by ICminer.com Electronic-Library Service CopyRight 2003
	copyright2:

