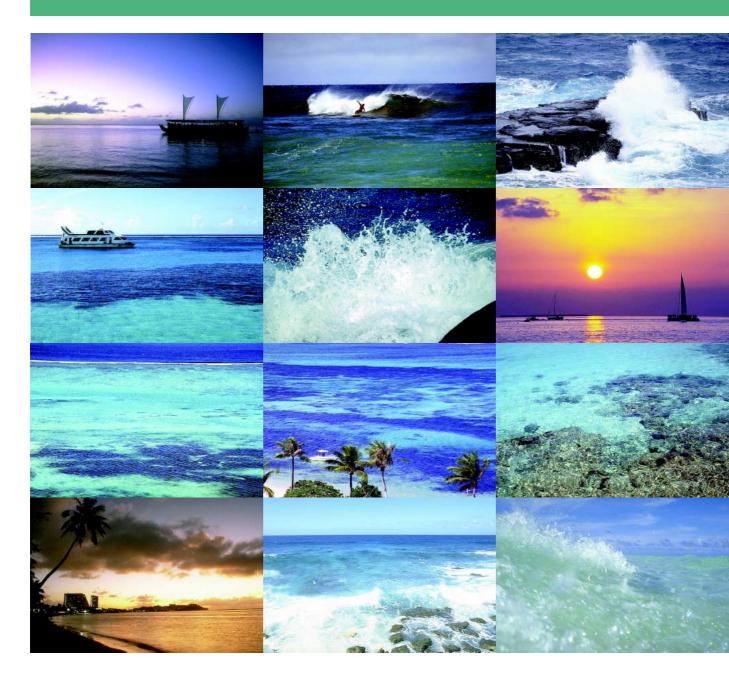
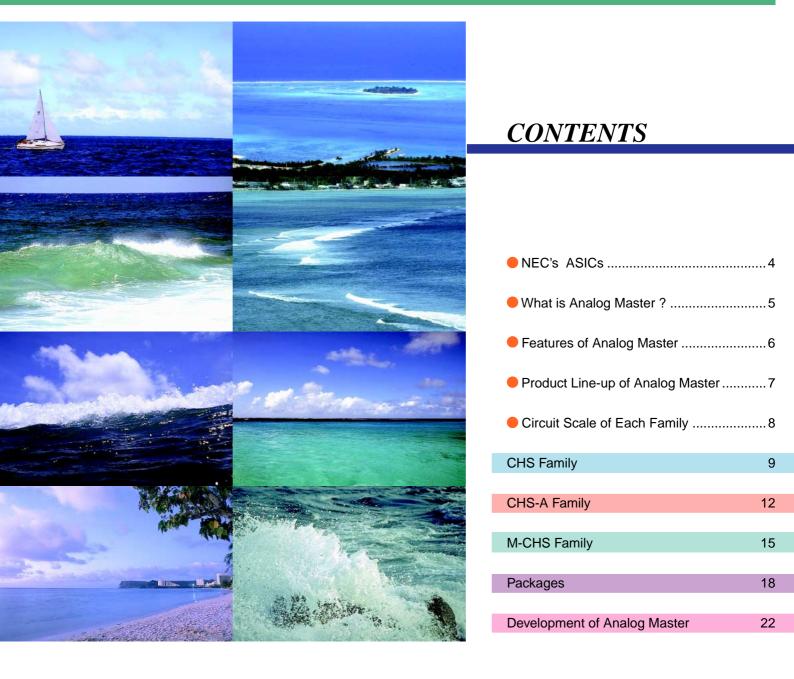


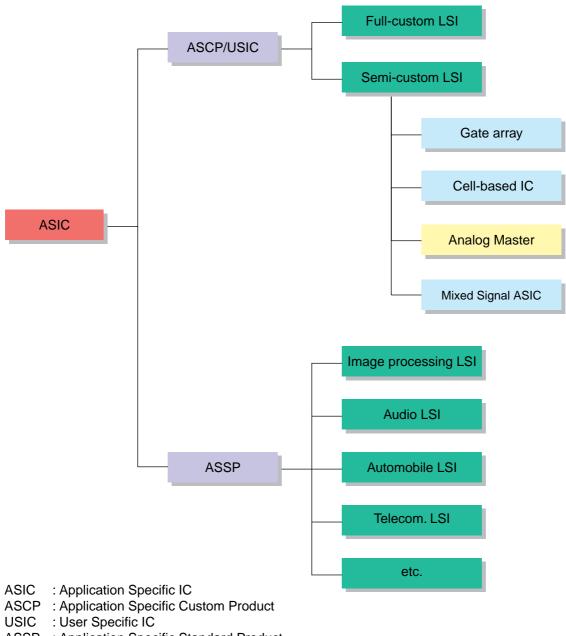
Analog Master




We can find various size of waves generated in the ocean. The wave is sometimes energetic sometimes week according to the forces of nature and the gravitational effect of the moon, an infinitely continuous activity.

We can also find another kind of wave in electric circuits: the wave of an analog signal. This wave has great significance for humankind, despite it being much smaller than the wave in the ocean.

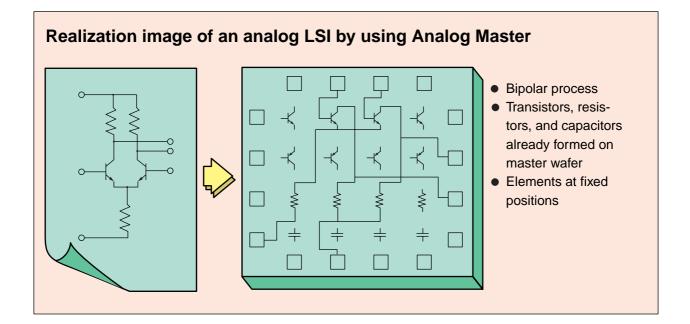
Engineers seek to control the analog signal, this tiny and great wave, to improve the performance and accelerate downsizing of an application system.

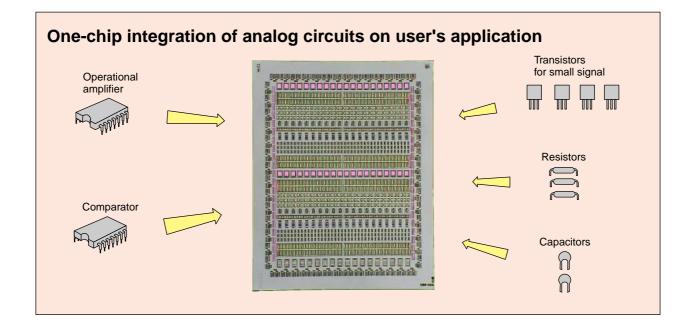


NEC introduces Analog Master, which is a semi-custom LSI just for handling the wave of analog signals, and proposes the use the Analog Master to integrate analog circuits on one-chip, supporting powerful library of macros, variety of masters and reliable development tools.

NEC's ASICs

Classification of ASICs


ASSP : Application Specific Standard Product


Remark For details about the Gate array and Cell-based IC, please refer to ASIC Line-up Pamphlet(A10696E).

What is Analog Master?

The Analog Master is a semi-custom LSI for creating analog circuits on a master wafer by inter-connecting pre-diffused elements (bipolar transistors, resistors, and capacitors, already formed on the wafer) with the user-defined wiring.

Analog Master is ideal for users who want to develop small-lot analog LSIs with low development cost in a short development period.

Features of Analog Master

Very short development period

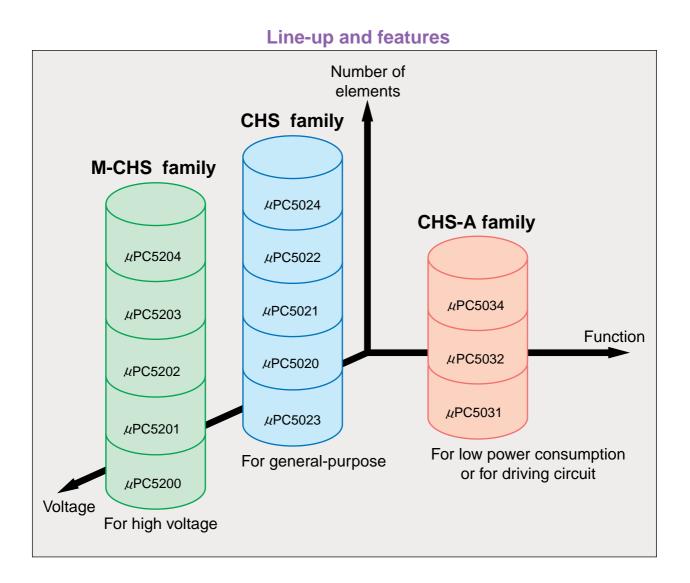
Four to eight weeks from layout design to ES (Engineering Sample) production

Powerful line-up

3 families (13 masters) are provided to cover wide range of operating frequency, voltage, and number of elements used.

General-purpose Analog Master General-purpose Analog Master High voltage Analog Master CHS family : 5 masters CHS-A family : 3 masters M-CHS family : 5 masters

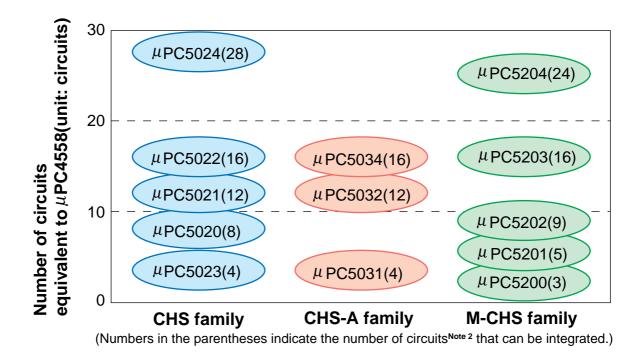
Various macro libraries

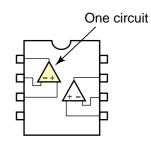

To reduce user's works, variety of macros are provided such as operational amplifier, comparator, regulator, etc.

Product Line-up of Analog Master

NEC's Analog Master is classified in the following 3 families(refer to the figure below).

- CHS family and CHS-A family for wide application field
- M-CHS family for high voltage


From this wide line-up (3 families 13 masters), user can achieve the optimum analog LSI.


Circuit Scale of Each Family

The scale of the circuit that can be integrated on the analog master differs depending on the model of each family.

The scale of the circuit that can be integrated shown below is roughly calculated in terms of the number of circuits where one circuit is equivalent to the general-purpose operational amplifier μ PC4558^{Note 1}.

Notes 1. One of the two operational amplifiers in the general-purpose operational amplifier μ PC4558 package (8-pin DIP) is counted as one circuit.

2. The number of circuits shown above is a guideline in which only operational amplifiers are integrated, and does not include operational amplifier peripheral circuits (such as feedback circuits). When selecting a model, estimate the circuit scale by taking these peripheral circuits into consideration.

CHS Family

Features of CHS family

- High speed transistors (NPN : 6 GHz, Vertical PNP : 280 MHz)
- Excellent h_{FE} linearity of transistor
- Easy to configure low power circuits
- Adequate for circuit operating at up to 12 V and 50 MHz
- Variety of macro libraries

Element characteristics of CHS family

Element	Item	Description		
	Voltage	14 V (Absolute maximum ratings)		
		NPN CHT1 : 4.5 GHz		
	T	CTW4 : 6.0 GHz		
	Transient frequency (f_T)	PNP CLP1: 7.0 MHz		
Transistor		CVP1 : 280 MHz		
Transistor		NPN CHT1 : 100 (Ic = 500 μA)		
	h _{FE} standard value	CTW4 : 100 (Ic = 500 µA)		
		PNP CLP1 : 200 (Ic = 10 μA)		
		CVP1 : 75 (Ic = 10 μA)		
	h _{FE} linearity (CHT1)	$h_{FE} (I_c = 10 \mu\text{A})/h_{FE} (I_c = 100 \mu\text{A}) = 1.00$		
		Absolute accuracy : ±15 % (Ion-implanted)		
		: ±20 % (Polysilicon)		
Resistor	Resistance accuracy	Relative accuracy (between adjacent resistors)		
		: ±2 % (Ion-implanted)		
		: ±3 % (Polysilicon)		
Capacitor		Absolute accuracy : ±15 %		
Capacitor	Capacitance accuracy	Relative accuracy : ±2 % (between adjacent resistors)		

Element characteristics of CHS family

Element configuration of CHS family

- 5 masters are available from µPC5023 to µPC5024 for small to large complexity circuit, respectively.
- The CHS family should be designed so that the utilization rate of each element is up to 70 % (Only μPC5023 should be designed up to 60 %).

Part Nu	umber	μ ΡC5020	μ ΡC5021	μ ΡC5022	μ PC5023	μ ΡC5024	Remarks
Techno	ology		High-	speed bipolar te	chnology		Name : CHS
Supply v	/oltage			14 V			Abusolute maximum ratings
Number	of pads	28	32	50	22	80	
Total number	of elements	1627	2327	3041	726	6151	
Total number of	of transistors	484	688	892	245	1508	
	CHT1	224	320	416	112	672	I _{C(MAX.)} = 2 mA ^{Note1}
NPN	CTW4	28	40	52	13	84	$I_{C(MAX.)} = 18 \text{ mA}^{Note2}$
transistors	CEW4	8	8	8	4	80	$I_{C(MAX.)} = 18 \text{ mA}^{Note2}$ (For electro-static protection)
PNP	CLP1	168	240	312	84	504	I _{C(MAX.)} = 0.05 mA ^{Note1} (Lateral type)
transistors	CVP1	56	80	104	32	168	I _{C(MAX.)} = 0.5 mA ^{Note1} (Vertical type)
Total number	of resistors	1116	1600	2098	468	4560	
lon-	500 Ω	544	784	1024	224	1664	P ⁺ resistor
implanted resistors	5 k Ω	544	784	1024	200	2496	P ⁻ resistor
Polysilicon	2.5 k Ω	28	32	50			N ⁺ resistor
resistors	3 k Ω				44	400	N ⁺ resistor
Number of cap	acitors(5 pF)	27	39	51	13	83	MOS capacitor

Masters of CHS family

Notes 1. Ic(MAX.) is a collector current value that reduces the value of DC current amplification factor hFE by 30 % compared to its peak value.
 2. Maximum collector current value whose reliability can be guaranteed because it is limited by the maximum current density.

Macro library

• TEGs are also provided.

Function	Library Name	Feature	Specifications	Equivalent	Availability				
	OA01A	General-purpose	V _{IO} : 1.4 mV (TYP.)	μPC4558	Available				
	OA02A	Single power supply, high-speed	SR⁺: 8 V/ <i>μ</i> s (TYP.)	μPC842	Available				
	OA03A	Low power	I_{CC} : 5 μ A (TYP., ISET = 1 μ A)	μPC4250	Available				
	OA04B	High input impedance	I _B : 1nA (TYP.)		Available				
	OA06B	Single power supply, stable	V_{ICM} : 0 to V^{+} – 1.5V	μPC358	Available				
Operational	OA06C	Single power supply, V_{om}^{+} improved	V _{om} ⁺ : V ⁺ - 1.2 V (MIN.)	μPC358	Available				
amplifier	OA07A	High-speed, high stability	SR⁺: 70 V/µs (TYP.)		Available				
	OA07B	High-speed, wide band	GBW : 200 MHz (TYP.)		Available				
	OA08	Low noise	e _n : 6.5 nV/√H _Z (TYP.)		Available				
	OA09	General-purpose (reduced element version)	Vio: 1.2 mV (TYP.)		Available				
	OA10	NPN input low noise	e _n ∶3 nV/√H _Z (TYP.)		Available				
0	CP02A	High-speed	t _{PD} : 80 ns (TYP.)	μPC319	Available				
Comparator	CP04	Single power supply	t _{PD} : 0.5 μs (TYP.)	μPC393	Available				
	RG01A	General-purpose	V _o : 1.3 to 9.0 V		Available				
Regulator	RG02A	General-purpose	V_{0} : 2.7 to 9.5 V		Available				
	RG03	Low saturation			Available				
	SW01A	Bi-directional switch (High-active)			Available				
Switch	SW01B	Bi-directional switch (Low-active)			Available				
	SW02	Signal switch			Available				
Timer	TM01	Timer		μPC1555	Available				

Macro library of CHS family

Remark TEG (Test Element Group) is a sample of macro.

CHS-A Family

Features of CHS-A family

- Compatible with the CHS family (same process as CHS family is employed)
- Many-pin masters solving shortage of number of pins
- Total internal resistance 2 times higher than the CHS family
- Internal transistor for output driver (drive up to 50 mA)
- Super white TEG supporting application to microcontroller's peripheral analog circuits

Element characteristics of CHS-A family

Element	Item	Description		
	Voltage	14 V (Absolute maximum ratings)		
		NPN CST1 : 4.5 GHz		
	Transient franziene (f.)	CTW3 : 5.0 GHz		
	Transient frequency (f_T)	PNP CLP1 : 7.0 MHz		
Transistor		CVP1 : 280 MHz		
Transistor		NPN CST1 : 100 (l _c = 500 μA)		
	h _{FF} standard value	CTW3 : 100 (I _c = 500 μA)		
	HFE Standard Value	PNP CLP1 : 200 (l _c = 10 μA)		
		CVP1 : 75 (I _c = 10 µA)		
	h _{FE} linearity (CST1)	$h_{FE} (I_C = 10 \mu A) / h_{FE} (I_C = 100 \mu A) = 1.00$		
		Absolute accuracy : ±15 % (Ion-implanted)		
		±20 % (Polysilicon)		
Resistor	Resistance accuracy	Relative accuracy (between adjacent resistors)		
		: ±2 % (Ion-implanted)		
		±3 % (Polysilicon)		
Consoltor	Canacitanaa aaguragy	Absolute accuracy : ±15 %		
Capacitor	Capacitance accuracy	Relative accuracy : ±2 % (between adjacent resistors)		

Element characteristics of CHS-A family

Element configuration of CHS-A family

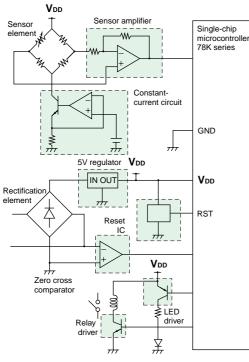
- Three masters with a different circuit scale and number of output driver transistors are available.
- The CHS-A family should be designed so that the utilization rate of each element is up to 70 %.

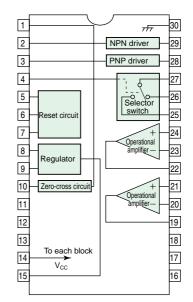
Part N	umber	μ PC5031	μ ΡC5032	μ ΡC5034	Remarks
Technology		Н	ligh-speed bipolar technolo	ogy	Name : CHS
Supply	voltage		14 V		Absolute maximum ratings
Number	of pads	36	56	82	
Total number	r of elements	575	1471	2251	
Total number	of transistors	223	578	896	
	CST1	90	240	360	Ic(MAX.) = 2 mA ^{Note1}
NPN	CTW3	15	40	60	Ic(max.) = 18 mA ^{Note2}
transistors	CEW4	13 ^{Note3}	18 ^{Note3}	26 ^{Note 3}	$I_{C(MAX.)} = 25 \text{ mA}^{Note2}$ (For electro-static protection)
PNP	CLP1	90	240	360	Ic _(MAX.) = 0.05 mA ^{Note1} (Lateral type)
transistors	CVP1	15	40	90	Ic _(MAX.) = 0.5 mA ^{Note1} (Vertical type)
Total number	of resistors	338	854	1266	
lon- implanted	2 k Ω	58	154	234	P ⁻ resistor
resistors	10 kΩ	232	616	936	P ⁻ resistor
Polysilicon resistors	3 k Ω	48	84	96	N ⁺ resistor
Number of cap	oacitors(5 pF)	14	39	89	MOS capacitor

Masters of CHS-A family

Notes 1. Ic(MAX.) is a collector current value that reduces the value of DC current amplification factor h_{FE} by 30 % compared to its peak value.
 2. Maximum collector current value whose reliability can be guaranteed because it is limited by the maximum current density.

3. When used as 50-mA output drivers, the number of elements is halved.


Macro library


• TEGs are also provided.

Specifications Function Library Name Feature Equivalent **Availability** OA0301 General-purpose V_{IO}: 1.4 mV (TYP.) μPC4558 Available OA0302 Single power supply, high-speed SR⁺: 5 V/µs (TYP.) μPC842 Available OA0303 I_{CC} : 6 μ A (TYP., ISET = 1 μ A) μPC4250 Low power Available Operational OA0304 High input impedance I_B:1 nA (TYP.) Available amplifier V_{ICM}: 0 to V⁺-1.4 V (TYP.) OA0306B Single power supply, general-purpose μPC358 Available OA0309 General-purpose (reduced element version) Available t_{PD}: 0.5 μs (TYP.) Comparator CP0304 Single power supply μPC393 Available Regulator RG0301 General-purpose $V_{\rm O}$: 1.3 to Vcc – 2 V Available Switch SW0302 Signal switch Available Super Operational amplifier x 2, regulator, white WT03A Available signal switch, driver x 2 TEG^{Note}

Macro library of CHS-A family

Note Provided with an analog circuit for use microcontroller peripherals. (package : 30-pin shrink DIP)

Super white TEG block diagram

Example of using super white TEG

Use the Super White TEG at the locations enclosed by the dotted lines in figure.

M-CHS Family

Features of M-CHS family

- Maximum supply voltage : 44 V
- High speed transistors (NPN : 2 GHz, vertical PNP : 50 MHz)
- Incorporates low noise lateral PNP transistors (HLP2A transistor)
- Adequate for circuit operating at up to 40 V and 10 MHz

Element characteristics of M-CHS family

Element	ltem	Description
	Voltage	44 V (Absolute maximum ratings)
		NPN HDT1:2 GHz
	Transient frequency (fr)	HTW4 : 2 GHz
		PNP HLP2 : 2 MHz
Transistor		HVP3 : 50 MHz
Transistor		NPN HDT1 : 100 (I _c = 500 μA)
	h _{FE} standard value	HTW4 : 100 (I _c = 500 μA)
		PNP HLP2 : 100 ($I_c = 10 \mu A$)
		HVP3 : 100 (I _c = 10 μA)
	h _{FE} linearity (HDT1)	$h_{FE} (I_C = 10 \mu A) / h_{FE} (I_C = 100 \mu A) = 1.00$
		Absolute accuracy : ±15 % (Ion-implanted)
		±20 % (Polysilicon)
Resistor	Resistance accuracy	Relative accuracy (between adjacent resistors)
		: ±2 % (Ion-implanted)
		: ±3 % (Polysilicon)
Compositor		Absolute accuracy : ±15 %
Capacitor	Capacitance accuracy	Relative accuracy : ± 2 % (between adjacent capacitors)

Element characteristics of M-CHS family

Element configuration of M-CHS family

- 5 masters are available from μPC5200 to μPC5204 for small to large complexity circuit, respectively.
- The M-CHS family should be designed so that the utilization rate of each element is up to 70 %.

Part N	umber	μ ΡC5200	μ ΡC5201	μ ΡC5202	μ ΡC5203	μ ΡC5204	Remarks
Techn	ology		High-speed, I	nigh voltage bipc	lar technology		Name : M-CHS
Supply	voltage			44 V			Absolute maximum ratings
Number	of pads	24	28	40	52	62	
Total number	r of elements	653	1029	1786	3087	4561	
Total number	of transistors	189	303	535	932	1382	
	HDT1	72	120	216	384	576	IC(MAX.) = 1.0 mA ^{Note1}
NPN	HTW4	9	15	27	48	72	IC(MAX.) = 10 mA ^{Note1}
transistors	HEW4	12	14	20	26	31	IC(MAX.) = 10 mA ^{Note1}
	HTT5	12	14	20	26	31	IC(MAX.) = 18 mA ^{Note2}
	HLP2	48	80	144	256	384	I _{C(MAX.)} = 0.12 mA ^{Note1} (Lateral type)
PNP transistors	HLP2A	18	30	54	96	144	Low noise PNP I _{C(MAX.)} = 0.12 mA ^{Note1} (Lateral type)
	HVP3	18	30	54	96	144	I _{C(MAX.)} = 1.0 mA ^{Note1} (Vertical type)
Total number	of resistors	456	712	1225	2108	3108	
lon- implanted	500 Ω	144	240	426	760	1144	P ⁺ resistor
resistors	1 0 k Ω	216	360	639	1140	1716	P ⁻ resistor
Polysilicon resistors	500 Ω	96	112	160	208	248	N ⁺ resistor
Number of cap	oacitors(5 pF)	8	14	26	47	71	MOS capacitor

Masters of M-CHS family

Notes 1. Ic(MAX.) is a collector current value that reduces the value of DC current amplification factor hFE by 30 % compared to its peak value.
 2. Maximum collector current value whose reliability can be guaranteed because it is limited by the maximum current density.

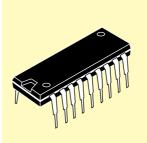
Macro library

• TEGs are also provided.

Macro library of M-CHS family

Function	LibraryName	Feature	Specifications	Equivalent	Availability
	OA201	General-purpose	V _{IO} : 1.0 mV (TYP.)	μPC4558	Available
	OA202	Single power supply, stable	V_{ICM} : 0 to V ⁺ – 1.5 V	μPC358	Available
	OA203	Low power	I _{CC} : 16 μA (TYP., ISET = 2 μA)	μPC4250	Available
	OA204	High input impedance	I _B : 1.2 nA (TYP.)		Available
Operational	OA205A	High-speed, high stability	SR⁺: 30 V/µs (TYP.)		Available
amplifier	OA205B	High-speed, wide band	funity : 50 MHz (TYP.)		Available
	OA205C	High-speed, 1 block version			Available
	OA206	Low noise	e _n : 4.5 nV/√Hz (TYP.)	μPC4570	Available
	OA207	Single power supply, high-speed	SR⁺: 7.5 V/µs (TYP.)	μPC842	Available
Comparator	CP201	Single power supply	t _{PD} : 3μs (TYP.)		Available
Comparator	CP202	High-speed	t _{PD} : 180 ns (TYP.)	μPC319	Available
Regulator	RG201	General-purpose			Available
	SW201A	Bi-directional switch (High-active)			Available
Switch	SW201B	Bi-directional switch (Low-active)			Available
	SW202	Signal switch			Available

Remark TEG (Test Element Group) is a sample of macro.


Packages

To meet various requirements about the package type and the number of pins, variety of packages are available for the Analog Master. User can select optimum combination for each application. For availability, refer to the tables of the following pages.

Packages available for Analog Master

DIP

14-pin (7.62 mm(300)) 16-pin (7.62 mm(300)) 18-pin (7.62 mm(300)) 22-pin (10.16 mm(400))

Shrink DIP

18-pin (7.62 mm(300)) 20-pin (7.62 mm(300)) 22-pin (7.62 mm(300)) 24-pin (7.62 mm(300)) 28-pin (10.16 mm(400)) 30-pin (10.16 mm(400)) 42-pin (15.24 mm(600)) 48-pin (15.24 mm(600))

SOP

8-pin (5.72mm (225)) 14-pin (5.72mm (225)) 16-pin (5.72mm (225)) 16-pin (7.62mm (300)) 20-pin (7.62mm (300)) 24-pin (7.62mm (300)) 24-pin (9.53mm (375)) 28-pin (9.53mm (375))

Shrink SOP

14-pin (5.72mm (225)) 16-pin (5.72mm (225)) 20-pin (5.72mm (225)) 20-pin (7.62mm (300)) 16-pin (9.53mm (375)) 24-pin (7.62mm (300)) 30-pin (7.62mm (300)) 36-pin (7.62mm (300)) 38-pin (7.62mm (300))

QFP

48-pin (7×7) 48-pin (10 × 10) 48-pin (10 × 14) 56-pin (10 × 10) 64-pin (14 × 20) 68-pin (10 × 14) 72-pin (10 × 10) 80-pin (14 × 14) 80-pin (14 × 20) TQFP

48-pin (7 × 7)

Pacl	kage	Lead Pitch	μ PC5020	μ PC5021	μ ΡC5022	μ PC5023	μ ΡC5024
	8-pin	2.54 mm					
	14-pin	2.54 mm				0	
DIP	16-pin	2.54 mm				0	
Dii	18-pin ^{Note}	2.54 mm				0	
	22-pin	2.54 mm			0		
	14-pin	1.778 mm					
	18-pin	1.778 mm		0		0	
	20-pin	1.778 mm				0	
	22-pin	1.778 mm				0	
Shrink DIP	24-pin	1.778 mm	0	0			
	28-pin	1.778 mm			0		
	30-pin	1.778 mm		0	0		
	42-pin ^{Note}	1.778 mm			0		
	48-pin	1.778 mm					
	8-pin	1.27 mm				(5.72 mm)	
	14-pin	1.27 mm				(5.72 mm)	
	16-pin	1.27 mm	(7.62 mm)	(9.53 mm)		(5.72 mm)	
SOP	20-pin	1.27 mm	(7.62 mm)	(7.62 mm)		(7.62 mm)	
	24-pin	1.27 mm	(7.62 mm)	(7.62 mm)	(9.53 mm)	(7.62 mm)	
	28-pin	1.27 mm	(9.53 mm)	(9.53 mm)	(9.53 mm)		
	14-pin	0.65 mm				(5.72 mm)	
	16-pin	0.65 mm				(5.72 mm)	
Shrink	20 min	0.65 mm	(5.72 mm)			(5.72 mm)	
SOP	20-pin	0.65 mm	(7.62 mm)				
	24-pin	0.65 mm	(7.62 mm)			(7.62 mm)	
	30-pin	0.65 mm		(7.62 mm)			
	36-pin	0.8 mm	(7.62 mm)				
		0.5 mm		(7 x 7)	○(7 x 7)		
	48-pin	0.65 mm			⊖(10 x 10)		
QFP		0.8 mm			⊖(10 x 14)		⊖(10 x 14)
wi i	64-pin	1.0 mm					⊖(14 x 20)
	68-pin	0.65 mm					⊖(10 x 14)
	80-pin	0.8 mm					⊖(14 x 20)
TQFP	48-pin	0.5 mm		(7 x 7)	(7 x 7)		

Package availability of CHS family

Note Because the time is required to prepare for production, consult NEC before development. Also consult NEC when you use 42-pin shrink DIP packages. **Remarks1.** In the above table, 'O' indicates a package that is available, and ' – ' indicates a package that is unavailable.

2. Some packages may have unavailable pins. Please refer to the Analog Master Package Manual (A10495E) for unavailable pins.

Pack	kage	Lead Pitch	μ ΡC5031	μ ΡC5032	μ ΡC5034
	18-pin	1.778 mm			
Shrink	22-pin	1.778 mm	(7.62 mm)		
-	24-pin	1.778 mm			
DIP	28-pin	1.778 mm			
	30-pin	1.778 mm		(10.16mm)	
	16-pin	1.27 mm	(7.62 mm)	(7.62 mm)	
COD	20-pin	1.27 mm	(7.62 mm)	(7.62 mm)	
SOP	24-pin	1.27 mm	(7.62 mm)	(7.62 mm)	().53 mm)
	28-pin	1.27 mm		(9.53 mm)	(9.53 mm)
	24-pin	0.65 mm		(7.62 mm)	
Shrink	30-pin	0.65 mm		(7.62 mm)	
SOP	36-pin	0.80 mm	(7.62 mm)	(7.62 mm)	
38-pin		0.65 mm		(7.62 mm)	
48-pin		0.5 mm	○(7x7)	○(7x7)	○(7x7)
QFP	56-pin	0.65 mm		◯ (10 x 10)	○ (10 x 10)
	80-pin	0.65 mm			○ (14 x 14)
TQFP	TQFP 48-pin 0.5 m			○(7x7)	○(7x7)

Package availability of CHS-A family

Remarks1. In the above table, 'O' indicates a package that is available, and ' - ' indicates a package that is unavailable.
2. Some packages may have unavailable pins. Please refer to the Analog Master Package Manual (A10495E) for unavailable pins.

Pack	age	Lead Pitch	μ ΡC5200	μ ΡC5201	μ ΡC5202	μ ΡC5203	μ ΡC5204
	8-pin	2.54 mm					
	14-pin	2.54 mm					
	16-pin	2.54 mm					
212	18-pin	2.54 mm					
DIP	22-pin	2.54 mm					
	24-pin	2.54 mm					
	28-pin	2.54 mm					
	42-pin	2.54 mm					
	14-pin	1.778 mm					
	20-pin	1.778 mm					
Shrink	24-pin	1.778 mm	0	0			
DIP	28-pin	1.778 mm			0		
Dii	30-pin	1.778 mm					
	42-pin ^{Note}	1.778 mm			0		
	48-pin ^{Note}	1.778 mm				0	
	16-pin	1.27 mm	○(7.62 mm)				
COD	20-pin	1.27 mm	○(7.62 mm)				
SOP	24-pin	1.27 mm	○(7.62 mm)	(7.62 mm)	(9.53 mm)		
	28-pin	1.27 mm		○(9.53 mm)	⊖ (9.53 mm)		
Shrink	20-pin	0.65 mm	○(7.62 mm)	○(7.62 mm)			
SOP	24-pin	0.65 mm		(7.62 mm)			
		0.5 mm		○(7x7)			
	48-pin	0.65 mm			○ (10 x 10)		
		0.8 mm	⊖ (10 x 14)			⊖ (10 x 14)	
QFP	56-pin	0.65 mm					⊖ (10 x 10)
	64-pin	1.0 mm				⊖(14 x 20)	
	72-pin	0.5 mm					⊖ (10 x 10)
	80-pin	0.65 mm					⊖ (14 x 14)
TQFP	48-pin	0.5 mm		○(7x7)			

Package availability of M-CHS family

Note Because the time is required to prepare for production, consult NEC before development. Also consult NEC when you use 42-pin, or 48-pin shrink DIP packages.

Remarks1. In the above table, 'O' indicates a package that is available, and ' – ' indicates a package that is unavailable.

2. Some packages may have unavailable pins. Please refer to the Analog Master Package Manual (A10495E) for unavailable pins.

The development of the Analog Master is completed by both the user and NEC. Passing the development work from the user to NEC is called interfacing.

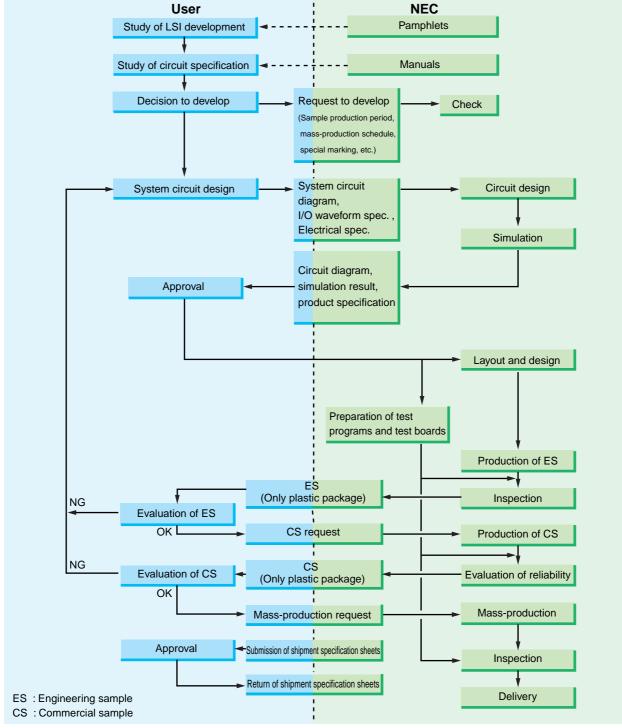
NEC supports only the circuit diagram level interface.

Interface Level	System Design	Circuit Design	Layout Design	ES Production
Circuit design level	User's works		NEC's works	

Circuit diagram level interface

User completes up to system design, NEC takes over all subsequent works, such as circuit design and simulation.

This interface level is classified into 3 more levels as shown in the table below, depending on parts configuring the circuit and whether or not to create and estimate a breadboard.


Level	Creation and Estimation of Breadboard	Parts Configurating the Circuit
S level	Not necessary	General-purpose SSI ^{Note 1} , Standard SSI Note 2, Transistor for small signal, Analog Master TEG ^{Note 3} , Resistors, Capacitors
A level	Necessary	Standard SSI Note 2, Transistor for small signal, Analog Master TEGNote 3, Resistors, Capacitors
B level	Necessary	Analog Master TEG ^{Note 3} , Resistors, Capacitors (80 % or more is configured with macro)

Notes 1. General-purpose SSI : SSI except standard SSI

2. Standard SSI	: OP amp. (#PC151/741, 251/1458, 258/4558, 451/324, 458/4741, 802/4250, 842, 844, 1251/358, 4556, and
	equivalents of other manufacturers)
	: Comparator (µPC177/1339, 271/311, 272/319, 277/393, and equivalents of other manufacturers)
	: Regulator (Three-terminal regulator, Shunt regulator)
	: Function block (µPC617/1555, and equivalents of other manufacturers)
3. Analog Master TEG	: Library TEGs, basic block TEGs, super white TEGs provided by NEC.

Remark TEG (Test Element Group) is a sample for evaluation.

Flow for circuit diagram level interface

Remark Unlike CS and mass-produced model, the quality of ES is not guaranteed. Therefore, do not use the ES for production or reliability testing.

Works by user

(1) Study of circuit specifications

User checks circuit requirements such as supply voltage range, pin voltages, circuit performance, package, and resistance to electro-static discharge (ESD)damage, according to manuals supplied by NEC.

(2) Request to develop

User requests NEC to develop the chip, and provides detailed descriptions of the followings.

- 1. Interface level
- 2. Master name, package
- 3. Scheduled interface date, ES/CS delivery date, schedule of mass-production
- 4. Request of special marking
- 5. Request of TEG

(3) Circuit design

User designs circuit configuration so as to realize required function and performance using parts configuring circuit on page 22 (system circuit design).

(4) Interface (circuit diagram level interface)

User sends the following interface documents to NEC after completion of system circuit design.

- 1. System block diagram
- 2. System circuit diagram
- 3. I/O waveform specifications
- 4. Electrical specifications
- 5. Check sheet

It is recommended that the above documentation be submitted on special forms supplied by NEC.

Describe in as much detail as possible because this is important information for IC design and simulation.

(5) Approval of circuit diagram

Circuit diagram designed by NEC, simulation result, and product specification are sent to user.

After all items are checked and approved by user, NEC starts layout design and ES production.

(6) Evaluation of ES and request to prepare CS

User evaluates engineering samples (ES). Two levels of samples are sent. One is standard sample, and the other called variation sample is for assersion of electrical characteristics (note that NEC does not assure characteristic variation to user with this sample). After the samples pass evaluation, user requests NEC to prepare commercial samples (CS) after discussing and determining actual specification of test condition list.

(7) Evaluation of CS and request to start mass-production

User evaluates commercial samples (CS).

After the samples pass evaluation, user requests NEC to start mass production.

Works by NEC

(1) Helping user in studying LSI development

When user plans to develop particular LSIs, NEC is ready to give advices on whether the user's circuit specifications can be achieved from the viewpoint of the number of elements and element characteristics. Please consult NEC after determining the specifications.

(2) Circuit design

According to user's circuit requirements, NEC completes circuit design, and simulation, and prepares test conditions. This testing is only for DC items.

(3) Layout design

Layout design requires 1 to 4 weeks. In addition, before completion of layout design, back annotation is performed.

Characteristics will be checked by extracting the parasitic elements to feedback to the circuit design side and performing simulation. Layout design requires one additional week for this checking.

(4) ES production

The user will usually receive the ES 3 to 4 weeks after completion of layout design.

(5) CS production

After request by user, NEC starts production of commercial samples. From CS production request, it takes in general 1 month for standard quality grade device, and 2.5 month for special quality grade device to deliver the CS. The above schedule is conditional upon whether the product specifications have been determined between the user and NEC.

(6) Preparation of shipment specification sheets

The shipment specification sheets describe absolute maximum ratings, electrical characteristics, package outline, and marking.

(7) Mass-production

NEC mass-produces the LSI according to the user's production schedule.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of May, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4

For further information, please contact:

NEC Corporation

NEC Building 7-1, Shiba 5-chome, Minato-ku Tokyo 108-8001, Japan Tel: 03-3454-1111 http://www.ic.nec.co.jp/

[North & South America]

NEC Electronics Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 http://www.necel.com/

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 011-6462-6810 Fax: 011-6462-6829

[Europe]

NEC Electronics (Germany) GmbH Kanzlerstr. 2, 40472 Düsseldorf, Germany Tel: 0211-650302 Fax: 0211-6503490 http://www.nec.de/

Munich Office

Arabellastr. 17 81925 München, Germany Tel: 089-921003-0 Fax: 089-92100315

Stuttgart Office

Industriestr. 3 D-70565 Stuttgart, Germany Tel: 0711-99010-0 Fax: 0711-99010-19

Hannover Office

Podbielskistr. 164 D-30177 Hannover, Germany Tel: 0511-33402-0 Fax: 0511-33402-34

Benelux Office

Boschdijk 187a 5612 HB Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

Scandinavia Office

P.O. Box 134 18322 Taeby, Sweden Tel: 08-6380820 Fax: 08-6380388

NEC Electronics (UK) Limited

Cygnus House, Sunrise Parkway, Linford Wood, Milton Keynes, MK14 6NP, U.K. Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics (France) S.A.

9, rue Paul Dautier-B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800 Fax: 01-3067-5899

Madrid Office

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics Italiana s.r.l.

Via Fabio Filzi, 25/A, 20124 Milano, Italy Tel: 02-667541 Fax: 02-66754299

[Asia & Oceania]

NEC Electronics Hong Kong Limited

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

Seoul Branch

10F, ILSONG Bldg., 157-37, Samsung-Dong, Kangnam-Ku Seoul, the Republic of Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road #12-01/10 Novena Square Singapore 307684 Tel: 253-8311 Fax: 250-3583

Document No. A10512EJCV0PF00(12th edition) Date Published September 2001 N CP(K) G01.7