Analog/Digital Mixed ASIC
MIXED SIGNAL ASIC
MA-BA, MAA-9 Family

CONTENTS

Mixed Signal Applications 3
Mixed Signal ASIC Product Lines 5
MA-8A 8
MA-9 Family 21
Packages 36

NEC Electronics' mixed signal solutions Taking on New Challenges Toward the Next Generation

Mixed Signal Applications

Mixed signal ASICs enable higher quality and a better cost performance in AFE (analog front end) circuits and battery management circuits for applications such as sensors, PC peripheral equipment, and mobile devices.

Application Concept

Applications dealing with "minute analog signal input in a wide band" require signal amplifiers or analog-digital arithmetic circuits (analog front end:AFE) for the analog interface. Also, for mobile equipment, the need to extend the battery life means an improved power efficiency is essential.

NEC Electronics provides a custom-built battery management IC for cellular phones and other mobile applications.

Mixed Signal ASIC Product Lines

NEC Electronics offers mixed signal ASICs that employ a BiCMOS process with a process rule of $0.65 \mu \mathrm{~m}$ to $0.35 \mu \mathrm{~m}$. Furthermore, the $0.35 \mu \mathrm{~m} \mathrm{BiCMOS}$ can incorporate our $0.35 \mu \mathrm{~m}$ cell-based IC CB-9 Family VX Type analog core.

MA-8A
(μ PD688××)
$0.65 \mu \mathrm{~m}$ BiCMOS process

5 V power supply
(supports 3.3 V library)

MA-9 Family (μ PD681 $\times \times$)

$0.35 \mu \mathrm{~m}$ BiCMOS process (Equivalent to CB-9VX) 3.3 V power supply For large-scale systems

Mixed Signal ASIC Product Lines

Support of Small-Scale Packages

In addition to conventional mold packages, various CSPs (chip size packages) are available to support set downsizing.

Features

Support of digital/analog mixed circuits

By employing the latest BiCMOS process, the MA-8A realizes the integration of a $0.65 \mu \mathrm{~m}$ CMOS gate array and analog ASIC (analog master) on a single chip.

Analog block element configuration prioritizing circuit functions

Analog circuits that mix bipolar transistors and CMOS transistors can be created through the use of the BiCMOS process:

High input impedance operational amplifiers
Sample and hold circuits
Analog switches, etc.

Simple design and short development time

The logic block can be easily developed with OPENCAD ${ }^{\text {TM }}$ (NEC Electronics' original CAE tool).
Furthermore, a short development time can be achieved, which is another advantage of ASICs.

Application Fields

The MA-8A can be used to integrate analog/digital mixed circuits applied to multimedia and various other fields on one chip.

Mobile devices (battery management/speaker drive)
Cellular phones (PDC, PHS, CDMA, GSM, GPRS)
OPDAs
OPortable game equipment

Sensor modules
Geomagnetic sensors
(cellular phone GPS, etc.)
OGyro sensors
(compensating for hand-shake in DSC, DVC)
OMagnetic sensors (DC motor control, etc.)

MA-8A Application Examples

Cellular Phones (Battery Management)

Digital Still Cameras, Single Lens Reflex Cameras (Zoom Lens Control)

Chip Configuration

The MA-8A is mainly composed of a logic circuit (gate array block) and an analog circuit. The I/O cells for the digital/analog interface perform input/output of digital signals between the logic circuit and the analog circuit.

I/O Cells for Digital/Analog Interface

Basic Specifications

Logic Circuit

Part number		μ PD688××
Process		$0.65 \mu \mathrm{~m} \mathrm{BiCMOS}$ process
Supply voltage		$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (I/O block, internal gates)
Interface level	Internal gates ${ }^{\text {Note } 1}$	CMOS, TTL
	Input buffer ${ }^{\text {Note } 2}$	190 ps (TYP.)
	Output buffer ${ }^{\text {Note } 3}$	340 ps (TYP.)

Notes 1. Value assuming 2 -input NAND power gate, fan-out 1 , and wiring length $0.6 \mathrm{~mm} / 1$ pin pair.
2. Value assuming fan-out 2 , wiring length $0.6 \mathrm{~mm} / 1$ pin pair.
3. Value assuming load capacitance 15 pF , block name FO01.

Remark The logic circuit characteristics are the same as those of NEC Electronics' CMOS-8 Family.

Analog Circuit

Part number		$\mu \mathrm{PD688} \mathrm{\times} \mathrm{\times} \times$
Process		$0.65 \mu \mathrm{~m} \mathrm{BiCMOS}$ process
Supply voltage	$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	
	NPN type	PNP type (lateral)

Note Values indicated are for reference only. The relative precision applies only to when the element is positioned in an adjacent location.

Electrical Specifications

Absolute Maximum Ratings

Item	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdo, $\mathrm{V}_{\text {cc }}$		-0.5 to +6.0	V
Input/output voltage (logic circuit)	Vi/Vo		-0.5 to $\mathrm{VDD}+0.5$	V
Input current (logic circuit)	1		20	mA
Output current (logic circuit)	lo	$\mathrm{loL}=3 \mathrm{~mA}$	10	mA
		$\mathrm{loL}=6 \mathrm{~mA}$	15	mA
		$\mathrm{loL}=9 \mathrm{~mA}$	20	mA
		$\mathrm{loL}=12 \mathrm{~mA}$	30	mA
		$\mathrm{loL}=18 \mathrm{~mA}$	40	mA
		$\mathrm{loL}=24 \mathrm{~mA}$	60	mA
Operating ambient temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Definition of absolute maximum rating terms

Item	Symbol	Meaning
Supply voltage	VDD	The range of voltage that, if applied to the VoD pin, will not cause destruction or lower reliability.
Input voltage	V_{I}	The range of voltage that, if applied to the input pin, will not cause destruction or lower reliability.
Output voltage	V_{0}	The range of voltage that, if applied to the output pin, will not cause destruction or lower reliability.
Input current	II	The absolute value of current capacity that, if applied to the input pin, will not cause latchup to occur.
Output current	Io	The absolute value of DC current capacity that, if output from or input to the output pin, will not cause destruction or lower reliability.
Operating ambient temperature	T_{A}	Range of ambient temperature in which normal logical operation will occur.
Storage temperature	$T_{\text {stg }}$	Range of pin temperature that will not cause destruction or lower reliability when voltage and current are not applied.

Standard specification CMOS interface conditions

$V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{J}}=-40\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	MIN	TYP	MAX	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
High-level input voltage	V_{H}	CMOS interface	0.7 VdD		VDD	V
Low-level input voltage	VIL		0		0.3VdD	V
Positive trigger voltage	V_{P}		1.80		4.00	V
Negative trigger voltage	V_{N}		0.60		3.10	V
Hysteresis voltage	V_{H}		0.30		1.50	V
High-level input voltage	V_{H}	TTL interface	2.29		VDD	V
Low-level input voltage	VIL		0		0.77	V
Positive trigger voltage	V_{P}		1.15		2.54	V
Negative trigger voltage	V_{N}		0.59		1.85	V
Hysteresis voltage	V_{H}		0.27		1.50	V
Input rise time	tri	Normal input	0		200	ns
Input fall time	tfi		0		200	ns
Input rise time	tri	Schmitt input ${ }^{\text {Note }}$	0		10	ms
Input fall time	tfi		0		10	ms

Note Do not use this for the clock signal.
Remark If a signal with a long rise/fall time is input, use a Schmitt trigger input buffer to prevent malfunction due to noise superimposed on the signal line.
Fluctuation of power caused by simultaneous operation of output buffers lowers the capability of the Schmitt trigger input buffer, and therefore, care must be exercised in laying out the pins.

Standard specification TTL interface conditions

$V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}\left(\mathrm{T}_{J}=0\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	MIN	TYP	MAX	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
High-level input voltage	VIH	CMOS interface	0.7 V dD		VDD	V
Low-level input voltage	VIL		0.0		0.3 VDD	V
Positive trigger voltage	V_{P}		1.90		4.00	V
Negative trigger voltage	V_{N}		0.63		3.10	V
Hysteresis voltage	V_{H}		0.31		1.50	V
High-level input voltage	$\mathrm{V}_{\text {IH }}$	TTL interface	2.20		VDD	V
Low-level input voltage	VIL		0.0		0.8	V
Positive trigger voltage	V_{P}		1.20		2.40	V
Negative trigger voltage	V_{N}		0.60		1.80	V
Hysteresis voltage	V_{H}		0.30		1.50	V
Input rise time	tri	Normal input	0		200	ns
Input fall time	tfi		0		200	ns
Input rise time	tri	Schmitt input ${ }^{\text {Note }}$	0		10	ms
Input fall time	tfi		0		10	ms

Note Do not use this for the clock signal.
Remark If a signal with a long rise/fall time is input, use a Schmitt trigger input buffer to prevent malfunction due to noise superimposed on the signal line.
Fluctuation of power caused by simultaneous operation of output buffers lowers the capability of the Schmitt trigger input buffer, and therefore, care must be exercised in laying out the pins.

MA-8A Development Procedure

Development of the MA-8A is carried out by both the user and NEC Electronics by dividing the work between gate array design using the design resources of the user and circuit design applying NEC Electronics' analog ASIC technology, which results in a shorter development time.

The transition of development work between the user and NEC Electronics is called "interfacing." The interface level depends on how far the user carries out development work and what data the user provides to NEC Electronics.

Circuit diagram level interface
In this development method, the user takes care of system circuit design, and the subsequent LSI circuit design and simulation are performed by NEC Electronics.

Simulation level interface
In this development method, the user is in charge of development from circuit design to simulation using engineering workstations (EWS) and CAD system simulation tools, and NEC Electronics is responsible for the rest of the development work.

The MA-8A is divided into a logic circuit and an analog circuit, and two kinds of development methods combining the above-described interface levels are available.

	Development Method	System Circuit Design	LSI Circuit Design	Circuit Synthesis	Layout Design	ES Production
(1)	[Logic circuit] Simulation level interface [Analog circuit] Circuit diagram level interface		(User side)		(NEC Electronics side)	
(2)	[Logic circuit] Circuit diagram level interface [Analog circuit] Circuit diagram level interface					

(1) Logic circuit: Simulation level interface Analog circuit: Circuit diagram level interface

(2) Logic circuit: Circuit diagram level interface Analog circuit: Circuit diagram level interface

MA-8A Development Tools

The MA-8A provides development tools that support ASIC development by the user for the logic circuits. NEC Electronics will take charge of circuit design for the analog circuits according to the user's specifications.

Caution A pin should be drawn out as a test pin where the analog circuit is connected to the logic circuit. Configure the area where the analog circuit is connected to the logic circuit, as well as the test circuit of the logic circuit in the test circuit block.

Features

The MA-9 Family (μ PD681XX) consists of mixed signal ASICs that aim for system-on-a-chip through the use of a leading-edge $0.35 \mu \mathrm{~m}$ BiCMOS process pioneered by NEC Electronics.

Support of analog IP core

The MA-9 Family can utilize analog circuit design resources such as the A/D converter and D/A converter of NEC Electronics' $0.35 \mu \mathrm{~m}$ cell-based IC.

Leading-edge BiCMOS process

High-speed digital circuits and high-accuracy, sophisticated analog circuits can now be realized on a single chip by employing NEC Electronics' leading-edge $0.35 \mu \mathrm{~m}$ BiCMOS process.

Low power consumption

A low power consumption is achieved for LSIs by employing a low-voltage operation process (3.3 V).

Flexible mixed signal development environment

NEC Electronics' development environment for the CB-9 Family VX Type cell-based IC can be used for the internal logic.

MA-9 Family

Application Fields

Since CB-9 and later submicron cell-based ICs cannot configure an analog circuit, they may not support CB solutions. Furthermore, if they incorporate an A/D converter and D/A converter, a good cost performance is not possible due to the restrictions on cell-based IC allocation.

In these cases, by integrating the entire cell-based IC, or the A/D converter, D/A converter, and analog circuit blocks on a single chip, the MA-9 Family provides the user with the best solution.

Storage equipment
O Servo/write control DVD-ROM/RAM drives CD-R/W drives

PC peripheral terminals
Analog front end (A/D converter, D/A converter, analog circuit)

OSensor signal amplification Color LCD panels Printers PDAs

Sensor modules
Geomagnetic sensors (cellular phone GPS, etc.)
Gyro sensors
(compensating for hand-shake in DSC, DVC)
OMagnetic sensors (DC motor control, etc.)

MA-9 Family Application Examples

Analog Front End for PC Peripherals (Printer, Tablet)

MA-9 Family

Gyro Sensor/Magnetic Sensor (1/2) (Sensor Signal Amplification + A/D Conversion)

MA-9 Family

Gyro Sensor/Magnetic Sensor (2/2) (Sensor Signal Amplification + A/D Conversion)

Chip Configuration

Logic circuit

OUser logic (logic gates)
OA/D or D/A converter macro (CB-9 Family VX Type) ${ }^{\text {Note }}$
OTest circuit
Test circuit including analog-logic I/F block
Note Neither a CPU nor ROM can be mounted.

Analog circuit

OConfigured by operational amplifier, comparator, reference power supply, analog switch, etc.

NEC Electronics designs the circuit according to the user's circuit specifications.

Basic Specifications

Logic Circuit

Part number		μ PD681××
Process		$0.35 \mu \mathrm{~m}$ BiCMOS procr
Supply voltage		$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (1/O block, int
Maximum integration (logic only)		1.7 million gates (us
Interface level		LVTTL
Delay time	Internal gates ${ }^{\text {Note } 1}$	114 ps (TYP.)
	Input buffer ${ }^{\text {Note }} 2$	169 ps (TYP.)
	Output buffer ${ }^{\text {Note } 3}$	864 ps (TYP.)

Notes 1. Value assuming 2-input NAND power gate, fan-out 2, and standard wiring length.
2. Value assuming fan-out 2 and standard wiring length.
3. Value assuming load capacitance 15 pF , loL $=18 \mathrm{~mA}$.

Remark The logic circuit characteristics are the same as those of NEC Electronics' CB-9 Family.

Analog Circuit

Part number		μ PD681 $\times \times$
Process		$0.35 \mu \mathrm{~m} \mathrm{BiCMOS}$ process
Supply voltage	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	
	NPN type	PNP type (vertical type)

Note Values indicated are for reference only. The relative precision applies only to when the element is positioned in an adjacent location.

Number of Steps and Usable Gates

Step Number	Number of Usable Gates	
	vX Type	
	2-Layer Wiring	3-Layer Wiring
B60	89,600	131,800
C02	117,700	174,200
C40	142,000	211,500
C78	176,100	264,200
D01	195,700	293,600
D26	215,900	326,200
D52	242,200	365,900
D90	277,900	422,900
E16	308,300	469,200
E54	344,200	535,400
E80	373,300	572,400
F18	412,800	647,300
F44	448,300	703,000
F70	479,800	741,500
G08	521,600	824,900
G34	554,300	876,600
G72	612,600	954,500
H10	655,600	1,045,900
H49	714,700	1,140,200
H87	775,400	1,218,600
J26	813,300	1,309,300
J51	855,900	1,377,800
K15	968,800	1,536,000
K92	1,071,600	1,741,400

Remark The number of usable gates is calculated using 2-input NAND gate conversion.
Moreover, the above-indicated number of usable gates depends on the megafunctions that are provided and the logic use efficiency, and should therefore be treated as a reference value.

Remark The number of steps and number of usable gates given for the MA-9 Family indicate the size of the entire internal logic including the mixed signal core.

Electrical Specifications

Absolute Maximum Ratings

Item	Symbol	Conditions	Rating	Unit
Supply voltage	VDD			
3.3 V			-0.5 to +4.6	V
1/O voltage	V/Vo			
LVTTL buffer		$\mathrm{V}_{\mathrm{I}} / \mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-0.5 to +4.6	V
Output current	10	$\mathrm{loL}=1 \mathrm{~mA}$	3	mA
		$\mathrm{loL}=2 \mathrm{~mA}$	7	mA
		$\mathrm{loL}=3 \mathrm{~mA}$	10	mA
		$\mathrm{loL}=6 \mathrm{~mA}$	20	mA
		$\mathrm{loL}=9 \mathrm{~mA}$	30	mA
		$\mathrm{loL}=12 \mathrm{~mA}$	40	mA
		$\mathrm{loL}=18 \mathrm{~mA}$	60	mA
		$\mathrm{loL}=24 \mathrm{~mA}$	75	mA
Operating ambient temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Definition of absolute maximum rating terms

Item	Symbol	Meaning
Supply voltage	$V_{D D}$	The range of voltage that, if applied to the VDD pin, will not cause destruction or lower reliability.
Input voltage	V_{I}	The range of voltage that, if applied to the input pin, will not cause destruction or lower reliability.
Output voltage	V_{0}	The range of voltage that, if applied to the output pin, will not cause destruction or lower reliability.
Input current	II	The absolute value of current capacity that, if applied to the input pin, will not cause latchup to occur.
Output current	Io	The absolute value of DC current capacity that, if output from or input to the output pin, will not cause destruction or lower reliability.
Operating ambient temperature	T_{A}	Range of ambient temperature in which normal logical operation will occur.
Storage temperature	$T_{\text {stg }}$	Range of pin temperature that will not cause destruction or lower reliability when voltage and current are not applied.

MA-9 Family

Recommended Operating Range

Item	Symbol	Conditions	MIN	TYP	MAX	Unit
Supply voltage	VDD	3.3 V power supply	3.0	3.3	3.6	V
Negative trigger voltage	V_{N}	LVTTL buffer	0.6		1.8	V
Positive trigger voltage	V_{P}	LVTTL buffer	1.2		2.4	V
Hysteresis voltage	V_{H}	LVTTL buffer	0.3		1.5	V
Low-level input voltage	VIL	LVTTL buffer	0		0.8	V
High-level input voltage	$\mathrm{V}_{\text {IH }}$	LVTTL buffer	2.0		VDD	V
Input rise time	tri	Normal input	0		200	ns
Input fall time	tfi		0		200	ns
Input rise time	tri	Schmitt input	0		10	ms
Input fall time	tfi		0		10	ms

Remark The logic circuit characteristics are the same as those of NEC Electronics' CB-9 Family.

Analog IP Core

A/D Converter

Core Name	Power Consumption (MAX.)	Differential Linearity Error (MAX.)	Integral Linearity Error (MAX.)	Circuit Type	Operating Power Supply Voltage
10 bit- $100 \mathrm{kHz-1ch}$	18.0 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 1.5 \mathrm{LSB}$	Successive approximation	2.7 to 3.6 V
10 bit-100 kHz-8ch_Mpx	18.0 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 1.5 \mathrm{LSB}$	Successive approximation	3.0 to 3.6 V
12 bit- $300 \mathrm{kHz}-4 \mathrm{ch} _M p x$	20.2 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 4.0 \mathrm{LSB}$	Successive approximation	2.7 to 3.6 V
6 bit- 70 MHz	504 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 2.0 \mathrm{LSB}$	Flash	3.0 to 3.6 V
8 bit- $200 \mathrm{kHz}-1 \mathrm{ch}$	28.8 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 2.0 \mathrm{LSB}$	Successive approximation	3.3 V (TYP.)
8 bit- $200 \mathrm{kHz-8ch}$					
8 bit- 50 MHz	108 mW	$\pm 1.0 \mathrm{LSB}$ (TYP.)	$\pm 1.0 \mathrm{LSB}$ (TYP.)	Sub-ranging	3.0 to 3.6 V
8 bit- 8 MHz					

Remark $\quad T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

D/A Converter

Core Name	Power Consumption (MAX.)	Differential Linearity Error (MAX.)	Integral Linearity Error (MAX.)	Circuit Type	Operating Power Supply Voltage
10 bit-100 kHz-1ch	3.6 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 1.0 \mathrm{LSB}$	Resistor string	3.3 V (TYP.)
10 bit-135 kHz-1ch	374 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 1.5 \mathrm{LSB}$	Resistor string	3.0 to 3.6 V
10 bit- $30 \mathrm{MHz-1ch}$	90 mW	$\pm 0.5 \mathrm{LSB}$	$\pm 2.25 \mathrm{LSB}$	Resistor string	3.0 to 3.6 V
10 bit- $30 \mathrm{MHz-2ch}$	180 mW	$\pm 0.5 \mathrm{LSB}$	$\pm 2.25 \mathrm{LSB}$	Resistor string	3.0 to 3.6 V
10 bit- $30 \mathrm{MHz}-3 \mathrm{ch}$	266.4 mW	$\pm 0.5 \mathrm{LSB}$	$\pm 2.25 \mathrm{LSB}$	Resistor string	3.0 to 3.6 V
8 bit- $200 \mathrm{kHz}-1 \mathrm{ch}$	7.2 mW	$\pm 1.0 \mathrm{LSB}$	$\pm 1.0 \mathrm{LSB}$	Resistor string	3.3 V (TYP.)
8 bit- $30 \mathrm{MHz}-1 \mathrm{ch}$	90 mW	$\pm 0.5 \mathrm{LSB}$	$\pm 1.0 \mathrm{LSB}$	Resistor string	3.0 to 3.6 V
8 bit- $30 \mathrm{MHz-2ch}$	180 mW	$\pm 0.5 \mathrm{LSB}$	$\pm 1.0 \mathrm{LSB}$	Resistor string	3.0 to 3.6 V
8 bit- $30 \mathrm{MHz}-3 \mathrm{ch}$	T.B.D.	$\pm 1.0 \mathrm{LSB}$	$\pm 3.0 \mathrm{LSB}$	Resistor string	Under development

Remark $\quad \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

MA-9 Family

MA-9 Family Development Procedure

The MA-9 Family is developed by separating the logic circuit and analog circuit and combining the circuit diagram level interface and simulation level interface.

Development Method	System Circuit Design	LSI Circuit Design	Circuit Synthesis	Layout Design
[logic circuit]				
Simulation level interface Production				
		(User side)		
[Analog circuit] Circuit diagram level interface			(NEC Electronics side)	

Logic circuit: Simulation level interface
Analog circuit: Circuit diagram level interface

MA-9 Family

MA-9 Family Development Tools

The MA-9 Family provides development tools that support ASIC development by the user for each logic circuit and analog circuit separately.

For the logic circuits, a simple design environment is enabled by using OPENCAD, NEC Electronics' original CAE tool, and for the analog circuits, the design environment is enabled by using a CAE tool ideal for digital-analog integrated circuits.

Analog Artist

Circuit diagram entry: Composer ${ }^{\text {TM }}$
Simulator: Spectre/Verilog ${ }^{\text {TM }} \mathrm{HDL}$
Layout editor: DLE,Virtuoso
Layout tester: Diva

MA-9 Family

Design Flowchart

Packages

MA-8A

The MA-8A supports various packages, enabling users to select the package type and optimum number of pins for their system and circuit scale (chip size).

Mold Packages

Package	No. of Pins	Lead Pitch (mm)	Nominal Size	Body Size (mm)	Main Unit Thickness (mm)
SOP	20	1.27	7.62 mm (300)	-	-
SSOP	16	0.65	5.72 mm (225)	-	-
	20	0.65	5.72 mm (225)	-	-
	20	0.65	7.62 mm (300)	-	-
	24	0.65	7.62 mm (300)	-	-
	30	0.65	7.62 mm (300)	-	-
	36	0.65	7.62 mm (300)	-	-
	38	0.65	7.62 mm (300)	-	-
	42	0.65	9.53 mm (375)	-	-
	48	0.65	9.53 mm (375)	-	-
QFP	44	0.8	-	10×10	2.70
	44	0.8	-	10×10	1.40
	48	0.5	-	7×7	1.00
	48	0.65	-	10×10	2.20
	52	0.65	-	10×10	1.40
	52	1.00	-	14×14	2.55
	64	0.5	-	10×10	1.00
	64	0.8	-	14×14	1.40
	64	1.0	-	14×20	2.00
	68	0.65	-	10×14	2.20
	72	0.5	-	10×10	2.20
	74	1.0	-	20×20	3.70
	80	0.5	-	12×12	1.00
	80	0.65	-	14×14	2.00
	80	0.8	-	14×20	2.70
	100	0.4	-	12×12	1.00
	100	0.5	-	14×14	1.40
	100	0.5	-	14×14	1.00
	100	0.65	-	14×20	2.20
	120	0.4	-	14×14	1.00
	120	0.5	-	20×20	2.70
	144	0.5	-	20×20	1.40
	160	0.5	-	24×24	1.40
	176	0.4	-	20×20	1.40
	208	0.5	-	28×28	1.40
	240	0.5	-	32×32	1.40

Packages

CSP (Chip Size Package)

Package	No. of Pins	Ball Array	Body Size (mm)	Production Status	Package	No. of Pins	Ball Array	Body Size (mm)	Production Status
FPBGA	61	3	6×6	\bigcirc	FPLGA	64	3	6×6	\bigcirc
	80	4	7×7			84	4	7.5×7.5	\bigcirc
	161	4	10×10	\bigcirc		100	Full	8×7	\bigcirc
	209	4	12×12	\bigcirc Note		108	Full	7.5×7.5	\bigcirc
	225	4	13×13	\bigcirc		112	4	8×8	\bigcirc
	249	4	13×13	\bigcirc		168	4	11×11	\bigcirc
	257	4	14×14	\bigcirc		192	4	11×11	\bigcirc Note
	273	4	15×15	\bigcirc Note		224	4	13×13	\bigcirc
	303	4	16×16	\bigcirc		304	4	16×16	\bigcirc
	393	4-0-2	16×16	\bigcirc Note		405	4-0-2	16×16	\bigcirc Note

Note Under development

Remarks 1. FPBGA: Fine Pitch Ball Grid Array, FPLGA: Fine Pitch Land Grid Array
2. \bigcirc : Can be produced Blank: In planning

3 Development costs, including the board and sorting jig, will be charged for a CSP.

Packages

MA-9 Family

The MA-9 Family supports various packages, enabling users to select the package type and optimum number of pins for their system and circuit scale (chip size).

For packages other than QFP, contact NEC Electronics.

Package					Step Size								
Type	No. of Pins	External Dimensions (mm)	Lead Pitch (mm)		B60	C02	C40	C78	D01	D26	D52	D90	E16
QFP (FP)	100	14×14	0.50	1.45	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	
	120	20×20	0.50	2.70	-								
	144	20×20	0.50	2.70	-	-	-						
	$160^{\text {Note }}$	20×20	0.50	2.70	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$176{ }^{\text {Note }}$	24×24	0.50	2.70	-	-	-	-		\triangle	\triangle	\bigcirc	\bigcirc
	208 ${ }^{\text {Note }}$	28×28	0.50	3.20	-	-	-	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$240^{\text {Note }}$	32×32	0.50	3.20	-	-	-	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	304 ${ }^{\text {Note }}$	40×40	0.50	3.20	-	-	-	-	-	-	-	-	-
TQFP	100	14×14	0.50	1.00	\bigcirc						\bigcirc		\bigcirc

Note Low-thermal-resistance type
Remark \bigcirc : Can be used, \triangle : Under development, - : Cannot be used, Blank: Under study

Package					Step Size							
Type	No. of Pins	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { External } \\ \text { Dimensions } \\ (\mathrm{mm}) \end{array} \\ \hline \end{array}$	Lead Pitch (mm)	Resin Thickness (mm)	E54	E80	F18	F44	F70	G08	G34	G72
QFP (FP)	100	14×14	0.50	1.45						-	-	-
	120	20×20	0.50	2.70								
	144	20×20	0.50	2.70				\bigcirc				
	$160^{\text {Note }}$	20×20	0.50	2.70	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	$176{ }^{\text {Note }}$	24×24	0.50	2.70	\bigcirc							
	$208{ }^{\text {Note }}$	28×28	0.50	3.20	\bigcirc							
	$240^{\text {Note }}$	32×32	0.50	3.20	\bigcirc							
	$304{ }^{\text {Note }}$	40×40	0.50	3.20	-	\bigcirc						
TQFP	100	14×14	0.50	1.00						-	-	-

[^0]
Packages

Package					Step Size						
Type	No. of Pins	$\begin{array}{\|c\|} \hline \text { External } \\ \text { Dimensions } \\ (\mathrm{mm}) \end{array}$	Lead Pitch (mm)	Resin Thickness (mm)	H10	H49	H87	J26	J51	K15	K92
QFP (FP)	100	14×14	0.50	1.45	-	-	-	-	-	-	-
	120	20×20	0.50	2.70				-	-	-	-
	144	20×20	0.50	2.70				-	-	-	-
	$160^{\text {Note }}$	20×20	0.50	2.70							
	$176{ }^{\text {Note }}$	24×24	0.50	2.70							
	$208{ }^{\text {Note }}$	28×28	0.50	3.20	\bigcirc	\bigcirc			\bigcirc		\bigcirc
	$240^{\text {Note }}$	32×32	0.50	3.20	\bigcirc	\bigcirc			\bigcirc		\bigcirc
	304 ${ }^{\text {Note }}$	40×40	0.50	3.20	\bigcirc	\bigcirc					\bigcirc
TQFP	100	14×14	0.50	1.00	-	-	-	-	-	-	-

Note Low-thermal-resistance type

Remark \bigcirc : Can be used, \triangle : Under development, - : Cannot be used, Blank: Under study

MEMO

\qquad

MEMO

\qquad

MEMO

\qquad

EEPROM, FPBGA, and OPENCAD are trademarks of NEC Electronics Corporation.
Analog Artist, Composer, and Verilog are trademarks of Cadence Design Systems, Inc.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of May, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics's willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

For further information, please contact:

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/
[North America]
NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: $408-588-6000$
800-366-9782
http://www.necelam.com/

[Europe]
NEC Electronics (Europe) GmbH
Oberrather Str. 4
40472 Düsseldorf, Germany
Tel: 0211-6503-01
http://www.ee.nec.de/
Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787
Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800
Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541
Branch The Netherlands
Boschdijk 187a
5612 HB Eindhoven
The Netherlands
Tel: 040-2445845
Tyskland Filial
P.O. Box 134
18322 Taeby, Sweden
Tel: 08-6380820
United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

[Asia \& Oceania]

NEC Electronics Hong Kong Limited

12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886-9318

Seoul Branch
11F., Samik Lavied'or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737

NEC Electronics Shanghai, Ltd.

7th Floor, HSBC Tower, 101Yin Cheng East Road, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-6841-1138

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-2719-2377
NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
\#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311

[^0]: Note Low-thermal-resistance type
 Remark \bigcirc : Can be used, \triangle : Under development, - : Cannot be used, Blank: Under study

