CHAPTER 1 GENERAL

1.1 Introduction n

The uPD30412, 30412L (Vr4400MC) processor supports interfaces to secondary cache, system interface, and
boot time mode control. This document describes the connection and operation of each of these interfaces.
Remark Please refer also to the following documents when you use this manual.
VR4000™, Va4400™ USER'S MANUAL ARCHITECTURE (Document number 1EU-1344)
Va4000PC™™, Va4400PC™ USER'S MANUAL HARDWARE (Document number IEU-1329)
Va4000SC™, VR4400SC™ USER'S MANUAL HARDWARE (Document number IEU-1331)

1.2 Operation Fundamentals

A word is the basic data element of the VR4400MC processor. A word is a thirty-two bit data element. A sixty-
four bit data element is referred to as a double word, a sixteen bit data element is referred to as a half word and
an eight bit data element is referred to as a byte.

1.3 Clocking Fundamentals

The Va4400MC processor bases all clocking methodology on the single clock input MasterClock at the desired
operational frequency for the processor. MasterClock is multiplied by two internally, using phase locked loop
techniques, to generate the processor internal clock, PClock. PClock is used by the processor's execution units,
and to sequence the secondary cache interface. All secondary cache interface transaction protocel and parameters
are specified in terms of PCycles, where a PCycle is the period of PClock or half the period of MasterClock.

PClock is divided by a programmable divisor to generate the processor internal clock, SClock, and the system
interface clocks, TClock and RClock. SClock is used by the processor to clock all internal registers that sample
system interface inputs and drive system interface outputs. TClock and RClock are driven off the processor for use
by an external agent. The PClock to SClock divisor is programmed via the boot time mode control interface as
described in the Boot Time Mode Controt Interface section. All system interface transaction protocol and parameters
are specified in terms of SCycles, where a SCycle is the period of SClock, unless otherwise specified.

See CHAPTER 11 CLOCKING for further details on the clocking behavior of the VrR4400MC processor.

B L427525 0089bLS 90T HE 1

CHAPTER 1 GENERAL

* 1.4 Ordering information

Max. Operating

Frequency (MHz) Supply
Part Number Package (internal/External) Voltage (V)
uPD30412RJ-50 447-pin ceramic PGA (metal sealed) 100/50 5
uPD30412RJ-67 447-pin ceramic PGA (metal sealed) 133/67 5
#PD30412RJ-75 447-pin ceramic PGA (metal sealed) 150/75 5
uPD30412LRJ-75 447-pin ceramic PGA (seam welded) 150/75 3.3
uPD30412LRJ-200 447-pin ceramic PGA (seam welded) 200/100 3.45
uPD30412LRJ-250 447-pin ceramic PGA (seam welded) 250/125 3.45
pPD30412RP-50 447-pin ceramic PGA (with metal slug) 100/50 5
1PD30412RP-67 447-pin ceramic PGA (with metal slug) 133/67 5
uPD30412RP-75 447-pin ceramic PGA (with metal slug) 150/75 5
1PD30412LRP-75 447-pin ceramic PGA (with metal slug) 150/75 3.3
uPD30412LRP-200 447-pin ceramic PGA (with metal slug) 200/100 3.45
uPD30412LRP-250 447-pin ceramic PGA (with metal slug) 250/125 3.45

B L427525 0089LLY A4L HH

CHAPTER 1 GENERAL

1.5 Pin Configuration

Fig. 1-1 Pin Contiguration (Bottom View)

AW AU AR AN AL AJ AG AE AC AA W U R N L
AV AT AP AM AK AH AF AD AB Y \ T P M K

>

\—ammhu\m\lmto

M Ly2?525 0089L70 5L4 WH

CHAPTER 1 GENERAL

Table 1-1 Pin Configuration (1/3)

No. Name No. Name No. | Name No. | Name
AW37 | ColdReset AA3 SCAddr11 G25 SCData10 AF4 SCData48
AVZ2 ExtRast w3 SCAddr12 E29 SCDhata11 AJ3 SCData49
C39 Fault Y6 SCaddr13 G31 SCData12 AJ7 SCData50
AV24 | Open Note W5 SCAddr14 C35 SCData13 AP8 SCData51
AV20 | Voo w7 SCAddri5 K36 SCDatai4 AT10 | SCDatas2
AV32 | IOIn w1 SCAddri6 N35 SCData15 AR13 | SCDatas3
AV28 | 100ut U3 SCAddr17 AE3 SCData16 AR15 | SCData54
AL1 int0 AN7 SCAddrOwW AGS SCData17 AT18 | SCDatass
AA35 | IvdAck AN5 SCAddroX AK4 SCData18 AU23 | SCDatas6
AA39 | ivdErr AM6 SCAddroY ANS SCDatat19 AT26 | SCData57
u3g JTCK AL7 SCAddr0Z AU9 SCData20 AR27 | SCDatas8
N39 JTDI M6 SCDCS AN13 | SCData21 AN29 | SCData59
J39 JTDO G19 SCDChkO AT14 | SCData22 AP32 | SCDatag0
G37 JTMS T34 SCDChk1 AR17 | SCData23 AN35 | SCDatas!
AA37 | MasterClock AP20 | SCDChk2 AT22 | SCData24 AJ35 | SCData62
AJ39 MasterOut AD34 SCDChk3 AU25 SCData25 AE33 SCData63
BS ModeClock C19 SCDChk4 AN27 | SCData26 V4 SCData64
AvS Modeln R37 SCDChkS AR29 | SCData27 RS SCData65
AV16 | RMT AU18 | SCDChké AN31 | SCData28 N5 SCData66
AM34 | RClock0 AE37 | SCDChk7 AR35 | SCData29 ES SCData67
AL33 RClock1 ci17 SCDChks AK36 | SCData30 G9 SCData68
AW7 RdRdy N37 SCDChk9 AG35 | SCData31 E11 SCData69
AV12 | Release AU17 | SCDChk10 T6 5CData32 G13 SCData70
AU39 | Reset AG37 | SCDChk11 L3 SCData33 D14 SCData71
Y2 Open Note E19 SCDChk12 L7 SCData34 c21 SCData72
U5 SCAPar0 R35 SCDChk13 E7 SCData35 D22 SCData73
U1 SCAPart AR19 | SCDChki4 G11 SCData36 E25 SCData74
P4 SCAPar2 AE35 | SCDChkis E13 SCData37 G27 SCData75
ALS SCAddr1 R3 SCData0 E15 SCData38 Cc31 SCData76
AG1 SCAddr2 R7 SCDatat1 G17 SCData39 F32 SCData77
AE7 SCAddr3 L5 SCData2 c23 SCData40 J3s SCData78
AC1 SCAddr4 F8 SCData3 F24 SCData41 M34 SCData79
ACS SCAddr5 c9 SCData4 E27 SCData42 AC7 SCData80
AC3 SCAddr6 F12 SCDatas D30 SCDatas3 AES SCData81
AA1 SCAddr7 G15 SCData6 C33 SCData44 AG7 SCData82
AB4 SCAddr8 E17 SCData? E3s5 SCData45 AR5 SCData83
AAS SCAddr9 G21 SCDatas L35 SCData46 ARS SCData8g4
AA7 SCAddr10 c2s5 SCData9 R33 SCData47 AR11 SCData8s

Note Leave unconnected.

Remark See CHAPTER 15 PIN SUMMARY for pin functions.

B E427525 0089671 4Ty N

CHAPTER 1 GENERAL

Table 1-1 Pin Configuration (2/3)

No. | Name No. Name No. | Name No. | Name
AN15 | SCDatag6 AL37 | SCData126 U33 | StatusO AM38 | SysAD30
AP16 | SCData87 AG33 | SCData127 U3s | Statusi AH38 | SysAD31
AU21 | SCData88 N1 SCOE v36 | Staws? R1 SysAD32
AN23 | SCData89 J SCTCS w35 Status3 L1 SysAD33
AR25 | SCDataS0 AN21 | SCTChkO w37 Status4 H2 SysAD34
AP28 | SCData91 AN19 | SCTChk1 AC37 | Status5 E1 SysAD35
AU31 | SCData92 AU15 | SCTChk2 AC35 | Statusé c3 SysAD36
AR33 | SCData93 AP12 | SCTChk3 AC33 | Status? A5 SysAD37
AL35 | SCData%94 AU7 SCTChk4 w39 Syncin A1 SysAD38
AH34 | SCData95s AR7 SCTChks AN39 | SyncOut A15 SysAD39
u7 SCData%6 AH6 SCTChké T2 SysADO A23 SysAD40
N3 SCData97 K4 SCTag0 M2 SysAD1 A27 SysAD41
N7 SCData98 G7 SCTag1 J3 SysAD2 A31 SysAD42
Cs SCDatag9 c7 SCTag2 G3 SysAD3 A35 SysAD43
E9 SCData100 D10 SCTag3 c1 SysAD4 C37 SysAD44
c11 SCData101 C15 SCTag4 A3 | SysADS E39 SysAD45
C13 SCData102 D18 SCTag5s A9 SysADF. H38 SysAD46
F16 SCData103 F20 SCTag6 A13 SysAD7 M38 SysAD47
E21 SCDatat104 E23 SCTag? A21 SysADS8 AE1 SysAD48
G23 SCData105 D26 SCTag8 A25 SysAD9 AJ1 SysAD49
ca7 SCData106 c29 SCTag9 A29 SysAD10 AM2 SysADS0
F28 SCData107 G29 SCTag10 A33 SysAD11 AR1 SysADS51
E31 SCData108 E33 SCTagi1 B38 SysAD12 AU3 SysAD52
G33 SCData109 G35 SCTag12 E37 SysAD13 AWS SysAD53
Ja7 SCData110 L33 SCTag13 G39 SysAD14 AW11 | SysAD54
N33 SCData111 L37 SCTag14 L39 SysAD15 AW15 | SysADS5
ADS SCData112 P36 SCTagt5s AD2 SysAD16 AW23 | SysADS6
AG3 SCData113 AF36 SCTagi6 AH2 SysAD17 AW27 SysADS7
AJS SCData114 AJ37 | SCTag1? AL3 SysAD18 AW31 | SysADS58
AUS SCData115 AJ33 | SCTag18 AN3 SysAD18 AW35 | SysAD59
AN11 | SCDatat16 AN37 | SCTag19 A1 SysAD20 AU37 | SysADB0
AU11 SCData117 AU35 SCTag20 AW3 SysAD21 AR39 SysAD61
AU13 SCData118 AR31 SCTag21 AWS SysAD22 AL39 SysAD62
AN17 | SCData119 AU29 | SCTag22 AW13 | SysAD23 AG39 | SysAD63
AR21 | SCData120 AN25 | SCTag23 AW21 | SysAD24 A17 SysADCO
AP24 | SCData121 AR23 | SCTag24 AW25 | SysAD25 R39 SysADC1
AU27 | SCData122 Js SCWrW AW29 | SysAD26 AW17 | SysADC2
AT30 | SCData123 J7 SCWrX AW33 | SysAD27 AD38 | SysADC3
AU33 | SCDatai124 H6 SCWrY AV38 | SysAD28 A19 SysADC4
AN33 | SCData12s GS SCWrZ AR37 | SysAD29 T38 SysADCS

Remark See CHAPTER 15 PIN SUMMARY for pin functions.

B Lu27525 0089672 330 WA

CHAPTER 1

GENERAL

Table 1-1 Pin Configuration (3/3)

No. Name No. Name No. Name No. | Name
AW19 SysADC6 H36 Voo B22 Gnd AP30 Gnd
AC39 SysADC7 K6 Voo B30 Gnd AP34 Gnd
G1 SysCmd0 K38 Voo B38 Gnd AP36 Gnd
E3 SysCmd1 P2 Voo D2 Gnd AT2 Gnd
B2 SysCmd2 P34 Voo Dé Gnd ATE Gnd
Bt12 SysCmd3 T4 Voo D12 Gnd AT12 Gnd
B16 SysCmd4 T36 Voo D20 Gnd AT20 Gnd
B20 SysCmd5 \ Voo D28 Gnd AT28 Gnd
B24 SysCmdé V38 Voo D34 Gnd AT34 Gnd
B28 SysCmd7 Y38 Voo D38 Gnd AT38 Gnd
B32 SysCmds AB2 Voo F4 Gnd AV4 Gnd
A37 SysCmdP AB34 Voo F6 Gnd AV10 Gnd
H34 TClock0 AD4 Voo F10 Gnd AV18 Gnd
J33 TClock1 AD36 Voo F18 Gnd AV26 Gnd
AE39 VooOk AF6 Voo F26 Gnd AV36 Gnd
AN1 Validin AF38 | Voo F34 Gnd
AR3 ValidOut AK2 Voo F36 Gnd
A7 WrRdy AK34 Voo K2 Gnd
W33 VooSense AM4 Voo K34 Gnd
usz GndSense AM36 Voo M4 Gnd
AA33 VooP AP2 Voo M36 Gnd
Y34 GndP AP10 Voo P6 Gnd
A39 Voo AP18 Voo P38 Gnd
B6 Voo AP26 Voo V2 Gnd
B10 Voo AP38 Voo V34 Gnd
B18 Voo AT4 Voo Y4 Gnd
B26 Voo AT8 Voo Y36 Gnd
B34 Voo AT16 Voo AB6 Gnd
D4 Voo AT24 Voo AB36 Gnd
D8 Voo AT32 Voo AB38 Gnd
D16 Vpo AT36 Voo AF2 Gnd
D24 Voo AVE Voo AF34 Gnd
D32 Voo AV14 Voo AH4 Gnd
D36 Voo AV22 Voo AH36 Gnd
F2 Voo AV30 Voo AK6 Gnd
F14 Voo AV34 Voo AK38 Gnd
F22 Veo AW Voo AP4 Gnd
F30 Voo AW39 Voo APS Gnd
F38 | Voo B4 Gnd AP14 | Gnd
H4e | Voo B14 Gnd AP22 | Gnd |

Remark See CHAPTER 15 PIN SUMMARY for pin functions.

B L427525 0089673 277 M

CHAPTER 1 GENERAL

Fig. 1-2 Pad Configuration (Top View)

447.pin ceramic PGA (metal sealed)
447-pin ceramic PGA (seam weided)

447-pin ceramic PGA (with metal slug) *

1112 1314 1112 1314
G co 00 ga
=15 1= I O =15
2 o 16 g—= 9= | =R
g =y loypnaouznp O
2 5 | uPD30412LRP
a 4
< =17 3 2: | D17
=18 = | O =18
00 0o 00 00
2221 2019 2221 2019

Caution The voitage of the metal seal on the top of the package is equal to Voo.

Table 1-2 Pad Configuration

No. Name No. Name No. | Name No. Name
1 Voo 7 VooP 13 | Voo 19 Voo
2 | Gnd 8 | PLLCap1 14 | Gnd 20 |Gnd
3 PLLCap0Q 9 Voo 15 | Voo 21 Vob
4 GndP 10 | Gnd 16 | Gnd 22 |Gnd
5 GndP 11 Voo 17 ; Voo
6 VooP 12 Gnd 18 | Gnd

Table 1-3 Capacitance of Chip Capacitors

Pads Capacitance [uF) Pads l Capacitance [uF]
1-2 0.1 13-14 | 0.1

3-4 0.001 15-16 | 0.1

5-6 01 17 - 18 1 0.1

7-8 0.001 19-20 | 0.1
9-10 0.1 21-22 | 0.1
11 -12 0.1 ;

Remark Chip capacitors are incorporated at delivery.

B 42?525 00689674 103 HE

CHAPTER 1 GENERAL

Fig. 1-3 Package Side View

447-pin ceramic PGA (metal sealed) 447-pin ceramic PGA (with metal slug)
447-pin ceramic PGA (seam welded)

adapter plate to attach heatsink

i

metal plate \ /
[/ S

| l
FETTETETTTTTTITTTTd NERRERERERRRRRRRE

M L427525 0089675 O4T M

CHAPTER 2 CACHE COHERENCY

The Vs4400MC processor manages its primary and secondary caches using a write back methodology. that is,
stores write data into the caches, but a moditied cache line is not written back to memory untii the cache line is replaced,
or until the cache line is exported or flushed from the secondary cache. When the contents of a cache line is not
consistent with memory, it is said to be dirty. Many systems, in particular multiprocessor systems, or systems that
employ input/output (IQ) devices that are capable of direct memory access (DMA), may require the system to behave
as if the caches are always consistent with memory and each other. Schemes for maintaining consistency between
multiple write back caches or between write back caches and memory are referred to as cache coherency protocols.

The processor, in its secondary cache mode, provides a set of cache states and mechanisms for manipulating
the contents and state ofthe cache that are sufficientto implement a variety of cache coherency protocols, both snoopy
and directory based. In particular, the processor supports both the write invalidate and write update protocols
simultaneously.

The coherency protocol for lines in the cache is controllable via bits in the translation look-aside buffer (TLB) on
a per TLB page basis. Specifically, the TLB contains three bits per entry that control the coherency attributes of a
page. The three bits are encoded to provide five possible coherency attributes per page, uncached, cacheable
noncoheregt. cacheable coherent exclusive (exclusive), cacheable coherent exclusive on write (sharable), and
cacheable coherent update on write (update). A processor in the no-secondary cache mode supports only the

uncached and noncoherent coherency attributes. The supported page attributes depend on the configuration of the
processor as illustrated below.

Table 2-1 Allowed Page Attributes

Configuration Uncached Cacheable Exclusive Sharable Update
Noncoherent
Vr4000PC, Vr4400PC Supported Supported NA NA NA
Va4000SC, Vr4400SC Supported Supported Supported NA NA
Vad4400MC Supported Supported Supported Supported Supported
Remark NA: Not Available

If a page has the coherency attribute uncached, the processor will issue a word or partial word read or write directly
to main memory for any load or store to a location within that page. Lines within an uncached page are assumed
never to be cache resident.

lf the coherency attribute is sharable, the processor will issue a coherent block read for a load miss to a location within
the page, and a coherent block read that requests exclusivity for a store miss to a location within the page. Inmost systems,
coherent reads require snoops or directory checks to occur while noncoherent reads do not. A coherentread that requests
exclusivity implies that the processor will function most efficiently if the requested cache line is returnedtoitin an exclusive
state, but the processor will still perform correctly if the cache line is returned in a shared state. Cache lines within the page
willbe managed with a write invalidate protocol, thatis the processor will issue an invalidate on a store hitto ashared cache
line.

If the coherency attribute is update, the processor willissue a coherent block read for a load or store miss to a iocation
within the page. Cache lines within the page will be managed with a write update protocol, that is the processor will issue
an update on a store hit to a shared cache line.

Ifthe coherency attribute is exclusive, the processor will issue a coherent block read that requests with a write invalidate
protocol. Load linked store conditional instruction sequences must insure that the link location is not in a page managed
with the exclusive coherency attribute.

B L427525 0089576 TAL EE 9

CHAPTER 2 CACHE COHERENCY

if the coherency attribute is noncoherent, the procéssor will issue a noncoherent block read for a load or store
miss to a location within the page.

The encoding of the coherency attributes in the TLB is specified in Va4000, Va4400 User's Manual Architecture.
The behavior of the processor on load misses, store misses, and store hits to shared cache lines for each of the
coherency attributes is summarized in Table 2-2 Coherency Attributes and Processor Behavior.

Table 2-2 Coherency Attributes and Processor Behavior

Attribute Load Miss Store Miss Store Hit Shared
uncached Main memory read Main memory write NA

noncocherent Noncoherent read Noncoherent write Invalidate Note
exclusive Coherent read exclusive Coherent read exclusive invalidate Note
sharable Coherent read Coherent read exclusive Invalidate

update Coherent read Coherent read Update

Note This should not occur under normal circumstances.

Remark NA: Not Available

The following sections describe the primary and secondary cache states provided by the processor, the cache state
transitions pertormed by the processor during execution, and the mechanisms provided for an external agent to
manipulate the state and contents of the primary and secondary cache.

2.1

Cache States

The Vr4400MC maintains four primary cache states and five secondary cache states. The five secondary cache
states are:

Invalid

Shared

Dirty shared
Clean Exclusive
Dirty Exclusive

The four primary cache states are:

Invalid

Shared

Clean Exclusive
Dirty Exclusive

The primary cache state shared corresponds to the secondary cache states shared and dirty shared.

10

B buy27?525 0089677 912 W

CHAPTER 2 CACHE COHERENCY

The cache states and line attributes are illustrated below.

Table 2-3 Primary and Secondary Cache States and Line Attributes
(a) Primary Cache

Cache State Line Attributes

Invalid The cache line does not contain valid information.
Valid The cache line contains valid information (primary instruction cache only).
Shared The cache line contains valid information and may be present in another processor's

cache. The cache line may or may not be consistent with memory, and may or may not
be owned.
Clean Exclusive The cache line contains valid information and is not present in any other processor's
(CE) cache. The cache line is consistent with memory and owned.
Dirty Exclusive The cache line contains valid information and is not present in any other processor's
(DE) cache. The cache line is inconsistent with memory and owned.

(b) Secondary Cache

Cache State Line Attributes

Invalid The cache line does not contain valid information.

Shared The cache line contains valid information and may be present in another processor's
cache. The cache line may or may not be consistent with memory, and is not owned.
Dirty Shared The cache line contains valid information and may be present in another processor’s

cache. The cache line is inconsistent with memory and owned.

Clean Exclusive The cache line contains valid information and is not present in any other processor's

(CE) cache. The cache line is consistent with memory and owned.
Dirty Exclusive The cache line contains valid information and is not present in any other processor's
(DE) cache. The cache line is inconsistent with memory and owned.

The cache state of a line in the processor's primary or secondary cache indicates the validity, shared, dirty and
ownership attributes of the cache line. A cache line that does not contain valid information must be marked invalid;
a cache line in any state other than invalid contains valid information. A cache line that is present in more than one
cache in the system is said to be shared and must be in one of the shared states. A cache line that is present in
exactly one cache in the system is said to be exclusive and may be in one of the exclusive states. A cache line that
contains data that is consistent with memory is said to be clean and may be in one of the clean states. A cache line
that contains data that is not consistent with memory is said to be dirty and must be in one of the dirty states, or in
the shared state. The processor has a concept of ownership for cache lines. When the processor is the owner of
a particular cache line it is responsible for writing the cache line back to memory when it is replaced in the course
of satistying a cache miss, or during the execution of a cache instruction. A cache line is owned by the processor
if its secondary cache state is dirty exclusive or dirty shared. Note that the cache states have no distinction between
clean and dirty in the primary instruction cache, since the processor does not use a write back methodology in
managing the primary instruction cache.

The primary and secondary cache states have been chosen to maintain all of the state information that the
processor may need during execution in the primary cache, while maintaining all of the state information that an
external agent may need to manage a cache coherency protocol in the secondary cache.

M L427525 0D0&9L78 859 W 1

" CHAPTER 2 CACHE COHERENCY

The allowed cache states for the primary cache are illustrated below.

Table 2-4 Allowed Primary and Secondary Cache States

Va4000PC, VR4400PC Vr4000SC, Va4400SC Vr4400MC .
Instruction Cache Data Cache Instruction Cache Data Cache Instruction Cache Data Cache
Primary Invalid Invalid Invalid invalid invalid Invalid
Cache Valid DE Note 1 Valid Note 2 CE Valig Nete 2 Shared
DE CE
DE
Secondary NA Invalid Invalid
Cache CE Shared
DE Dirty Shared
CE '
DE

Notes 1. Used withthe W bit of the primary cache tag to indicate whether the current line is modified and must
be written back to memory or secondary cache (W = 0 clean; W = 1 modified).
2. The Valid state of the Primary instruction Cache is mapped to any valid Secondary Cache states
{Clean Exclusive, Dirty Exclusive, Shared, and Dirty Shared).
Remark DE: Dirty Exclusive, CE: Clean Exclusive, NA: Not Available

2.2 Cache State Changes During Processor Execution

The initial state of a cache line is specified by an external agent when it supplies the cache line. During the course
of processor execution, the processor may change the state of a cache line. The following events will cause changes
to the state of the cache:

A store to the primary cache will write the data in the primary cache and change the W bit to one. The processor
will also change the secondary cache state from a clean state to a dirty state without changing the data. The processor
will not access the secondary cache on any subsequent stores to the same cache ling in the primary cache.

A store to a shared cache line, that is a line marked shared in the primary cache and either shared or dirty shared in
the secondary cache, will cause the processor to issue either an invalidate request or an update request depending on
the coherency attribute in the TLB entry for the page that contains the cache line. Upon successful completion of an
invalidate, the processor will complete the store and change the state of the cache line to dirty exclusive in both the primary
and secondary caches. Upon successful completion of an update, the processor will complete the store and change the
state of the cache line to shared in the primary cache and dirty shared in the secondary cache if dirty shared mode (ModeBit
[3]) is enabled. Dirty shared mode is programmable via the boot time mode control interface. If dirty shared mode is not
enabled, the state of the primary and secondary caches will be left unchanged after successful completion of an update.

12 M ku4e2?525 0089679 795 W

CHAPTER 2 CACHE COHERENCY

2.3 Cache Line Write Back

The processor will write a cache line back to memory when it is replaced, or written back to memory as the resuit
of executing a cache instruction, if the cache line is in the state dirty exclusive or dirty shared in the secondary cache.
When the processor writes a cache line back to memory, it does not ordinarily retain a copy of the cache line, and
the state of the cache line is changed to invalid. However, it a2 cache line is written back 10 memory using the hit
writeback cache instruction, the processor will retain a copy of the cache line. Ifthe cache line is retained, the processor
will change its state to clean exclusive if the secondary cache state was dirty exclusive betore the write or shared
if the seconday cache state was dirty shared before the write.

Whether or not the processor is retaining the line is signaled by the processor during a write.

2.4 Manipulation of the Caches by an External Agent

The Va4400MC provides mechanisms for an external agent to examine and manipulate the state and contents
of the primary and secondary caches:

An external agent must specify the state in which data, supplied in response to a processor read request, is to
be loaded into the processor's caches. Data may be loaded in any of the four valid secondary cache states. Data
returned by the externa! agent must not be marked as invalid. The secondary cache state will be mapped to a primary
cache state as described previously.

An external agent may issue a snoop request to the processor which will cause the processor to return the
secondary cache state of the specified cache line. At the same time it will change the state of the specified cache
line in both the primary and secondary caches, according to a state change function specified by the external agent,
atomically with respect to the response to the snoop request.

An external agent may issue an invalidate request or an update request to the processor. An invalidate request
will cause the processor to change the state of the specified cache line to invalid in both the primary and secondary
caches. An update request will cause the processor to write the specified data element into the specified cache line,
and either change the state of the cache line to shared in both the primary and secondary caches, or leave the state
of the cache line unchanged, depending on the nature of the update request. An external agent may issue updates,
without changing the state of the cache line, to cache lines that are either in exclusive or shared states. If an update
request is issued to the primary instruction cache, the secondary cache line and primary instruction cache line are
updated.

An external agent may issue an intervention request which will cause the processor to return the secondary cache
state of the specified cache line, and the contents of the specified secondary cache line under certain conditions related
to the state of the cache line and the nature of the intervention request. At the same time the processor will change
the state of the specitied cache line in both the primary and secondary caches, according to a state change function
specified by the external agent, atomically with respect to the response to the intervention request.

M Luy27525 0089LA0 407 HE 13

CHAPTER 2 CACHE COHERENCY

2.5 Cache Line Ownership

The Va4400MC has a concept of ownership for cache lines. The ownership of a cache line is maintained as follows:

A processor assumes ownership of a cache line when the state of the cache line transitions to dirty shared or dirty
exclusive. For responses to processor coherent read requests in which the data is returned with an indication that
itmust be loadedin the dirty shared or dirty exclusive state, the cache state is set at the completion of the read response
when the last word of read response data is returned. Therefore, the processor will assume ownership of the cache
line when the last word of read response data is returned.

The processor gives up ownership of a cache line when the state of the cache line transitions to invalid, shared,
or clean exciusive. For processor write requests the state of the cache line will transition to invalid if the cache line
is replaced, or clean exclusive or shared if the cache line is retained. In either case, the cache state transition will
occur at the completion of the write request when the last word of write data is transmitted to the external agent.
Therefore, the processor will give up ownership of the cache line when the last word of write data is transmitted to
the external agent.

For external requests, other than read responses, any cache state change associated with the external request
will occur at the completion of the external request and therefore any change of ownership resulting from the cache
state change will occur at the completion of the external request.

2.6 Ordering Considerations

Many cache coherent multiprocessor systems must obey ordering constraints on stores to shared data such that
they exhibit the same behavior as a uniprocessor system in a multi-programming environment. A multiprocessor
system that exhibits such behavior is said to be strongly ordered.

An algorithm typically used to test for strong ordering is the following: Processor A does a store to location X at
the same time processor B does a store to location Y. Locations X and Y have no particular relationship, i.e. they
are not in the same cache line. Next processor A does a load from location Y at the same time that processor B does
a load from location X. In order for the system to be strongly ordered either processor A must load the new value
ol Y, or processor B must load the new value of X, or both processors A and B must load the new values of Y and
X respectively under all conditions. If both processors A and B load the old values of Y and X, under any conditions,
the system does not meet the requirements for strong ordering. The algorithm to test for strong ordering is summarized
below.

Processor A Processor B
Store to location X Store to location Y
Load from location Y Load from location X

In order for the above test algorithm for strong ordering to succeed stores must have a global ordering in time;
that is, every processor in the system must agree that either the store to location X preceded the store to location
Y, or the store to location Y preceded the store to location X. If this globa! ordering is enforced the above test algorithm
for strong ordering will succeed as described.

In a system employing the VR4400MC processor the requirements to achieve strong ordering translate to a need
to precisely control when the processor restarts after completion of a processor coherence request with respect to
cache state changes stemming from external coherence requests. Specifically, a system designer must make sure
that any cache state changes, resulting from external coherence requests that occur before a processor coherence
request, are completed betore the processor is allowed to restart after completion of the processor coherence request.

14 B buyc?525 0089641 343 WA

CHAPTER 2 CACHE COHERENCY

The Vr4400MC processor obeys the following paradigms for restart after issuing a coherence request;

For coherent read requests, the processor will restart after the requested double word is transmitted to the
processor if sub-block ordering is enabled or after the last word in the block is transmitted 10 the processor if sequential
ordering is enabled, uniess a processor invalidate or update request is unacknowledged. Any external requests that
must be completed before the read is complete must be issued to the processor before the read response is issued.

For write requests, the processor will restart after the write request is complete, that is, after the last double word
of data associated with the write request has been transmitted to the external agent uniess a processor read request
is pending or a processor invalidate or update request is unacknowledged.

For invalidate and update requests, the processor will restart after the assertion of IvdAck or IvdErr unless a
processor read request is pending or unless it is processing an external request when IvdAck or IvdErr is asserted.
It ivdAck or IvdErr is asserted during or atter the first cycle that the external agent asserts ExtRgst, the processor
willaccept the external request and complete any cache state changes associated with it betore the processor restarts,
otherwise, the processor will restart betore beginning the external request. For any external requests that must be

completed before a processor invalidate or update completes, the external agent must assert ExtRgstbefore or during
the cycle that signal IvdAck or IvdErr is asserted.

B Lu4u27525 0089L&2 28T WA 15

CHAPTER 3 SECONDARY CACHE INTERFACE

The Va4400MC is designed to operate with an external secondary cache. The secondary cache is accessible by
the processor and to the system interface. The cache contains data, cache tags and cache line state bits.

3.1 Secondary Cache Overview

The Va4400MC secondary cache is assumed to consist of one bank of industry standard static RAMs with output
enables. The Va4400MC secondary cache consists of quad-word (128 bit) wide data array and a 25-bit wide tag array.
Check fields are added to both the data and tag arrays to improve data integrity. The secondary cache may be
configured as joint or split instruction/data. The maximum secondary cache size is 4 Mbytes and the minimum
secondary cache size is 128 Kbytes for joint and 256 Kbytes for split instruction/data. The secondary cache is direct-
mapped, and is addressed with the lower part of the physical address.

3.2 Secondary Cache Interface Signal Description
The signals that connect the VrR4400MC processor to its secondary cache are described in this section.

3.2.1 Secondary Cache Interface Signal Summary
SCData(127:0): (i/o) A 128-bit bus used to read or write cache data from/to the secondary cache.
SCDChk(15:0): (/o) A 16-bit bus which conveys two ECC fields that cover the upper or lower 64 bits of the
SCData from/to the secndary cache.
SCTag{24:0): (i’/o) A 25-bit bus used to read or write cache tags from/to the secondary cache.
SCTChk(6:0): (i/lo) A 7-bit bus which conveys an ECC field that covers the SCTag from/to the secondary

cache.
SCAddr(17:1) (o) A 17-bit bus which addresses the secondary cache.
SCAddr0Z: (o) Bit 0 of the secondary cache address.
SCAddr0Y: (o) Bit O of the secondary cache address.
SCAddroX: (o) Bit O of the secondary cache address.
SCAddrow: (o) Bit O of the secondary cache address.
SCAPar(2:0): {0) The secondary cache address even parity bus cover the {ollowing bits:

SCAPar(2) 7 bits: SCWr, SCAddr(17:12)
SCAPar(1) 7 bits: SCDCS, SCAddr(11:6)
SCAPar(0) 7 bits: SCTCS, SCAddr(5:0)

SCOE: (o) A signal which enables the outputs of the secondry cache RAMSs.

SCWrZ: {0) Secondary cache write enable.

SCwrY: (o) Secondary cache write enable.

SCWrX: (o) Secondary cache write enable.

SCWrw: (o) Secondary cache write enable.

SCDCs: (o) Asignal which enables the chip select pins of the secondary cache RAMs associated with

SCData and SCDChk.
SCTCs: (o) Asignal which enables the chip select pins of the secondary cache RAMs associated with

SCTag and SCTChk.

B L4y2?525 0089643 1lbL IH 17

CHAPTER 3 SECONDARY CACHE INTERFACE

3.2.2 Details of Secondary Cache Interface Signals

The interface to the Va4400MC secondary cache is designed to maximize the efficiency of servicing primary cache
misses. The width of the data portion of secondary cache interface is chosen to be 128 bits lo support a data rate
into the primary cache that is near the processor to primary cache bandwidth during normal operation. To assure
that this bandwidth is maintained, each data, tag and check pin must be connected to only one static RAM device.
The SCAddr bus, the SCOE signal, the SCDCS signal and the SCTCS drive a large number of static RAM devices,
so one level of external buffering between the Va4400MC and the cache array is necessary.

The speed of the secondary cache interface is limited by buffered contro! signals. Critical control signals are
duplicated to minimize this etfect. The SCWr signal and SCAddr(0) are duplicated four times so that external buffering
will not be required. When an B-word (256-bit) primary cache line is used, these signals can be controlied significantly
faster to reduce the time of the two back-to-back transfers. These duplicated control signals are specified to drive
11 parts each, so that a total of 44 RAM packages can be used in the cache array. This permits a cache design using
64 Kbyte by 4 bit or 256 Kbyte by 4 bit standard static RAMs. Other cache designs are also acceptable, for example
a smaller cache design using 228 Kbyte by 8 bit static RAMs as it would present less load on the address pins and
control signals. Note that duplicated signals like SCWrW, SCWrX, SCWrY and SCWrZ will be described in this
document as though they were a single signal, which in this case is called SCwr.

The benefit of duplicating SCAddr(0) will be greater if fast sequential static cache RAMs become available. if
SCAddr(0) is attached to a static RAM address bit that effects column decode only, the read cycle time with respect
to that pin should approximate the output enable time of the RAM and for tast static RAMs should be half that of the
nominal read cycle time.

When the split instruction/data cache mode is enabled, assertion of the top SCAddr bit, SCAddr(17) will enable
the instruction half of the cache instead of the data half.

It is possible to design a cache that supports both joint and split instruction/data configurations with less than the
maximum cache size. SCAddr(12:0) must be used to address the cache in all configurations. SCAddr(17) must be
used to support the split instruction/data configuration. Any of SCAddr(16:13) may be omitted because of the fixed
width of the physical tag array.

The SCDChk bus is divided into two fields to cover the upper and lower 64 bits of SCData. This form is required
to keep the width of internal data paths to 64 bits.

The SCTag bus is divided into three tields, as shown in Fig. 3-1 SCTag Fields. The lower 19 bits consist of the
upper physical address bits. The upper three bits consist of cache state, which can be one of Invalid (1), Clean
Exclusive (CE), Dirty Exclusive (DE). Bits 19 — 21 are used to maintain information about the virtual address used
for caching parts of a secondary cache line in the primary cache. This field holds bits 14 through 12 of the virtual

address.

Fig. 3-1 SCTag Fields

24 22 21 19 18 0

Cache_State PiDx Physical_Tag

3 3 18

Bits 19-21 ot SCTag are needed to locate entries in the primary caches. The Vr4400MC has two primary caches,
one for instruction and one for data, which are direct-mapped and are indexed using a subset of the lower 15 bits
of the virtual address (implementation dependent, based on primary cache size). If a cache coherency request is
processed that requires a cache state change or invalidation, the middle three bits of the SCTag portion of the
secondary cache allow primary cache lines affected by that cache coherency request to be found. The three bits of
information stored are bits 14 through 12 of the virtual address. This information is loaded during secondary cache
misses. On each secondary cache access the virtual address bits are compared with the values foundin the secondary

18 B L427525 0089kL&Y 052 MM

CHAPTER 3 SECONDARY CACHE INTERFACE

cache tag. if a mismatch occurs, a trap is taken and the trap handler can modify the bits in the secondary cache
tag to hold the new values, and the old values are used by the trap handler to purge primary cache locations, so that
all primary cache lines holding valid data have indexes known to the secondary cache. This mechanism also helps
preserve the integrity of cached accesses to a physical address using differing virtual addresses known as virtual
synonyms.

The SCDCS and SCTCS are needed to disable reads or writes of the data array or tag array when the other array
is being accessed. These signals are useful for saving power on snoop and invalidate requests, as accesses {0 the

data array are not necessary. These signals are aiso usetul for writing data from the data primary cache to the
secondary cache, as the secondary cache state cannot always be determined from the primary cache state.

3.3 Control of Secondary Cache Interface

The control of the secondary cache is configurable for various clock rates and static RAM speeds. All configurable
parameters are specified in multipies of PClock, which runs at twice the frequency of the external system clock,
MasterClock. Boot time mode contro! registers will hold the various configuration parameters, so that they can be
specified when initializing the VR4400MC. The table below shows the number of PClock cycles that those parameters
can be specified.

Table 3-1 Secondary Cache Read/Write Cycie Parameters

Parameter Settable Number of PCycles
tRa1Cye 4-18
tRezCye 3-15
tois 2-7
twr1Dly 1-3
twrzDly 1-3
twrre 0-1
twrsup 3-15

3.3.1 Read Cycles

Each secondary cache read sequence begins with the driving of the address pins. The output enable signal SCOE
is asserted at the same time.

There are two basic read cycles: a four-word read, and an eight-word read.

For the four-word read, there are two parameters of interest. The first parameter is read sequence cycle time,
TRd1Cyc, which specifies the time from the driving of the SCAddr bus to the sampling of the SCData bus. The second
parameter is the cache output disable time TDis, which specifies the time from the end of a read cycle to the start
of the next write cycle. Fig. 3-2 Four-Word Read Cycle illustrates the four-word read sequence.

B Li2?525 0089LAS T99 WM 18

CHAPTER 3 SECONDARY CACHE INTERFACE

Fig. 3-2 Four-Word Read Cycle

PCycle I T 3 & i s s
SCAddr Bus X Address X
i tRd1Cye }
SCData/SCTag
SCDChK/SCTChk X_paa

SCOE ‘\

SCoCs: ‘\
SCTCS: _\

Ay

For the eight-word read, there is one additional parameter of interest: the time from the first sample point to the
second sample point, TRd2Cyc. The lower order address bit, SCAddr(0) is changed at the same time as the first
read sample point. Fig. 3-3 Eight-Word Read Cycle illustrates the eight-word read sequence.

Fig. 3-3 Eight-Word Read Cycle

PCycle a2l s |« s | 6] 72 8 | s
scadar(17:1) X Address X
S —
SCAddr (0) :X First_Address X second_ddress X
B —
scoomCTon) XoazX

w0\ /
|

Ay

w0\ /
w0\ /

All read cycles can be aborted by changing the address. A new cycle starts beginning with the edge on which
the address is changed. Additionally, the period TDis after a read cycle can be interrupted any time by the start of
a new read cycle. If a read cycle is aborted by a write cycle, SCOE must be deasserted for the TDis period, before
the write cycle can commence. Read cycles can also be extended indefinitely. There is no requirement to change
the address at the end of a read cycle.

20 B b427525 0089L8L 925 WE

CHAPTER 3 SECONDARY CACHE INTERFACE

3.3.2 Write Cycles

Like the read sequence, the secondary cache write sequence begins with the driving ot the address pins.

There are two basic write cycles: a four-word write, and an eight-word write.

For the four-word write, there are several parameters of interest. The first parameter, TWr1Dly is the time from
driving address to the assertion of SCWr. The second parameter, TWrSUp is the time from driving the second data
double-word to the deassertion of SCWr. The final parameter, TWrRc, is the time from the deassertion of SCWr to
the beginning of the next cycle. TWrRc will be zero for most cache designs. Note that the upper data double word
and the lower data double word will normally be driven one cycle apart. This reduces the peak current consumption n
in the output drivers, Fig.3-4 Four-Word Write Cycle illustrates the four-word write sequence. The order of driving
the upper versus the lower halves of SCData are not fixed, either the upper or the lower halves might be driven first.

Fig. 3-4 Four-Word Write Cycle

PCycle

-

2 i 3 4

SCAddr Bus Address

SCData (63:0)
SCDChk (7:0)
SCTag (24:0)
SCTChk (6:0)
SCData (127:64)
SCDChk (15:8)

Data

A L

Data

N

Data

| twrsup

sowr \
I

TTIN

! twrRe

SCOE

Scocs _\
SCTcs \

1

The eight-word write has one new parameter. The parameter, TWr2Dly, is the time from changing the low-order
address bit SCAddr(0) to the assertion of SCWr the second time. The lower half of SCData will be driven out on

the same edge as the change in SCAddr(0). Fig. 3-5 Eight-Word Write Cycle iliustrates the eight-word write
seguence.

B Ly27525 0089647 8kl HE 21

CHAPTER 3 SECONDARY CACHE INTERFACE

Fig. 3-5 Eight-Word Write Cycle

PCycle o1 2 3 e s 6 . 7 . 8

SCAddr (17:1) :X Address X
SCAddr (0)] First_Address X Second_Address)—'
sopemne) —{__ First_Data Ls/DTag_Crk Y Second_Daia_LSDTag Chk
= — e

SCOChk (15:8) ~————{ First_Data_MS/DTag_Chk X X Second_Data_MS/DTag_Chk X

SCData (127:64) ——— First_Data X Second_Data —
L twrsup | l twrsup o
- . ‘ !
SCwr \ / \ /
]
P tweioy ! ! twraDy !

[tweme © tweac

SCOE

5ol \
SCTCs \

Note The secondary cache tag and tag check are identical for both four-word write cycles.

il

When receiving data fromthe system interface, it is possible that the first data double word will arrive several cycles
before the second. In this case, the cache state machine will simply wait until that data is available before asserting
SCWr and will extend the SCWr unti! TWrSUp after the driving of the second data item.

22 B Lu27525 0089684 7T WM

CHAPTER 4 SYSTEM INTERFACE

The system interface allows the processor access to external resources required to satisty cache misses while
also allowing an external agent access to certain processorinternal resources. inthe Va4400MC, the systeminterface
also provides the processor mechanisms with which to maintain the cache coherency of shared data, while providing
an external agent mechanisms with which to maintain system wide multiprocessor cache coherency.

4.1 System Interface Overview

An event that occurs within the processor that requires access to external system resources will be referred to
as a system event. System events include, a load that misses in both the primary and secondary caches, a store
that misses in both the primary and secondary caches, a store that hits in either the primary or secondary data cache
on a shared line, and an uncached ioad or store. A miss in both caches will require the write back to memory of the
cache line that is being replaced if it is in one of the dirty cache states. cache instructions will also cause system
events under certain circumstances. For more details on Va4400MC cache instructions see Va4000, VR4400 USER'S
MANUAL—ARCHITECTURE.

When a system event occurs, the processor will issue a request or a series of requests called processor requests
through the system interface to access some external resource and service the event. The processor's system
interface mustbe connected to some external agent that understands the system interface protocol and can coordinate
the access to system resources.

Processor requests include read, write, null write, invalidate, and update requests. Reads are requests for a block,
double word, word or partial word of data from main memory or another system resource. Writes provide a block,
double word, word or partial word of data to be written to main memory or another system resource. Null writes indicate
that an expected write has been obviated as a result of some external request. Invalidates are requests to invalidate
the specified cache line in every other cache in the system. Updates are requests to update every other cache in
the system with the specified double word, word, or partial word of data.

An external agent may require access to the processor's caches or to some processor internal resource. In this
eventthe external agent will issue a request to the processor through the system interface called an external request
to provide the access.

External requests include read, write, invalidate, update, snoop, intervention, and null requests. Reads are
requests for a word of data from some processor internal resource. Writes provide a word of data to be written to
some processor internal resource. Invalidates specify a cache line that must be marked invalid in the processor 's
primary and secondary caches. Updates provide a double word, word or partial word of data to be written to the
processor's primary and secondary caches. Snoop requests are used to interrogate the processor's secondary cache
to discover if the processor has a valid copy of a particular cache line and if so what cache state the line is in. Snoop
requests require the processor to return an indication of the state of the cache line at the specified physical address
in the secondary cache if it is present. intervention requests require the processor to return an indication of the state
of the cache line at the specified physical address in the secondary cache and the contents of the cache line from
the primary and secondary caches under certain conditions related to the state of the cache line and the nature of
the intervention request. Null requests require no action by the processor, rather they simply provide a mechanism
for an external agent to either return control of the secondary cache to the processor, or to return control of the system
interface to the processor.

When the processor or an external agent receives a read request, it must access the specified resource and return
the requested data. For external read requests, the data will be returned directly in response to the read request.
For processor read requests the read request and the return of data by an external agent in response to the read
request are disconnected or split. The response data may be returned at any time after the read request, and the
system interface is not in use by the read during the time between the read request and the return of response data.

B L4Y27525 0089L8Y L3y HN 23

CHAPTER 4 SYSTEM INTERFACE

An external agent may initiate an unrelated external request before it returns the response data for a processor read.
The return of data in response to a processor read request will be accomplished via a read response. While a read
response is technically also an external request, read responses have ditferent characteristics from all other externat
requests in that arbitration for the system interface must not be performed for read responses. For this reason, read
responses will be treated separately from all other external requests, and will be called simply read responses.

Processor read requests that have been issued but for which data has not yet been returned are said to be pending.
A read is pending until the read data has been returned. Note that the data identifier associated with the response
data may signal that the returned data is erroneous, causing the processor to take a bus error.

External read requests are not split. The system interface is in use between the read request and the return of
data by the processor.

A processor read request is complete after the last word of response data has been received from the external
agent. A processor write request is complete after the last word of data has been transmitted. A processorinvalidate
or update request requires a completion acknowledge via the invalidate acknowledge signals IvdAck or IvdErr, unless
the invalidate or update is canceled by the external agent. Invalidate or update cancellation is signaled to the processor
during external invalidate, update, snoop, and intervention requests. External invalidate, update, snocop and
intervention requests, as a group are referred to as external coherence requests. IvdAck is used to signal that a
processor invalidate or update request has succeeded. IvdErr is used to signal that a processor invalidate or update
request has failed. Since the completion acknowledge for processor invalidate and update requests is signaled
through the system interface on dedicated pins, the completion acknowledge may occur in paralle! with processor
and external requests. A processor invalidate or update request that has been issued but for which the processor
has not yet received an acknowledge or a cancellation is said to be unacknowledced.

An external read request is complete after the processor returns the requested word of data. An external write
request is complete after the word of data has been transmitted. An external invalidate or update request is complete
after the request has been transmitted. An external snoop request is complete after the processor returns the state
of the specified cache line. An external intervention request is complete after the processor returns the state of the
specified cache line, if the processor does not return the contents of the cache line, or after the processor returns
the last word of data for the specified cache line.

The processor must manage the flow of processor requests and external requests. The flow of external requests
is controlled by the processor via the external request arbitration signals ExtRqst, and Release. An external agent
must acquire mastership of the system interface before it is allowed to issue an external request by asserting ExtRgst
and waiting for the processor to assert Release for one cycle. The processor will not assert Release until it is ready
to accept an external request. Mastership of the system interface is always returned to the processor after an external
request has been issued, and the processor will not accept a subsequent external request until it has finished the
current one.

Processor requests are managed by the processor in two distinct modes, secondary cache mode and no-
secondary cache mode, which reflect the presence or absence of a secondary cache, programmable via the boot
time mode control interface. The allowed modes of operation are dependent on the package configuration for the
processor. A processor in the large configuration package may be programmed to run in secondary cache mode
or no-secondary cache mode.

In no-secondary cache mode, the processor will issue requests in a strict sequential fashion; that is, the processor
is only allowed to have one request pending at any time. The processor will issue a read request and wait for the
read response before issuing any subsequent requests. The processor will issue a write request only if there are
no reads pending.

The processor provides the signals RdRdy and WrRdy to allow an external agent to manage the fiow of processor
requests. RdRdy controls the flow of processor read, invalidate, and update requests while WrRdy controls the flow
of processor write requests. Processor null write requests must always be accepted, they cannot be delayed by either
R_dR_dy or md_y The processor samples the signa!l RdRdy to determine the issue cycle (cycle in which the address
cycle is accomplished and the data cycle can be issured next) for a processor read, invalidate, or update request

24 B b427525 0089690 356 EE

CHAPTER 4 SYSTEM INTERFACE

and the processor samples the signal W 1o determine the issue cycle for 2 processor write request. The issue
cycle for a processor read, invalidate or update request is defined to be the first address cycle for the request for
which the signal RdRdy was asserted two cycles previously. The issue cycle for a processor write request is defined
to be the first address cycle for the write request for which the signalm was assened two cycles previously. If
the processor wishes to issue a request but is unable to because one of the signals m orFFldy is de-asserted,
the processor will repeat the address cycle for the request untif the issue cycle is accomplished. Once the issue cycle
is accomplished, data transmission will begin for a request that includes data. There will always be one and only
one issue cycle for any processor request.

The processor will accept external requests while attempting to issue a processor request by releasing the system
interface to slave state in response to an assertion of ExtAgst. Note that the rules governing the issue cycle of a
processor request are strictly applied to determine the action the processor is taking. The processor will either
accomplish the issue of the processor request, in which case the processor request will be completed in its entirety
before an external request will be accepted, or the processor will release the system interface to slave state without
accomplishing the issue of the processor request. Inthe latter case, the processor will attempt to issue the processor
request again after the external request is completed, and the rules governing issue cycle will again apply.

In the no-secondary cache mode an external agent must be capable of accepting a processor read request at any
time there are no processor read requests pending and the signal ﬁfﬁd_y has been asserted for two or more cycles.
An external agent must be capable of accepting a processor write request at any time there are no processor read
requests pending and the signal m has been asserted for two or more cycles.

In the secondary cache mode, the processor will issue requests both individually as in no-secondary cache mode
and in groups that begin with processor read requests called clusters. Specifically, the processor will issue individual
read requests, invalidate or update requests, and write requests and the processor will issue clusters. A cluster
consists of a processor read request followed by one or two additional processor requests issued while the read
request is pending. All of the requests that are part of a cluster must be accepted before the response to the read
request that begins the cluster may be returned to the processor. A cluster will consist of a processor read request
followed by a write request, a processor read request followed by a potential update request, or a processor read
request followed by a potential update request, foliowed by a write request.

The issue of potential update requests within a cluster can be disabled via the boot time mode control interface.
A processor potential update request is defined to be any update request that is issued while a processor read request
is pending. In addition, a bit in the command for processor updates identifies potential updates. Potential updates
are issued in conjunction with a processor read request. That is, once the processor accomplishes the issue of a read
request, a potential update request will foliow if one is required regardiess of the state of RdRdy. Potential update
requests do not obey the ﬁﬁd_y flow control rules for issue, but rather issue with a single address cycle regardiess
of the state of RdRdy.

A write request that is part of a cluster does obey the W rules for issue, and the processor will accept external
requests between the issue of a processor read request, or a processor read request followed by a potential update
request, and the issue of a processor write request within a cluster. The processor signals that it is issuing a cluster
that contains a processor write request by issuing a read with write forthcoming request instead of an ordinary read
request to start the cluster. The read with write forthcoming request is identified by a bit in the command for processor
read requests. The external agent must accept all of the requests that form a cluster before it may return a response
to the read request that began the cluster. The behavior of the processor is undefined if the externai agent returns
a response to a processor read request that begins a cluster before accepting all of the requests that form the cluster.

Since the processor will accept external requests between the issue of a read with write forthcoming request that
begins a cluster and the issue of the write request that completes the cluster, it is possible for an external request
to obviate the need for the write request within the cluster. Forinstance, if the external agent were to issue an external
invalidate request that targeted the cache line the processor was attempting to write back, the state of the cache line
would be changed to invalid, and the write back for the cache line would no longer be needed. In this event, the
processor will issue a processor null write request after comple_ting the external request to complete the cluster.

B Lu4y2?5e5 0089k9L 2492 M 25

CHAPTER 4 SYSTEM INTERFACE

Processor null write requests do not obey theVV_rﬁd—y flow control rules for issue, but rather issue with a single address
cycle regardless of the state of WrRdy. Any external request that changes the state of a cache line from dirty exclusive
or dirty shared to clean exclusive, shared, or invalid will cbviate the need for a write back of that cache line.

A processor potential update request remains potential until the response to the pending processor read request
that began the cluster is received. If the read response data is returned in one of the shared states, shared or dirty
shared, the potential update is no longer potential and must receive an acknowledge via either the signal IvdAck or
IvdErr. If the read response data is returned in one of the exclusive states, clean exclusive or dirty exclusive, the
potential update is nullified and the processor will neither expect nor require an acknowledge.

In secondary cache mode, an external agent must be capable of accepting a processor read request followed by
a potential update request at any time there are no processor read requests pending, no unacknowledged processor
invalidate or update requests, and the signal Fﬁdy has been asserted for two or more cycles. An external agent
must be capable of accepting a processor write request at any time there are no processor read requests pending,
there is a processor read with write forthcoming request pending, no unacknowledged processor invalidate or update
requests that are compulsory, and the signal WrRdy has been asserted for two or more cycles.

After issuing a processor read request, the processor will not attempt to issue a subsequent read request until
it has received a read response for the read request, whether it began a cluster or not. After issuing a processor
invalidate or update request, or after a potential update request becomes compulsory, the processor will not attempt
to issue a subsequent request until it has received an acknowledge for the invalidate or update request. After the
processor has issued a write request, the processor will not attempt to issue a subsequent request untit at least four

cycles after the issue cycle of the write request.

The following sections detail the sequence, protocol and syntax of processor ard external requests. Sequence
refers to the precise series of requests that a processor generates to service a system event. Protocol refers to the
cycle by cycle signal transitions that occur on the processor’s system interface pins to realize a processor or external
request. Syntax refers to the precise definition of bit patterns on encoded buses such as the command bus.

4.2 Processor Request Sequencing

The processor will generate a request or a series of requests through the systeminterface to satisfy system events.
Processor requests are managed in two distinct modes, secondary cache mode and no-secondary cache mode. The
following sections detail the sequence of requests generated by the processor for each system event in secondary

cache and no-secondary cache mode.

4.2.1 Primary and Secondary Cache Miss on a Load

When the processor misses in both the primary and secondary caches on a load, it must obtain the cache line
that contains the data element to be loaded from an external agent before it can proceed. If the new cache line will
replace a current cache line that is in the state dirty exclusive or dirty shared, the current cache line must be written
back before the new line can be loaded in the primary and secondary caches.

The processor will examine the coherency attribute in the TLB entry for the page that contains the requested cache
line and if the coherency attribute is exclusive it will issue a coherent read request that also requests exclusivity.

If the coherency attribute is sharable or update the processor willissue a coherent read request and if the coherency
attribute is noncoherent the processor will issue a noncoherent read request.

In no-secondary cache mode, the processor will issue a read request for the cache line that contains the data
element to be loaded, wait for an external agent to provide the read data in response to the read request, and then,
if the current cache line must be written back, the processor will issue a write request for the current cache line.

In secondary cache mode, the processor will issue a read request for the cache line that contains the data element
to be loaded if the current cache line does not need to be written back and the coherency attribute for the page that
contains the requested cache line is anything other than exclusive. If the current cache line needs to be written back
and the coherency attribute for the requested cache line is not exclusive, the processor will issue a cluster consisting

26 B Lu2?7525 0089k92 129 M

CHAPTER 4 SYSTEM INTERFACE

of a read with write forthcoming request for the cache line that contains the data element to be loaded followed by
a write request for the current cache line. If the currentcache line needs to be written back and the coherency attribute
for the page that contains the requested cache line is exclusive, the processor will issue a cluster consisting of an
exclusive read with write torthcoming reguest followed by a write request for the current cache line. If the current
cache line needs to be written back and the coherency attribute for the page that contains the requested cache line
is update on write, the processor will issue a cluster consisting of a read with write forthcoming request followed by
a write request for the current cache line.
The processor request for a primary and secondary cache miss on a load is tabulated below.

Table 4-1 Primary and Secondary Cache Miss on a Load

No Secondary Cache Mode Secondary Cache Mode
. Processor . .
Page Attribute . . State of the Data Cache Line Being Replaced
Configuration
Clean/Invalid Dirty Clean/Invalid Dirty
Noncoherent All VR4000 and VR4400 NCR NCR/W NCR NCR-W
Exclusive Vr4000SC, Vr4400SC,
NA x Rex-W
(Write Invalidate) | Va4400MC NA Re
Sharable
NA NA R R-W
(Write Invalidate) | YR4400MC
Update
pe VR4400MC NA NA R R-W
(Write Update)

Remark NCR Processor Non-Coherent Read Request

NCR/W Processor Non-Coherent Read Request followed by Processor Write Request

NCR-W Cluster. Processor Non-Coherent Read Request with Write Forthcoming followed by
Processor Write Request

R Processor Coherent Read Request

R-W Cluster. Processor Coherent Read Request with Write Forthcoming followed by Processor
Write Request

Rex Processor Read Request with Exclusivity

Rex-W Cluster. Processor Read Request with Exclusivity and Write Forthcoming followed by
Processor Write Request

NA Not Available

4.2.2 Primary and Secondary Cache Miss on a Store

When the processor misses in both the primary and secondary caches on a store, it must obtain the cache line
that contains the target location of the store from an external agent before it can proceed. In secondary cache mode,
if the new cache line will replace a current cache line that is in the state dirty exclusive or dirty shared, the current
cache line must be written back before the new line can be loaded in the primary and secondary caches. In no-
secondary cache mode, if the new cache line will replace a current cache line that is in the state dirty exclusive, the
current cache will be moved to an internal write bufter before the new cache line is loaded in the primary cache.

The processor will examine the coherency attribute in the TLB entry forthe page that contains the requested cache
line to see if this cache line is being maintained with a write invalidate or a write update cache coherency protocol.
If the coherency attribute is sharable or exciusive a write invalidate protocol is in effect, and a coherent read that also
requests exclusivity will be issued. If the coherency attribute is update a write update protocol is in effect and a coherent
read request will be issued. If the coherency attribute is noncoherent 2 noncoherent read request will be issued.

B b427525 0089:93 Ob5 HE 27

CHAPTER 4 SYSTEM INTERFACE

In no-secondary cache mode, the processor will issue a read request for the cache line that coniains the data
element to be loaded, wait for an external agent to provide the read data in response to the read request, and then,
it the current cache line must be written back, the processor will issue a write request for the current cache line.

Insecondary cache mode, the processor will issue a read request for the cache line that contains the target location
of the store if the current cache line does not need to be written back and the coherency attribute for the page that
contains the requested cache line is noncoherent. If the current cache line does not need to be written back and
the coherency attribute for the page that contains the requested cache line is sharable or exclusive, the processor
will issue a cluster consisting of a read request. if the current cache line does not need to be written back and the
coherency attribute for the page that contains the requested cache line is update, and potential updates are enabled,
the processor will issue a cluster consisting of a read request followed by a potential update request. If the current
cache line needs to be written back and the coherency attribute for the requested cache line is noncoherent, the
processor will issue a cluster consisting of a read with write forthcoming request for the cache line that contains the
target location of the store followed by a write request for the current cache line. If the current cache line needs to
be written back and the coherency attribute for the page that contains the requested cache line is sharable or exclusive,
the processor will issue a cluster consisting of a read with write forthcoming request, followed by a write request for
the current cache line. If the current cache line needs to be written back and the coherency attribute for the page
that contains the requested cache line is update and potential updates are enabled, the processor will issue a cluster
consisting of a read with write forthcoming request, followed by a potential update, foliowed by a write request for the
current cache line.

it the processor issues a cluster that contains a potential update, and the response data for the read request is
returned with an indication that it must be placed in the cache in a shared state, ether shared or dirty shared, the
potential update becomes compulsory. Once a potential update becomes compulsory, the external agent must forward
the update to the system, and signal an acknowledge to the processor when the update is complete. In this case the
processor will not complete the store until the update has been acknowledged.

If the processor issues a cluster that contains a potential update, and the response data for the read request is
returned in an exclusive state, clean exclusive or dirty exclusive, the potential update is nullified. Once a potential
update has been nullified, the external agent must simply discard the update. The processor will not wait for or expect
an acknowledge to a potential update that has been nullified.

lf the processor issues a read request, or a cluster that does not contain a potential update, and the response data
for the read request is returned with an indication that it must be placed in the cache in a shared state, either shared
or dirty shared, the processor will then issue an invalidate request or an update request depending on the coherency
attribute for the page that contains the target location of the store instruction. If the coherency attribute is update,
an update request will be issued, otherwise an invalidate request will be issued. The external agent must forward
the invalidate or update to the system and signal an acknowledge to the processor for the invalidate or update request.
The processor will not complete the store until it has received an acknowledge for the invalidate or update request.

The concept of potential updates is introduced to provide the external agent a chance to use the system bus more
efficiently. In an update protocol, it is quite likely that a cache line requested by a processor coherent read request
will be returned in a shared state, and that the processor will then have to issue an update request before it can
complete a store instruction. The potential update issued with the read request in a cluster allows the external agent
to anticipate the read response on the system bus, and if it arrives with an indication that it is shared to quickly gain
contro! of the system bus and transmit the required update to the rest of the system. This provides the soonest possible
acknowiedge to the processor and allows the processor to complete the store instruction as quickly as possible.
Without the potential update request the response data must be returned to the processor, after which the processor
willissue an update request which must then be forwarded to the system bus before an acknowledge can be returned
to the processor.

28 B (427525 0089L94 TT1l EE

CHAPTER 4 SYSTEM INTERFACE

Note that potential updates behave in ail cases as if they have not yet been issued by the processor. Potential
updates are not subject to cancellation, and do not expect or require an acknowledge. When a potential update is
nullified, the processor behaves as if no update request was ever issued. When a potential update becomes
compulsory, the processor behaves as if it had issued an update request at that instant. Once a potential update
becomes compulsory it is subject to cancellation, and the processor requires an acknowiedgment.

The processor request for a primary and secondary cache miss on a store is tabulated below.

Table 4-2 Primary and Secondary Cache Miss on a Store

No Secondary Cache Mode Secondary Cache Mode
Processor . B
Page Attribute . . State of the Data Cache Line Being Replaced
Configuration
Clean/Invalid Dirty Clean/invalid Dirty
Noncoherent All VR4000 and Vs4400 NCR NCRW NCR NCR-W
Exclusive Vad4000SC, Vad400SC, NA A W
(Write Invalidate) | Va4400MC NA = &
Sharable
NA NA Rex Rex-W
(Write Invalidate) | V"440OMC
Upd.ate VR4400MC NA NA Dis En Dis En
(Write Update) R R-PU | R-W/U |R-PU-W

Remark NCR

NCR/W
NCR-wW

Rex
Rex-W

R/U
R-PU

R-PU-W

R-w/U

Dis
En
NA

Processor Non-Coherent Read Request

Processor Non-Coherent Read Request followed by Processor Write Request

Cluster. Processor Non-Coherent Read Request with Write Forthcoming followed by
Processor Write Request

Processor Coherent Read Request with Exclusivity

Ciuster. Processor Coherent Read Request with Exclusivity and Write Forthcoming followed
by Processor Write Request

Processor Coherent Read Request followed by Processor Update Request

Cluster. Processor Coherent Read Request followed by Processor Potential Update Request
Cluster. Processor Coherent Read Request followed by Processor Potential Update Regquest
followed by Processor Write Request

Cluster. Processor Coherent Read Request with Write Forthcoming followed by Processor
Write Request, followed by a Processor Update Request if the read response data is shared.
Potential Update Disable (Modebit [20]: PotUpdDis = 1)

Potential Update Enable (Modebit [20): PotUpdDis = 0)

Not Available

B Lu27525 0089L95 938 29

CHAPTER 4 SYSTEM INTERFACE

4.2.3 Secondary Cache Hit on a Store to a Shared Line

When the processor store hits in the secondary cache on a line that is marked shared or dirty shared, an invalidate
or update request must be issued and the processor must receive an acknowledge before the store can be completed.
The processor will check the coherency attribute in the TLB for the page that contains the cache line that is the target
of the store to determine if the cache line is being managed using a write invalidate or write update cache coherency
protocol. !t the coherency attribute is sharable or exclusive a write invalidate protocol is in effect, and the processor
will issue an invalidate request. !f the coherency attribute is update a write update protocol is in effect, and the
processor will issue an update request. The processor will not complete the store until an external agent signals an
acknowledge for the invalidate or update request.

4.2.4 Uncached Load or Store
When the processor performs an uncached load, it will issue a noncoherent read request. When the processor
performs an uncached store, it will issue a write request.

4.2.5 Uncached Store Buftfer

On the Va4400MC, there is a single entry uncached store buffer. This means when an uncached store reaches
the WB stage of the pipeline, the store drops into the uncached store buffer and the CPU pipeline may continue to
run. If another uncached store reaches the WB stage of the pipeline before the first uncached store has been sent
out of the chip, the CPU will stall until the uncached store butfer has completed the first uncached store.

If other usefulinstructions can be scheduled between successive uncached stores, then considerable performance
improvement may be achieved using this mechanism.

To aveid CPU stalls, for sequential stores, there needs to be 7 cycles between uncached stores:

SwW r2, (r3) # uncached store
NOP
NOP
NOP
NOP
NOP
NOP
NOP
SW r2, (r3) # uncached store

No o k0N

Remark NOPs can be replaced by instructions with no uncached access.

Remember that if any of the instructions between the stores are multiple cycles then the number of instructions
between the stores can be reduced further without causing stalls (for example, variable shifts take 2 PCycles).

If a sequence of uncached stores are executed in a loop, then the 2 killed cycles that are lost in branch latency
still count towards the 7 cycles needed between the stores:

30 B by27525 0089696 474 HE

CHAPTER 4 SYSTEM INTERFACE

loop: Sw r2, (r3) # uncached store
1: NOP

NOP

NOP

BR LOOP

NOP

killed

killed

Noohowh

In this case only 4 instructions have to be scheduled (excluding the branch).

The latency between stores is really defined by the fact that back to back uncached stores on the system interface
can be sent out at a maximum rate of one store every 4 external cycles (Address, Data, X, X). This translates to 8
pipeline cycles for a chip running the system interface in divide by 2 mode. The above cycle count and program
examples are assumed to be in divide by 2 mode. If a larger clock divisor is used (div3, div4), then the number of
cycles between successive uncached stores goes up by the same ratio (div3: 11 pipeline cycles, div4: 15 pipeline
cycles) if you want to avoid CPU pipeline stalls.

The SYNC instruction is used by the Va4400MC to ensure that any uncached store in the uncached store buffer
is sent out of the chip before any load or store after the SYNC completes.
As external requests have higher priority than pending uncached stores, it is possible for an external agent to see

the VR4400MC complete cached and uncached stores out of program exezution order. For example, given the
sequence:

Sw 2, (r3) # uncached store
SW 4, (r5) # cached store

Given an external intervention or snoop is sent into the chip when the uncached store has entered the uncached
store buffer, but has not yet been sent out of the chip, and the cached store has run successfully through the TC stage
{i.e., it has hit in the primary cache). The external agent will see the state of the internal caches after the cached
store but betore the result of the uncached store is seen outside the chip. The SYNC instruction may be used to avoid
this case if necessary, as shown below:

SW r2, (r3) # uncached store
SYNC

SwW 4, (r5) # cached store

4.2.6 Cache Instructions
The Vr4400MC processor provides a variety of cache instructions for use in maintaining the state and contents
of the primary and secondary caches. During the execution of cache instructions the processor may issue write

requests, or invalidate requests. For further details on cache instructions see Va4000, V4400 USER’'S MANUAL—
ARCHITECTURE.

M Ly27525 0089697 700 WE A

CHAPTER 4 SYSTEM INTERFACE

4.3 External Request Handling

An external agent must arbitrate with the processor for access to the system interface before it can issue an external
request. The external agent will signal that it wishes to begin an external request and wait for the processor to signal
that it is ready to accept the request before issuing any new external request. The processor will decide based on
its internal state and the current state of the system interface when to accept a new external request. The processor
will signal that it is ready to accept an external request based on the foliowing criteria.

(1) lfthere are no processor requests pending, the processor will decide based on its internal state whether 1o accept
the external request, or rather to issue a new processor request. The processor may issue a new processor
request while the external agent is requesting access to the system interface to issue an external request.

{2) The processorwill accept an external request after completing a processor request or a processor request cluster
that is in progress.

(3) While waiting for the assertion of RdRdy to issue a processor read request the processor will accept an external
request provided that the request is delivered to the processor one or more cycles before RdRdy is asserted.

{(4) While waiting for the assertion of WrRdy to issue a pracessor write request the processor will accept an external
request provided that the request is delivered to the processor one or more cycles before WrRdy is asserted.

(5) While waiting for the response to a read request and after the VR4400MC has made an uncompelled change to
slave state, an external agent may submit an external request before providing the read response data.

4.4 Invalidate and Update Cancellation

An external agent may discover that a processor request for an invalidate or update cannot be completed based
on state changes in the external system that have not yet been reflected into the processor’s caches. An example
of this in abus based system is the case in which a processor issues aninvalidate, but before the external bus interface
can transmit the invalidate an invalidate is received from another processor that targets the same cache line. in this
case, the processor's cache does notreflect the current state of the system, and the unacknowledged invalidate cannot
be transmitted. When this occurs, the external agent must cancel the invalidate or update. The processor, upon
receiving a cancellation, will process any external requests thatthe external agent wishes to issue and then re-examine
the state of the cache to determine what action to take. In the above example, this would cause the processor to
process an external request to invalidate the cache line that was the target of the store, after which the processor
would re-examine the state of the cache and discover that the cache line that was the target of the store is now invalid.
The processor would then process the store as a store miss and issue a read request instead of an invalidate request.

Potential updates may not be canceled until they become compulsory. Potential updates are issued within a cluster
under pending reads and are no longer potential after the read request is satisfied. In more general terms, an external
request that indicates processor update cancellation may not be issued when a processor read is pending and may
not be issued unless a compulsory update is unacknowledged. The behavior of the processor is undefined if the
cancellation indication is signaled on an external coherence request to the processorwhile a processor read is pending
or when there is no compulsory update unacknowledged.

32 B L4y27525 0089698 L47 IH

CHAPTER 4 SYSTEM INTERFACE

4.5 Load Linked Store Conditional Considerations

Generally the execution of a load linked store conditional instruction sequence is not visible at the system intertace,
that is no special requests are generated due to the execution of this instruction sequence. However, there is one
situation for which the execution of a load linked store conditional instruction sequence will be visible as a change
in the nature of a processor read request.

Specifically, if the data location targeted by a load linked store conditional instruction sequence maps to the same
cache line that the instruction area containing the load linked store conditional code sequence is mapped to, then
immediately after executing the load linked instruction the cache line that contains the fink location will be replaced
by the instruction line containing the code. The fink address is kept in a register separate from the cache and remains
active as long as the link bit remains set. The link bitis setby the load linked instruction, and is cleared by any change
of cache state for the cache line containing the link address, or a return from exception.

In order for the load linked store conditional instruction sequence to work correctly all coherency traffic targeting
the link address must be visible to the processor, and the cache line containing the link location must remain in a
shared state in every cache in the system. This guarantees that a store conditional executed by some other processor
is visible to the processor as a coherence request which changes the state of the cache line that contains the link
location. To accomplish this, a read request issued by the processor which causes the replacement of a cache line
that contains the link location while the link bit is set will indicate that the link address is being retained. The link address
retained bit in the command for the read request will be asserted to provide this indication. This informs the external
agent that even though the processor has replaced this cache line and no longer has it present in its cache, it still
must see any coherence traffic that targets this cache line.

In addition, any snoop or intervention request that targets a cache line which is not present in the cache, but for
which the snoop or intervention address matches the current link address while the link bit is set, will return an
indication that the cache line is present in the cache in a shared state. A shared indication is returned even though
the processor does not actually have the data content of the cache line. This is consistent since the processor never
returns data in response to an intervention request for a cache line that is in the shared state. The shared response
guarantees that the cache line that contains the link location will remain in a shared state in all other processor's
caches, and therefore that any other processor that attempts a store conditional to this link location must issue a
coherence request in order to compiete the store conditional.

The address value of the LLAddr register is lost in the following cases:
+ 1f the lines including link addresses are invalidated by an external request (external invalidate, snoop, or
intervention request).

« When ERET instruction is completed

When the cache lines including link addresses are updated by an external update request

4.6 System Interface Endianess

The endianess of the system interface is programmed at boot time via the boot time mode control interface and
is fixed until the next time the processor mode bits are read. The endianess of the system interface and the external
system cannot be changed by software. The reverse endian bit can be set by software to reverse the interpretation
of endianess inside the processor, but the endianess of the system interface remains unchanged. For further details
on the reverse endian bit see VR4000, Va4400 USER'S MANUAL—ARCHITECTURE.

BN Lu27525 0089699 583 EM 33

CHAPTER 4 SYSTEM INTERFACE

4.7 System interface Protocol

The system interface protocol describes the cycle by cycle signal transitions that occur on the pins of the system
intertace to realize requests between the processor and an external agent.

4.7.1 Introduction

The system interface is register to register. That is, processor outputs come directly from output registers and
begin to change with the rising edge of SClock and processor inputs are fed directly to input registers that latch the
inputs with the rising edge of SClock. Therefare, if an input to the processor is changed during a particular cycle
such that the new value is sampled at the end of the cycle, the earliest the processor can change one of its outputs
in response to the input change is two cycles later. This methodology was chosen to allow the system interface to
run at the highest possible clock frequency.

The primary communication paths for the system interface are a sixty-four bit address and data bus, SysAD(63:0)
and a nine bit cormmand bus, SysCmd(8:0). The SysAD bus and the SysCmd bus are bidirectional, that is they are
driven by the processor to issue a processor request, and by an external agent to issue an external request. When
the processor is driving the SysAD bus and the SysCmd bus the system interface is in master state, when an external
agent is driving the SysAD bus and the SysCmd bus the system interface is in slave state.

A request through the system interface consists of an address, a system interface command that specifies the
precise nature of the request, and a series of data elements if the request is for a write, read response, or update.
Addresses and data elements are transmitted on the SysAD bus. System interface commands and data identifier
are transmitted on the SysCmd bus.

Cycles in which the SysAD bus contains a valid address are called address cycles and cycles in which the SysAD
bus contains a valid data element are called data cycles. In master state the processor will assert the signa! ValidOut
whenever the SysAD bus and the SysCmd bus are valid. In slave state an external agent will assert the signal Validin
whenever the SysAD bus and the SysCmd bus are valid.

The SysCmd bus is used to identify the contents of the SysAD bus during any cycle in which it is valid. The most
significant bit, SysCmd(8), is always used to indicate whether the current cycle is an address ¢ycle or a data cycle.
During address cycles, SysCmd(7:0) will contain a system interface command. The encoding of system interface
commands is detailed in the section on system interface syntax. During data cycles, SysCmd(7:0) will contain an
indication of whether this is the last data element to be transmitted and other information about the data element.
The contents of the SysCmd bus during data cycles is called a data identifier. The encoding of data identifiers is
detailed in 4.9 System Interface Syntax.

A request through the system interface consists of one or more identical address cycles, followed by a series of
data cycles for requests that include data. The most efficient request through the system interface will consist of a
single address cycle followed by a single data cycle or a number of data cycles suificient to transmit a block of data.

4.7.2 System Interface Arbitration

When an external agent needs to issue an external request through the system interface, it must first get the system
interface into slave state. The transition from master state to slave state is arbitrated by the processor using the system
interface handshake signais ExtRgst and Release. An external agent will signal that it wishes to issue an external
request by asserting m and the processor will release the system interface from master state to slave state
by asserting Release for one cycle when it is ready to accept an external request. The system interface will return
to master state as soon as the issue of the external request is complete. Having asserted ExtRqst, an external agent
must not de-assert ExtRgst until the processor asserts Release. After the processor asserts Release, the external
agent should de-assert ExtRgst no more than two cycles afier the assertion of Release. An external agent may
continue to assert E_xm it another external request foliows the current request. After the first external request
completes, the processor must assert Release again before the second external request is issued 1o the processor.

34 BN L427525 00&9700 025 EM

CHAPTER 4 SYSTEM INTERFACE

The system intertace will remain in master state untilthe external agent requests andis grantedthe systeminterface
or until the processor issues a read request, or completes the issue of a cluster. Whenever a processor read reques!
is pending, after the issue of a read request or after the issue of all of the requests in a cluster, the processor will
switch the system interface to slave state even though the external agent is not arbitrating to issue an external request.
This transition to slave state is specifically to allow the external agent to return read response data. The external
agent must not assert the signal m for the purposes of transitioning the system interface 1o slave state to return
read response data. m will only be asserted when the external agent needs to get the system interface into
slave state so that it can issue an external request.

The signal ExtRqstis strictly used to arbitrate for the system interface, that is to request the transition of the system
interface from master state to slave state. m should be de-asserted no more than two cycles atter a cycle in
which Release is asserted unless the external agent wishes 10 perform a subsequent external request.

The transition of the system interface from master state to slave state initiated by the processor when a processor
read request is pending will be referred to as an uncompelled change to slave state. Anuncompelled change to slave
state will occur during or some number of cycles atter the issue cycle of a read request or the last cycle of the last
request in a cluster. The number of cycles depends on the state of the cache, the presence of a secondary cache
and the secondary cache parameters. After an uncompelled change to slave state the system interface will remain
in slave state until the external agent issues an external request, atter which the system interface will return to master
state. An external agent must note that the processor has performed an uncompelled change to slave state and begin
driving the address and data bus and the command bus. As long as the system interface is in slave state, the external
agent will begin an external request without arbitrating for the system intertace, that is without asserting ExtRgst.

4.7.3 System interface Signal Descriptions

The system interface address and data bus is the SysAD bus. The system interface command bus is the SysCmd
bus.

The SysAD bus and SysCmd bus valid signal that is asserted by the processor in master state is ValidOut. The
SysAD bus and SysCmd bus valid signal that is asserted by an external agent in slave state is Validin.

The SysADC bus provides eight check bits for the SysAD bus. The nature of the check bits is programmable via
the boot time mode control interface. The check bits may represent even byte parity for the contents of the SysAD
bus, or they may be interpreted according to the code described in CHAPTER 5 ERROR CHECKING AND
CORRECTING {ECC) to detect and correct single bit errors and detect double bit errors or three or four bit errors
within a nibble on the SysAD bus. For a description of even parity, see APPENDIX B EVEN PARITY. For further
details on the ECC characteristics of the Vr4400MC, see CHAPTER 5 ERROR CHECKING AND CORRECTING
(ECC).

The signal SysCmdP is an even parity bit over the nine bits of the SysCmd bus generated by the processor in
master state. SysCmdP is not checked by the processor in slave state. For a description of even parity, see
APPENDIX B EVEN PARITY.

System interface arbitration is implemented using the signals ExtRqst and Release.

Processor request flow control is implemented using the signals RdRdy and WrRdy.

Processor invalidate and update requests are acknowiedged using vdAck and IvdErr signals.

4.7.4 System Interface Maintenance Signais

In addition 1o the signals used to implement the system interface request protocol, the system interface includes
maintenance signals necessary for the operation of the processor. These include a master clock input for the
processor, MasterClock, which must be connected to a continuous clock signal at the desired operation frequency
of the processor; a processor synchronization clock output, SyncOut and a processor synchronization clock input,
Syncin that must be connected together to allow the processor internal clock synchronization logic to compensate
for pad driver and receiver delays; a master clock output, MasterOut, aligned with MasterClock for use in clocking
external logic that must run at MasterClock frequency; three reset related inputs, VooOK, ColdReset, and Reset; an

B L427525 0089701 Thl M 35

CHAPTER 4 SYSTEM INTERFACE

eight bit status bus, Status(7:0) that is encoded to indicate the current operation status of the processor. a system
fault processor output, Fault that is the mismatch indication of the boundary comparators when the processor is
running in master checker mode; two transmit clock outputs, TClock(1:0) and two receive clock outputs, RClock(1:0)
at the programmed operation frequency of the system interface.

4.7.5 System Interface Signal Summary

SysAD(63:0): (/o) A64-bitbususedioraddressanddatatransmission betweenthe processorandan external
agent.

SysADC(7:0): (i/o) An 8-bit bus containing check bits for the SysAD bus.

SysCmd(8:0): (i/o) A 9-bitbus used for command and data identifier transmission between the processor and
an external agent.

SysCmdP: (i’0) A single even parity bit over the SysCmd bus.

Validin; (i) Signals that an external agent is driving a valid address or valid data on the SysAD bus
and a valid command or data identifier on the SysCmd bus during this cycle.

ValidOut: (o) Signals that the processor is driving a valid address or valid data on the SysAD bus and
a valid command or data identifier on the SysCmd bus during this cycle.

ExtRgst: (i) Signals that an external agent wishes to issue an external request.

Release: (o) Signals that the processor is releasing the system interface to slave state.

RdRdy: (i) Signals that an external agent is capable of accepting a processor read, invalidate, or

update request in both no-secondary cache and secondary cache mode or a read followed
by a potential update request in secondary cache mode.

m: (i) Signals that an external agent is capable of accepting a processor write request in both
no-secondary cache and secondary cache mode.

IvdAck: (i) Signals that a processor invalidate or update request has completed successfully.

IvdErr: (i) Signals that a processor invalidate or update request has completed unsuccessfully.

TClock(1:0): (o) Two identical transmit clocks at the operation frequency of the system interface.
RClock(1:0): (o) Two identical receive clocks at the operation frequency of the system interface.
MasterClock: (i) Master clock input at the operation frequency of the processor.

MasterOut: (o) Master clock output aligned with MasterClock.

SyncOut: (o) Synchronization clock output.

Syncin: (i) Synchronization clock input.

Status(7:0): (o} An 8-bit bus that indicates the current operation status of the processor.

VooOk: (i) When asserted, this signal indicates to the VrR4400MC that the power supply voltage has

been within the specified range for more than 100 milliseconds and will remain stable. The
assertion of VooOk will initiate the reading of the boot time mode control serial stream.

ColdReset: (i) This signal must be asserted for a power on reset or a cold reset. The clocks SClock,
TClock, and RClock begin to cycle and are synchronized with the deassertion edge of
ColdReset.

Reset: (i) This signal must be asserted for any reset sequence. It may be asserted synchronously
or asynchronously for a cold reset, or synchronously to initiate a warm reset.

Fault: (0) Mismatch output of boundary comparators.

36 B L427525 0089702 973 MW

CHAPTER 4 SYSTEM INTERFACE

4.7.6 System Interface Request Descriptions

The following sections will illustrate the protocol of each processor and external request through text and detailed
timing diagrams. The timing diagrams use abbreviations to show the contents of encoded busses during cycles in
which they are defined. Following is a list of abbreviations used for each bus and their definitions.

Global:
Unsd - Unused.
SysAD bus:
Addr - Physical address.
Data<n> -~ Data element number n of a block of data.
SysCmd bus:
Cmd - An unspecified system interface command.
Read - A read request command.
RAwWWF - A read with write forthcoming request command.
Write - A write request command.
Nult - A null request command.
SiNult = A system interface release null request command.
SCNull - A secondary cache release null request command.
Ivd ~ An invalidate request command.
Upd - An update request command.
Ivin - An intervention request command.
Snoop - A snoop request command.
NData - A noncoherent data identifier for a data element other than the last data element.
NEOD - A noncoherent data identifier for the last data element.
CData - A coherent data identifier for a data element other than the last data element.
CEQCD - A coherent data identifier for the last data element.

Two closely spaced wavy vertical lines in a timing diagram indicate a repetition of the current cycle. That is the
cycle broken by the wavy lines may represent one or more identical cycles. This is referred to as a break in the timing
diagram and is used to keep the timing diagrams concise and readable.

4.7.7 Invalidate and Update Acknowledge Protocol

Processorinvalidate and update requests are acknowiedged usingthe signals IvdAck and IvdErr. An external agent
will drive either ivdAck or IvdErr for one cycle to signal the completion status of the current processor invalidate or
update request. Invalidate or update request acknowledge occurs in parallel with requests on the SysAD and SysCmd

busses. lvdAck or I[vdErr may be driven at any time after a processor invalidate or update request is issued provided
that the update request is compulsory.

4.7.8 Arbitration Protocol

Systeminterface arbitration isimplemented using the signals ExRqst and Release. When an external agent wishes
toissue an external request, it will assert m The processor will wait until it is ready to handie an external request
and assert Release for one cycle before it 3-states the SysAD bus and SysCmd bus. The external agent will begin
driving the SysAD bus and the SysCmd bus two cycles after a cycle in which Release is asserted. The external agent
should always deassenm no more than two cycles after a cycle inwhich Release is asserted unless the external
agent wishes to perform a subsequent external request. The external agent will always release the SysAD bus and
the SysCmd bus at the completion of an external request.

The processor will assert Release for one cycle as a processor read request is issued or sometimes after a
processor read request is issued to perform an uncompelled change to slave state. An external agent musi begin

I Ltuy27525 0089703 434 WA 37

CHAPTER 4 SYSTEM INTERFACE

driving the SysAD bus and the SysCmd bus at least two cycles after the cycle in which Release is asserted. After
an uncompelled change to siave state, the processor will return to master state at the end of the next external request,
which may be the read response, or may be some other external request. .

The processor to system handshake for external requests is illustrated in Fig. 4-1 Arbitration Protocol for
External Requests.

Fig. 4-1 Arbitration Protocol for External Requests

SCycle el 23] el s | el 7] 8] 9] 0] 1] 2]
SClock —_/7
SysAD Bus: M ——— Addr X Data0 }——
SysCmd Bus: W\ ——{ cma X NeoD}——
Vaiidin \ /

ExtRgst /

Reeass ((\/

4.7.9 Processor Read Request Protocol

A processor read request is issued with the system interface in master state by driving a read command on the
SysCmd bus and a read address on the SysAD bus and asserting ValidOut for one cycle. Only one processor read
request may be pending at a time. The processor must wait for and retire an external read response before initiating
a subsequent read.

The processor will make an uncompelled change to slave state either at the issue cycle of the read request or
sometime after the issue cycle of the read request by asserting the mggnal for one cycle. Once in slave state,
an external agent may return the requested data via a read response. An external agent must not assert the signal
ExtRaqst for the purposes of returning a read response, but rather must wait for the uncompelled change to slave state.
The signal ExtRgst may be asserted before or during a read response for the purposes of performing an external
request other than a read response.

When areadis pending, ExtRgst is asserted, and Release is asserted for one cycle it may be unclear if this assertion
of Release is in response to ExtRqst, or represents an uncompelled change to slave state. The only situation in which
this assertion of Release may not be considered an uncompelled change to slave state is if the system interface is
operating in secondary cache mode, the read request was a read with write forthcoming request, and the expected
write request has not yet been issued by the processor. Inthis case, the write request must be accepted by the external
agent before the read response can be issued. In all other cases, the assertion of Release may be considered to
be an uncompelled change to slave state or 1o be in response to the assertion of ExtRgst. In this situation, the
processor will accept either a read response, or any other external request. If an external request other than a read
response is issued, the processor will perform another uncompelied change to slave state after processing of the
external request is completed.

The read response may either return the requested data, or an indication that the returned data is erroneous, if
the requested data could not be successfully retrieved, which will cause the processor to take a bus error.

A processor read request and an uncompelled change to slave state occurring as the read request is issued is
ilustrated in Fig. 4-2 Processor Read Request Protocol. A processor read request and the subsequent
uncompelled change to slave state occurring sometime after the read request is issued is illustrated in Fig. 4-3
Processor Read Request Protocol, Change to Slave State Delayed.

38 B Ly27525 0089704 770 mE

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-2 Processor Read Request Protocol

SCycle | + 1 2] 3] 1 s 6! 7181 9e¢iw,n’ 12|

SysAD Bus: X Addr)——-(
SysCmd Bus: X Read)—(

ValidOut \ /

Valigin "He
RdRAdy oy
WrRay e

Fig. 4-3 Processor Read Request Protocol, Change to Slave State Delayed

SCycle I

SysAD Bus: X Adar X \\
SysCmd Bus: X Read X \\)——(
g T

Validin "H- <\§

RdRdy L /

L1
AY

WrRdy L

Release /\> \ /

4.7.10 Processor Write Request Protocol

Processor write requests are issued with one of two protocois. Double word, word, and partial word writes use
a single word write request protocol. Write requests for 2 block of data use a block write request protocol. Processor
write requests are issued with the system interface in master state.

A processor single word write request is issued by driving a write command on the SysCmd bus and a write address
on the SysAD bus and asserting ValidOut for one cycle, followed by driving a data identifier on the SysCmd bus and
data on the SysAD bus and asserting ValidOut for one cycle. The data identifier associated with the data cycle must
contain a last data cycle indication (NEOD or CEOD).

A processor block write request is issued by driving a write command on the SysCmd bus and a write address
on the SysAD bus and asserting ValidOut for one cycle, followed by driving a data identifier on the SysCmd bus and
data on the SysAD bus and asserting ValidOut for a number of cycles sufficient to transmit the block of data. The
data identifier associated with the last data cycle must contain a last data cycle indication. The first data cycle may
not immediately follow the address cycle. A processor noncoherent single word write request is illustrated in Fig.

B Lu27525 0089705 LO7 HM 39

CHAPTER 4 SYSTEM INTERFACE

4-4 Processor Noncoherent Single Word Write Request Protocol. A processor block write request for eight words
of data is illustrated in Fig. 4-5 Processor Coherent Block Write Request Protocol (a) and Fig. 4-6 Processor
Coherent Block Write Request Protocol (b).

Fig. 4-4 Processor Noncoherent Single Word Write Request Protocol

SCycle byl 2l s) el s el 71 8] 9iw0]n; 2]

SysAD Bus: X:derDawOX
SysCmd Bus: X Write XEODX

ValidOut —________/

Validin *H*
AdRdy oL
Wrkdy -L
Reieams e

SCycle vl als el zlel ol uniir]
SysAD Bus: X Addr X Data0X Datat X Data2 X Data3 X

SysCmd Bus: ¥ write ¥ CDataX CData X Cata X CEODX

wow .\ /

Validin "H*

Rardy L

WiRdy L

= e

40 B bLu42?7525 008970b 543 I

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-6 Processor Coherent Block Write Request Protocol (b)

SCycle "y 2t 3 i el s s 7 8 9 10 Mmoo
SysAD Bus: Y X}D(Da@ Datat Y Dataz Y Data3 {
SysCrmd Bus: X wirte X _Xcoata)coata)coata) ceon)
Vaidon __KC\ /
Validin TH §< n

RdRdy L /
/

WrRdy L \

7/

Release H*® 5‘)

4.7.11 Processor Invalidate and Update Request Protocol

A processor invalidate request or update request will use the same protocol as a single word write request except
that the command associated with the address cycle will indicate that this is an invalidate or update request. The single
data cycle will be unused for an invalidate.

4.7.12 Processor Null Write Request Protocol

A processor null write request is issued with the system interface in master state by driving a null command on
the SysCmd bus and asserting ValidOut for one cycle. The SysAD bus is unused during the address cycle associated
with a null write request. Processor null write requests cannot be flow controlled with either m or W but

rather always issue with a single address cycle. A processor null write request is illustrated in Fig. 4-7 Processor
Null Write Request Protocol.

Fig. 4-7 Processor Null Write Request Protocol

SCycle | + | 23] «l s 6] 7] 8] 9| w0 n] 2]
SysAD Bus: X unsd X

SysCmd Bus: X N X

ValidOut \ /

Validin “H*

ReAdy L

viRGy oL

E— v

B Lu2?525 0089707 48T I 41

CHAPTER 4 SYSTEM INTERFACE

4.7.13 Processor Cluster Protocol

In secondary cache mode, the processor will issue requests both individually as in no-secondary cache mode and
in groups that begin with a processor read request called clusters. A cluster consists of a processor read request
followed by one or two additional processor requests issued while the read request is pending. All of the requests
that are part of a cluster must be accepted before the response to the read request that begins the cluster may be
returned to the processor. A cluster will include a processor read request foliowed by any of a write request, a potential
update request, or a potential update request followed by a write request.

The protocol of each of the requests that form a cluster is as described above. The number of unused cycles
between the requests that form a cluster is specified in 4.8 Cycle Counts for System Interface Interactions. The
processor will make an uncompelled change to slave state either during or following the last cycle of the last request
in the cluster. A cluster consisting of a read request followed by a potential update request followed by a block write
request for eight words of data with minimum spacing between the requests that form the cluster and an uncompeilled
change to slave state at the earliest opportunity is illustrated in Fig. 4-8 Processor Cluster Protocol.

Fig. 4-8 Processor Cluster Protocol

SCycle |1lz|3§4]5|s]7|e|9!1o|11]12!

SysAD Bus: X Adar X Adar X DataoX Adar X Data0 X Data1XData2XDataa)-—<:
SysCmd Bus: X Read X Upa XCEODX write XcoataXcoamXcoataXcsoo)——::
Varaou \ /

Validin "H*
RdRdy “L*
WrRdy °‘L"

Release \ /

4.7.14 External Request Protocol

External requests may only be issued with the system interface in slave state. An external agent must assert
qut to arbitrate for the system interface, and wait for the processor to release the system interface to slave state
before issuing an external request. If the system interface is already in slave state, i.e. the processor has previously
performed an uncompelied change to slave state, an external agent may begin an external request immediately.

After issuing an external request an external agent must return the system interface to master state. If the external
agent does not have any additional external requests to pertorm, ExtRgst must be de-asserted two cycles after the
cycle in which Release is asserted. An external agent may hold ExtRgst asserted it it needs to issue a string of external
requests, but it must wait for the processor to assert Release and return the system interface to slave state before
it may proceed with the next external request. For a string of external requests, the external agent must de-assent
ExtAgst two cycles after the cycle in which Release is asserted for the last external request in the string. The processor
will continue to handle external requests as long as ExtRgst is held asserted, however, the processor will not release
the system interface to slave state for a subsequent external request until it has completed the current request. A
string of external requests will not be interrupted by a processor request as long as ExtRgst is held asserted throughout
the issue of the string of external requests.

42 B L427525 0089708 31L W

CHAPTER 4 SYSTEM INTERFACE

(1) External Read Request Protocol
External read requests use a non-split protocol that does not allow any other request to occur at the system
interface between the external read request and the read response. The protocol of an external read request
encompasses the request from an external agent and the response from the processor.
An external read request consists of driving a read request command on the SysCmd bus and a read request
address on the SysAD bus and asserting Validin for one cycle. After the address and command are sent, the
external agent will release the SysCmd and SysAD busses and allow the processor to begin driving them. The
processor will access the data thatis the target of the read and return the data to the external agent. The processor
accomplishes this by driving a data identifier on the SysCmd bus, the response data on the SysAD bus, and
asserting ValidOut for one cycle. The data identifier will indicate that this is response data and contain a last
data cycle indication. The processor will continue driving the SysCmd and SysAD busses after the read response
is returned to transition the system interface back to master state.
External read requests are only allowed to read a word of data from the processor. The processor response to
external read requests for any data element other than a word is undefined.
An external read request with the system interface initially in master state is illustrated in Fig. 4-9 External Read
Request, System Interface in Master State.

Fig. 4-9 External Read Request, System Interface in Master State

SCycle bal 2 sl als | el 721 el e w] nl2]
SysAD Bus: N } { Adar } N X DataoX

S L ya
SysCmd Bus: \\) { Read } _7\ XceooX

L L

i xa ()
Validin _/ <<

==)\ J—
- =0T ¢

Remark The Vs4400MC does not contain any resources that are readable with an external read request.
The Va4400MC will return a bus error response to any external read request.

(2) External Null Request Protocol
The Va4400MC processor supports two kinds of external null requests. A system interface release external null
request is used to return the system interface to master state after it has been released to slave state without
affecting the processor. A secondary cache lease external null request is used to return ownership of the
secondary cache to the processor while the system interface remains in slave state for some period of time. This
is important since any time the processor releases the system interface to slave state to accept an external
request, it also acquires ownership of the secondary cache for use by the external request in anticipation of
handling a coherence request. When an external agent requests ownership of the system interface for the
purposes of using the SysAD bus for a transfer unrelated to the processor this ownership of the secondary cache
will prevent the processor from satisfying subsequent primary cache misses. The secondary cache release
external request can be issued by the external agent to return ownership of the secondary cache to the processor.

B Lu27525 00OAS709 252 M 43

CHAPTER 4 SYSTEM INTERFACE

External null requests require no action from the processor other than to return the system interface to master
state or to regain ownership of the secondary cache.

An external null request consists of driving a null request command on the SysCmd bus and asserting Validin
for one cycle. The SysAD bus is unused during the address cycle associated with an external null request. After
the address cycle is issued the null request is complete. For a system interface release external null request
the external agent will release the SysCmd and SysAD busses and allow the system interface to return to master
state. For a secondary cache release external null request the system interface will remain in slave state. A
secondary cache release external null request with the system intertace initially in master state is illustrated in
Fig. 4-10 Secondary Cache Release External Null Request. A system interface release external null request
with the system interface initially in slave state is illustrated in Fig. 4-11 System Interface Release External
Null Request.

Fig. 4-10 Secondary Cache Release External Null Request

SCycle |+] 2] 3]sl s]e] 7] 8!l o]w0] nl2]
SysAD Bus: W F——unss X
SysCmd Bus: N ——scnuX
o ——(
s T\ /

SCycle I1|213|4|5|sl7fa;9|1o|11}12|

SysAD Bus: X unsa ——
SysCmd Bus: Xsmun >—-<

ValidOut “H*
ExtRgst *H*
Release "H*

44 B Ly2?525 0089710 T7?4 WA

CHAPTER 4 SYSTEM INTERFACE

(3) External Write Request Protocol

External write requests use a protocol identical to the processor single write protocol except that the signal Vaidin
is asserted instead of the signal ValidOut. An external write request consists of driving a write command on the
SysCmd bus and a write address on the SysAD bus and asserting Validin for one cycle, followed by driving a
data identifier on the SysCmd bus and data on the SysAD bus and asserting Validin for one cycle. The data
identifier associated with the data cycle must contain a last data cycle indication. After the data cycle is issued
the write request is complete and the external agent will release the SysCmd and SysAD busses and allow the
system interface to return to master state.

External write requests are only allowed to write a word of data to the processor. The behavior of the processor
in response to an external write request for any data element other than a word is undefined.

An external write request with the system interface initially in master state is iliustrated in Fig. 4-12 External Write
Request.

Fig. 4-12 External Write Request

SCycle v 23] e}l sl sl 78] 9w nl]
SClock W

SysAD Bus: N F—— Adar X Datad)——
SysCmd Bus: N —— write XNEOD'——
Validin \ /
e /

Release

Remark The only writable resource in the Va4400MC is the processor interrupts.

(4) External Invalidate and Update Request Protocol
External invalidate and update requests use a protocoi identical to that for external write requests. The data
element provided with an update request may be a double word, word, or partial word. The single data cycle
will be unused for aninvalidate request. An externalinvalidate request following an uncompelled change to slave

state is illustrated in Fig. 4-13 External Invalidate Request Following an Uncompelled Change to Slave
State.

B Lu27525 0089711 900 WA 45

CHAPTER 4 SYSTEM INTERFACE

(8

46

Fig. 4-13 External Invalidate Request Following an Uncompelled Change to Slave State

SCycle l1|2|3|4|5|5|7|a{sl1o|11;12!

e A VAWAWD VAVAVAWAWD).

SysAD Bus:) X Addr X unsd :8\ —
\

SysCmd Bus: \ X va XceoD

= « (
= (T (

S)
Release 1/7 >>)

Read Response Protocol

An external agent must return data to the processor in response to a processor read request by first waiting for
the processor to perform an uncompelled change to slave state, and then returning the data via a single data
cycle or a series of data cycles sulficient to transmit the requested data. After the last data cycle is issued the
read response is complete and the external agent will release the SysCmd and SysAD busses and allow the
system interface to return to master state. Note that the processor will always perform an uncompelled change
to slave state at some time after issuing a read request.

The data identifier for the data cycles must indicate that this is response data, and the data identifier associated
with the last data cycle must contain a last data cycle indication (NEOD or CEOD). Forread responses to coherent
block read requests, each data identifier mustinclude an indication of the cache state in which to load the response
data. The cache state provided with each data identifier must be the same and must be either clean exclusive,
dirty exclusive, shared, or dirty shared. The behavior of the processor is undefined if the cache state provided
with the data identifiers is changed during the transter of the block of data, or it the cache state provided is invalid.
The data identifier associated with a data cycle may indicate that the data transmitted during that cycle is
erroneous, however, an external agent must return a block of data of the correct size regardless of erroneous
data cycles. If a read response includes one or more erroneous data cycles, the processor will take a bus error.
Read response data must only be delivered to the processor when a processor read request is pending; that is
in response to a processor read request. The behavior of the processor is undefined if a read response is
presented to it when there is no processor read pending. Further, if the processor issues a read with write
forthcoming request, a processor write request or a processor null write request must be accepted before the
read response may be returned. The behavior of the processor is undefined if the read response is returned
before a processor write request is accepted.

A processor word read request followed by a word read response is illustrated in Fig. 4-14 Processor Word
Read Request Followed by a Word Read Response. A read response for a processor block read with the
system interface already in slave state is illustrated in Fig. 4-15 Block Read Response, System Interface
Already in Slave State.

B Luy27525 0089712 au7? IR

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-14 Processor Word Read Request Followed by a Word Read Response

SCycle :1.2!3;4!5i6§789f10 n o2

SysAD Bus: X Addr X}\)—-(\\ XData)——(
SysCmd Bus: Xaead ﬂ\)—(\\ XNEOD)-—(

VaiiaOut Q ’\<
Validin ((((\ /
ExtRqgst H)j //
Release))>
Fig. 4-15 8Block Read Response, System Interface Already in Slave State
sce | v 2] a el s el 7] e ool]|

SysAD Bus: XDataOX Daxa1XData2X Dataa)-——-(
SysCmd Bus: Xcoata)coataX Coata § cEOD ———

ValidOut ‘H*
Validin \ /
ExtRagst H*
Release "H*

(6) External Intervention Request Protoco!

External intervention requests use a protocol similar to that for external read requests except that a cache line
size block of data may be returned along with an indication of the cache state for the cache line, depending on
the state of the cache line and the value of the data return bit in the intervention request command.

The data return bit in the intervention request command may indicate return on dirty or return on exclusive. If
the data return bit indicates return on dirty and the cache line that is the target of the intervention request is in
the state dirty exclusive or dirty shared, the contents of the cache line will be returned in response to the
intervention request. If the data return bit indicates return on exclusive and the cache line that is the target of
the intervention request is in the state clean exciusive or dirty exclusive, the contents of the cache line will be
returned in response to the intervention request. Otherwise, the response to the intervention request will not
include the contents of the cache line but rather will simply indicate the state of the cache line that is the target
of the intervention request. Note that if the cache line that is the target of the intervention request is not present
in the cache at all, i.e. a tag comparison for the cache line at the target cache address fails, the cache line that
is the target of the intervention request will be considered to be in the invalid state.

B Lu427525 0089713 743 N 47

CHAPTER 4 SYSTEM INTERFACE

48

The processor will return an indication of the cache state in which a cache line was found but not its contents
by driving a coherent data identifier that indicates the state of the cache line on the SysCmd bus, and asserting
ValidOut for one cycle. The SysAD bus is unused during this data cycle. The data identifier will indicate that
this is a response data cycle and will contain a last data cycle indication.

The processor will return the contents of a cache line along with an indication of the cache state in which it was
found by issuing a sequence of data cycles sufficient to transmit the contents of the cache line. The data identifier
transmitted with each data cycle will indicate the cache state in which the cache line was found and that this is
response data. The data identifier associated with the last data cycle will contain a last data cycle indication.
if the contents of a cache line is returned in response to an intervention request, it will be returned in sub-block
order starting with the double word at the address supplied with the intervention request. For further details on
sub-block ordering see APPENDIX A SUB-BLOCK ORDERING. Note, however, thatif the intervention address
targets the double word at the beginning of the block sub-block ordering is equivalent to sequential ordering.
An external intervention request to a cache line found in the shared state with the system interface initially in
master stateisillustratedin Fig. 4-16 External Intervention Request, Shared Line, System Interface in Master
State. An external intervention request to a cache line found in the dirty exclusive state with the system interface
initially in slave state is illustrated in Fig. 4-17 External Intervention Request, Dirty Exclusive Line, System
Interface in Slave State.

Fig. 4-16 External Intervention Request, Shared Line, System Interface in Master State

SCycle v b2l al el sl s 7] e8] | 0] n] 2]
SClock w>
SysAD Bus: D)) F—— Adar Unsd X

SysCmd Bus: \ n ceon)
s ¢ &

= =«

ExtRgst T / Z /

=)\ D)

BN L42?7525 0089714 LLT EM

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-17 External Intervention Request, Dirty Exclusive Line, System Interface in Slave State

SCycle |1!2|3|4!5|6|7l839!10‘”112|
SysAD Bus: D@amoﬁataqoataxoams)gx —
SysCmd Bus: Ivin (_Xcoaw)(coata)coa) cE00 \< o

s (O (
N Y S {

4.7.15 External Snoop Request Protocol

External snoop requests use a protocol identical to that for external read requests, except that the processor will
respond to a snoop request with an indication of the current cache state for the cache line that is the target of the
snoop request instead of data. The processor accomplishes this by driving a coherent data identifier on the SysCmd
bus, and asserting ValidOut for one cycle. The SysAD bus is unused during the snoop response. The processor
will continue driving the SysCmd and SysAD busses after the snoop response is returned to transition the system
interface back to master state.

Note that if the cache line that is the target of the snoop requestis not presentinthe cache at all, i.e. atag comparison
for the cache line at the target cache address fails, the cache line that is the target of the snoop request will be
considered to be in the invalid state.

An external snoop request issued with the system interface in master state is illustrated in Fig. 4-18 External
Snoop Request, System Interface in Master State. An external snoop request issued with the system interface
in slave state is illustrated in Fig. 4-19 External Snoop Request, System Interface in Slave State.

Fig. 4-18 External Snoop Request, System Interface in Master State

SCycle |1|2|3|4|5|s]7|a|9|1o‘11|,12|
YAV YAVAVAVAYS)
. \ [
SysAD Bus: >>) { Addr) unsd X
SysCmd Bus: \\) J\SnOOﬂ‘ W CEODX
J L i

e ((O
Vaiidin __/ <<
ExtAgst \ f / (

A %

B Luy2?7525 0089715 556 ER 49

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-19 External Snoop Reguest, System Interface in Slave State

. | .
l 1]
|
i

SCycle 10

SysAD Bus: X Ador)—D:X Unsd X-_/\
SysCmd Bus: XSnoop)—C__XE:ODX-_’\)—(

e (TG
Validin _/ << <<

ExtRgst He

—
=

4.7.16 Processor Request and Cluster Flow Control

The signal RdRdy may be used by an external agent to control the flow of a processor read, invalidate, or update
request or a processor read request followed by a potential update request within a cluster. The processor samples
the signal ﬁER—dy to determine it the external agent is currently capable of accepting a read, invalidate, or update
request, or a read request followed by a potential update request. The signal W controls the flow of a processor
write request. The processor will not complete the issue of a read, invalidate, or update request, or a read request
followed by a potential update request until it issues an address cycle for the request such that the signal m was
asserted two cycles previously. The processor will not complete the issue of a write request until it issues an address
cycle for the write request such that the signal VVTﬁd_y was asserted two cycles previously.

Two processor write requests in which the issue of the second is delayed for the assertion of WrRdy are illustrated
in Fig. 4-20 Two Processor Write Requests, Second Write Delayed for the Assertion of WrRdy. A processor
cluster in which the issue of the read and a potential update request is delayed for the assertion of Tﬁdy is illustrated
in Fig. 4-21 Processor Read Request Within a Cluster Delayed for the Assertion of RdRdy. A processor cluster
in which the issue of the write request is delayed for the assertion of WrRdy is illustrated in Fig. 4-22 Write Request
Within a Cluster Delayed for the Assertion of m The issue of a processor write request delayed for the
assertion of WrRdy and the completion of an external invalidate request is illustrated in Fig. 4-23 Processor Write
Request Delayed for the Assertion of m and the Compietion of an External Invalidate Request.

wn

Fig. 4-20 Two Processor Write Requests, Second Write Delayed for the Assertion of WrRdy

scyre | 1| 2t 3] el s el 7] 8o fw]]l

SysAD Bus: X Adar Xpata0 X X
SysCmd Bus: Wwrite nEOD X X write _ Xn=ooX
-

Vaion ‘H* / /

RdRdy L / /
e /[~ _ /
Release "H*

50 M L42?525 008971k 492 W

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-21 Processor Read Request Within a Cluster Delayed for the Assertion of RdRdy

SCycle s | 617 8| ¢ i 10 1| 12]
AV AVAW AV AVAVAVAVAVAVA VA
SysAD Bus: X Addr X Adar X Dataok Addr X Data0X Data1X Data2X Data3
SysCmd Bus: X RWWE_ _ X upd XceopX write X CDataX CData X ChataX CZ0D
Validin ‘H* / / -

s\ /

WrRdy L

Release *He

Fig.4-22 Write Request Within a Cluster Delayed for the Assertion of WrRdy

SCycle

SClock

|1|2|3|4|5I5|7|als|1o|11|12|

YAV AV AW AW AV AV AVAVAWAW A

SysADBus: Addr X Addr X Unsd X Addr X Datao X Data1 X Data2 X Data3
SysCmd Bus: RwWF X Upd X CEODX Write X CDataX CData X COata CEOD
e fLe

Validin ‘H*

RdRdy L

w7 \ /

T e

I Luce7?525 0089717

329 M

51

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-23 Processor Write Request Delayed for the Assertion of WrRdy and
the Completion of an External Invalidate Request

pry
o
-
-
—
n

SCycle brd 213 ¢ s | 6 70 81 s |
o NN AN
SysAD Bus: X Addr ——— acar X unsa }———(" Adar X Data0 X
SysCmd Bus: X Write —— v YceoD}—— write XNEODX
w0\ / \ I

Validin \ /

RdRdy L

WrRdy \
ExtRgst \ /
Release \ /

:

4.7.17 Data Rate Control

The system interface supports a maximum data rate of one double word per cycle. The maximum data rate the
processor can support is directly related to the secondary cache access time, if the access time is 100 long, the
processor will not be able to transmit and accept data at the maximum rate.

The rate at which data is delivered to the processor may be chosen by an external agent by driving data and
asserting Validin every n cycles instead of every cycle. The processor will only interpret cycles during which Validin
is asserted and the SysCmd bus contains a data identifier as valid data cycles. The processor will continue to accept
data until the data word tagged as the last data word is received. An external agent may deliver data at any rate
it chooses but must not deliver data to the processor faster than it is capable of accepting it.

Because the secondary cache is organized as a 128 bit RAM array, the processor will operate most efficiently if
data is delivered to it in pairs of double words. Itis most efficient to reduce the data rate by delivering a pair of double
words to the processor, followed by some number of unused cycles, followed by another pair of double words. The
pattern should be chosen to repeat at a rate determined by the secondary cache write cycle time. However, the
processor will accept data in any pattern as long as the time between the transfer of any pair of odd numbered double
words is greater than or equal to the write cycle time of the secondary cache. Double words in the transfer pattern
are numbered beginning at zero such that the odd numbered words are the second, fourth, sixth, and so on words
transferred.

The maximum processor data rate for each of the possible secondary cache write cycie times and the most efficient
data pattern for each data rate is illustrated in Table 4-3 Maximum Processor Data Rates. In this and subsequent
tables data patterns are specified using the letters “D" and *x”, “D" indicates a data cycle and “x” indicates an unused
cycle. A data pattern is specified as a sequence of letters, indicating a sequence of data and unused cycles that will
be repeated to provide the appropriate data rate. For example, a data pattern specified by the sequence of letters
“DDxx", to achieve a data rate of two words every four cycles, is a data pattern in which two data cycles are followed
by two unused cycles followed by two data cycles and two unused cycles, and so on. A read response in which data
is provided to the processor at a rate of two words every three cycles using the data pattern “DDx" is shown in Fig.
4-24 Read Response, Reduced Data Rate, System Interface in Slave State.

52 B L427525 0089718 2L5 W

CHAPTER 4 SYSTEM INTERFACE

It data is delivered to the processor at a rate that exceeds the maximum the processor can suppornt, based on the
secondary cache write cycle time, the behavior of the processor is undefined The secondary cache write cycle time
is the sum of the parameters TWr1Dly, TWrSUp, and TWrRc described in the section on secondary cache write cycles.
The rate at which the processor transmits data is programmable at boot time via the boot time mode control interface.
The transmit data rate may be programmed to any of the data rates and data patterns listed in Table 4-4 Transmit
Data Rates, as long as the programmed data rate does not exceed the maximum the processor can support, based
onthe secondary cache access time. If a transmit data rate is programmed that exceeds the maximum the processor
can support, the behavior of the processor is undefined. A processor write request for which the processor transmit
data rate has been programmed to 1 double word every two cycles using the data pattern “DDxx” is shown in Fig.
71-25 Processor Write Request, Transmit Data Rate Reduced.

Table 4-3 Maximum Processor Data Rates

SCache Write Cycle Time Max Data Rate Best Data Pattern
<= 4 PCycles 1 Double/1 Cycle D

5-6 PCycles 2 Doubles/3 Cycles DDx

7-8 PCycles 1 Double/2 Cycles DDxx

9-10 PCycles 2 Doubles/s Cycles DDxxx

11-12 PCycles 1 Double/3 Cycles DDxxxx

Fig. 4-24 Read Response, Reduced Data Rate, System Interface in Slave State

SCycle ba]l 2| s el s el 2] 8] 9o 0] 1] 2]

SysAD Bus: X Oata0X Datat1 X X Date2 X Data3 ——
SysCmd Bus: XcoataXcpataX XcDataXCEOD }——

Vaidout *H*
Validin \ / \ /
ExtRast "HT
Release ‘H*

B L4Y27525 0089719 1Tl WA 53

CHAPTER 4 SYSTEM INTERFACE

Table 4-4 Transmit Data Rates

Data Rate Data Pattern Max SCache Access
1 Double/1 Cycle D 4 PCycles

2 Doubles/3 Cycles DDx 6 PCycles

1 Double/2 Cycles DDxx 8 PCycles

1 Double/2 Cycles DxDx 8 PCycles

2 Doubles/S Cycles DDxxx 10 PCycles

1 Double/3 Cycles DDxxxx 12 PCycles

1 Double/3 Cycles DxxDxx 12 PCycles

1 Double/4 Cycles DDxxoxxxx 16 PCycles

1 Double/4 Cycles DxxxDxxx 16 PCycles

Fig. 4-25 Processor Write Request, Transmit Data Rate Reduced

SCycle vl 2] el s|e|l 28] s w0]n]aiel]
SysAD Bus: 7 AderDataOXDam X XDataZXEatas—X
SysCmdBus: X write {CDataXCData X Xcoata XCEOD X

Validin "H*
ExtRqst ‘H*
Release “H*

4.7.18 Multiple Drivers on the SysAD Bus

In most VR4400MC applications the SysAD bus will be a point to point connection from the processor to a
bidirectional registered transceiver in an external agent. Forthose applications, the SysAD bus has only two possible
drivers, the processor and the external agent. However, certain applications may wish to add additional drivers and
receivers to the SysAD bus, and allow transmissions to take place over the SysAD bus that the processor is not
involved in. To accomplish this the external agent must coordinate the usage of the SysAD bus using the arbitration
handshake signals and the external null requests.

To implement an independent transmission on the SysAD bus that does not involve the processor, the external
agent will request the SysAD bus 1o issue an external request. After the processor releases the system interface
to slave state, the external agent may issue a scache release external null request to return ownership of the secondary
cache to the processor, if the processor is being used with a secondary cache. The external agent may then allow
the independent transmission to take place on the SysAD bus making sure that Validin is not asserted while the
transmission is occurring. When the transmission is complete, the external agent will issue a systeminterface release
external null request to return the system interface to master state.

54 B t4y27525 0089720 913 WA

CHAPTER 4 SYSTEM INTERFACE

4.8 Cycle Counts for System Interface Interactions

The Va4400MC processor specifies minimum and maximum cycle counts for various processor transactions and
for the processor's response time to external requests to facilitate system design with the Vr4400MC. Processor
requests themselves are constrained by the system interface request protocol and the cycle counts for such requests
can be determined by examining the protocol. The spacing between requests within a cluster, the waiting period for
the processor to release the system interface to slave state in response to an external request, and the response
time for an external request that requires a response is variable and subject to minimum and maximum cycle counts.
The remainder of this section will describe and tabulate the minimum and maximum cycle counts for these system
interface interactions.

The minimum and maximum number of unused cycles between the requests within a cluster is a function of
processor internal activity. The minimum number of unused cycles separating requests within a cluster is zero, the
requests may be adjacent. The maximum number of unused cycles separating requests within a cluster varies
depending on the requests that form the cluster. The minimum and maximum number of unused cycles separating
requests within a cluster is summarized in Table 4-5 Unused Cycles Separating Requests Within a Cluster.

Table 4-5 Unused Cycles Separating Requests Within a Cluster

From Processor Request To Processor Request Minimum Unused Cycles Maximum Unused Cycles

Read Update 0 2
Read Write 0 2
Update Write 0 2

The number of cycles the processor may wait to release the system interface to slave state for an external request
will be referred to as the release Jatency. The release latency is a function of processor internal activity and processor
request activity. The processor will release the system interface 1o accept an external request under the conditions
described above. When no processor requests are in progress internal activity, such as refilling the primary cache
from the secondary cache, may cause the processor to wait some number of cycles before releasing the system
interface. Release latency will be considered in three categories:

(1) release latency when the external request signal is asserted during the cycle two cycles before the last cycle
of a processor request or two cycles before the last cycle of the last request in a cluster.

(2) release latency when the external request signa! is not asserted during a processor request or cluster, or asserts
during the last cycle of a processor request or cluster.

(3) release latency when the processor does an uncompelled change to slave state.

(a) Read with Write forthcoming (with respect to the last write data cycle).
(b) Read.

The minimum and maximum release latency for requests that fall into categories (1), (2) and (3) above is
summarized in Table 4-6 Release Latency for Category (1), (2) and (3} External Requests.

B Lu2?525 0089721 85T WM 35

CHAPTER 4 SYSTEM INTERFACE

Table 4-6 Release Latency for Category (1), (2) and (3) External Requests

Category Minimum PCycles Maximum PCycles
(1) 4 6

)] 4 24

(3a) 0 Note

(3b) 0 Note

Note The Maximum Release Latency for;

(3a) Read with write forthcoming = tos

+ four- or eight-word SCache Write Cycle Time
(depending on PCache size)

+ four-word SCache Write Cycle Time
+ SCline size (word)
+16

(3b) Read = four-word SCache Write Cycle Time

+4

The number of cycles the processor may take to respond to an external request that requires a response, that
is, an external read request, intervention request, or snoop request will be referred to as the intervention response
latency, external read response latency, or snoop response latency respectively. The number of cycles of latency
is the number of unused cycles between the address cycle of the request and the first data cycle of the response.
Intervention response latency and snoop response latency is a function of processor internal activity and secondary
cache access time. The minimum and maximum intervention response latency and snoop response latency as a
function of secondary cache access time is summarized in Table 4-7 intervention Response Latency and Snoop
Response Latency. External read response latency is purely a function of processor internal activity. The minimum
and maximum external read response latency is summarized in Table 4-8 External Read Response Latency.

Table 4-7 Intervention Response Latency and Snoop Response Latency

Maximum SCache Intervention Response Latency Snoop Response Latency
Access Minimum PCycles Maximum PCycles Minimum PCycles Maximum PCycles
<= 4 PCycles 6 26 6 26

5~ 6 PCycles 8 28 8 28

7 -8 PCycles 10 30 10 30

9 - 10 PCycles 12 32 12 32

11 -12 PCycles 14 34 14 34

Table 4-8 External Read Response Latency

Minimum PCycles Maximum PCycles

External Read Response Latency 4 4

56 B b427525 0089722 79- W

CHAPTER 4 SYSTEM INTERFACE

4.9 System interface Syntax

System interface commands specify the precise nature and attributes of any system intertace request during the
address cycle for the request. System interface data identifiers specify the attributes of a data element transmitted
during a system interface data cycle. The following sections describe the syntax, that s the bitwise encoding. of system
interface commands and data identifiers.

4.9.1 System Interface Command and Data ldentifier Syntax

Systemn interface commands and data identifiers are encoded in nine bits and transmitted from the processor 1o
an external agent or from an external agent to the processor on the SysCmd bus during address and data cycles.
Bit eight of the SysCmd bus determines whether the current contents of the SysCmd bus is a command or a data
identifier and therefore whether the current cycle is an address cycle or a data cycle. For system interface commands
SysCmd(8) must be de-asserted (0). For system interface data identifiers SysCmd(8) must be asserted (1).

For system interface commands and data identifiers associated with external requests, reserved bits and reserved
fields in the command or data identifier should be de-asserted, thatis setto one (1) or all ones respectively. For system
interface commands and data identifiers associated with processor requests, reserved bits and reserved fields in the
command or data identifier are undefined.

(1) System Interface Command Syntax

This section will define the encoding of the SysCmd bus for system interface commands. A common encoding
is used for all system interface commands. SysCmd(8) must be de-asserted (0) for all system interface
commands.

For all system interface commands SysCmd(7:5) specify the system interface request type which may be read,
write, null, invalidate, update, intervention, or snoop. The encoding of SysCmd(7:5) for system interface
commands is illustrated in Table 4-9 Encoding of SysCmd(7:5) for System Interface Commands.

Table 4-9 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(7:5) Command

Read Request.

Read Request, Write Request forthcoming.
Write Request.

Null Request.

Invalidate Request.

Update Request.

Intervention Request.

~N O 0 s~ WN - O

Snoop Request.

For read requests, the remainder of the SysCmd bus specifies the attributes of the read. SysCmd(4:3) encode
block, coherency, and exclusivity attributes for the read. A read request with a write request forthcoming cannot
be adouble word, word, or partial word read. Forboth coherent and noncoherentblock reads SysCmd(2) specifies
whether the address of the cache line being replaced by this read request is being retained in the link address
register and SysCmd(1:0) encode the block size for the read. For double word, word, or partial word reads
SysCmd(2:0) encode the size of the read data in bytes. The encoding of SysCmd(4:3) for read commands is
shown in Table 4-10 Encoding of SysCmd(4:3) for Read Requests. The encoding of SysCmd(2:0) for block
reads, or double word, word, or partial word reads is shown in Table 4-11 Encoding of SysCmd(2:0) for Block

Read Requests, and Table 4-12 Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word Read
Reguests respectively.

B Luy27525 0089723 ke W 57

CHAPTER 4 SYSTEM INTERFACE

Table 4-10 Encoding ot SysCmd(4:3) for Read Requests

SysCmd(4:3) Read attributes.

(o) Coherent block read.

Coherent block read, exclusivity requested.
Noncoherent block read.

Double word, single word, or partial word read.

W N -

Table 4-11 Encoding of SysCmd(2:0) for Block Read Requests

SysCmd(2) Link address retained indication.

0 Link address not retained.
1 Link address retained.

SysCmd(1:0) Read block size.

0 Four words.

1 Eight words.

2 Sixteen words.

3 Thirty-two words.

Table 4-12 Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word Read Requests

SysCmd(2:0) Read data size.

One byte valid. (Byte).

Two bytes valid. (Half Word).
Three bytes valid.

Four bytes valid. (Word).

Five bytes valid.

Six bytes valid.

Seven bytes valid.

Eight bytes valid. (Double Word).

~N O 0O s WN =+ O

For write requests, the remainder of the SysCmd bus specifies the attributes of the write. SysCmd(4:3) encode
block attributes for the write. For block writes SysCmd(2) specifies whether the cache line associated with the
write request will be replaced or retained after the write is completed and SysCmd(1:0) encode the block size
for the write. For double word, word, or partial word writes SysCmd(2:0) encode the size of the write data in bytes.
The encoding of SysCmd(4:3) for write commands is shown in Table 4-13 Encoding of SysCmd(4:3) for Write
Requests. The encoding of SysCmd(2:0) for block writes or double word, word, or partial word writes is shown
in tables Table 4-14 Encoding of SysCmd(2:0) for Block Write Requests and Table 4-15 Encoding of
SysCmd(2:0) for Double Word, Word, or Partial Word Write Requests respectively.

Bl L427525 Q089724 S5k WM

CHAPTER 4 SYSTEM INTERFACE

Table 4-13 Encoding of SysCmd(4:3) for Write Requests

SysCmd(4:3) Write attributes.

0 Reserved.

1 Reserved.

2 Block write.

3 Double word, single word, or partial word write.

Table 4-14 Encoding of SysCmd(2:0) for Block Write Requests

SysCmd(2) Cache line replacement attributes.
0 Cache line replaced.
{Note Cache line retained.

SysCmd(1:0) Write block size.

0] Four words.

1 Eight words.

2 Sixteen words.

3 Thirty-two words.

Note Valid only when Hit_Write_Back operation is set

Table 4-15 Encoding of SysCmd(2:0) tor Double Word, Word, or Partial Word Write Requests

SysCmd(2:0) Write data size.

One byte valid. (Byte).

Two bytes valid. (Half Word).
Three bytes valid.

Four bytes valid. (Word).

Five bytes valid.

Six bytes valid.

Seven bytes valid.

Eight bytes valid. (Double Word).

N o o s W NN - O

Processor null write requests, system interface release external null requests, and scache release external null
requests all use the null request command. For processor null requests, SysCmd(4:3) specifies that this is a
null write request. For external null requests, SysCmd(4:3) specifies whether this is a system interface release
null request or a scache release null request. The encoding of SysCmd(4:3) for processor null requests is shown
in Table 4-16 Encoding of SysCmd(4:3) for Processor Null Requests. The encoding of SysCmd(4:3) for
external null requests is shown in Table 4-17 Encoding of SysCmd(4:3) for External Null Requests.

M k42?525 0089725 4TS5 1N 59

CHAPTER 4 SYSTEM INTERFACE

Table 4-16 Encoding of SysCmd(4:3) for Processor Null Requests

SysCmd(4:3) Null attributes.

0 Null write.
1 Reserved.
2 Reserved.
3 Reserved.

Table 4-17 Encoding of SysCmd(4:3) for External Null Requests

SysCmd(4:3) Null attributes.

0 System intertace release.
1 Secondary cache release.
2 Reserved.
3 Reserved.

Forinvalidate and update requests SysCmd(4) is used by external requests to indicate that this external request
is in conflict with an unacknowledged processor invalidate or update request, canceling the invalidate or update.
SysCrmd(4) is reserved for processor invalidate and update requests. SysCmd(3) is used by processor requests
to specity whether the update is potential or compulsory. SysCmd(3) is used by external update requests to
indicate whether this update request will change the state of the updated cache line to shared, or leave the state
of the updated cache line unchanged. SysCmd(2:0) specifies the size of the data element in bytes for updates.
The encoding of SysCmd(4:0) for processor update requests is shown in Table 4-18 Encoding of SysCmd(4:0)
for Processor Update Requests. The encoding of SysCmd (4:0) is reserved for processor invalidate requests.
The encoding of SysCmd(4:0) for external invalidate and update requests is shown in Table 4-19 Encoding of
SysCmd(4:0) for External Invalidate or Update Requests.

Table 4-18 Encoding of SysCmd(4:0) for Processor Update Requests

SysCmd(4) Reserved.

SysCmd(3) Update type.
0 Compulsory
1 Potential

‘SysCmd(2:0) Update data size.

One byte valid (Byte).

Two bytes valid (Half Word).
Three bytes valid.

Four bytes valid (Word).

Five bytes valid.

Six bytes valid.

Seven bytes valid.

Eight bytes valid (Double Word).

~N O s WO 2O

60

B Lu27?525 008972k 331 WA

CHAPTER 4 SYSTEM INTERFACE

Table 4-19 Encoding of SysCmd(4:0) for External Invalidate or Update Requests

SysCmd(4) Processor unacknowledged invalidate or update cancellation.
0 Invalidate or update cancelled.
1 No cancellation.

SysCmd(3) Update cache state change attributes.
0 Cache state changed to Shared.
1 No change to cache state.

SysCmd(2:0) Update data size.

One byte valid (Byte).

Two bytes valid (Half Word).
Three bytes valid (Tri-Byte).
Four bytes valid (Word).

Five bytes valid (Quinti-Byte).
Six bytes valid (Sexti-Byte).
Seven bytes valid (Septi-Byte).
Eight bytes valid (Double Word).

N s W 2O

For intervention and snoop requests SysCmd(4) is used to indicate that this external request is in contlict with
an unacknowledged processor invalidate or update request, canceling the invalidate or update. The processor
will never issue an intervention or snoop request. SysCmd(3) is the data response on dirty bit for intervention
requests and is reserved for snoop requests. If the data response on dirty bit is de-asserted (0) the processor
will return the contents of the cache line in response to an intervention request if the line is found in state dirty
exclusive or dirty shared. If the data response on dirty bit is asserted (1) the processor will return the contents
of the cache line in response to an intervention request if the line is found in state clean exclusive or dirty exclusive.
For both snoop and intervention requests, SysCmd(2:0) specity a cache state change function to be applied to
the cache line automatically with respect to the intervention or snoop response.

The encoding of SysCmd(4:0) for intervention requests is shown in Table 4-20 Encoding of SysCmd(4:0) for
Intervention Requests. The encoding of SysCmd(4:0) for snoop requests is shown in Table 4-21 Encoding
of SysCmd(4:0) for Snoop Requests.

B Ly27525 0089727 276 W 61

CHAPTER 4 SYSTEM INTERFACE

Table 4-20 Encoding of SysCmd(4:0) for Intervention Requests

SysCmd(4) Processor unacknowledged invalidate or update canceliation.
0 Invalidate or update cancelled.

1 No cancellation.

SysCmd(3) Data response on dirty bit.

0 -Return cache line data if in state dirty exclusive or dirty shared

1
SysCmd(2:0)

Return cache line data if in state clean exclusive or dirty exclusive

Cache state change function.

0

No change to cache state.

1 If cache state clean exclusive, change to shared, otherwise no change to cache state.

2 It cache state clean exclusive or shared, change to invalid, otherwise no change to
cache state.

3 If cache state clean exclusive, change to shared or if cache state dirty exclusive, change to

. dirty shared, otherwise no change to cache state.

4 If cache state clean exclusive, dirty exclusive, or dirty shared, change to shared,
otherwise no change to cache state.

5 Change to invalid regardless of current cache state.

6 Reserved.

7 Reserved.
Table 4-21 Encoding of SysCmd(4:0) for Snoop Requests

SYsCmd(4) Processor unacknowledged invalidate or update cancellation.

(] Invalidate or update cancelled.

1 No cancellation.

SysCmd(3) Reserved.

SysCmd(2:0)

Cache state change function.

0
1
2

No change to cache state.

If cache state clean exclusive, change to shared, otherwise no change to cache state.
If cache state clean exclusive or shared, change to invalid, otherwise no change to
cache state,

It cache state clean exclusive, change to shared or if cache state dirty exclusive,
change to dirty shared, otherwise no change to cache state.

If cache state clean exclusive, dirty exclusive, or dirty shared, change to shared,
otherwise no change to cache state.

Change to invalid regardless of current cache state.

Reserved.

Reserved.

M Lu2?525 0089728 104 EN

CHAPTER 4 SYSTEM INTERFACE

(2) System Interface Data ldentitier Syntax

This section will define the encoding of the SysCmd bus for system interface data identifiers. A common encoding
is used for all system interface data identifiers. SysCmd(8) must be asserted (1) for all system interface data
identifiers. System interface data identifiers have two formats, one for coherent data and a second for
noncoherent data format. Data associated with processor block write requests and processor double word, word,
or partial word write requests is noncgoherent. Data associated with processor update requests is also
noncoherent. Data returned in response to a processor coherent block read request is coherent while data
returned in response to a processor noncoherent block read request or a processor double word. word, or partial
word read request is noncoherent. Data associated with external update requests is noncoherent. Data
associated with external write requests is noncoherent. Data returned in response to an external intervention
request is coherent.

For both coherent and noncoherent data identitiers, both processor and external, SysCmd(7) marks the data
element as the last data element, and SysCmd(6) indicates whether the data is response data or not. Response
data is data returned in response to a read request or an intervention request. SysCmd(5) is the good data bit
and indicates whether the data element is error free or not. Erroneous data contains an uncorrectable error.
Erroneous data returned to the processor will cause a processor bus error. The processor will deliver data with
the good data bit de-asserted when a primary parity error is detected for a transmitted data item. A secondary
cache data ECC error can be detected by comparing the values transmitted on SysAD and SysADC. Forexternal
data identifiers, both coherent and noncoherent, SysCmd(4) indicates to the processor whetherto check the data
and check bits for this data element and SysCmd(3) is reserved. For processor data identifiers. both coherent
and noncoherent, SysCmd(4:3) are reserved.

For coherent data identifiers SysCmd(2:0) indicate a cache state for the data. The cache state will provide the
cache state with which to load the cache line for responses to processor coherent read requests. The cache state
will indicate the cache state in which the line was found for data associated with the response to an external
intervention request or for the data cycle issued in response to an external snoop request. For noncoherent data
identifiers SysCmd(2:0) is reserved.

The encading of SysCmd(7:3) for processor data identifiersis illustratedin Table 4-22 Encoding of SysCmd(7:3)
for Processor Data Identifiers. The encoding of SysCmd(7:3) for external data identifiers is illustrated in Table
4-23 Encoding of SysCmd(7:3) for External Data Identifiers. The encoding of SysCmd(2:0) for coherent data
identifiers is illustrated in Table 4-24 Encoding of SysCmd(2:0) for Coherent Data Identifiers.

Table 4-22 Encoding of SysCmd(7:3) for Processor Data identifiers

SysCmd(7) Last data element indication.
0 Last data element.
1 Not the last data element.

SysCmd(6) Response data indication.

0 Data is response data.
1 Data is not response data.

SysCmd(5) Good data indication.

0 Data is error free.
1 Data is erroneous.

SysCmd(4:3) Reserved.

B L427525 0089729 Ou0 WA 63

CHAPTER 4 SYSTEM INTERFACE

Table 4-23 Encoding of SysCmd(7:3) tor External Data Identifiers

SysCmd(7) Last data element indication.
0 Last data element.

1 Not the last data element.
SysCmd(§) Response data indication.

0 Data is response data.

1 Data is not response data.

SysCmd(5) Good data indication.

0 Data is error free.
1 Data is erroneous.

SysCmd(4) Data checking enable.

0 Check the data and check bits.
1 Don't check the data and check bits.

SysCmd(3) Reserved.

Table 4-24 Encoding of SysCmd(2:0) for Coherent Data ldentifiers

SysCmd(2:0) Cache state.

Invalid.
Reserved.
Reserved.
Reserved.
Clean Exclusive.
Dirty Exclusive.
Shared.

Dirty Shared.

~N OO bh W - O

410 System Interface Addresses

System interface addresses are full 36 bit physical addresses presented on the least significant 36 bits (bits 35
through Q) of the SysAD bus during address cycles. The remaining bits of the SysAD bus are unused during address
cycles. Addresses associated with double word, word, or partial word transactions, i.e. double word, word, or partial
word read and write requests and update requests, are aligned for the size of the data element. Specifically, for double
word requests, the low order three bits of the address will be zero, for word requests, the low order two bits of the
address will be zero, and for half-word requests, the low order bit of the address will be zero. For byte, tri-byte, quinti-
byte, sexti-byte and septi-byte requests the address provided will be a byte address. For further details on addresses
supplied by the Vr4400MC processor on double word, word, and partial word accesses see Va4000, Va4400 USER'S
MANUAL—ARCHITECTURE.

64 B E427525 0089730 aL2 N

CHAPTER 4 SYSTEM INTERFACE

Addresses associated with block requests are aligned to double word boundaries; that is the low order three bits
of the address will be zero. The order in which data is returned in response to a processor block read request can
be programmed via the boot time mode control interface to sequential ordering or sub-block ordering. If sequential
ordering is enabled the processor will always deliver the address of the double word at the beginning of the block
on a block read request. An external agent must return the block of data sequentially starting at the beginning of
the block. If sub-block ordering is enabled the processor will deliver the address of the double word within the block
that it wants returned first. An external agent must return the block of data using sub-biock ordering starting with
the addressed double word. For further details on sub-block ordering see APPENDIX A SUB-BLOCK ORDERING.
Only a Va4400MC with a secondary cache may be programmed to use sequential ordering.

For block write requests, the Va4400MC processor will always deliver the double word address of the double word
at the beginning of the block and deliver data beginning with the double word at the beginning of the block and
progressing sequentially through the double words that form the block.

4.11 Processor Internal Address Map

External reads and writes to the Va4400MC processor are provided to access processor internal resources that
may be of interest to an external agent. However, the VrR4400MC does not contain any resources that are readable
with an external read request. The VA4400MC will return a bus error response to any external read request. The
only writable resource in the VR4400MC is the processor interrupts.

The processor decodes bits 6:4 of the address associated with an external read or write request to determine which
processor internal resource is the target of the request. The only processor internal resource available for access
by an external request is the interrupt resource, and it is only accessible via an external write request. The interrupt
resource is accessed via an external write request with an address of 000 on bits 6:4 of the SysAD bus. See CHAPTER
9 PROCESSOR INTERRUPTS for further details on external writes to the interrupt resource.

412 Coherence Conflicts

The VR4400MC processor will both issue processor coherence requests and accept external coherence requests.
Processor coherence requests are processor coherent read requests, invalidate requests, and update requests.
External coherence requests are external invalidate, update, snoop and intervention requests. Because of the
overlapped nature of the system interface it is possible for processor coherence requests and external coherence
requests to conflict. That is, it is possible for an external coherence request to reference an address that targets
the same cache line as a pending processor read request or an unacknowledged processor invalidate or update
request. The processor does not contain comparators to detect such conflicts. The processor uses the secondary
cache as the single paint of reference to determine the coherency actions it will take and only checks the state of
the secondary cache at specific times.

For pending processor coherent read requests conflicting external requests cannot effect the behavior of the
processor. The processor will only issue a read request for a particular cache line if it does not have a copy of that
cache line. Therefore, any external coherence request that targets a cache line that is also the target of a pending
processor coherent read request will not find the line present in the cache. Externalcoherence requests do notchange
the state of the cache unless the cache line they target is present. Since no change can be made to the state of the
cache for the line that is the target of the pending processor read request, no external coherence requests can effect
the read request. Therefore, external coherence requests that conflict with a pending processor coherent read request
may be issued to the processor and will effectively be discarded by the processor.

B bu2?525 0089731 779 W 65

CHAPTER 4 SYSTEM INTERFACE

For processor invalidate and update requests the cancellation mechanism is provided to signal conflicts to the
processor. If a conflicting external coherence request is issued while a processor invalidate or update request has
been issued but not yet acknowledged, an external agent may cancel the processor invalidate or update (provided
that the update request is compuisory). This is accomplished by setting the cancellation bit in the command for the
external coherence request. The processor upon receiving an external coherence request with the cancellation bit
set will consider its invalidate or update request to be acknowledged and canceled, re-access the secondary cache
and re-evaluate the cache state to determine the correct action. This may result in the invalidate or update request
being re-issued, or it may result in the issue of a read request instead.

An external agent is only allowed to assert the cancellation bit with an external coherence request when a processor
invalidate or compulsory update request is currently unacknowledged. If an external coherence request is issued with
the cancellation bit set when there is no unacknowledged processor invalidate or update request the behavior of the
processor is undefined. Processor potential update requests may not be canceled. Potential updates are always
issued under processor read requests and become compulsory only after the response to the processor read request
is returned to the processor in one of the shared states. If an external coherence requestis issued with the cancellation

bit set when a processor update request is still potential, in other words while a processor read request is currently

pending, the behavior of the processor is undefined.

An external agent may issue an external coherence request that is in contlict with an unacknowledged processor
invalidate or update request without setting the cancellation bit. In this case the Va4400MC will be unaware of the
contlict and will not re-evaluate the cache state to determine the correct action. It will simply wait for an acknowiedge
to its invalidate or update request as for any invalidate or update request. A system employing the Va4400MC may
not behave correctly under these circumstances.

The interactions between processor coherence requests and conflicting external coherence requests, tabulated
by processor state, is summarized in Table 4-25 Coherence Confiicts Summary (a) and Table 4-26 Coherence
Conflicts Summary (b). The processor can be in one of the following states:

(1) Idle, no processor transactions currently pending;

(2) Read Pending, a processor coherent read request has been issued but the read response has not yet been
received;

(3) Potential Update Unacknowledged, a processor update request has beenissued while a processor coherent read
requestis pending but has not yet been acknowledged and by definition the response to the coherent read request

has not yet been received;

(4) Invalidate or Update Unacknowledged, a processor invalidate or update request has been issued but has not
yet been acknowledged and by definition there is not a processor coherent read request pending.

66 " ml L4Y27525 0089732 b35 MM

CHAPTER 4 SYSTEM INTERFACE

Table 4-25 Coherence Contlicts Summary (a)

Processor State Conflicting External Coherent Request
Invalidate Iinvalidate with Cancel Update Update with Cancel
idle NA Undefined NA Undefined
Read Pending OK Undefined OK Undefined
Potential Update OK Undefined OK Undelined
Unacknowledged
invalidate or OK Note OK OK Note OK
Update
Unacknowledged
Note This may cause incorrect system operation and should not normally be allowed to occur.

Table 4-26 Coherence Conflicts Summary (b)

Processor State Conflicting External Coherent Request
Intervention Intervention with Cancel Siaoop Snoop with Cancel
Idle NA Undefined NA Undefined
Read Pending OK Undefined OK Undefined
Potential Update OK Undefined OK Undefined
Unacknowledged
Invalidate or QK Note oK QK Note OK
Update
Unacknowledged
Note This may cause incorrect system operation and should not normally be allowed to occur.

4,13 System Implications of Coherence Conflicts

The constraints that the VR4400MC processor places on the handling of conflicting coherency transactions has
certain implications for the design of a system employing the Va4400MC. This section will consider, as an example,

a particular snoopy, split-read, bus based system and the requirements for that system to correctly handle coherence
contlicts.

4.13.1 System Model
The system model consists of the following components:

(1) Four processor subsystems, each consisting of a Va4400MC processor, a secondary cache, and an external

agent. The agent communicates with the VaR4400MC, accepting processor requests and issuing external
requests, and with the system bus likewise issuing and receiving bus requests.

M Lu27525 0089733 571 WM 67

CHAPTER 4 SYSTEM INTERFACE

(2) A memory subsystem that communicates with main memory and the system bus.
(3) A system bus with the following characteristics:

« It is a multiple master, request based, arbitrated bus in which an agent that wishes to perform a transaction
on the bus must request the bus and wait for global arbitration logic to supply a grant signal before assuming
mastership of the bus. Once mastership has been granted, the agent may begin a transaction.

It supports a read transaction, read exclusive transaction, write transaction, and invalidate transaction.

+ 1t is a split-read bus in that independent transactions may occur on the bus between a read request from a
particular agent and the return of data by the target of the read request. The return of data by the target of
the read request will be referred to as the read response.

+ ltis a snoopy bus in that all agents connected to the bus must monitor all of the traffic on the bus to correctly
maintain cache coherency.

* 1/O is not considered in this system model.

4.13.2 Coherency Model

The goal, for purposes of this example, is to implement a simple write invalidate cache coherency protocol for this
system mode! that will maintain consistency between all of the caches in the system and main memory. Attention
will be focused on the interactions between the system bus and the Vr4400MC and the handling of coherence confiicts
that arise in this system.

The coherency mode! for the system is as follows: All pages in the system are maintained either with the
noncoherent coherency attribute or with the sharable coherency attribute. The handling of noncoherent data will not
be considered. Using the coherency attribute sharable allows data to be shared between the four caches in the system
with a write invalidate cache coherency protocol. The secondary cache states used are invalid, shared, clean
exclusive, and dirty exclusive. The secondary cache state dirty shared is not used in this coherency model.

When a processor misses in both caches on a load it issues a read request. The external agent will translate this
to a read request on the bus. The returned data may be loaded in either the state clean exclusive or shared based
on a shared indication returned on the bus with the read response. The shared indication is supplied by the external
agents that are a part of the other three processor subsystems based on the result of an intervention request to the
processor for the cache line of interest. When a processor misses in both caches on a store it issues a read request
desiring exclusivity which is translated to a read exclusive on the bus and the data is loaded in the state dirty exclusive.
When a processor hits in the cache on a store to shared data it issues an invalidate request which must be forwarded
to the system bus before the store can be completed.

When an external agent observes a coherent read request on the system bus it does nottake any immediate action,
rather the external agent will issue an intervention request to the processor for the read request during the read
response associated with the read request. This is referred to as a response complete read model; that is, the read
is treated as complete only after the read response has occurred. This model requires that cache interrogation for
a read must not occur until the read response occurs, as described, in order to maintain consistency. At the end of
the read response each external agent will supply an indication on the bus of whether it was able to obtain the state
of the cache line that is the target of the read via an intervention request; if it were able to obtain the state of the cache
line, then it will indicate either shared or takeover. Takeover occurs when an external agent discovers that its
processor has a copy of the cache line that is the target of the read in the state dirty exclusive. If any external agent
is unable to obtain the state of the cache line that is the target of the read because it is unable to initiate an intervention
request, the read response will be extended until all external agents have obtained the state of the cache line from
their processors.

68 B b427525 0089734 4Ds WA

CHAPTER 4 SYSTEM INTERFACE

The response from an external agent at the end of a read response depends on whether the read request was
an ordinary read request or a read exclusive request. For an ordinary read request an external agent will indicate
shared at the end the read response if it finds that its processor has a copy of the requested cache line in the state
clean exclusive or shared. If the current state of the cache line is clean exclusive the external agent will cause the
processor to change the state of the cache line to shared. An external agent will indicate both shared and takeover
at the end of a read response to an ordinary read request if it finds that its processor has a copy of the requested
cache line in the state dirty exclusive. Having indicated takeover, the external agent will supply the contents of the
cache line, returned by the processor in response to its intervention request, over the bus to the read requester, and
cause the processor to change the state of the cache line to shared. At the same time the cache line is supplied to
the read requester, it will also be written back to memory.

Foraread exclusive request an external agent will never indicate shared at the end of the read response, regardiess
of the state its processor has the cache line in. If the current state of the cache line is clean exclusive or shared, the
external agent will cause the state of the cache line to be changed to invalid. If the current state of the cache line
is dirty exclusive, the external agent will indicate takeover but not shared. Having indicated takeover, the external
agent will supply the contents of the cache line over the bus to the read requester, and cause the processor to change
the state of the cache line to invalid. At the same time the cache line is supplied to the read requester, it will aiso
be written back to memory.

An invalidate request will be considered complete as soon as it appears on the system bus. When an external
agent observes an invalidate request on the system bus it must react as if the invalidate has changed the state of
all caches at that instant.

An external agent will take no action in response to the appearance of a write request on the bus.

4.13.3 Handling Coherence Conflicts

(1) Coherent Read Conflicts
Coherence conflicts can be examined based on the current state of the processor. In particular, the processor
may have a coherent read request pending, or it may have an invalidate request unacknowledged, or it may not
have any requests pending or unacknowledged. Note that the read exclusive transaction on the system bus
guarantees that the requested cache line will return in an exclusive state.
External coherence requests that contlict with pending processor coherent read requests may be issued to the
processor without effecting the processor’s behavior. Therefore, in this simple system model no conflict detection
will be performed by the external agent for processor coherent read requests. If an external intervention request
or invalidate request is forwarded to the processor that is in conflict with a pending processor coherent read
request it will not effect the processor's cache since the target cache line is guaranteed to be absent from the
cache. The processor will effectively discard a conflicting external intervention request, responding with an invalid
indication for the farget cache line. Similarly, the processor will discard a contflicting external invalidate request
since the target cache line is not present and therefore already invalid.
In a system model similar to the one described conllict detection could be provided for pending processor coherent
read requests. In this case, when the external agent sees a read response on the bus that conflicts with a pending
processor coherent read request, it will not issue an intervention request to the processor. Rather, it will simply
react as if an intervention request has been completed and the cache line is not present in the processor's cache.
Similarly, when the external agent sees an invalidate request on the bus that conflicts with a pending processor
coherent read request, it will not forward the invalidate request to the processor since the target cache line is
known to be absent from the processor's cache. Using this scheme for conflict detection on processor coherent
read requests might slightly reduce the number of external intervention and invalidate requests issued to the
processor. However, since the intervention and invalidate requests that would otherwise be issued to the
processor would not result in any state modification within the processor, conflict detection for processor coherent
read requests is not necessary.

B Ly27525 0089735 34y WA 69

CHAPTER 4 SYSTEM INTERFACE

(2

()

70

Invalidate Conflicts

From the time the processor has issued an invalidate request until the request has been acknowledged any
external coherence request issued to the processor that is in conflict with the unacknowledged invalidate must
include a cancellation. in this system, an acknowledge for the invalidate will be generated to the processor as
soon as the invalidate is forwarded to the system bus. Therefore, while the external agent is waiting to acquire
mastership of the system bus to forward an invalidate request the external agent must detect, via external
comparators, any external coherence request that conflicts with the unacknowledged invalidate. it a contlict is
detected the external agent must not forward the invalidate request to the system bus, rather, it must throw the
invalidate request away and issue the confiicting external request to the processor with a cancellation.

If the response to a coherent read request conflicts with a waiting unacknowledged processor invalidate request
appears on the bus the external agent will detect the contflict and will not torward the processor invalidate request
to the bus. Rather, it will throw the processor invalidate request away and issue an intervention request to the
processor that includes a cancellation. The processor will then re-evaluate its cache state and re-issue the
invalidate request or issue a coherent read request instead.

If an invalidate request appears on the bus while the external agent has a processor invalidate request waiting
and the external agent detects a conflict, the external agent will not forward the processor invalidate request to
the bus. Rather, it will throw the processor invalidate request away and issue an external invalidate request to
the processor that includes a cancellation. The processor will then re-evaluate its cache state and re-issue the
invalidate request or issue a coherent read request instead.

Write Conflicts

As soon as a write request has been issued to the external agent the external agent becomes responsible for
the cache line. No coherence conflicts are possible with a processor write request, however, the external agent
must manage ownership of the cache line while it is waiting to acquire mastership of the system bus lo forward
the write request. The external agent is responsible for the cache line from the time the issue cycle of the write
request is accomplished until the write request is forwarded to the system bus.

If the response to a coherent read request conflicts with a waiting processor write request or with a processor
write request that has issued and is transmitting data appears on the bus the external agent will detect the conflict
and will not issue an intervention request to the processor. Rather, it will react as if an intervention request has
been completed and the line is in the dirty exclusive state. The external agent will indicate takeover and supply
the read data to the read requester itself without disturbing the processor. After providing the read data to the
read requester the external agent must throw the write request away if the read request was a read exclusive.
In fact, the external agent may throw the write request away for either type of read since processor supplied read
data is also written back to memory.

It is not possible for an invalidate request or a write request that conflicts with a waiting processor write request
to appear on the system bus since for a processor write request to be issued the state of the cache line must
be dirty exclusive in that processor’s cache.

M bL427525 008973k 280 M

CHAPTER S ERROR CHECKING AND CORRECTING (ECC)

The Vr4400MC processor provides sixteen check bits for the secondary cache data bus, seven check bits for the
secondary cache tag bus and eight check bits for the system interface address and data bus. The sixteen check bits
for the secondary cache data bus are organized as eight check bits for the upper sixty-four bits of the data bus and
eight check bits for the lower sixty-four bits of the data bus. In addition, a single check bit is provided for the system
interface command bus.

The eight check bits for the system interface address and data bus provide either even byte parity or are generated
in accordance with a single error correcting double error detecting (SECDED) code that also detects any three or
four bit error in a nibble. The eight check bits for each halt of the secondary cache data bus are always generated
in accordance with the SECDED code.

The processor checks data using parity or the SECDED code as it passes from the system interface to the
secondary cache and as it is moved from the secondary cache to the primary cache or to the system interface. The
processor passes the check bits for data accessed from the secondary cache directly to the system interface without
change as it checks it. The processor does not check data received from the system interface for external updates/
external writes. It is possible to force the processor to not check data from the system interface for read responses
using a bit in the data identifier. The processor does generate correct check bits for double word, word, or partial
word data transmitted to the system interface. The processor does not check addresses received from the system
intertace, but does generate correct check bits for addresses transmitted to the system intertace. The processor does
not contain a data corrector, rather, the processor will take Cache Error Excention when an error is detected based
on the data check bits. If the system interface is set in the parity mode, the processor indicates the ECC error of
the secondary cache by driving a wrong party to the SysCmd signal. Software, in conjunction with an off processor
data corrector, is responsible for correcting the data when the SECDED code is employed.

The seven check bits for the secondary cache 1ag bus are generated in accordance with a single error correcting
double error detecting (SECDED) code that aiso detects any three or four bit errorin a nibble. The processor generates
check bits for the tag when it is written into the secondary cache and checks the tag whenever the secondary cache
is accessed. The processor contains a corrector for the secondary cache tag. The tag corrector is not in-line for
processoraccesses due to primary cache misses. When atag error is detected on aprocessor access due to a primary
cache miss the processor will trap. Software, using the Va4400MC cache management primitives, will cause the tag
to be corrected. When executing the cache management primitives, the processor uses the corrected tag to generate
write back addresses and cache state. For external accessesthe tag correctoris in-line; thatis the response to external
accesses will be based on the corrected tag. The processor will still trap on tag errors detected during external
accesses to allow software to repair the contents of the cache if possible.

The check bit for the system interface command bus provides even parity over the nine bits of the system interface
command bus. This parity bit is generated correctly when the system interface is in master state, but is not checked
when the system interface is in slave state. Even when returning data of less than 64 bits, such as a byte, in a read
response, generate check bits for 64-bit data.

The buses that are covered by check bits and their contents and whether they are checked or not for various
processor internal and external transactions is summarized in Table 5-1 Error Checking and Correcting Summary
tor internal Transactions and Table 5-2 Error Checking and Correcting Summary for External Requests.

B Lu27525 0089737 117 W 71

CHAPTER § ERROR CHECKING AND CORRECTING (ECC)

Table 5-1 Error Checking and Correcting Summary for internal Transactions {1/2)

Bus

SCData

SCDChk

SCTag,
SCTChk

Output of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

Input of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

SysAD (data)

SysADC (data)

Secondary Cache to
Primary Cache

Primary Cache to
Secondary Cache

Processor
Read Requeset

Processor
Write Request

Checked, Cache Error
Exception on Error

Checked, Cache Error
Exception on Error

Checked, Not
Corrected, Cache
Error Exception on Error

NA

NA

NA

Primary Cache
Parity checked,
Cache Error
Exception on Error

Generated

NA

NA

NA

NA

NA

Note Ii the ERL bit of the status register is 1, an exception occurs.

From System
Interiace

NA

NA

Generated

Not Checked
(Indicated by
Fault pin on Error)

Checked, Cache
Error Exception
on Error Note
Checked, Cache
Error Exception
on Error Note

Not Checked

NA

NA

Generated

NA

From Processor

Generated

72

B L42?5c25 0089738 053 M

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

Table 5-1 Error Checking and Correcting Summary for Internal Transactions (2/2)

Bus

SCData

SCDChk

SCTag.
SCTChk

Output of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

Input of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

SysAD (data)

SysADC (data)

Secondary Secondary
Store to Shared Cache Cache Write to
Cache Line Cache Instruction Miss System Int
NA Checked on Write From System Checked, Cache
Back, Cache Error Interface, Error Exception
Exception on Error unchanged on Error
NA Checked on Write Checked. Cache

Checked on read pan
of RMW, Cache Error
Exceptionon Correcting
Secondary Cache Tag

NA

From Processor

Generated

Generated

Back, Cache Error
Exception on Error

Checked, Cache Error

Exception on

Correcting Secondary

Cache Tag Noe!?

Generated

NA

From Primary or
Secondary Cache

From Primary or
Secondary Cache

From System
Interface,
unchanged

Generated

Generated

Not Checked

Checked, Cache
Error Exception
on Error Note 2

Checked, Cache
Error Exception
on Error Note 2

Notes 1. If the current cache instruction requires change of tag and write back.
2. It the ERL bit of the status register is 1, an exception occurs.

Error Exception
on Error

Checked, not
corrected, Cache
Error Exception
on Error

Generated

NA

From Secondary
Cache

From Secondary
Cache

B Luy2?525 0089737 TAT MM

73

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

Table 5-2 Error Checking and Correcting Summary for External Requests (1/2)

Bus

SCData

SCDChk

SCTag,
SCTChk

Output of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

Input of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

SysAD (data)

SysADC (data)

Read Request

Write Request

Invalidate
Request

Update Request

NA

NA

NA

Generated

Not Checked
(Indicated by
Fault pin on
Error)

From processor

From processor

NA

NA

NA

NA

Not Checked
{Indicated by
Fault pin on
Error)

Not Checked

Not Checked

Checked on read
part of RMW, Cache
Error Exception on
Error, Generated on
write part of RMW

it written

NA

Not Checked (Indicated
by Fault pin on Error)

Checked, Cache
Error Exception
on Error

Checked, Cache
Error Exception
on Error

Note Only the double word being updated is checked.

Not checked

Not checked

Checked on read
part of RMW, Cache
Error Exception on
Error

Checked on read
part of RMwNete,
Cache Error Exception
on Error, Generated
on write part of RMW
it written

Checked on read
part of RMW, Cache
Error Exception on
Error, Generated on
write part of RMW

if written

NA

Not Checked (Indicated
by Fault pin on Error)

Notchecked (Indicated
by Fauit pin on Error)

Not checked (Indicated
by Fault pin on Error)

74

B k427525 0089740

701 W

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

Table 5-2 Error Checking and Correcting Summary for External Requests (2/2)

Bus

SCData

SCDChk

SCTag,
SCTChk

Ouptut of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

Input of SysAD (address),
SysCmd, SysADC (address),
SysCmdP

SysAD (data)

SysADC (data)

Intervention
Request Data
Returned

Checked, Cache
Error Exception on
Error

Checked, Cache
Error Exception
on Error

Checked and
corrected on read
part of RMW, Trap
on Error, Generated
on write part of
RMW if written.

Generated

Not Checked
(Indicated by Fauit
pin on Error)

From Secondary
Cache

From Secondary
Cache

intervention
Request State

Returned

Not Checked

Not Checked

Checked and
corrected on read
part of RMW, Trap
on Error, Generated
on write part of
RMW if written,

Generated

Not Checked
(Indicated by Fault
pin on Error)

NA

NA

Snoop Request

Not Checksd

Not Checksd

Checked 2a
corrected cn read
pan of RM'W, Trap
on Error, Cznerated
on write pe= of
RMW if wntten.

Generates

Not Checkzd
(Indicated by Fault
pin on Errar)

NA

NA

M Ly2?7525 0089741 bLud WE

75

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

5.1

Single Error Correcting Double Error Detecting Codes

The ECC codes chosen for the processor's secondary cache data and secondary cache tag are single error
correcting double error detecting codes that also detect three or four bit errors within a nibble. The 64 bit data code
can detect three and four bit errors within a nibble. The 25 bit tag code was created using the patterns observed
in the 64 bit data code.

o)
@)
3)
(4)

(5)

(6)
0

C)

M
)
3

(4)

8

(6)
7

The data code has the following properties:
Nibble is defined by the 4-bit vertical group shown in Tables 5-3 and 5-4.

It is a single error correcting, double error and three or four bit error within a nibble detecting code.

It provides 64 data bits protected by 8 check bits yielding 8 bit syndromes.

It is minimal in that each parity tree used to generate the syndrome has only 27 inputs, the minimum possible
number.

It provides byte XOrs of the data bits as part of the XOr trees used 10 build the parity generators. This allows
picking byte parity out of the XOr trees that generate or check the code.

Single bit errors are indicated by syndromes that contain exactly 3 ones or by syndromes that contain exactly
5 ones in which bits 0-3 or bits 4-7 of the syndrome are all one. This makes it possible to decode the syndrome
to find which data bit is in error with 4 input NAND gates, provided a pre-decode AND of bits 0-3 and bits 4-7
of the syndrome is available. For the check bits a full 8 bit decode of the syndrome is required.

Double bit errors are indicated by syndromes that contain an even number of ones.

Three bit errors within a nibble are indicated by syndromes that contain 5 ones in which bits 0-3 of the syndrome
and bits 4-7 of the syndrome are not ali one.

Four bit errors within a nibble are indicated by syndromes that contain 4 ones. Because this is an even number
of ones, four bit errors within a nibble look like double bit errors.

The tag code has the following properties:

it is a single error correcting, double error and three or four bit error within a nibble detecting code.

It provides 25 data bits protected by 7 check bits yielding 7 bit syndromes.

It provides byte XOrs of the data bits as part of the XOr trees used to build the parity generators. This allows
picking byte parity out of the XOr trees that generate or check the code.

Single bit errors are indicated by syndromes that contain exactly 3 ones. This makes it possible to decode the
syndrome to find which data bit is in error with 3 input NAND gates. For the check bits a full 7 bit decode of the
syndrome is required.

Double bit errors are indicated by syndromes that contain an even number of ones.

Three bit errors within a nibble are indicated by syndromes that contain 5 ones or 7 ones.

Four bit errors within a nibble are indicated by syndromes that contain 4 ones or 6 ones. Because these are
even numbers of ones, four bit errors within a nibble look like double bit errors.

The parity check matrices for the data ECC code and the tag ECC code specifying the distribution of data and

check bits across nibbles are shown in Fig. 5-1 Parity Check Matrix for the Data ECC Code and Fig. 5-2 Parity
Check Matrix for the Tag ECC Code.

76

BN by27525 0089742 584 I

~ ,
~ |
|
(v9:221)e1e@0S '(0:€9)E1IADS ‘(¥9:221)AVSAS ‘(0:€9)avSsAS :
:sieubis snq elep DWO0VYuA Buimolio) ay) o) puodsanod mol g ereg auyi jo (0:€9) g '€
(0:£)1U2Q0S '(8:51 MuDA0s ‘(0:2)avsAs
:sjeubis 11q 30342 DWO00THUA Buimojjo) ay) of puodsaliod mol g %23y aul jo (02} g "2
‘€9 liq saledIpul m ‘ajdwexa 104 ‘Ajjediuaa paguasap ale siaquinu 1iq ejeg) S)ieway
uwnNjed -
ceee | 1iss | eece | 11ss | eeee | eeee | eeee |ecee | eece | €EEE | €EEE | £cee | ecee | eeee | 1156 | ecee | 116S | eeee Jod a0 ;
O 10quINN w ,
PR Y - . . u
TITE T AT TR AR L o ' L RN I'ERRE IR s e Sy P le o
THRIEE IR e TR PR e P Lhit ot o et TR L N TRE Sy b L2 N !
TR EYRRN TR IRV BNTTTE YTYSN R B B B T B S BET I INSUUSN IR S IR W BRI I o
YRS FEEE IEEITH B T EEEEE ITEY n ol o N R TR RN BEERT 12 | mosad [} ”
. SOuo Jo o I
.. e . b an “ee PP PPN PR et [Tt PO bLLt bt (8} syt TR A |
) 1 7 1 ' 1 ! 1 soquiny ' |
TR EETTH IEEET IR TN TREE IR R SRR IEEERE IEEEEN STITH BTN R IS I IR R YA R
A R N T ¢ Y Y (SN YY R S S T B N [JRN) R BRI 't B | Y it | 22 m
§ M} ' (3 [N I | | M } R S SN AN A I Yt Yyt LikL | 22 H
otze | vs | 9286 ot | zevs | 9ze6 | oree | veor | ecor | 2Evs | 9486 | oi2e | vs9z | seos et | ¥59L 86 | Olee vg #1eg
te b | e | 2ezz | zzee | zeee | ecee | €EEE | byvw | prvr | vrss §§ | 5SS SS | 9999 ' -
19 oL es %4 18 ¥98yd

CHAPTER § ERROR CHECKING AND CORRECTING (ECC)

apo9 9903 eieq ayi Joj xieW %03y Alzed -G 614

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

Fig. 5-2 Parity Check Matrix for the Tag ECC Code

Check Bit 0 12 34 56 I |
Data Bit 222 22 n 1 1111 1
432 10 98 76 5432 | 1098 | 7854 3210
1 A P1 1111 1... 1...1 ...
T I TR O TRV R RV DU PO SR AR R AN AND BB & BN RNNGEVOV IS PO
Number
of ones 10 (.. Lo eaap oo s 111 L L
per row |10 [PRV R PUSUN [EPUPES T O PUDR B DRDUDRR SRR SO IR RE B
i< T [PPV I N (N DUVUDUN B PAPRV R PRV SR IR A RR N R R B
1 AP P R O B PRV R DUV PO D (RS PO IR PR B R R B |
A2 AR DR R I I b PRVUN (N s PRV B & PR ARUUUOUES IS SRRV I REAPIES | R |
Number of
ones per 3331 | 3311 | 3311) 3311} 3333 | 3333| 3333| 3333
column

Remarks 1. Data bit numbers are described vertically. For example, i indicates bit 24.
2. Bit (6:0) of the Check Bit row correspond to SCTChk (6:0).
3. Bit (24:0) of the Data Bit row correspond to SCTag (24:0).

B Lu2?525 008974y 357 MW

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Fundamenta! operational modes for the processor are initialized via the boot time mode control interface. The
boot time mode control interface is a serial interface operating at a very low frequency to allow the initialization
information to be kept in a low cost EPROM,

Immediately after the VocOk signal is asserted, the processor will read a serial bit stream of 256 bits to initialize
allfundamental operational modes. After initialization is complete, the processor will continue to drive the serial clock
output but no further initialization bits will be read.

6.1 Boot Time Mode Control interface Signal Summary

Modein: (i) Serial boot mode data in.
ModeClock: (o) Serial boot mode data clock out at the MasterClock frequency divided by 256.

6.2 Boot Time Mode Control interface Operation

While the VooOk signal is de-asserted, the ModeClock output will be held asserted. After the VooOk signal is
asserted, the first bit in the initialization bit stream must be present at the Modeln input. The processorwill synchronize
the ModeClock output at the time VooOk is asserted, and the first rising edge of the ModeClock will occur 256
MasterClock (MCIk) cycles after VooOk is asserted. The processor will sample exactly 256 initialization bits from the
Modelninput one master clock cycle before the rising edge of the ModeClock. Aftereach rising edge of the ModeClock,
the next bit of the initialization bit stream must be presented at the Modein input.

Fig. 6-1 BTMC Interface Timing

VooOk /
Modeln Mode Bit 0 X Mode Bit 1 X

ModeClock

MasterQut

256 MClk Cycles %

6.3 Boot Time Modes

The correspondence between bits of the initialization bit stream and processor mode settings is illustrated in Table
6-1 Boot Time Modes. Bit 0 of the bit stream is the bit presented to the processor when VooOk is de-asserted.
Note the followings:
(1) Selecting a reserved value results in undefined processor behavior.
(2) Zeros must be scanned in for all reserved bits.

79
M Lu27525 0089745 293 M

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (1/4)

Serial Bit

Mode Setting

0

BikOrder: Secondary Cache Mode block read response ordering.
Sequential ordering.
Sub-block ordering.

ElBParMode: Specifies nature of system interface check bus.
SECDED error checking and correcting mode.
Byte parity.

EndBit: Specifies byte ordering.
Little Endian ordering.
Big Endian ordering.

DShMdDis: Dirty shared mode, enables transition to dirty shared state on
processor update successful.

Dirty shared mode enabled.

Dirty shared mode disabled.

NoSCMode: Specifies presence of secondary cache.
Vrd000SC, Vr4400SC and Vr4400MC.
Vr4000PC and Vr4400PC.

5.6

SysPort: System interface port width, bit 6 is the most significant.
64 bits.
Reserved.

SC64BitMd: Secondary cache interface port width,
128 bits.
Reserved.

—

EISpitMd: Specifies secondary cache organization.
Secondary cache unified.
Secondary cache split instruction vs. data.

9:10

W N 2 O

SCBIkSz: Secondary cache line size, bit 10 is the most significant.
4 words.

8 words.

16 words.

32 words.

11:14

O o N O > h WM - O

"
—
wn

XmitDatPat: System interface data rate, bit 14 is the most significant.
D

DDx
DDxx
DxDx
DDxxx
DDxxxx
DxxDxx
DDxxxxxx
DxxxDxxx
Reserved.

B Luy27525 0089746 12T N

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (2/4)

Serial Bit Value Mode Setting
18:17 SysCkRatio: PClock to SClock divisor, frequency relationship between SClock,
RAClock, and TClock and PClock, bit 17 is the most significant.
0 Divide by 2.
1 Divide by 3.
2 Divide by 4.
3 Divide by 6.
4 Divide by 8.
5.7 Reserved.
-18 SlMasterMd: System Interface Master. Specifies the operation of the processor
in Master/Checker mode combined with SCMasterMd(bit 42).
SiMasterMd SCMasterMd Mode
0 o] Complete Master
0 1 System Interface Master
1 0 Secondary Cache Master
1 1 Complete Listener
18 TimintDis: Timer Interrupt disables timer inte’rupts, and the interrupt
used by the timer becomes a general-purpose interrupt.
o] Timer interrupt enabled.
1 Timer Interrupt disabled.
20 PotUpdDis: Potential update enable allows potential update to be issued.
Otherwise only compulsory updates are issued.
0 Potential updates enabled.
1 Potential updates disabled.
21:24 TWrSup: Secondary cache write deassertion delay, TWrSup in PCycles, bit 24
is the most significant.
0-2 Undetined.
3-15 Number of PClock cycles; MIN. 3, MAX. 15.
25:26 TWr2Dly: Secondary cache write assertion delay 2, TWr2Dly in PCycles, bit 26
is the most significant.
0 Undefined.
1-3 Number of PClock cycles; MIN. 1, MAX. 3.
27:28 TWr1Dly: Secondary cache write assertion delay 1, TWr1Dly in PCycles, bit 28
is the most significant.
0 Undefined.
1-3 Number of PClock cycles; MIN. 1, MAX. 3.

B Luy2?525 0089747 Okt WE

81

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (3/4)

Serial Bit

Value

Mode Setting

29

TWrRc: Secondary cache write recovery time, TWrRc in PCycles, either 0 or 1 cycle.
0 cycle.
1 cycle.

30:32

0-1
2-7

TDis: Secondary cache disable time, TDis in PCycles, bit 32 is the most significant.
Undetined.
Number of PClock cycles; MIN. 2, MAX. 7.

33:36

0-2
3-15

TRd2Cyc: Secondary cache read cycle time 2, TRdCyc2 in PCycles, bit 36 is the
most significant.

Undefined.

Number of PClock cycles; MIN. 3, MAX. 15,

37:40

0-3
4-15

TRd1Cye: Secondary cache read cycle time 1, TRdCyc1 in PCycles, bit 40 is the
most significant.

Undefined.

Number of PClock cycles; MIN. 4, MAX. 15.

41

NoMPmode: Multi-processor mode.

Sets valid lines in the secondary cache to “Invalid” after a secondary cache miss.
(Set after a write back if necessary)

Set to 0 when using the multi-processor system.

Does not set valid lines in the secondary cache to “Invalid” after a secondary cache miss
(to improve performance)

42

SCMasterMd: Secondary Cache Master. Specifies the operation of the processor
in Master/Checker mode combined with SIMasteer(bit 18). See bit 18 for
setting of these bits.

43:45

Reserved.

46 Note

Pkg179: Package type.
Va4000SC, Va4400SC and VR4400MC.
VR4000PC and Vr4400PC.

47:48

H WO N =2 O

CycDivisor: This mode determines the clock divisor for the reduced-power mode.
When the RP bit in the Status Register is set to one, the pipeline clock is
divided by one of the following values. Bit 49 is the most significant.

Divide by 2

Divide by 4

Divide by 8

Divide by 18

Reserved.

50:52

1
2
4
others

Drv0_ 50, DrvO_ 75, Drv1_00: Drive-off time. Drive the outputs out in (M x
MasterClock) period. DrvO_ 50 (bit 50) is the least signiticant bit and
Drv1_00 (bit 52) is the most significant bit. Reter to chapter 12.

0.50 * MasterClock Period

0.75 * MasterClock Period

1.00 * MasterClock Period

Reserved.

82

Note Be sure to set this bit to 0. If 1 is set, the behavior of the Ve4400MC is undefined.

B Luy27525 0089748 TT2 EN

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (4/4)

Serial Bit Value Mode Setting

53:56 Notes 1.2 InitP: Initial values for the state bits that determine the pull-down di/dt and
switching speed of the output buffers. Bit 53 is the most significant.

0 Fastest pull-down rate.
1-14 Intermediate pull-down rates.
15 Slowest pull-down rate.

57:60 Notes 1.2 InitN: Initial values for the state bits that determine the pull-up di/dt and

switching speed of the output buffers. Bit 57 is the most significant.
0 Slowest pull-up rate.
1-14 Intermediate puli-up rates.
15 Fastest pull-up rate.

61 Note 2 EnblDPLLR: Enables the negative feedback loop that controis switching speed
of the output buffers only during ColdReset.

0 Disable di/dt control mechanism.
1 Enable di/dt control mechanism.

62 Note 2 EnbiDPLL: Enables the negative feedback loop that determines the di/dt and
switching speed of the output butters during ColdReset and during
normal operation.

0 Disable di/dt control mechanism.
1 Enable di/dt control mechanism.
63 DsbIPLL: Enables PLLs that match Masterln and produce RClock, TClock, SClock
and the internal clocks.
0 Enable PLLs.
1 Disable PLLs.
64 SRTristate: Controls when output-only pins are 3-stated.
0 Only when ColdReset is asserted.
1 When Reset or ColdReset are asserted.
65:255 0 Reserved.
Notes 1. Set nitP to 0 and InitN to 15 for fastest pull-up and pull-down rate.

Set InitP to 15 and InitN to O for slowest puli-up and pull-down rate.
Set InitP and InitN to the slowest pull-up and pull-down rate when the di/dt control is enabled by the
bit EnbIDPLLR or the bit EnblDPLL.

I Li2?525 0089749 939 W 83

CHAPTER 7 RESET SEQUENCE FOR THE Va4400MC PROCESSOR

The Va4400MC processor supports a multi-level reset sequence using the V2oOk, ColdReset, and Reset inputs.

7.1 Power-on Reset

(m

(2)

)

4

(8

For a power-on reset, the following sequence must be applied to the Vr4400MC:

Stable Voo within the specified range from the power supply must be applied to the Va4400MC continuously for
at least 100 milliseconds along with a stable continuous system clock at the desired operational frequency of
the Vad4400MC.

After at least 100 milliseconds of stable Voo and MasterClock the VooOk input to the VA4400MC may be asserted.
While VopOk is de-asserted, all pins will be 3-stated with the exception of ModeClock. The assertion of VooOk
will cause the Va4400MC to begin driving a clock on the ModeClock output and to read the boot time mode control
serial data stream. For further details on mode initialization see CHAPTER 6 BOOT TIME MODE CONTROL
INTERFACE. After the mode bits have been read in, the Va4400MC will allow its internal phase locked loops
to lock, stabilizing the processor internal clock, PClock, the SyncOut-Syncin clock path and the master clock
output, MasterQut. VooOk mustbecome asserted atleast 100 milliseconds before the de-assertion of ColdReset.
If JTAG is not used, tix JTCK to low level. To use JTAG, input the clock to JTCK during reset sequence.

Once the boot time mode control serial data stream has been read by the Va4400MC, the ColdReset input may
be de-asserted. ColdReset must remain asserted for at least 100 milliseconds after the assertion of VooOk.
ColdReset must be de-asserted synchronously with MasterClock. The state of SClock, TClock, and RClock is
undefined until ColdReset is de-asserted. The de-asserted edge of ColdReset is used to synchronize the edges
of §Clock, TClock, and RClock, potentially across multiple processors in a multi-processor system.

De-assert ColdReset in synchronization with rising edges of SClock and TClock and the next rising edge of
MasterClock. This signal is used to synchronize multiple processors in amulti-processor system. SClock, TClock,
and RClock becomes stable 64 MasterClock cycles atter ColdReset has been de-asserted.

After ColdReset is de-asserted and SClock, TClock and RClock have stabilized, Reset may be de-asserted to
allow the Va4400MC to begin to run. Reset must be held asserted for at least 64 MasterClock cycles after the
de-assertion of ColdReset. Reset must be de-asserted synchronously with MasterClock.

7.2 Cold Reset

for
for

A cold reset requires the same sequence as described above except that power is presumed to have been stable
a long time before the assertion of the reset inputs and the de-assertion of VooOk. VooOk must be de-assented
a minimum of 64 MasterClock cycles before re-asserting to begin the reset sequence.

7.3 Warm Reset

To efiect a warm reset, the Reset input may be asserted synchronously with MasterClock and held asserted for

at least 64 MasterClock cycles before being de-asserted synchronously with MasterClock. The processor internal

clo

cks, PClock and SClock, and the system interface clocks, TClock and RClock will not be affected by a warm reset,

and the boot time mode control serial data stream will not be read by the Va3400MC on a warm reset.

B L427525 0089750 LS50 MW 85

CHAPTER 7 RESET SEQUENCE FOR THE VR4400MC PROCESSOR

7.4 Notes on Reset

After a power-on reset, cold reset, or warm reset, all processor internal state machines will be reset, and the
processor will begin execution at the reset vector. The processor internal state is preserved during a warm reset,
although the precise state of the caches will depend on whether a cache miss sequence has been interrupted by
resetting the processor state machines.

ColdReset must be asserted when VooOk asserts. The behavior of the Va4400MC is undefined if VooOk asserts
while ColdReset is de-asserted.

Timing diagrams for reset sequence are illustrated in Fig.7-1, Fig.7-2, and Fig.7-3.

86 B b42?525 0089751 597 W

CHAPTER 7 RESET SEQUENCE FOR THE Vr4400MC PROCESSOR

) /I\l/‘\l. /‘\I/I\]J .\) pauyapun

————————— Sy —» -—
SO} -—»] |u—
591942 JIOW 19 2
= v_m SOPRAD MOW Y9 2 N
SO} —» _ll sSw ooy < g0y =) |-
[
VA__m tue Youa
HOWY ~o=
e
~ FETRLE) sapho WO 952
MOW 952 y
\ sSw QoL <
m:—l' P
..... /.\ /|\./|\/L\ \/k\nn/g\

1953y PO 10 }9saY Uo-1aMod |- ‘Bi4

#0104

320104

NOJAS

NOITISLN

1053y

19594PIoD

Uj2pon

¥20{09pOW

HOMAA

Onow)
HOO|DITISLW

Hop

87

B Luc2?525 0089752 423 W

CHAPTER 7 RESET SEQUENCE FOR THE Vr4400MC PROCESSOR

nn

..... N A N AN A A N T

SU) —» -— —» [s
s08134 JIOW v9 :
! Y, S010A2 MIDW Mb9 2 N\ v
SO} —»] | Sw oot 2 -+ |=—s0
§52
X__m A:_m on
]~ ot
-] |~-— SOW]
........... e AN A A A \
sajoho sajoko WOW 952
MOW 952 \\ sapho
HOW| ¥9 ,
o lesm
..... \ O\ _f e\
H

19say ploo -2 B4

%0104

20101

INO2uAsg

INQudISEN

josoy

19saypio

ujapopw

*30108poy

HOMA

(uon)
3oo0IvisEW

A

B L427525 0089753 36T WM

88

CHAPTER 7 RESET SEQUENCE FOR THE Va4400MC PROCESSOR

............................. AN AN N AN WA
............................. A A L WA
............................. AN AN L W A
............................. N\ o\ N\ s\ [T o

1080y

sa(oha HIOW ¥9 2

SO} — » o — — — S}

H 10394pI0D

uopon

... t..-.-..--......-...--...|\\|||/|.|l\ A20[DapoN

-

“soppho WOW 952
H NOUA

=N\ N\ N\ N\ \ /NS \S L.

H aqap

1esay wuem g-2 614

89

B ty27525 0089754 2ThH M

CHAPTER 8 MASTER/CHECKER MODE

Two Va4400MC's can be configured as a lock-stepped pair to improve data integrity. For such configurations,
outputs (and /O busses during output) are checked between the two chips connected in parallel at bus cycle
boundaries. Any discrepancies between them are reported through the assertion ot the Faulit pin.

Two boot-time mode bits determine these Master/Checker configurations. For single-chip operations, these bits
must be set to 00. This is the “Complete Master" mode, where the Va4400MC's outputs operate normally.

There are two possible lock-step configurations. The simple case pairs a “Complete Master” VR4400MC (with mode
bits set to 00) with a “Complete Listener” VaR4400MC, with mode bits set to 11. The latter has output drivers disabled.
Since it receives all the same inputs as the former, both VR4400MC's operate identically. On all output cycles, it
samples the signals on output and /O busses and compares with what it expects. Any discrepancies are reported
through the Fault pin.

The second lock-step configuration is called Cross-Coupled Checking. In general, one VR4400MC is set to drive
the data pins of one bus and the other the check pins (parity or ECC) of the same bus. The mode bits to use are 01
and 10. Both chips sample and compare what are on the busses and indicate any discrepancies through their Fault
pins.

Additionally and for any configuration, the Fault pin also reports error conditions not covered by VR4400MC
exceptions. (These include input parity error at SysCmd, input addresses and data on SysAD for certain system
interface operations.) Note that the fault detection mechanism related to this Fault pin does not cause any exceptions
for the Va4400MC. It continues 10 run regardless of the state of the pin. External logic must act on the fauit and take
appropriate action to interrupt or reset the VR4400MC's.

8.1 Connections

For lock-step operations, most pins of a pair of VA4400MC's are intended to be connected in parallel.
The signal groups to be connected in parallel are:

System Interface
Secondary Cache Interface
Interrupt Interface

Some signals in the following groups are NOT to be connected in parallel:

Initialization Intertace
ModeClock, Modeln and Reset
JTAG Interface
JTDO, JTMS

The remaining signals in these groups can be connected either way, independently or in parallel, according to
other considerations.

Finally, all of the signals in the Clock/Control Interface are NOT to be connected in parallel, except obviously VooP
and GndP.

91
M L427525 0089755 132 M

CHAPTER 8 MASTER/CHECKER MODE

8.2 Modes of Operation

The Master/Checker mode of operation for each VR4400MC is set via boot-time mode bits: System Interface Master
(SIMasterMd) and Secondary Cache Master (SCMasterMd).

Table 8-1 Setting of SiMaster and SCMaster

SiMasterMd SCMasterMd Modes
0 0 Complete Master (required for
single chip operation)
0 1 System Interface Master
(SiMaster)
1 0 Secondary Cache Master

(SCMaster, to pair with SiMaster)

1 1 Complete Listener (to pair
with Complete Master)

Fig. 8-1 Master-Listener Configuration

Complete Complete
Master Listener

_—D D—(compare)

™ Fault

Fig. 8-2 Cross-Coupled Checking Configuration

SiMaster SCMaster
N (1)
Vv
{compare)
Fault = j —* Fauit
(compare)
(2)
) D
{compare)
(compare)

(1) Signals connected in parallel and driven from the SIMaster are:
SysAD(63:0), SysCmd(8:0) and SCAPar(2:0)

(2) Signals connected in parallel and driven from the SCmaster are:
SysADC(7:0). SysCmdP, ValidOut, Release, SCAddr(17:1), SCAddrOW X,Y,Z,
SCOE, SCWrW,X,Y.Z, SCData(127:0), SCDChk(15:0),

SCTag(24:0), SCTChk(6:0), SCDCS, SCTCS

92 B t4y2?525 0089756 079

CHAPTER 8 MASTER/CHECKER MODE

8.3 Fault Detection

Qutput miscomparison fault detection occurs at the end of bus cycles. The length of these cycles are determined
by the appropriate boot-time mode bits.

Atthe System Interface, outputs are checked at the end of every System Interface cycle whenever the Va4400MC
System Interface is in master state.

At the Secondary Cache Interface, outputs are checked at the end of every read or write cycie.

A special note about the SCAPar(2:0) signals. They are delayed from the rest of the Secondary Cache Interface
by exactly one PClock. This includes when they transition, and when they are checked. The transitions follow exactly
one PClock after SCAddr transitions, and when the Va4400MG internally determines it is changing between a read
and a write cycle without an address change. They do not follow the timing of the SCWr signals, which are separately
settable via the boot-time mode bits.

8.4 Fault Reporting

The external fault indication is reported through the Fault pin. This is a non-persistent signal which operates on
the same bus cycles as the System Interface. That is, it transitions at System Interface boundaries, as determined
by the PClock-t0-SClock divisor from the boot-time mode bits.

There is an internal fault detection latency of 4 PClocks. Then the fault signal must synchronize with the System
Interface. Any output faults detected and fully-propagated through the internal fault logic within the previous System
Interface cycle will be reported in the current cycle.

Note that in the Compiete Master mode, output tault reporting is disabled for Secondary Cache Interface pins, but
enabled for System Interface pins (SysCmd, SysCmdP, SysAD, SysADC, ValidOut and Release.) For System
Interface pins, output faults are reported by comparing internal data.

8.5 Reset Operations

If the Master/Checker mode of the VR4400MC is Complete Listener, SiMaster or SCMaster, an assertion of Reset
is significant. On boot-up, the first time Reset is de-asserted, the Master/Checker mode is determined by the boot-
time mode bits. On the next assertion of Reset, the mode is forced to be a Forced Complete Master mode. Hence,
it Reset is de-asserted, the Va4400MC will be driving all outputs, regardless of the mode specified by the mode bits.
This mode is maintained until Reset signal is asserted next time. It the Reset signal is asserted again, the Va4400MC
is set in the Master/Checker mode set by BTMC. In this way, the mode is changed between Master/Checker mode
and Forced Complete Master mode each time Reset is asserted.

There is a slight difference between this Forced Complete Master mode and the normal Complete Master mode.
That is, the Fault pin continues to report all output faults when the VR4400MC was in the former mode, not just those
of the System Interface.

B Ly2?525 00A9757 TOS HE 83

CHAPTER 8 MASTER/CHECKER MODE

8.6 Fault History Mechanism

Since both output faults and certain input faults are reported through the Fault pin, there are two fault history bits
that record which one or both of them has occurred. These bits are cleared at every de-asserting transition of Reset.

These bits are readable only when the Reset is asserted. The Fault pin changes from reporting live taults to
indicating which fault history bit was set in the previous time period when Reset was de-asserted. The Modeln pin
acts as the selector. If Modeln is 0, the Fault shows the state of the Qutput Fault History bit (inverted). if Modeln is
1, it shows the state of the input Fault History bit (inverted).

Thereis also amechanism to reset the fault history bits while the VR4400MC is running. Ifthe Modeln pinis asserted,
these bits are cleared. This also means that for the duration when latching fault history bits are desired, Modeln must
be maintained at 0.

The following table summarizes some of the above information.

Table 8-2 Fault History Mechanism Summary

—_— hecker
Boot/Reset Modeln Pin _ Fault _ Fauit Pin Master/Checke
Controls History Bits Mode
VooOk just asserted (0 — 1) used as mode — — -
bits scan data
Reset just de-asserted (0 — 1) —_— cleared _ -
Reset de-asserted 0 set and latch live faults -
(normal operation) if fault reported
Reset de-asserted 1 cleared live faults —
(normal operation) reported
Reset just asserted (1 — 0) - s - - changed, toggling
between mode bits
and forced master
Reset just asserted 0 Output Fault _ —_
(VA4400MC in reset) History bit
connected to
Fault pin
Reset just asserted 1 fnput Fault - -
(VR4400MC in reset) History bit
connected to
Fault pin

Remark Output fault: Contradiction of output data in Master/Checker mode
Input fault : Data parity error of input data, ECC error

94 B E427525 0089758 94l W

CHAPTER 9 PROCESSOR INTERRUPTS

The Va4400MC processor supports six hardware interrupts, two software interrupts, and a non-maskabie interrupt
as described in V4000, Va4400 USER'S MANUAL—ARCHITECTURE. Each hardware interrupt occurs when an
external write request or Int0 signal is input. The non-maskable interrupt is accessible via external write requests
and a dedicated pin.

External writes to the processor are directed based on a processor internal address map to various processor
internal resources. An external write to any address with SysAD[6..4] = 0 will write to the interrupt register. During
the data cycle, SysAD[22..16] are the write enables for the 7 interrupt request bits (one non-maskable interrupt + 6
regular Interrupts), and SysAD[6..0] are the values to be written into these bits. This allows us 1o set and clear any
subset of the interrupt register with a single write request. The bit 0 of the interrupt register is bitwise ORed with the
current value of the interrupt pin Int0 and the result is directly readable as bit 10 of the Cause register.

When an interrupt is enabled, CPU can be altered, the interrupt exception is issued. The external interrupt
corresponding to IP7 is alternated with a timer interrupt, and selected through BTMC interface.

NMI exception is issued by setting of bité of the interrupt register or asserting of the NMI pin.

The bit 15:10(1P7-1P3) of the Cause register are not cleared automatically after starting the handling of exception.
Clear these bits as follows before the next interrupt will be enabled:

* An Interrupt request by the N0 pin: Int0 is level-triggered. De-assert this pin.

* An Interrupt request by the external write request: Issue this request again and clear a corresponding bit of
the interrupt register.

The interrupt request is generated through the logic shown below.

Fig. -1 Hardware Interrupt and NM| Request Generation Logic

— Int0
SysAD (5:0) (Internal register)
Interrupt setting value Interrupt register V Cause register
5 4 3 2 1 0
I l | ! ‘ 0 i > P2 | 10
i
t ! 1 IP3 | 11
|
{>L[>4>‘4>'{>4>— : el
—= Referto Fig. 9-2
3 PS5 | 13
21@20]19]18!17@16 4 IP6 | 14
. . Timer interrupt
SysAD (21:16) 5 _:D_ 7 |15
Write enable
SysAD6 6
i —D_’ NM! interrupt
& i (Internal register) -

3 — 1
H NMI
i : 1

—D——— , SClock
Non-maskable interrupt

22

SysAD22

B Lu27525 0089759 838 WA 95

CHAPTER 9 PROCESSOR INTERRUPTS

The software interrupts are issued by setting the bits IP1 and IPO of the Cause register to 1. The bits IM1 and
IMO of the Status register can mask these interrupts.

Keep issuing maskable interrupt requests untit a jump to the exception vector. In an interrupt request by asserting
the int0 pin, keep inputting low-level to the Int0 pin. After the jump to the exception vector and starting the interrupt
handling , clear the exception request before returning to the normal routine.

During the non-maskable interrupt, the exception request must not be cleared. The NMI pin is edge-triggered, so
a single cycle assertion of this pin sets a non-maskable interrupt request.

Fig. 9-2 interrupt Request Masking Logic

Status register

SRO
IE
Status register
SR (15:8)
IMO | 8
M1 | 9
M2 |10 [7
M3 |11 8/
Ma 12/ /
M5 |13 / 7
IM6 | 14
M7 115 / / Interrupt of Va4400MC
/ 1// A 1//
. PO | 8 / '//
Software interrupt
P11 9
IP2 110 / /
iP3 {11 8/ AND
. V4 block
Normal external interrupt IP4 |12 /
IPS |13 /1
IP6 | 14 AND-OR
Timer interrupt or normal —e| IP7 | 15 block
external interrupt .
Cause register
(15:8)
Table 9-1 Interrupt Requests Summary
Factor Pins External write requests Interrupt Status register Cause register
request mask register (IM bit) (IP bit)
NMI NI SysADS SysAD22 - — -
INTOQ Int0 SysADO SysAD16 bit10 bit10 bit10
INT1 - SysAD1 SysAD17 bit11 bit11 bit11
INT2 -— SysAD2 SysAD18 bit12 bit12 bit12
INT3 — SysAD3 SysAD19 bit13 bit13 bit13
INT4 —_ SysAD4 SysAD20 bit14 bit14 bit14
INTS — SysAD35 SysAD21 bit15 bit15 bit15
SwWo —_— - —_— bit8 bit8 bit8
SWi —_ - — bitg bit9 bit9
0: clear 0: disable 0: clear 0: disable 0: no request
Status
1: requsst 1: enable 1: request 1: enable 1: pending

Remark See Va4000, VA4400 USER'S MANUAL—ARCHITECTURE for further details.

96 B L427525 0089760 STT MM

CHAPTER 10 PROCESSOR STATUS QUTPUTS

The Vr4400MC processor provides eight status outputs, Status(7:0), that change with each rising edge of
MasterClock to indicate the processor's internal state during each of the two most recent PCycles. Status(7:0) is
treated as two fields, Status(3:0) indicates the processor's internal state during the most recent PCycle and Status(7:4)
indicates the processor's internal state during the PCycle preceding the most recent PCycle. The encoding of
processor internal state for Status(7:4) or Status(3:0) is shown in Table 10-1 Encoding of Processor Internal State
for Status(7:4) or Status(3:0). The four bit decode describes the instruction occupying the WB stage during a given

PCycle.
Table 10-1 Encoding of Processor Internal State for Status(7:4) or Status(3:0)
Status(7:4) or Status(3:0) Processor internal state
o Run cycle: Other integer instruction
1 Run cycle: Integer Load
2 Run cycle: Integer Untaken Branch
3 Run cycle: Integer Taken Branch
4 Run cycle: Integer Store
5 Reserved
6 Reserved
7 Run cycle: Killed by integer slip
8 Stall cycle: Other stall type
9 Stall cycle: Primary Instruction Cache
a Stall cycle: Primary Data Cache
b Stall cycile: Secondary Cache
c Run cycle: Floating Point instruction (except for
load, store, conditional branch)
d Run cycle: Killed by branch, jump, ERET
Run cycle: Killed by exception
f Run cycle: Killed by floating point slip

B L427525 0089761 436 WM

97

CHAPTER 11 CLOCKING

The Va4400MC processor bases all internal and external clocking on the single clock input MasterClock. The
processor generates the clock output SyncOut at the same frequency as MasterClock and aligns Syncin with
MasterClock. SyncOut must be connected to the clock input Syncin so that the processor can compensate for output
driver delays and input buffer delays in aligning Syncln with MasterClock. The processor generates the clock output
MasterQut at the same frequency as MasterClock and aligns MasterOut with SyncOut. MasterOut is provided for
use in clocking external logic that must cycle at MasterClock frequency.

The processor generates the internal clock PClock for all internal latches and registers at twice the frequency of
MasterClock and precisely aligns every other rising edge of PClock with the rising edge of MasterClock.

The processor divides PClock by a programmable divisor, programmed via the boot time mode control intertace,
to generate the internal clock SClock. SClock is used by the processor to sample data at the system interface and
to clock data into the processor's system interface output registers. The rising edges of SClock are aligned with rising
edges of PClock.

Data provided to the processor must be setup a minimum of tos nano-seconds (ns) before the rising edge of SClock
and held valid for a minimum of tox ns after the rising edge of SClock. This setup and hold time is required for data
to propagate through the processor's input butfers and meet the setup and hold times for the processor's input latches.

Data provided by the processor will become stable too ns after the rising edge of SClock. This drive off time is
the sum of the maximum delay through the processor's output drivers and the maximum clock to Q delay of the
processor's output registers.

Centain processor inputs, specifically VooOk, ColdReset, and Reset are sampled based on MasterClock while
certain processor outputs, specifically Status(7:0) are driven out based on MasterClock. The same setup, hold, and
drive off parameters, tos, ton, and too, will apply to these inputs and outputs but with respect 1o MasterClock instead
of SClock.

The values of tos, tou, and too of VR4400MC processor are tabulated in the data sheet (o be issued).

The processor generates two output clocks, RClock and TClock, at exactly the same frequency as SClock to be
used by an external agent to sample and drive data. RClock is a receive clock that can be used by an external agent
to clock its input registers. TClock is a transmit clock that can be used by an external agent to clock its output registers,
and as the global system clock for the logic that makes up the external agent.

Although the frequencies of TClock and RClock are the same, RClock always precede TClock 1/4 cycle. The
relationship between RClock and TClock is independent of the delay between Syncln and SyncOut.

The frequencies of TClock and SClock are the same, and their relation with Syncin and SyncOut is as follows:

When Syncin and SyncOut are connected:
The edge of TClock and edge of SClock accurately correspond to each other.

If there is a delay between Syncin and SyncOut:
TClock seems to change faster than SClock to the external agent.

This delay also affects MasterClock. If the delay between Syncin and SyncOut is the same as the delay between
the processor and external agent, the fast TClock of the external agent correponds to SClock and MasterClock.

B L427525 00897k2 372 M 99

i

!

i

‘apow s1y3 jo Ayyeuondung anyuesenb jou saop 9N Bunsal J0) isnf sy apow JO-11d. UoHNED

doo yoeqpaad jcwiaix3 2-11d

bewacacacacasnsvaen

L

CHAPTER 11 CLOCKING

doo ¥ouqpaay jeusoju; ¢-11d

nogauis 1) upuds []
_. 41 ouhs '
~[x] SO_o_mm_“,._-w 41 Vi ||_ n‘_w- A..I...A\ "
: 0 z21d :
- kg |=— 9~ Josing 1. 53] :
@ $2010H S E q2 %2019 ~ ﬂ jj — - | — :
- 4z 4 :
G ———1- | "
: %010 L \ﬁ 471 ;
: Aua- lonewxosAslon.a
—{x A _ 495271 “ -
:W0IJ0poN - (¥ upaisepy
: _ 41 oukg :
: av L av _._ :
: woiod ¢ <o | s 3 oo | A__ m
: oI of«——-| 174 m
SR TR AN DT AT A.-IA. “
" 3 :
10 1d :

NIOMION T1d pue s32010 -1} "By

‘- k42?525 00897:3 209 MW

100

CHAPTER 11 CLOCKING

The alignment of SyncOut, PClock, SClock, TClock, and RClock is accomplished by the processor with internal
Phase Locked Loop (PLL) circuits that generate aligned clocks. A functional block diagram of the internal clocks and
PLL network is shown in Fig.10-1. PLL circuits by their nature are only capable of generating aligned clocks for
MasterClock frequencies in a limited range. Minimum and maximum frequencies for MasterClock tor various speed
ratings of the VrR4400MC processor are tabulated in the data sheet (to be issued). Clocks generated using PLL circuits
contain some inherent inaccuracy in their alignment with the MasterClock called jitter. That is, a clock aligned with
MasterClock by the processar's PLL circuits may lead or trail MasterClock by some maximum amount referred to as
the maximum jitter. Maximum jitter for the clocks generated by various speed ratings of the Vr4400MC processor
is tabulated in the data sheet (to be issued). For optimum operation, the traces and loads on SyncOut, MasterQut,
TClock, and RClock should be matched.

The PClock to SClock Divisor can be selected out of 1/2, 1/3, 1/4, 1/6, and 1/8 in the VrR4400MC through the BTMC
interface on reset.

The relationship of MasterClock, SyncOut, PClock, SClock, TClock, and RClock, and the characteristics of data
on the SysAD bus when data is driven by the processor and received by the processor is illustrated in Fig. 11-2
Processor Clocks, PClock to SClock Divisor of 2 and frequency of PClock divided by two while in Fig. 11-3
Processor Clocks, PClock to SClock Divisor of 4, SClock, TClock, and RClock are programmed to the frequency
of PClock divided by four.

Fig. 11-2 Processor Clocks, PClock to SClock Divisor of 2

cycle . 1 | 2 ‘ 3 { 4 |

IaCimigh
tMChLow '
3 tmcap !

Symeou T/ O\
Pocx S\ S\
SClock w
SysAD Driven :X D

SysAD Received x

o
=
>
<
-
A

B L427525 0089764 145 W 101

CHAPTER 11 CLOCKING

Fig. 11-3 Processor Clocks, PClock to SClock Divisor of 4

cycle l 1 I 2 i 3 ! 4

MasterClock m_
|

SClock \)ll—\

I
TClock \ / \
RClock _1____/——_____/—_
SysAD Driven x D | X o

Pt
SysAD Received x Xﬂ x D

11.1 Clock Interfacing to a Phase Locked System

When the VR4400MC processor is employed in a phase locked system all of the components of the system must
phase lock their operation to a common MasterClock. In such a system the delivery of data and sampling of data
will have common characteristics for all components with perhaps different delay values for the components. The
transmission time, the amount of time a signal has to propagate along the trace from one component to another,
between any two components A and B of a phase locked system can be calculated from the following equation:

Transmission Time = (SClock period) — (too for A) — (tos for B)
— {Clock Jitter for A Max) ~ (Clock Jitter for B Max)

A block level diagram of a phase locked system employing the VR4400MC processor is shown in Fig. 11-4 Phase
Locked System Employing the Vr4400MC Processor.

102 B Luy2?525 00897L5 081 I

CHAPTER 11 CLOCKING

Fig. 11-4 Phase Locked System Employing the Vad400MC Processor

MasterClock
= |
[|
Vad400MC i ! External Agent
! l
MasterClock — — MasterClock
SysCmd SysCmd
SysAD SysAD

SyncOut ——— [_—_ SyncOut
Syncin |—— Syncin

RACiock — — RClock
TClock — ——— TClock

11.2 Clock Interfacing to a System Without Phase Lock

When the Vad400MC processor is employed in a system in which the other components are not capable of phase
lock to a single MasterClock the output clocks RClock and TClock may be used to clock the remainder of the system.
Two clocking methodologies are possible using RClock and TClock: the first better suited to communication with an
external agent built from gate arrays and the second better suited to communication with an external agent built from
discrete CMOS logic devices.

In the first clocking methodology, tailored for communication with an external agent built from gate arrays both
RClock and TClock are used for clocking within the gate arrays. RClock is provided specifically so that a gate array
may bufter it internally and use the butfered version to clock registers that sample VR4400MC outputs. These sample
registers should be immediately followed by staging registers that are clocked by an internally buffered version of
TClock. The buftered version of TClock should be used as the global system clack for the logic inside the gate array
and as the clock for all registers that drive VR4400MC inputs.

Requiring staging registers following the registers that sample Vr4400MC outputs places a constraint on the delay
of the input registers and the setup time of the synchronizing registers inside the gate arrays. The sum must be less
than 25% of the RClock and TClock period minus the maximum clock jitter of both RClock and TClock minus the
maximum delay mismatch for the internal clock bufters on RClock and TClock.

The transmission time for a signal from the Va4400MC to an external agent composed of gate arrays in a system
without phase lock can be calculated from the following equation:

Transmission Time = (75% of TClock period) — (too for Va4400MC)
+ (External Clock Buffer Delay Min)
- (External Sample Register Setup Time)
— (Clock Jitter for Va4400MC Internal Clocks Max)
- (Clock Jitter tor RClock Max)

M Lu27?525 00897LL TS HE 103

CHAPTER 11 CLOCKING

The transmission time for a signal from an external agent composed of gate arrays to the V=4400MC in a system
without phase lock can be calculated from the following equation:

Transmission Time = (TClock period) - (tos for Va4400MC)
- (External Clock Butfer Delay Max)
— (External Output Register Clock Delay Max)
- (Clock Jitter for TClock Max)
— (Clock Jitter for VR4400MC Internal Clocks Max)

A block level diagram of a system without phase lock employing the Va4400MC processor and an external agent

composed of a gate array is shown in Fig. 11-5 System Without Phase Lock Employing the Va4400MC Processor
(@).

104 M Luy2?525 00897L? 954 WM

CHAPTER 11 CLOCKING

Fig. 11-5 System Without Phase Lock Employing the Va4400MC Processor (a)

1
| Gate
MasterClock | Array
| |
Vrd400MC 5 ;
| .
MasterClock |— |
SysCmd 1
i
i
SySAD i
!
| <}
o |
Syncin !
!
|

RAClock
TClock

[

N

[]

CE

o - - — w— —— = e e = m— e e - e - e

B L427525 00897L4 830 WE

105

CHAPTER 11 CLOCKING

In the second clocking methodology tailored for communication with an external agent built from ciscrete CMOS
logic devices, matched delay clock buffers are used to aliow the Va4400MC to generate aligned clocks for the external
logic. One of the matched delay clock butters is inserted in the processor's SyncOut Syncin clock alignment path.
This has the effect of skewing SyncOut, MasterOut, RClock, and TClock to lead MasterCiock by the delay of the
matched delay clock buffer while leaving PClock aligned with MasterClock. The remaining matched delay clock buffers
can be used to generate a buffered version of TClock that will be aligned with MasterClock. The alignment error of
the butfered version of TClock will be the sum of the maximum delay mismatch of the matched delay clock buffers
and the maximum clock jitter of TClock. The buffered version of TClock will be used to clock registers that sample
Va4400MC outputs, as the global system clock for the discrete logic that forms the external agent, andto clock registers
that drive Va4400MC inputs.

The transmission time for a signal from the Vad400MC to an external agent composed of discrete CMOS logic
devices can be calculated from the following equation:

Transmission Time = (TClock period) — (too for VaR4400MC)
- (External Sample Register Setup Time)
- (External Clock Butfer Delay Mismatch Max)
- (Clock Jitter for Va4400MC Internal Clocks Max)
- (Clock Jitter for TClock Max)

The transmission time for a signal from an external agent composed of discrete CMOS logic devices can be
calculated from the following equation:

Transmission Time = (TClock period) - (tos for VR4400MC)
- (External Output Register Clock Delay Max)
— (External Clock Buffer Delay Mismatch Max)
~ (Clock Jitter for VR4400MC Internal Clocks Max)
= (Clock Jitter for TClock Max)

Note that using this clocking methodology the hold time of data driven from the Va4400MC to an external sampling
register is a critical parameter. In order to guarantee hold time, the minimum output delay of the Va4400MC must
be greater than the sum of the minimum hold time for the external sampling register, the maximum clock jitter for
Va4400MC internal clocks, the maximum clock jitter for TClock, and the maximum delay mismatch of the external
clock buffers.

A block level diagram of a system without phase lock employing the Vr4400MC processor and an external agent
composed of both a gate array and discrete CMOS logic devices is shown in Fig. 11-6 System Without Phase Lock
Employing the VrR4400MC Processor (b).

106 B b427525 0089769 727

CHAPTER 11 CLOCKING

Fig. 11-6 System Without Phase Lock Employing the Vr4400MC Processor (b)

MasterClock

Vr4400MC

MasterClock |—

SysCmd

Control
Gate
Array

SysAD

SyncQut
Synein

RClock

TClock

vy oIy

—————

YV

CE

CE

Memory

B Ly27525 0089770 u4u9 IR

107

CHAPTER 12 OUTPUT BUFFER di/dt CONTROL MECHANISM

The speed of the VR4400MC output drivers is controlled by a negative feedback loop that insures that the drive
off times are only as fast as necessary to meet the system requirement of single cycle transters. This guarantees
the minimum ground bounce due to the L"di/dt of the switching buffers consistent with the systemtiming requirements.
Four bits are used to control each of the pull-up and pull-down delays. They are initially set to the values in the mode
bits InitN[3..0] for pull-up and InitP(3..0] for pull-down. When the di/dt control mechanism is enabled, InitN and InitP
should be set to their slowest values.

Under normal conditions, the di/dt control mechanism is expected to be constantly enabled so that it can
compensate the output bufter delay for any changes in the temperature or power supply voltage. The EnblDPLL mode
bit should be set for this mode of operation,

For situations where the jitter associated with the operation of the di/dt control mechanism cannot be tolerated
and where the variation in temperature and supply voltage after ColdReset is expected to be small, the di/dt control
mechanism can be instructed to lock only during ColdReset and thereafter retain its control values. The EnbIDPLLR
mode bit should be set and the EnbIDPLL mode bit should be cleared for this mode of operation.

In addition, if both the EnbIDPLL and EnbIDPLLR mode bits are cleared, the speed of the output buffers can be
set with the InitP(3..0] and InitN[3..0) mode bits.

The drive oft delays can be set through the mode bits. Currently, delays of 0.5T, 0.75T, and T are supported
corresponding to the Drv0_50, Drv0_75, and Drv1_00 mode bits where T is the MasterClock period. For example,
inthe Drv0_75 mode, the entire signal transmission path including the clock-to-Q, output buffer drive time, board flight
time, input buffer delay, and setup time will be traversed in 0.75 * the MasterClock period plus or minus the jitter due
to the di/dt control mechanism,

All output drivers on the Vr4400MC, with the exception of the clock drivers, are controlled by the di/dt control
mechanism.

The Vr4400MC determines the worst case propagation delay from a Vr4400MC output driver to a receiving device
by measuring the transmission line delay of the trace that connects the Va4400MC 10_Out and 10_In pins. This
representative trace must have one and a half times the length and approximately the same capacitive loading as
the worst case trace on any VR4400MC output.

The designer determines the trace characteristics by:

* measuring the longest path from a Vr4400MC output driver to a receiving device: L
* calculating the maximum capacitive loading on any signatl pin: C

* connecting an “incident wave” trace of length L with a capacitive loading of C between the IO_In and !O_Out
pins of the Va4400MC

* and connecting a “reflected wave” trace of length L/2 to the 1O_In pin of the VR4400MC.

A VR4400MC with appropriate traces connected to the 10_In and 10_Out pins is illustrated in Fig. 12-1 10_In/
10_Out Board Trace.

M Lu4y2?525 0089771 345 W 109

CHAPTER 12 OUTPUT BUFFER di/dt CONTROL MECHANISM

110

Fig. 12-1 10_In/t1O_Out Board Trace

|

CPU Board
b
i The longest trace from
a_ | =+ a Vad400MC output driver
10 a receiving device
c
Vad400MC d
10_Out 10_In
———‘ N
~-+——————— "Reflected Wave® trace
Length=L/2
A
—
Cioae=C I
777 *Incident Wave" trace
L = a+bwc+d

C = Total Capacitance Loading of the worst case trace

-

B L427525 0089772 2l Wm

CHAPTER 13 PLL PASSIVE COMPONENTS

The Phase Locked Loops require several passive components for proper operation. These passive components
are attached to the PLLCap0, PLLCap1, VooP, and GndP pins and are illustrated below. The capacitors for the
PLLCap0 and PLLCap1 pads are connected to either GndP or VeoP. Note that C2 and both Cp capacitors are
incorporatedinto package designs as surface mounted chip capacitors, illustrated in Fig.12-1. Note thatthe capacitors
connecting the PLLCap0 and PLLCap1 pins to either VooP or GndP are to be provided externally.

It is essential to isolate the analog power and ground (VooP/GndP) from the other power and ground pins. Initial
evaluations with R=5 Q, C1=1nF, C2=0.1 uF, C3=10 uF, and Cp=470 pF have yielded good results on test boards.
The inductors {L) may be excluded, since noise filtering is application specific. The inductors may improve noise
reduction in some applications. The suggested vaiue for the inductor is 1000 uH. Since the optimum vaiues for the
filtter components depend on the application and the system noise environment, these values should be considered
as starting points for further experimentation within the application specific context. In addition, the chokes (inductors)

can be considered as an alternative to the resistors for power supply filtering.

Fig. 13-1 PLL Passive Components

PLLCap1

O e

PLLC2P0 | Gnd |

<
B
\

Va4400MC

! ~
| <
: co j
H — [VooP lF o= = 5
%1 :
— c1 c3
Cp
I } Y GndP IF = = = =
! 902 N
<
<
-

S

Remarks

1.
2.

=: Unconnected in the present Vr4400MC.

M Lu2?7525 0089773 156 M

C1,C3, Rsandl’s
are Board Components

In the present Va4400MC, PLLCap0 is connected to GndP, and PLLCap1 to VooP.

111

CHAPTER 13 PLL PASSIVE COMPONENTS

112

Fig. 13-2 Top View of 447-pin PGA Package

R

°

x: Gnd - Voo Bypass Caps
C2: GndP - VooP Bypess Caps
%1, %2: PLL Caps

EIE

B Lu2?525 0089774 094 N

CHAPTER 14 JTAG INTERFACE

The Va4400MC processor provides a boundary scan interface using the industry standard JTAG protocol.
14.1 JTAG Interface Signal Summary

JTDI: (i} JTAG serial data in.
JTDO: (o) JTAG serial data out.
JTMS: (i) JTAG command signal.
JTCK: (i) JTAG serial clock input.

14.2 JTAG Functionality

The JTAG boundary scan mechanism is intended to provide a capability for testing the interconnect between the
Va4400MC processor, the printed circuit board to which it is attached, and the other components on the board. In
addition, the JTAG boundary scan mechanism is intended to provide a rudimentary capability for low speed logical
testing of the secondary cache RAMs. The JTAG boundary scan mechanism is notintended to provide any capability
for testing the Va4400MC processor itself.

In accordance with the JTAG specification the VR4400MC processor contains a TAP controller, JTAG instruction
register, JTAG boundary scan register, and JTAG bypass register. However, the VA4400MC JTAG implementation
provides only the external test functionality of the boundary scan register.

14.2.1 JTAG Test Access Port (TAP)

The JTAG Test Access Port consists of the 4 pins described above. Data is serially scanned into one of the three
registers (Instruction register, Bypass register, Boundary Scan register) from the JTDI pin, and is scanned out from
the selected one of these registers onto the JTDO pin. The JTDI input feeds the LSB of the selected register, and
the MSB of the selected register appears on the JTDO output. The JTMS input controls the state transitions of the
main TAP controller state machine.

Data on the JTDI and JTMS pins is sampled on the rising edge of the JTCK input clock signal. Data on the JTDO
pin changes on the falling edge of the JTCK clock signal.

14.2.2 JTAG TAP Controllier

The VR4400MC implements the 16-state JTAG TAP controller as defined in the IEEE JTAG specitication.

The TAP controller state machine can be put in its Reset state in one of two ways. Deassertion of the VooOk input
will reset the TAP controller. Keeping the JTMS input signal asserted through five consecutive rising edges of the
JTCK clock input will also send the TAP controller state machine into its Reset state. In either case, keeping JTMS
asserted will maintain the Reset state.

14.2.3 Instruction Register
The Vr4400MC's JTAG instruction register is three bits wide and is encoded as follows.

MSB...LSB Selected Data Register
00O Boundary Scan register (External Test only)
001 Bypass Register
01 x Bypass Register
1 x X Bypass Register

B L4y27525 0089775 T20 WA 113

CHAPTER 14 JTAG INTERFACE

The Instruction register is composed of two stages - the shift register stage and the parallel output latch. When
the TAP controlier is in the Reset state, the value 7 (111) is loaded into the paraliel output latch, thus selecting the
Bypass register as the default. When the TAP controller is in the Capture-IR state, the value 4 (100) is loaded into
the shift register stage. When the TAP controller is in the Shift-IR state, data is serially shifted into the shift register
stage of the Instruction register from the JTDI input pin, and the MSB of the instruction register’s shift register stage
is shifted out onto the JTDO pin. When the TAP controller is in the Update-IR state, the current datain the shift register
stage is loaded into the paralle! output latch.

14.2.4 Bypass Register
The Bypass Register is one bit wide. When the TAP controller is in the Shift-DR (Bypass) state, the data on the
JTDI pin is shifted into the bypass register, and the bypass register's output is shifted out onto the JTDO output pin.

14.2.5 Boundary Scan Register

The Boundary Scan register is 319 bits wide. The three most significant bits contro! the output enables on the
various bidirectional buses. The most significant bit is the JTAG output enable bit for the SysAD, SysADC, SysCmd
and SysCmdP buses. The next most significant bit is the JTAG output enable for the SCData and SCDChk buses.
The third most significant bit is the JTAG output enable for the SCTag and SCTChk buses. The remaining 316 bits
correspond to 316 signal pads of the Va4400MC. The scan order of these bits is listed in APPENDIX C JTAG
ORDERING at the end of this document.

When the TAP controller is in the Reset state, the three most significant bits of the Boundary Scan register are
set to “0" (the default JTAG output enable control on all the bidirectional pins is to disable the outputs). When the
TAP controller is in the Capture-DR (Boundary Scan) state, the data currently present on all the Va4400MC's input
and /O pins are latched into the Boundary Scan register. The Boundary Scan register bits corresponding to output
pins are arbitrary in this state and must not be checked during the scan out process. When the TAP controller is in
the Shift-DR (Boundary Scan) state, data is serially shified into the Boundary Scan register from the JTDI pin, and
the contents of the Boundary Scan register are shifted out onto the JTDO pin. When the TAP controlieris inthe Update-
DR (Boundary Scan) state, the current data in the Boundary Scan register is latched into its paraliel output latch, and
the bits corresponding to output pins and those 10 pins whose outputs are enabled (by the three MSBs of the Boundary
Scan register) are enabled onto the Va4400MC’s pins.

14.3 Iimplementation Specific Details

« The MasterClock, MasterOut, Syncin and SyncOut pads do not have JTAG.

» Some pairs of output pads share a single JTAG bit. These are: SCAddrOW and SCAddr0X, SCAddr0Y and
SCAddroz, SCWrwW and SCWrX, SCWrY and SCWrZ, TClock{0] and TClock{1], RClock[0] and RClock(1].

+ Allinput pads data are first latched into a Processor Clock based register in the pad cell before they are captured
into the Boundary Scan register in the Capture-DR (Boundary Scan) state. When the Phase locked loop is
disabled, the processor clock is half the frequency of MasterClock. Therefore the data setup required at the
input pads is greater than two MasterClock periods before the rising edge of JTCK when the TAP controller
is in the Capture-DR (Boundary Scan) state.

+ The output enable controls generated from the three most significant bits of the Boundary Scan register are
latched into a Processor Clock based register before they actually enable the data onto the pads. Therefore
the delay from the rising edge of JTCK in the Update-DR (Boundary Scan) state to data valid at the output pins
of the chip is greater than two MasterClock periods.

e B L427525 0089776 967 W

CHAPTER 15 PIN SUMMARY

Secondary cache interface pins:

SCData(127:0):(i/o) A 128-bit bus used to read or write cache data from/to the secondary cache.

SCDChk(15:0): (/o) A 16-bit bus which conveys two ECC fields that cover the upper or lower 64 bits of the

SCTag(24:0):

SCTChk(6:0):

(i/0)
(ifo)

SCAddr(17:1): (o)

SCAddroz:
SCAddroY:
SCAddr0X:
SCAddrow:
SCAPar(2:0):

SCOE:
scwrz:
scwry:
SCWrX:
SCWrw:
scocs:

SCTCS:

(0)
(0)
(0)
(0)
(o)

(0)
(0)
(o)
(0)
(0
(0)

(o)

System interface pins:

SysAD(63:0):

SysADC(7:0):
SysCmd(8:0):

SysCmdP:

Validin:
VaiidOut:

ExtRqgst:

(ilo)

(i/o0)
(i/0)

(i/0)

U]

(o)

(i)

SCData fromJ/to the secondary cache.
A 25-bit bus used to read or write cache tags from/to the secondary cache.

A 7-bit bus which conveys an ECC field that covers the SCTag from/to the secondary
cache.

A 17-bit bus which addresses the secondary cache.
Bit 0 of the secondary cache address.
Bit O of the secondary cache address.
Bit O of the secondary cache address.
Bit O of the secondary cache address.

The secondary cache address even parity bus cover the following bits:
SCAPar(2) 7 bits: SCWr, SCAddr(17:12)
SCAPar(1) 7 bits: SCDCS, SCAddr(11:6)
SCAPar(0) 7 bits: SCTCS, SCAddr(5:0)

A signal which enables the outputs of the secondary cache RAMs,
Secondary cache write enable.
Secondary cache write enable.
Secondary cache write enable.
Secondary cache write enable.

A signal which enables the chip select pins of the secondary cache RAMs associated
with SCData and SCDChk.

A signal which enables the chip select pins of the secondary cache RAMs associated
with SCTag and SCTChk.

A 64-bit bus used for address and data transmission between the processor and an
external agent.

An 8-bit bus containing check bits for the SysAD bus.

A 9-bit bus used for command and data identifier transmission between the processor
and an external agent.

A single even parity bit over the SysCmd bus. When the system interface is set in the
parity mode, the processor indicates the ECC error of the secondary cache by using this bit.

Signals that an external agent is driving a valid address or valid data on the SysAD bus
and a valid command or data identitier on the SysCmd bus during this cycle.

Signals that the processor is driving a valid address or valid data on the SysAD bus and
a valid command or data identifier on the SysCmd bus during this cycle.

Signals that the system interface needs to submit an external request.

B Lu27525 0089777 4T3 MM s

CHAPTER 15 PIN SUMMARY

Release: (o) Signals that the processor is releasing the system interface to slave state.

RdRdy: (i) Signals that an external agent is capable of accepting a processor read, invalidate, or
update request in both non-overlap and overlap mode or a read followed by a potential
invalidate or update request in overlap mode.

WrRdy: (i) Signals that an external agent is capable of accepting a processor write request in both
non-overlap and overiap mode.

fvdAck: (i) Signals that a processor invalidate or update request has completed successiully.

ivdErr: (i) Signals that a processor invalidate or update request has completed unsuccesstully.
Interrupt pin:

I—nTO): {iy One of six general processor interrupts, bit-wise ORed with bit 0 of the interrupt register.
Non-maskable interrupt pin:

NMI: (i) Non-maskable interrupt, ORed with bit 6 of the interrupt register.
Boot time mode control interface pins:

Modein: (i) Serial boot mode data in.

ModeClock: (o) Serial boot mode data clock out at the system clock frequency divided by 256.

JTAG interface pins:

JTDI: (i) JTAG serial data in.

JTDO: {0) JTAG serial data out.

JTMS: (i) JTAG command signal, signals that the serial data in is command data.

JTCK: (i JTAG serial clock input. Make this signal low when the JTAG interface is not used.

Maintenance pins:
TClock(1:0): (o) Two identical transmit clocks at the operation frequency of the system interface.
RClock(1:0): (o) Two identical receive clocks at the operation frequency of the system interface.
MasterClock: (i) Master clock input at the operation frequency of the processor.

MasterOut: (o) Master clock output aligned with MasterClock.

SyncOut: (o) Synchronization clock output.
Syncin: (i) Synchronization clock input.
100ut: (o) Outputslew rate control feedback loop output. Mustbe connectedio |OIn through a delay

loop that models the IO path from the Va4400MC to an external agent.
10In: (i) Output slew rate control feedback loop input.

VooOk: (i) When asserted, this signal indicates to the VrR4400MC that the power supply voltage has
been within the specified range for more than 100 milliseconds and will remain stable.
The assertion of VooOK will initiate the reading of the boot time mode contro! serial stream.,

ColdReset: {iy This signal must be asserted for a power on reset or a cold reset. The clocks SClock,
TClock, and RClock begin to cycle and are synchronized with the deassertion edge of
ColdReset. ColdReset must be de-asserted synchronously with MasterClock.

116 B b427525 0089778 73T W

CHAPTER 15 PIN SUMMARY

Reset:

Fauit:
VooP:
GndP:
Status(7:0):

VooSense:

GndSense:

(0)
i)
0
{0)
(ifo)

(i/0)

This signal must be asserted for any reset sequence. It may be asseried synchronously
or asynchronously for a cold reset, or synchronously to initiate a warm reset. Reset must
be de-asserted synchronously with MasterClock.

Mismatch output of boundary comparators.

Quiet Vco for the internal phase locked loop.
Quiet Gnd for the internal phase locked loop.
An 8-bit bus that indicates the current operation status of the processor.

This is a special pin used only in component testing and characterization. It provides a
separate, direct connection from the an-chip Voo node to a package pin without attaching
to the in-package power planes. Test fixtures treat VooSense as an analog output pin;
the voltage at this pin directly shows the behavior of the on-chip Voo. Thus, characteri-
zation engineers can easily observe the effects of di/dt noise, transmission line reflections,
elc. VooSense should be connected to Voo in functional system designs.

GndSense provides a separate, direct connection from the on-chip Gnd node to a
package pin without attaching to the in-package ground planes. GndSense should be
connected to Gnd in functional system designs.

117
B Lu27?525 0089779 b7b IH

APPENDIX A SUB-BLOCK ORDERING

Sub-block ordering is an order for transmitting the data elements that form block of data when the data element
transmitted first is not the data element at the beginning of the block. Sub-block ordering causes the data elements
of the biock to be transmitted in an order that fills out sub-blocks of increasing size. For the Va4400MC, the smallest
data element of a block transter is a double word, therefore, the double word at the target address is transferred first,
followed by the double word that fills out the quad word that contains the starting double word. Next the quad word
that fills out an octal word containing the starting quad word is transferred in the same order as the first quad word,
followed by the octal word that fills out a hex word containing the starting octal word in the same order as the first
octal word, and so on through sub-blocks of increasing size until the entire block has been transterred.

Perhaps an easier way to consider sub-block ordering is to look at a method for generating the addresses, within
the block, of the double words to be transferred for sub-block ordering. A simple method for generating such addresses
is to bit-wise XOr the starting double word address with the output of a binary counter that is counting the double
words in the block starting at double word zero.

The following tables iliustrate the sequence of double words transferred using sub-block ordering for a thirty-two
word block based on three different starting block addresses. For these illustrations the double words in the block
will be identified by their block addresses. The block address for each double word in a block is derived by numbering
the double words in the block sequentially starting with zero.

The tables also include a binary count of the double words in the block to illustrate the XOr relationship between
this count, the starting address and the block addresses of the double words transferred.

Table A-1 Sequence of Double Words Transferred Using Sub-block Ordering (a)

Starting Binary Double word
Cycle block address count transferred
1 0010 0000 0010
2 0010 0001 0011
3 0010 0010 0000
4 0010 0011 0001
5 0010 0100 0110
6 0010 0101 0111
7 0010 0110 0100
8 0010 o1n 0101
g 0010 1000 1010
10 0010 1001 1011
1 0010 1010 1000
12 0010 1011 1001
13 0010 1100 1110
14 0010 1101 1111
15 0010 1110 1100
16 0010 111 1101

119
B t42?525 0089780 396 IE

APPENDIX A SUB-BLOCK ORDERING

Table A-2 Sequence of Double Words Transferred Using Sub-biock Ordering (b)

Starting Binary Double word
Cycle block address count transferred
1 10114 0000 1011
2 1011 0001 1010
3 1011 0010 1001
4 1011 o011 1000
5 1011 0100 1111
6 1011 0101 1110
7 1011 0110 1101
8 1011 0111 1100
9 1011 1000 0011
10 1011 1001 0010
11 1011 1010 0001
12 1011 1011 0000
13 1011 1100 0111
14 101 1101 0110
15 1011 1110 0101
16 1011 1111 0100
Table A-3 Sequence of Double Words Transferred Using Sub-block Ordering (c)
Starting Binary Double word
Cycle block address count transferred
1 0101 0000 0101
2 0101 0001 0100
3 0101 0010 0111
4 0101 0011 0110
5 0101 0100° 0001
6 0101 o1 0000
7 0101 0110 0011
8 0101 o111 0010
9 0101 1000 1101
10 0101 1001 1100
11 0101 1010 1111
12 0101 1011 1110
13 0101 1100 1001
14 0101 1101 1000
15 0101 1110 1011
16 0101 1111 1010

120 B Lu2?525 0089781 224 W

APPENDIX B EVEN PARITY

The descriptions of parity as even or odd often have different meanings to different people. Even parity is defined
for the VR4400MC as follows:

For a field of n bits protected by a single parity bit, if the number of ones among the n data bits is an even number,
then the even parity bit will be a 0. If the number of ones among the n data bits is an odd number, then the even
parity bit will be a 1. For example, if all n of the data bits are 0, the parity bit will also be a 0 if there are no data bits

in error. If all n of the data bits are 1, and the number of data bits n is an odd number, then the parity bit will be a
1 if there are no data bits in error.

1
B Ly27525 0089782 160 WM 12

APPENDIX C JTAG ORDERING

The following list is the order of the pins associated with the JTAG Bouncary Scan Register starting from JTDI
and ending at JTDO.

SCDChk[13] SysAD[29]
SysADC[1) SCData[125]
SCDChK(1] Reset
SysADCI[5] SCTag[20)
SCDChk(5] SCData[93)
Status[0] SCData[60]
Status(1] SysAD[60]
Status{2] SCData[28])
Status[3) SysAD[28]
IvdErr SCData(124]
Status(4) ColdReset
ivdAck SCTag[21]
Status(5) SCData[92]
Status(6) SCData[59]
Status(7] SysAD[S9]
SCDChk(7] SCData(27)
SysADC[7) SysAD[27]
SCDChk(3) SCData[123}
SysADC[3] 10In
SCDChk([15) SCTag(22)
VooQk SCData[91}
SCTag[16] SCData(58])
SCDChk[11} SysADI[58]
SCData[63] SCData[26)
SysAD([63] SysAD[26)
SCData[31) SCData[122]
SysAD([31}] 100ut
SCData[127] SCTag(23]
SCTag(17) SCData(90]
SCData[95] SCData[57]
SCData[62] SysAD|[57]
SysADI[62) SCData([25]
SCData[30] SysAD(25]
SysAD[30} SCData[121]}
SCData[126] GrpRun
SCTag(18} SCTagl24]
SCData[94] SCData{89]
RClock[1..0] (share the same JTAG bit) SCData[58)
SCTag{19] SysAD[56)
SCData{61) SCData[24]
SysAD[61] SysAD[24]
SCData[29] SCData[120]

B Lu27525 0089783 0T WA

APPENDIX C JTAG ORDERING

GrpStall
SCTChk[0]
SCData[88]
SCDChkI8]
SysADCI8)
SCDChk(2]
SysADC([2)
SCDChk{14]
NMI
SCTChk[1]
SCDChk{10]
SCData[55]
SysADI[55]
SCData[23]
SysAD{23}
SCData[119]
Release
SCTChk([2)
SCData[87]
SCData[54]
SysAD[54)
SysAD(22]
Modeln
SCData[22)
RdRdy
SCData(118)
SCData[86)
SCData(53)
SysAD[53]
SCData[21]
SysAD[21)
SCData{117)
ExtRast
SCTChk([3)
SCData[85]
SCData[52)
SysAD[52]
SCDatz[20]
SysAD[20]
SCData[116}
ValidOut
SCTChk[4]
SCData(84)
SCDatz[51]
SysAD[31]
SCData[i9)
SysAD[19]
SCDatzi115)

Validin
SCTChk(5]
SCData[83]
SCAddrOW, X (share the same JTAG bit)
SCAddrQY,Z (share the same JTAG bit)
SCAddr[1]
SCData[50]
SysAD[50]
SCData[18]
SysAD[18]
SCDataf114)
o]
SCTCHK[6)
SCData{82]
SCData[49]
SysAD[49)
SCData[17]
SysAD([17]
SCData[113}
SCAddr{2)/1nt[1]
SCAddr(3)
SCData[81]
SCData[48]
SysAD[48]
SCData[16)
SysAD[16}
SCData[112)
SCAddr{4)/int[2)
SCAddr[5]
SCData[80]}
SCAddr[8)
SCAddr(7]
SCAddr{8]
SCAddr(9]
SCAddr{10]
SCAddr[11]
RFU
SCAddr{12)
SCAddr{13}
SCAddr[14]
SCAddr[15)
SCAddr[16)
SCAddr{17]
SCData[64]
SCAPar|0]
SCAPar(1)/int[3]
SCData[986]
SysAD[0]

124 B Ly27525 0089784 T33 M

APPENDIX C JTAG ORDERING

SCData{0]
SysAD(32]
SCData(32)
SCData[65]
SCAPar|2]
SCOE/int(4]
SCData[97]
SysAD({1]
SCData(1)
SysAD[33)
SCData[33]
SCData[66])
SCDCS
SCTCS/Int(5)
SCData([98]
SysAD[2]
SCDatal2)
SysAD[34)
SCData[34}
SCTag(0]

SCWrW,X (share the same JTAG bit)
SCWrY,Z (share the same JTAG bit)

SCData(67]
SCTag[1]
SysCmd[0}
SCData[99)
SysAD[3]
SCData(3)
SysAD[35}
SCData[35)
SCData[68]
SCTag(2)
SysCmd[1]
SCDatz[100]
SysAD(4)
SCData[4]
SysAD([36]
SCData{36]
SCData[69]
SCTagl3)
SysCmd|2)
SCData(101]
SysAD(5]
SCData[5]
SysAD(37]
SCDatal37]
SCData[70]
WrRdy

ModeClk
SCData{102}
SysAD[6]
SCData(6)
SysAD(38]
SCData(38]
SCData[71)
SCTag[4]
SysCmd|[3}
SCDataf103)
SysADI[7}
SCData[7)
SysAD({39]
SCData(39)
SCDChk[8]
SCTag[5)
SysCmd{4]
SCDChk([12]
SysADCI0}
SCDChk[0]
SysADCI[4)
SCDChk{4]
SCData(72]
SCTag(6)
SysCmd[5]
SCData[104]}
SysAD[8]
SCData[8]
SysAD[40]
SCData[40]
SCData(73]
SCTag(7)
SysCmd(6]
SCData[105]
SysADI[9]
SCData[9]
SysAD[41]
SCDatal41]
SCData[74)
SCTag(8}
SysCmd(7]
SCData[1086)
SysAD(10]
SCData[10)
SysAD{42]
SCDatal42)
SCData[75)
SCTagi9]

B Ly27?525 0D&87ae5 9°T IR

125

APPENDIX C JTAG ORDERING

SysCmdi8]
SCData{107]
SysAD[11]
SCData{11]
SysAD[43]
SCData[43]
SCData{76)
SCTag|10}
SysCmdP
SCData{108)
SysAD[12]
SCData[12]
SysAD[44]
SCData[44]
SCData[77]
SCTag{i1]
Fault
SCData{108]
SysAD[13]
SCData{13)
SysAD[45)
SCData[453]
SCTag(12}
TClock{1..0] (share the same JTAG bit)
SCDatz[78)
SCTag(13)
SCDate[110]
SysAD[14]
SCDatal14]
SysADI46]
SCData[46)
SCData[79]
SCTag(i4]
SCData[111]
SysAD[15}
SCDatz{15]
SysAD[47]
SCData[47])
SCDChki{e}
SCTag(15]
SCTag_OE (JTAG output enable control for SCTag and SCTChk buses)
SCData_OE (JTAG output enable control for SCData and SCDChk buses)
SysAD_OE (JTAG output enable control for SysAD, SysADC, SysCmd and SysCmdP buses)

126 B bu42?525 0089786 40L HH

APPENDIX D CONSTRAINTS

The VR4400MC has several constraints. For details, referto VR4000, V4400 USER'S MANUAL—ARCHITECTURE.

B L427525 0089787 742 WM 127

