0.35 μm CMOS Embedded Array EA-9HD Family

WHAT IS AN EMBEDDED ARRAY?

An embedded array is a high-performance semi-custom LSI that uses in its internal area the basic cell of a gate array, and can integrate a large variety of macros, including the same type of RAM as a cell-based IC.

With an embedded array, a highly functional, high-performance LSI of the cell-based IC class can be realized.

Because it is possible to manufacture wafers and perform simulation in parallel, the end of simulation leaves only the wiring process to be completed, thus enabling the TAT up until sample completion to be reduced to the same level as for gate arrays.

By using an embedded array as the initial mass-produced product of cell-based ICs, it is possible to construct a system in express time.

Moreover, if the macro structure and gate scale levels are the same, the embedded array can be put to common use as a master wafer. Because of this, the cost of embedded arrays is lower than cell-based ICs, and it is possible to develop a variety of derivative products.

Furthermore, because the circuitry is easier to modify, embedded arrays aid in risk reduction.

FEATURES

Highly Integrated, Super High-Speed, Low Power Consumption-Type Embedded Array Using 0.35 μ m Process

Realizes the high-level function, high performance LSI
Easy derivative-product development or reworking
of the cell-based IC class
Macro common to cell-based IC (CB-9/9VX) provided

• TAT reduced to gate array level

Family Name		EA-9HD
Supply voltage		3.3 V ±0.3 V
Delay time	Internal gates ^{Note 1}	131 ps
	Input buffers ^{Note 2}	229 ps
	Output buffers ^{Note 3}	1396 ps
Power consumption		0.524 µW/MHz/cell (internal gates)

Notes 1. 2NAND power gate, fanout = 1, standard wiring length value

- 2. The value when fanout = 1, standard wiring length value
- 3. The value when load capacitance 15 pF

3-metal layer

Part Number	µPD65443	µPD65444	μPD65445	µPD65446	µPD65448	µPD65449	μPD65451	µPD65454	µPD65456	µPD65458
Number of I/O pads	172	196	216	268	327	380	436	516	588	708
Number of raw gates	76720	103032	128872	207000	314104	440832	592020	840768	1104432	1626628
Number of usable gates	42196	56667	70879	113850	172757	220416	296010	420384	552216	731982

4-metal layer

Part Number	μPD65461	μPD65464	μPD65466	μPD65468	μPD65469	μPD65470	μPD65471
Number of I/O pads	436	516	588	708	764	820	876
Number of raw gates	592020	840768	1104432	1626628	1906800	2203360	2521344
Number of usable gates	355212	504460	662659	894645	1048740	1211848	1386739

Remark The actual number of usable signal lines depends on the package and the number of power supply and GND pins used.

Support of Variety of Pin Count Packages

- 100- to 304-pin plastic QFP (fine-pitch)
- 48- to 120-pin plastic TQFP
- 144-pin plastic LQFP
- Abundance of Macro Libraries
- Memory Macro -Cell-based IC type Gate array type Single-port high-speed synchronous compiled RAM Single-port asynchronous soft macro RAM • Dual-port high-speed synchronous compiled RAM · Dual-port asynchronous soft macro RAM · Single-port high-density synchronous compiled RAM · Single-port asynchronous compiled RAM Dual-port high-density synchronous compiled RAM Dual-port asynchronous compiled RAM · High-speed synchronous ROM · Dual-port synchronous compiled RAM • FIFO^{Note} User Logic · Logic gates Decoder Adder Multiplexer · Shift register - PLL -• PLL for skew adjustment PLL for multiplication I/O Buffers **CPU** Peripheral Core · Serial interface · Low noise buffer • GTL+ HSTL^{Note} High drive capacity buffer Timer/counter Interrupt controller • PCI • UART + FIFO

Note Macros that are under development or under investigation.

Pamphlet A13163EJ4V0PF

- 225- to 352-pin plastic BGA
- 256- to 696-pin tape BGA

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +4.6	V
Input voltage				
LVTTL interface buffer	VI	VI < VDD +0.5 V	-0.5 to +4.6	V
LVTTL interface buffer with fail safe	VI	VI < VDD +0.5 V	-0.5 to +4.6	V
function				
TTL 5-V tolerant voltage interface buffer	VI	VI < VDD +3.0 V	-0.5 to +6.6	V
Output voltage				
LVTTL output buffer	Vo	Vo < Vdd +0.5 V	-0.5 to +4.6	V
TTL 5-V output buffer	Vo	Vo < VDD +3.0 V	-0.5 to +6.6	V
5-V output buffer for CMOS	Vo	Vo < VDD +3.0 V	-0.5 to +6.6	V
Output current ^{Note}	lo	lo∟ = 1 mA (FV0A)	3	mA
		lo∟ = 2 mA (FV0B)	7	mA
		loL = 3 mA (FO09)	10	mA
		loL = 6 mA (FO04)	20	mA
		lo∟ = 9 mA (FO01)	30	mA
		loL = 12 mA (FO02)	40	mA
		loL = 18 mA (FO03)	60	mA
		loL = 24 mA (FO06)	75	mA
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Note Output current: Indicates the maximum value of the direct current that is allowed to flow through this output pin.

Remark With the exception of the buffer with fail safe function, be sure to apply voltage to the I/O pins only after the supply voltage has been fixed.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd	LVTTL inte	erface	3.00	3.30	3.60	V
High-level input voltage	VIH	(LVTTL inp	out buffer with	2.0		Vdd	V
Low-level input voltage	VIL	fail-safe fu	nction)	0		0.8	V
Positive trigger voltage	VP		Schmitt input	1.4		2.4	V
Negative trigger voltage	VN			0.8		1.6	V
Hysteresis voltage	Vн			0.3		1.5	V
High-level input voltage	VIH	TTL 5-V tolerant voltage		2.0		5.5	V
Low-level input voltage	VIL	interface		0		0.8	V
Positive trigger voltage	VP		Schmitt input	1.4		2.4	V
Negative trigger voltage	VN			0.8		1.6	V
Hysteresis voltage	Vн			0.3		1.5	V
Input rise time	tri	Normal inp	but	0		200	ns
Input fall time	tri			0		200	ns
Input rise time	tri	Schmitt input		0		10	ms
Input fall time	tri			0		10	ms

Remark When inputting a slow signal with a long rise/fall time, noise on a signal line may affect the operation.

Therefore, use a Schmitt trigger input buffer.

Because fluctuation on the power supply line due to simultaneous operation of output buffers reduces the capability of the Schmitt trigger input buffer, carefully determine pin placement.

DC Characteristics (VDD = $3.3 \text{ V} \pm 0.3 \text{ V}$)

(1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Static current consumptionNote1						
μPD65443, μPD65444,	Idds	VI = VDD or GND		2.0	300	μA
μPD65445, μPD65446,						
μPD65448, μPD65449,						
μPD65451, μPD65454,	Idds	VI = VDD or GND		3.0	400	μA
μPD65456						
μPD65458	Idds	VI = VDD or GND		4.0	800	μA
Off-state output current ^{Note2}						
LVTTL output	loz	Vo = VDD or GND			±10	μA
TTL 5-V tolerant voltage output	loz	Vo = VDD or GND			±10	μA
5-V tolerant voltage for CMOS	loz	Vo = VDD or GND			±10	μA
Output flow current ^{Note3}	IR	$V_{\text{PU}} = 5.5 \text{ V}, \text{Rpu} = 2 \text{ k}\Omega,$			0.1	μA
5-V tolerant output for CMOS		Vo = 3.0 V				
Output short-circuit currentNote4	los	Vo = GND			-250	mA
Input leakage current						
Normal input	lı	VI = VDD or GND			±1.0	μA
With pull-up resistor (50 k Ω)	lı	VI = GND	-28	-83	-190	μA
With pull-up resistor (5 k Ω)	lı	VI = GND	-280	-700	-1900	μA
With pull-down resistor (50 k Ω)	lı	VI = VDD	28	83	190	μA
Pull-up resistor 50 kΩ ^{Note5}	Rpu	VI = GND	18.9	39.8	107.1	kΩ
Pull-up resistor 5 kΩ ^{№ote5}	Rpu	VI = GND	1.9	4.7	10.7	kΩ
Pull-down resistor 50 kΩ ^{№ote5}	Rpd	VI = VDD	18.9	39.8	107.1	kΩ

DC Characteristics (VDD = $3.3 \text{ V} \pm 0.3 \text{ V}$)

(2/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Low-level output current ^{Note6}						
3 mA buffer (FO09)	lol	LVTTL output type	3.00 ^{Note7}			mA
6 mA buffer (FO04)	lol	Vol = 0.4 V	6.00			mA
9 mA buffer (FO01)	lol		9.00			mA
12 mA buffer (FO02)	lol		12.00			mA
18 mA buffer (FO03)	lol	-	18.00			mA
24 mA buffer (FO06)	lol	-	24.00			mA
1 mA buffer (FV0A)	lol	TTL 5-V tolerant voltage	1.00			mA
2 mA buffer (FV0B)	lol	output type	2.00			mA
3 mA buffer (FV09)	lol	Vol = 0.4 V	3.00			mA
6 mA buffer (FV04)	lol		6.00			mA
9 mA buffer (FV01)	lol		9.00			mA
12 mA buffer (FV02)	lol	-	12.00			mA
18 mA buffer (FV03)	lol		18.00			mA
24 mA buffer (FV06)	lol		24.00			mA
3 mA buffer (FY09)	lol	5-V tolerant voltage output	3.00			mA
6 mA buffer (FY04)	lol	type for CMOS	6.00			mA
9 mA buffer (FY01)	lol	Vol = 0.4 V	9.00			mA
12 mA buffer (FY02)	IOL		12.00			mA
18 mA buffer (FY03)	lol		18.00			mA
24 mA buffer (FY06)	lol		24.00			mA

DC Characteristics (VDD = $3.3 \text{ V} \pm 0.3 \text{ V}$)

(3/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level output current ^{Note6}						
3 mA buffer (FO09)	Іон	LVTTL output type	-3.00			mA
6 mA buffer (FO04)	Іон	Vон = 2.4 V	-6.00			mA
9 mA buffer (FO01)	Іон		-9.00			mA
12 mA buffer (FO02)	Іон		-12.00			mA
18 mA buffer (FO03)	Іон		-18.00			mA
24 mA buffer (FO06)	Іон		-24.00			mA
1 mA buffer (FV0A)	Іон	TTL 5-V tolerant voltage	-1.00			mA
2 mA buffer (FV0B)	Іон	output type	-1.00			mA
3 mA buffer (FV09)	Іон	Vон = 2.4 V	-3.00			mA
6 mA buffer (FV04)	Іон		-3.00			mA
9 mA buffer (FV01)	Іон		-3.00			mA
12 mA buffer (FV02)	Іон		-3.00			mA
18 mA buffer (FV03)	Іон		-6.00			mA
24 mA buffer (FV06)	Іон		-6.00			mA
Low-level output voltage						
LVTTL output type	Vol	Iol = 0 mA			0.1	V
LVTTL output type (with 5 k Ω pull-up resistor)	Vol	Iol = 0 mA			0.2	V
TTL 5-V tolerant voltage output type	Vol	Iol = 0 mA			0.1	V
5-V tolerant voltage output type for CMOS	Vol	lol = 0 mA			0.1	V
High-level output voltage						
LVTTL output type	Vон	Iон = 0 mA	Vdd - 0.1			V
TTL 5-V tolerant voltage output type	Vон	Iон = 0 mA	Vdd - 0.2			V

Notes 1. When using I/O blocks (etc.) with pull-up/pull-down resistors incorporated, the static current consumption increases.

2. Because there is a bias toward the 5-V protection circuit in the TTL 5-V tolerant voltage and 5-V tolerant voltage for CMOS 3-state or I/O buffers, the output off-state current increases slightly.

3. When the LSI supply current is pulled up to a higher voltage in the CMOS I/O buffers, a flow current from the output pin to inside the LSI is generated.

- 4. The output short-circuit time is less than 1 second and for 1 LSI pin only.
- 5. The pull-up and pull-down resistances vary depending on the input and output voltages.
- 6. All the buffers with the same output drive capability have the same specifications.
- 7. 2.00 mA for a buffer with a 5 k Ω pull-up resistor.

Remarks 1. <u>The + and – symbols attached to the current values in the table indicate the direction of the current. The symbol is + when the current is flowing into the device, and – when flowing out of the device.</u>

2. Blanks in the table indicate that the values are undergoing evaluation.

AC Characteristics

The values in the table below refer to when the supply voltage of the internal gate array block is 3.3 V.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Toggle frequency	ftog	Internal toggl	e F/F (fanout = 2)	670			MHz
Transfer delay time	tpd	Internal gates	Internal gates Fanout = 1, wiring length 0 mm		94		ps
			Fanout = 1, standard wiring length		131		ps
			Standard load		108		ps
		Internal gates,	Fanout = 1, standard wiring length		107		ps
		2NAND	Standard load		94		ps
		Input buffers	Fanout = 1, standard wiring length		229		ps
			Standard load		222		ps
	Output buffer (FO01) C		(FO01) C∟ = 15 pF		1396		ps
Output rise time	tr	Output buffer	(FO01) C∟ = 15 pF		2391		ps
Output fall time	tr	Output buffer	(FO01) C∟ = 15 pF		1872		ps

Remark Standard load: Fanout = 2, wiring length 0 mm

Standard wiring length: 145 μ m/1 pin pair

DEVELOPMENT TOOLS

Easy interface with your EWS or PC

Users can choose the following tools to their environment.

Caution Some functions may not be supported. Make it sure before use.

OPENCAD [™]	V5.5	Configuration	Tool
		Jungananon	

Function	NEC Tool	Interface Data	Commercially Available Tool Interface
Function simulator	-		ModelSim [™] /Verilog-XL [™] /
			NC-Verilog [™] /VCS [™]
Schmatic editor	Vdraw™	Not list	_
Logic synthesis	_		Design Compiler®
Gate-level simulatorNote 1	V. sim™	Veriloa™ HDI	ModelSim/Verilog-XL/NC-Verilog/VCS
Formal verifier	_	Verling TIDE	Formality [®] /Tuxedo [™] -LEC/
		• Test nattern	Conformal [™] -LEC
STA ^{Note 1}	Tiara		PrimeTime®
Fault simulationNote 2	C. FGRADE™		_
Design for test	TESTACT/NEC_SCAN/	• Delay data file	DFT Compiler/TetraMAX™
	NEC_BSCAN/NEC_BIST/	Delay data me	
	TESTBUS	• Timina limit	
Floor planner ^{Note 3}	CBIC : ace_floorplan		_
	G/A : Galet		
Layout and wiringNote 3	Galet		Silicon Ensemble™ (Only CBIC)

Notes 1. Sign-off tool

2. Tool not supported in the HP[™] version

3. Individually supported tool

OPENCAD, C. FGRADE, Vdraw, and V.sim are trademarks of NEC Corporation.

Design Compiler is a registered trademark of Synopsys, Inc. in Japan.

PrimeTime and Formality are registered trademarks of Synopsys, Inc. in the USA.

Silicon Ensemble, Verilog, NC-Verilog, and Verilog-XL are trademarks of Cadence Design Systems, Inc.

SUN and Solaris are trademarks of Sun Microsystems, Inc.

VCS and TetraMAX are trademarks of Synopsys, Inc.

HP and HP-UX are trademarks of Hewlett-Packard Co.

Motif is a trademark of The Open Group(TOG)/(OSF).

ModelSim is a trademark of Model Technology Inc.

Tuxedo and Conformal are trademarks of Verplex Systems, Inc.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- (Note)
- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4

For further information, please contact:

NEC Corporation

NEC Building 7-1, Shiba 5-chome, Minato-ku Tokyo 108-8001, Japan Tel: 03-3454-1111 http://www.ic.nec.co.jp/

[North & South America]

NEC Electronics Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 http://www.necel.com/

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 011-6462-6810 Fax: 011-6462-6829

[Europe]

NEC Electronics (Europe) GmbH

Oberrather Str. 4 40472 Düsseldorf, Germany Tel: 0211-6503-01 Fax: 0211-6503-327 http://www.ee.nec.de/

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800 Fax: 01-3067-5899

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541 Fax: 02-66754299

Branch The Netherlands

Boschdijk 187a 5612 HB Eindhoven The Netherlands Tel: 040-2445845 Fax: 040-2444580

Branch Sweden

P.O. Box 134 18322 Taeby, Sweden Tel: 08-6380820 Fax: 08-6380388

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133 Fax: 01908-670-290

[Asia & Oceania]

NEC Electronics Hong Kong Limited

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

Seoul Branch

10F, ILSONG Bldg., 157-37, Samsung-Dong, Kangnam-Ku Seoul, the Republic of Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

7th Floor, HSBC Tower, 101Yin Cheng Road, Pudong New Area, Shanghai P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road #12-01/10 Novena Square Singapore 307684 Tel: 253-8311 Fax: 250-3583

G02.4

Document No. A13163EJ4V0PF00(4th edition) Date Published September 2002 N CP(K)

© NEC Corporation 1997 Printed on recycled paper