
User’s Manual

Printed in Japan
©

V850 FAMILY TM

32-bit Single-Chip Microcontroller

Architecture

Document No. U10243EJ7V0UM00 (7th edition)
Date Published March 2001 J CP(K)

1994

User’s Manual U10243EJ7V0UM2

[MEMO]

3User’s Manual U10243EJ7V0UM

SUMMARY OF CONTENTS

CHAPTER 1 INTRODUCTION ... 16

CHAPTER 2 REGISTER SET ... 20

CHAPTER 3 DATA TYPE ... 27

CHAPTER 4 ADDRESS SPACE ... 30

CHAPTER 5 INSTRUCTIONS .. 38

CHAPTER 6 INTERRUPTS AND EXCEPTIONS ... 106

CHAPTER 7 RESET ... 113

CHAPTER 8 PIPELINE .. 114

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER).................................. 127

APPENDIX B INSTRUCTION LIST ... 135

APPENDIX C INSTRUCTION OP CODE MAP ... 137

APPENDIX D INDEX .. 139

User’s Manual U10243EJ7V0UM4

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

V800 Series, V850 Family, V850/SA1, V850/SB1, V850/SB2, V850/SF1, V850/SV1, V850E/MA1, V850E/MA2,

V850E/IA1, V850E/IA2, V850E/MS1, V850E/MS2, V851, V852, V853, and V854 are trademarks of NEC

Corporation.

Windows is a trademark or a registered trademark of Microsoft Corporation in the United States and/or

other countries.

Purchase of NEC I2C components conveys a license under the Philips I2C Patent Rights to use

these components in an I2C system, provided that the system conforms to the I2C Standard

Specification as defined by Philips.

5User’s Manual U10243EJ7V0UM

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

M8E 00. 4

The information in this document is current as of March, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

User’s Manual U10243EJ7V0UM6

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2

7User’s Manual U10243EJ7V0UM

Major Revisions in this Edition

Page Description

Throughout Change of target device

p. 18 Change of Figure 1-1 V850 Family Product Development

p. 20 Modification of description in 2.1.1 (1) General registers

p. 21 Modification of Figure 2-1 Program Register List

p. 22 Modification of Figure 2-2 List of Program Register Operations

p. 103 Modification of Table 5-10 List of Number of Instruction Execution Clock Cycles

p. 106 Modification of description in CHAPTER 6 INTERRUPTS AND EXCEPTIONS

p. 111 Modification of description in 6.2.2 Exception trap

p. 111 Modification of Figure 6-5 Exception Trap Processing Format

The mark shows major revised points.

User’s Manual U10243EJ7V0UM8

INTRODUCTION

Target Readers This manual is intended for users who wish to understand the functions of the V850 CPU

core in the V850 Family in designing systems using the products of the V850 Family.

• V850 CPU Core Products

• V851TM Note 1 : µPD703000, 703001, 70P3000

• V852TM Note 2 : µPD703002, 70P3002

• V853TM : µPD703003A, 70F3003A, 703003A(A)Note 3,

70F3003A(A)Note 3, 703004A, 703025A, 703025A(A),

70F3025A

• V854TM Note 2 : µPD703006Note 1, 703008, 70F3008, 703008Y,

70F3008Y

• V850/SA1TM : µPD703014A, 703014AY, 703014B, 703014BY,

703015Note 2, 703015YNote 2, 703015A, 703015AY,

703015B, 703015BY, 70F3015BNote 3, 70F3015BYNote 3,

703017A, 70F3017A, 703017AY, 70F3017AY

• V850/SB1TM : µPD703030ANote 3, 703030AYNote 3, 703031A,

703031AY, 703032A, 70F3032A, 703032AY,

70F3032AY, 703033A, 70F3033A, 703033AY,

70F3033AY

• V850/SB2TM : µPD703034A, 703034AY, 703035A, 70F3035A,

703035AY, 70F3035AY, 703036ANote 3, 703036AYNote 3,

703037A, 70F3037A, 703037AY, 70F3037AY

• V850/SF1TM : µPD703078Y, 703079Y, 70F3079Y

• V850/SV1TM : µPD703038Note 3, 703038YNote 3, 70F3038Note 3,

70F3038YNote 3, 703039, 703039Y, 703040, 703040Y,

703041, 703041Y, 70F3040, 70F3040Y

Notes 1. Maintenance parts

2. Discontinued

3. Under development

Purpose This manual is intended for users to understand the functions of the V850 Family

Architecture described in the Organization below.

Organization This manual contains the following information:

• Register set

• Data type

• Instruction format and instruction set

• Interrupts and exceptions

• Pipeline operation

9User’s Manual U10243EJ7V0UM

How to read this manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

To know about the hardware functions:

→ Read the User’s Manual Hardware of each device.

To learn about the functions of a specific instruction in detail:

→ Read CHAPTER 5 INSTRUCTIONS.

To know about the electrical specifications:

→ Read the DATA SHEET of each device.

To understand the overall functions of the V850 Family:

→ Read this manual in the order of CONTENTS.

With the V850 Family, data consisting of 2 bytes is called a half-word, and data

consisting of 4 bytes is called a word.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: ××× (overscore over pin or signal name)

Memory map address: Higher address on the top and lower address on the

bottom

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementaly information

Numeric representation: Binary ... ×××× or ××××B

Decimal ... ××××
Hexadecimal ... ××××H

Prefixes indicating the power of 2 (address space, memory capacity):

K (kilo) ... 210 = 1,024

M (mega) ... 220 = 1,0242

G (giga) ... 230 = 1,0243

Data type: Word ... 32 bits

Halfword ... 16 bits

Byte ... 8 bits

User’s Manual U10243EJ7V0UM10

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

• Documents related to devices

Document Name Data Sheet User’s Manual

Product Name Hardware Architecture

V851 µPD703000, 703001 U10987E U10935E This manual

µPD70P3000 U10988E

V852 µPD703002 U11826E U10038E

µPD70P3002 U11827E

V853 µPD703003A, 703004A, 703025A U13188E U10913E

µPD70F3003A, 70F3025A U13189E

V854 µPD70F3008 U12756E U11969E

µPD70F3008Y U12755E

µPD703006, 703008, 703008Y —

V850/SA1 µPD703014A, 703014AY, 703015A, U14526E U12768E

703015AY, 703017A, 703017AY

µPD70F3017A, 70F3017AY U14527E

V850/SB1 µPD703031A, 703031AY, 703033A, U14734E U13850E

703033AY, 70F3033A, 70F3033AY

µPD703032A, 703032AY, 70F3032A, U14893E

70F3032AY

V850/SB2 µPD703034A, 703034AY, 703035A, U14780E

703035AY, 70F3035A, 70F3035AY

µPD703037A, 703037AY, 70F3037A, U14894E

70F3037AY

V850/SF1 µPD703078Y, 703079Y, 70F3079Y U15183E U14665E

V850/SV1 µPD703039, 703039Y, 703040, 703040Y, U13953E U14462E

703041, 703041Y

µPD70F3040, 70F3040Y U14662E

11User’s Manual U10243EJ7V0UM

• Documents related to development tools (user’s manuals)

Document Name Document Number

IE-703002-MC (In-circuit Emulator for V852, V853, V854, V850/SA1, V850/SB1, V850/SB2, U11595E

V850/SF1, V850/SV1)

IE-703003-MC-EM1 (V853 Peripheral I/O Board) U11596E

IE-703008-MC-EM1 (V854 Peripheral I/O Board) U12420E

IE-703017-MC-EM1 (V850/SA1 Peripheral I/O Board) U12898E

IE-703037-MC-EM1 (V850/SB1, V850/SB2 Peripheral I/O Board) U14151E

IE-703040-MC-EM1 (V850/SV1 Peripheral I/O Board) U14337E

CA850 (Ver. 2.30 or Later) (C Compiler Package) Operation U14568E

C Language U14566E

Project Manager U14569E

Assembly Language U14567E

ID850 (Ver.2.20 or Later) (Integrated Debugger) Operation WindowsTM Based U14580E

SM850 (Ver.2.20 or Later) (System Simulator) Operation Windows Based U14782E

SM850 (Ver. 2.00 or Later) (System Simulator) External Part User Open Interface U14873E

Specifications

RX850 (Ver. 3.13 or Later) (Real-Time OS) Fundamental U13430E

Installation U13410E

Technical U13431E

RX850 Pro (Ver. 3.13) (Real-Time OS) Fundamental U13773E

Installation U13774E

Technical U13772E

RD850 (Ver. 3.01) (Task Debugger) U13737E

RD850 Pro (Ver.3.01) (Task Debugger) U13916E

AZ850 (Ver. 3.0) (System Performance Analyzer) U14410E

PG-FP3 (Flash Memory Programmer) U13502E

User’s Manual U10243EJ7V0UM12

CONTENTS

CHAPTER 1 INTRODUCTION ... 16
1.1 General ... 16
1.2 Architecture Features ... 17
1.3 Product Development ... 18
1.4 CPU Internal Configuration .. 19

CHAPTER 2 REGISTER SET ... 20
2.1 Program Registers .. 20

2.1.1 Program register set .. 20

2.2 System Registers .. 23
2.2.1 Interrupt status saving registers .. 23

2.2.2 NMI status saving registers ... 24

2.2.3 Exception cause register ... 24

2.2.4 Program status word ... 25

2.2.5 System register number .. 26

CHAPTER 3 DATA TYPE ... 27
3.1 Data Format ... 27

3.1.1 Data type and addressing ... 27

3.2 Data Representation ... 28
3.2.1 Integer ... 28

3.2.2 Unsigned integer ... 29

3.2.3 Bit .. 29

3.3 Data Alignment .. 29

CHAPTER 4 ADDRESS SPACE ... 30
4.1 Memory Map .. 31
4.2 Addressing Modes .. 32

4.2.1 Instruction address .. 32

4.2.2 Operand address .. 35

CHAPTER 5 INSTRUCTIONS .. 38
5.1 Instruction Format .. 38
5.2 Outline of Instructions ... 41
5.3 Instruction Set .. 45
5.4 Number of Instruction Execution Clock Cycles .. 103

CHAPTER 6 INTERRUPTS AND EXCEPTIONS ... 106
6.1 Interrupt Processing ... 107

6.1.1 Maskable interrupts ... 107

6.1.2 Non-maskable interrupts ... 109

6.2 Exception Processing .. 110
6.2.1 Software exceptions .. 110

6.2.2 Exception trap ... 111

6.3 Restoring from Interrupt/Exception .. 112

13User’s Manual U10243EJ7V0UM

CHAPTER 7 RESET ... 113
7.1 Initialization ... 113
7.2 Start Up ... 113

CHAPTER 8 PIPELINE .. 114
8.1 Outline of Operation ... 114
8.2 Pipeline Flow During Execution of Instructions .. 115

8.2.1 Load instructions ... 115

8.2.2 Store instructions .. 115

8.2.3 Arithmetic operation instructions (excluding multiply and divide instructions) 115

8.2.4 Multiply instructions ... 116

8.2.5 Divide instructions ... 116

8.2.6 Logical operation instructions .. 116

8.2.7 Saturation operation instructions ... 117

8.2.8 Branch instructions .. 117

8.2.9 Bit manipulation instructions ... 118

8.2.10 Special instructions ... 119

8.3 Pipeline Disorder .. 121
8.3.1 Alignment hazard .. 121

8.3.2 Referencing execution result of load instruction ... 122

8.3.3 Referencing execution result of multiply instruction .. 122

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC 123

8.3.5 Cautions when creating programs .. 123

8.4 Additional Items Related to Pipeline ... 124
8.4.1 Harvard architecture .. 124

8.4.2 Short path .. 125

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER).................................. 127

APPENDIX B INSTRUCTION LIST ... 135

APPENDIX C INSTRUCTION OP CODE MAP ... 137

APPENDIX D INDEX .. 139

User’s Manual U10243EJ7V0UM14

LIST OF FIGURES

Figure No. Title Page

1-1 V850 Family Product Development ... 18

1-2 Internal Configuration .. 19

2-1 Program Register List ... 21

2-2 List of Program Register Operations ... 22

2-3 System Registers .. 23

4-1 Memory Map ... 31

4-2 Relative Addressing (JR disp22/JARL disp22, reg2) .. 32

4-3 Relative Addressing (Bcond disp9) ... 33

4-4 Register Addressing (JMP [reg1]) ... 34

4-5 Based Addressing (Type 1) ... 35

4-6 Based Addressing (Type 2) ... 36

4-7 Bit Addressing ... 37

6-1 Maskable Interrupt Processing Format ... 108

6-2 Non-maskable Interrupt Processing Format ... 109

6-3 Software Exception Processing Format .. 110

6-4 Illegal Instruction Code .. 111

6-5 Exception Trap Processing Format ... 111

6-6 Restoring from Interrupt/Exception ... 112

8-1 Example of Executing Nine Standard Instructions .. 114

8-2 Align Hazard Example ... 121

8-3 Example of Execution Result of Load Instruction .. 122

8-4 Example of Execution Result of Multiply Instruction ... 122

8-5 Example of Execution Result of LDSR Instruction for EIPC and FEPC 123

15User’s Manual U10243EJ7V0UM

LIST OF TABLES

Table No. Title Page

2-1 System Register Number .. 26

5-1 Load/Store Instructions ... 41

5-2 Arithmetic Operation Instructions .. 41

5-3 Saturated Operation Instructions .. 42

5-4 Logical Operation Instructions ... 42

5-5 Branch Instructions ... 43

5-6 Bit Manipulation Instructions ... 44

5-7 Special Instructions ... 44

5-8 List of Conditional Branch Instructions .. 54

5-9 Condition Codes .. 85

5-10 List of Number of Instruction Execution Clock Cycles ... 103

6-1 List of Interrupt/Exception Codes .. 107

7-1 Register Status after Reset ... 113

8-1 Access Times (in Clocks) .. 115

A-1 Instruction Mnemonic (In Alphabetical Order) ... 128

B-1 Mnemonic List ... 135

B-2 Instruction Set ... 136

User’s Manual U10243EJ7V0UM16

CHAPTER 1 INTRODUCTION

The V850 Family is a collection of NEC’s single-chip microcontrollers that have a CPU core using the RISC

microprocessor technology of the V800 SeriesTM, with on-chip ROM/RAM and peripheral I/Os, etc.

The V850 Family of microcontrollers provides a migration path to the existing NEC-original single-chip microcontroller

“78K Series”, and boasts higher cost-performance.

The V850 Family has products that incorporate the V850 and V850E CPUs, however this manual targets products

that incorporate the V850 CPU.

This chapter briefly outlines the V850 Family.

1.1 General

Real-time control systems are used in a wide range of applications, including:

• Office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles

• Automobile electronics such as engine control systems and ABSs (Antilock Braking Systems)

• Factory automation equipment such as NC (Numerical Control) machine tools and various controllers

The great majority of these systems hitherto employed 8-bit or 16-bit microcontrollers. However, the performance

level of these microcontrollers has become inadequate in recent years as control operations have risen in complexity,

leading to the development of increasingly complicated instruction sets and hardware design. As a result, the need

has arisen for a new generation of microcontrollers operable at much higher frequencies to achieve an acceptable

level of performance under today’s more demanding requirements.

The V850 Family of microcontrollers was developed to satisfy this need. This family uses RISC architecture

that can provide maximum performance with simpler hardware, allowing users to obtain a performance

approximately 15 times higher than that of the existing 78K/III Series and 78K/IV Series CISC single-chip

microcontrollers at a lower total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Family is provided with special

instructions such as saturation, bit manipulation, and multiply/divide (executed by a hardware multiplier)

instructions, which are especially suited to digital servo control systems. Moreover, instruction formats are

designed for maximum compiler coding efficiency, allowing the reduction of object code sizes.

CHAPTER 1 INTRODUCTION

17User’s Manual U10243EJ7V0UM

1.2 Architecture Features

• High-performance 32-bit architecture for embedded control

• Number of instructions: 74

• 32-bit general registers: 32

• Load/store instructions in long/short format

• 3-operand instruction

• 5-stage pipeline of 1 clock cycle per stage

• Hardware interlock on register/flag hazards

• Memory space Program space: 16 MB linear

Data space: 4 GB linear

• Special instructions

• Saturation operation instructions

• Bit manipulation instructions

• On-chip multiplier executing multiplication in 1 to 2 clocks (16 bits × 16 bits → 32 bits)

CHAPTER 1 INTRODUCTION

User’s Manual U10243EJ7V0UM18

1.3 Product Development

The V850 Family consists of single-chip microcontrollers that use a RISC microprocessor core.

The V850 Family includes the V851, V852, V853, V854, V850/SA1, V850/SB1, V850/SB2, V850/SF1, and V850/

SV1 which incorporate the V850 CPU, and the V850E/MS1TM, V850E/MS2TM, V850E/MA1TM, V850E/MA2TM, V850E/

IA1TM, V850E/IA2TM, and V850E/xxx which incorporate the V850E CPU.

The products incorporating the V850 CPU are single-chip control-system microcontrollers, and the products

incorporating the V850E CPU are single-chip microcontrollers that have enhanced external bus interface performance

and that support not only the control-system but also data processing.

Figure 1-1. V850 Family Product Development

Note For details of the V850E CPU core architecture, refer to V850E/MS1 User’s Manual Architecture

(U12197E) and V850E1 User’s Manual Architecture (U14559E).

Performance

Year of development

ASSP

Internal flash

V851

Under development

V852

V850E/xxx

V854V853

V850E/MS1

V850/SV1

V850/SA1Ultra-low power
consumption

V850E/IA1

V850 CPU coreNote

V850 CPU Core

V850E/MA2

V850E/MA1

V850/SB1

3V, low-power version
5V, low-power version

with IEBus

5V, low-power version

5V, low-power
version with CAN

V850/Sxx
5V, low-power version with
many pins and IEBus

V850/Sxx
5V, low-power version with
many pins and CAN

V850/Sxx
5V, low-power version with many pins

High-
performance

3V, low-power version with many pins
VCR servo control

Compact versionMemory controller
added

Enhanced memory
controller and

support of SDRAM

Inverter control
with CAN

V850/SB2 V850/SF1

Compact version

V850E/MS2 V850E/IA2
Compact version

CHAPTER 1 INTRODUCTION

19User’s Manual U10243EJ7V0UM

1.4 CPU Internal Configuration

Figure 1-2 shows the internal configuration of the V850 Family.

Figure 1-2. Internal Configuration

The function of each hardware block is as follows:

CPU ································· Executes almost all instructions such as address calculation, arithmetic and logical

operation, and data transfer in one clock by using a 5-stage pipeline. Contains dedicated

hardware such as a multiplier (16 × 16 bits) and a barrel shifter (32 bits/clock) to execute

complicated instructions at high speeds.

Internal ROM ··················· ROM, EPROM, or flash memory mapped from address 00000000H. Can be accessed

by the CPU in one clock during instruction fetch.

Internal RAM ··················· RAM mapped to a space preceding address FFFFEFFFH. Can be accessed by the CPU

in one clock during data access.

Internal peripheral I/O ····· Peripheral I/O area mapped from address FFFFF000H.

BCU ································· Starts the required bus cycle based on a physical address obtained by the CPU. If the

CPU does not issue a request for starting a bus cycle, the BCU generates a prefetch

address, and prefetches an instruction code. The prefetched instruction code is loaded

to an internal instruction queue.

BCUCPUInternal ROM

PC

Multiplier
16 × 16 → 32

32-bit barrel
shifter

 Internal RAM

ROM/
PROM/
flash
memory

System
register

General
register
32 bits × 32

Prefetch
control

Bus
control

Instruction
queue

Internal bus

ALU

Internal
peripheral
I/O

User’s Manual U10243EJ7V0UM20

CHAPTER 2 REGISTER SET

The register sets of the V850 Family can be classified into two types: program register sets that can be used for

general programming, and system register sets that can control the execution environment. All the registers are 32

bits wide.

2.1 Program Registers

2.1.1 Program register set

(1) General registers

The V850 Family has thirty-two general registers, r0 through r31. All these registers can be used for data or

address storage.

However, r0 and r30 are implicitly used by instructions, and care must be exercised in using these registers. r0

is a register that always holds 0, and is used for operations and offset 0 addressing. r30 is used as a base pointer

when accessing memory using the SLD and SST instructions. r1, r3, r4, r5, and r31 are implicitly used by the

assembler and C compiler. Before using these registers, therefore, their contents must be saved so that they

are not lost. The contents must be restored to the registers after the registers have been used. r2 may be used

by the real-time OS. If the real-time OS used does not use r2, r2 can be used as a register for variable.

CHAPTER 2 REGISTER SET

21User’s Manual U10243EJ7V0UM

Figure 2-1. Program Register List

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

r31

Zero Register

Reserved for Address Generation

Stack Pointer (SP)

Global Pointer (GP)

Text Pointer (TP)

Element Pointer (EP)

Link pointer (LP)

PC Program Counter

31 0

CHAPTER 2 REGISTER SET

User’s Manual U10243EJ7V0UM22

Figure 2-2. List of Program Register Operations

Name Usage Operation

r0 Zero register Always holds 0.

r1 Assembler-reserved register Used as working register for address generation.

r2 Address/data variable register (if real-time OS used does not use r2)

r3 Stack pointer Used for stack frame generation when function is

called.

r4 Global pointer Used to access global variable in data area.

r5 Text pointer Used as register for pointing start address of text

areaNote.

r6 to r29 Address/data variable registers

r30 Element pointer Used as base pointer for address generation

when memory is accessed.

r31 Link pointer Used when compiler calls function.

PC Program counter Holds instruction address during program

execution.

Note Text area: Area where program code is placed.

Remark For detailed descriptions of r1, r3 to r5, and r31 used by the assembler and C compiler,

refer to C Compiler Package (CA850) User’s Manual.

(2) Program counter

This register holds an instruction address during program execution. The lower 24 bits of this register are valid,

and bits 31 through 24 are reserved fields (fixed to 0). If a carry occurs from bit 23 to 24, it is ignored.

Bit 0 is always fixed to 0, and execution cannot branch to an odd address.

Remark RFU: Reserved field (Reserved for Future Use)

31

PC RFU

024 23 1

0

CHAPTER 2 REGISTER SET

23User’s Manual U10243EJ7V0UM

2.2 System Registers

The system registers control the status of the V850 Family and hold information on interrupts.

Figure 2-3. System Registers

2.2.1 Interrupt status saving registers

Two interrupt status saving registers are provided: EIPC and EIPSW.

The contents of the PC and PSW are respectively saved in these registers if an exception or interrupt occurs.

If an NMI occurs, however, the contents of the PC and PSW are saved to NMI status saving registers.

When an exception or interrupt occurs, the address of the following instruction is saved to the EIPC register. If

an interrupt occurs while a division (DIVH) instruction is executed, the address of the division instruction currently

being executed is saved.

The current value of the PSW is saved to the EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be saved

by program when multiple interrupts are enabled.

Bits 24 through 31 of the EIPC and bits 8 through 31 of the EIPSW are fixed to 0.

EIPC

EIPSW

Exception/Interrupt PC

Exception/Interrupt PSW

31 0

FEPC

FEPSW

Fatal Error PC

Fatal Error PSW

ECR Exception Cause Register

PSW Program Status Word

31

EIPC PC

0

31

EIPSW PSW

0

CHAPTER 2 REGISTER SET

User’s Manual U10243EJ7V0UM24

2.2.2 NMI status saving registers

The V850 Family is provided with two NMI status saving registers: FEPC and FEPSW.

The contents of the PC and PSW are respectively saved in these registers when an NMI occurs.

The value saved to the FEPC is, like the EIPC, the address of the instruction next to the one executed when the

NMI has occurred (if the NMI occurs while a division (DIVH) instruction is executed, the address of the division

instruction under execution is saved).

The current value of the PSW is saved to the FEPSW.

Bits 24 through 31 of the FEPC and bits 8 through 31 of the FEPSW are fixed to 0.

2.2.3 Exception cause register

The exception cause register (ECR) holds the cause information of an exception, maskable interrupt, or NMI when

any of these events occur. The ECR holds a code which identifies each interrupt source.

This is a read-only register, therefore no data can be written to it using the LDSR instruction.

Bit Position Field Function

31 to 16 FECC Fatal Error Cause Code

NMI code

15 to 0 EICC Exception/Interrupt Cause Code

Exception/interrupt code

31

ECR FECC

0

EICC

16 15

31

FEPC PC

0

31

FEPSW PSW

0

CHAPTER 2 REGISTER SET

25User’s Manual U10243EJ7V0UM

2.2.4 Program status word

The program status word is a collection of flags that indicate the status of the program (result of instruction

execution) and the status of the CPU. If the contents of the PSW register are modified by the LDSR instruction, the

PSW will assume the new value immediately after the LDSR instruction has been executed. In setting the ID flag

to 1, however, interrupts are already disabled even while the LDSR instruction is under execution.
(1/2)

Bit Position Flag Function

31 to 8 RFU Reserved for Future Use
Reserved field (fixed to 0).

7 NP NMI Pending
Indicates that NMI processing is in progress. This flag is set when an NMI is
granted. The NMI request is then masked, and multiple interrupts are disabled.

NP = 0: NMI processing is not in progress
NP = 1: NMI processing is in progress

6 EP Exception Pending
Indicates that exception processing is in progress. This flag is set when an
exception occurs.

EP = 0: Exception processing is not in progress
EP = 1: Exception processing is in progress

5 ID Interrupt Disable
Indicates whether external interrupt request can be accepted.

ID = 0: Interrupt can be accepted
ID = 1: Interrupt cannot be accepted

4 SATNote Saturated
Indicates that an overflow has occurred in a saturation operation and the result is
saturated. This is a cumulative flag. Once the result is saturated, the flag is set to
1 and is not reset to 0 even if the next result does not saturate. To reset this flag,
load data to PSW.
This flag is neither set to 1 nor reset to 0 by a general arithmetic operation
instruction.

SAT = 0: Not saturated
SAT = 1: Saturated

3 CY Carry
Indicates whether a carry or borrow occurred as a result of the operation.

CY = 0: Carry or borrow did not occur
CY = 1: Carry or borrow occurred

2 OVNote Overflow
Indicates whether an overflow occurred as a result of the operation.

OV = 0: Overflow did not occur
OV = 1: Overflow occurred

1 SNote Sign
Indicates whether the result of the operation is negative

S = 0: Result is positive or zero
S = 1: Result is negative

0 Z Zero
Indicates whether the result of the operation is zero

Z = 0: Result is not zero
Z = 1: Result is zero

Remark Description of Note is given on the next page.

31

PSW RFU

01234567

N

P
S

O

V

C

Y

S
A
T

I

D

E

P
Z

8

CHAPTER 2 REGISTER SET

User’s Manual U10243EJ7V0UM26

(2/2)

Note In the case of saturation instructions, the SAT, S, and OV flags will be set accordingly by the result of the

operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag has been

set due to an overflow condition caused by a saturation instruction.

Status of Operation Result SAT-S-OV Result of Saturation Processing

Maximum positive value is 1 0 1 7FFFFFFFH

exceeded

Maximum negative value 1 1 1 80000000H

is exceeded

Other 0 × 0 Operation result

2.2.5 System register number

Data in the system registers is accessed by using the load/store system register instructions, LDSR and STSR.

Each register is assigned a unique number which is referenced by the LDSR and STSR instructions.

Table 2-1. System Register Number

 Number System Register
Operand Specification

LDSR STSR

0 EIPC √ √

1 EIPSW √ √

2 FEPC √ √

3 FEPSW √ √

4 ECR — √

5 PSW √ √

6 to 31 Reserved

—: Accessing prohibited

√: Accessing enabled

Reserved: Accessing registers in this range is prohibited and will lead to undefined results.

Caution When using the LDSR instruction with the EIPC and FEPC registers, only even address values

should be specified. After interrupt servicing has ended with the RETI instruction, bit 0 in the

EIPC and FEPC registers will be ignored and assumed to be zero when the PC is restored.

27User’s Manual U10243EJ7V0UM

CHAPTER 3 DATA TYPE

3.1 Data Format

The V850 Family supports the following data types:

• Integer (8, 16, 32 bits)

• Unsigned integer (8, 16, 32 bits)

• Bit

3.1.1 Data type and addressing

The V850 Family supports three types of data lengths: word (32 bits), half-word (16 bits), and byte (8 bits). Byte

0 of any data is always the least significant byte (this is called little endian) and shown at the rightmost position in

figures throughout this manual. The following paragraphs describe the data format where data of a fixed length is

in memory.

(1) Byte (BYTE)

A byte is 8-bit contiguous data that starts from any byte boundaryNote. Each bit is assigned a number from 0 to

7. The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 7. A byte is specified by its

address A.

(2) Half-word (HALF-WORD)

A half-word is 2-byte (16-bit) contiguous data that starts from any half-word boundaryNote. Each bit is assigned

a number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A half-word is specified by its address A (with

the lowest bit fixed to 0), and occupies 2 bytes A and A+1.

Data

07

AddressA

Data

07

AddressA

815

A+1

CHAPTER 3 DATA TYPE

User’s Manual U10243EJ7V0UM28

(3) Word (WORD)

A word is 4-byte (32-bit) contiguous data that starts from any word boundaryNote. Each bit is assigned a number

from 0 to 31. The LSB is bit 0 and the MSB is bit 31. A word is specified by its address A (with the 2 lowest

bits fixed to 0), and occupies 4 bytes A, A+1, A+2, and A+3.

(4) Bit (BIT)

A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundaryNote. A bit is specified by

its address A and bit number n.

Note See 3.3 Data Alignment.

3.2 Data Representation

3.2.1 Integer

With the V850 Family, an integer is expressed as a binary number of 2’s complement and is 8, 16, or 32 bits long.

Regardless of its length, bit 0 of an integer is the least significant bit. The higher the bit number, the more significant

the bit. Because 2’s complement is used, the most significant bit is used as a sign bit.

 Data Length Range

Byte 8 bits –128 to +127

Half-word 16 bits –32,768 to +32,767

Word 32 bits –2,147,483,648 to +2,147,483,647

Data

07

AddressA

815

A+1A+2A+3

16232431

Data

0n

AddressA

7 Bit number

Byte of address A ·

CHAPTER 3 DATA TYPE

29User’s Manual U10243EJ7V0UM

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that

is not negative. Like an integer, an unsigned integer is also expressed as 2’s complement and is 8, 16, or 32 bits

long. Regardless of its length, bit 0 of an unsigned integer is the least significant bit, and the higher the bit number,

the more significant the bit. However, no sign bit is used.

 Data Length Range

Byte 8 bits 0 to 255

Half-word 16 bits 0 to 65,535

Word 32 bits 0 to 4,294,967,295

3.2.3 Bit

The V850 Family can handle 1-bit data that can take a value of 0 (cleared) or 1 (set). Bit manipulation can be

performed only on 1-byte data in the memory space in the following four ways:

• Set

• Clear

• Invert

• Test

3.3 Data Alignment

With the V850 Family, word data to be allocated in memory must be aligned at an appropriate boundary. Therefore,

word data must be aligned at a word boundary (the lower 2 bits of the address are 0), and half-word data must be

aligned at a half-word boundary (the lowest bit of the address is 0). If data is not aligned at a boundary, the data

is accessed with the lowest bit(s) of the address (lower 2 bits in the case of word data and lowest 1 bit in the case

of half-word data) automatically masked. Byte data can be placed at any address.

Note that the process of aligning is called alignment.

User’s Manual U10243EJ7V0UM30

CHAPTER 4 ADDRESS SPACE

The V850 Family supports a 4-GB linear address space. Both memory and I/O are mapped to this address space

(memory-mapped I/O). The V850 Family outputs 32-bit addresses to the memory and I/O. The maximum address

is 232–1.

Byte ordering is little endian. Byte data allocated at each address is defined with bit 0 as LSB and bit 7 as MSB.

In regards to multiple-byte data, the byte with the lowest address value is defined to have the LSB and the byte with

the highest address value is defined to have the MSB (little endian).

Data consisting of 2 bytes is called a half-word, and 4-byte data is called a word. In this User’s Manual, data

consisting of 2 or more bytes is illustrated as below, with the lower address shown on the right and the higher address

on the left.

Data

07

AddressA

815

A+1

Data

07

AddressA

815

A+1

Data

07

AddressA

1623

A+2

2431

A+3

Byte of address A

Half-word at address A

Word at address A

· ·

· ·

· · · · · · · · · · · · · ·

CHAPTER 4 ADDRESS SPACE

31User’s Manual U10243EJ7V0UM

4.1 Memory Map

The V850 Family employs a 32-bit architecture and supports a linear address space (data space) of up to 4 GB.

It supports a linear address space (program space) of up to 16 MB for instruction addressing.

Figure 4-1 shows the memory map of the V850 Family.

The capacity of the on-chip ROM and RAM depends on each product. For details, refer to the memory map section

in the User's Manual Hardware of each product.

Figure 4-1. Memory Map

FFFFFFFFH

FFFFEFFFH

00000000H

Peripheral I/O

4 GB linear

Internal RAM

Internal ROM/PROM/
flash memory

CHAPTER 4 ADDRESS SPACE

User’s Manual U10243EJ7V0UM32

4.2 Addressing Modes

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch operations;

and operand addresses used for data access.

4.2.1 Instruction address

An instruction address is determined by the contents of the program counter (PC), and is automatically incremented

(+2) according to the number of bytes of an instruction to be fetched each time an instruction has been executed.

When a branch instruction is executed, the branch destination address is loaded into the PC using one of the following

two addressing modes:

(1) Relative address (PC relative)

The signed 9- or 22-bit data of an instruction code (displacement: disp) is added to the value of the program

counter (PC). At this time, the displacement is treated as 2’s complement data with bits 8 and 21 serving as

sign bits.

This addressing is used for the Bcond disp9, JR disp22, and JARL disp22, reg2 instructions.

Figure 4-2. Relative Addressing (JR disp22/JARL disp22, reg2)

31 24 23

0 0 0 0 0 0 0 0 PC

0

0

31 22 21

Sign extension S disp22

0

0

31 24 23

0 0 0 0 0 0 0 0 PC

0

0

Memory to be manipulated

CHAPTER 4 ADDRESS SPACE

33User’s Manual U10243EJ7V0UM

Figure 4-3. Relative Addressing (Bcond disp9)

31 24 23

0 0 0 0 0 0 0 0 PC

0

0

31 9 8

Sign extension S disp9

0

0

31 24 23

0 0 0 0 0 0 0 0 PC

0

0

Memory to be manipulated

CHAPTER 4 ADDRESS SPACE

User’s Manual U10243EJ7V0UM34

(2) Register addressing (register indirect)

The contents of a general register (r0 to r31) specified by an instruction are transferred to the program counter

(PC).

This addressing is applied to the JMP [reg1] instruction.

Figure 4-4. Register Addressing (JMP [reg1])

31 0

31 24 23

0 0 0 0 0 0 0 0 PC

0

0

Memory to be manipulated

rn

CHAPTER 4 ADDRESS SPACE

35User’s Manual U10243EJ7V0UM

4.2.2 Operand address

When an instruction is executed, the register or memory area to be accessed is specified in one of the following

four addressing modes:

(1) Register addressing

The general register (or system register) specified in the general register specification field is accessed as an

operand. This addressing mode applies to instructions using the operand format reg1, reg2, or regID.

(2) Immediate addressing

The 5-bit or 16-bit data for manipulation is contained directly in the instruction. This addressing mode applies

to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: Operand that is 5-bit immediate data to specify the trap vector (00H to 1FH), and is used by

the TRAP instruction.

cccc: Operand consisting of 4-bit data used by the SETF instruction to specify the condition code.

Assigned as part of the instruction code as 5-bit immediate data by appending 1-bit 0 above

highest bit.

(3) Based addressing

The following two types of based addressing are supported:

(a) Type 1

The address of the data memory location to be accessed is determined by adding the value in the specified

general register to the 16-bit displacement value contained in the instruction. This addressing mode applies

to instructions using the operand format disp16 [reg1].

Figure 4-5. Based Addressing (Type 1)

31

reg1

0

Memory to be manipulated

31 16 15

disp16

0

Sign extension

CHAPTER 4 ADDRESS SPACE

User’s Manual U10243EJ7V0UM36

(b) Type 2

The address of the data memory location to be accessed is determined by adding the value in the 32-bit

element pointer (r30) to the 7- or 8-bit displacement value contained in the instruction. This addressing mode

applies to SLD and SST instructions.

Figure 4-6. Based Addressing (Type 2)

31

r30 (element pointer)

0

Memory to be manipulated

31 7

disp8
or

disp7

0

(Zero extension)
000000000000000000000000

Byte access = disp7
Half-word access and word access = disp8

CHAPTER 4 ADDRESS SPACE

37User’s Manual U10243EJ7V0UM

(4) Bit addressing

This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space

to be manipulated by using an operand address which is the sum of the contents of a general register and a 16-

bit displacement sign-extended to a word length. This addressing mode applies only to bit manipulation

instructions.

Figure 4-7. Bit Addressing

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

Memory to be manipulated

31

reg1

0

31 16 15

disp16

0

Sign extension

n

User’s Manual U10243EJ7V0UM38

CHAPTER 5 INSTRUCTIONS

5.1 Instruction Format

The V850 Family has two types of instruction formats: 16-bit and 32-bit. The 16-bit instructions include binary

operation, control, and conditional branch instructions, and the 32-bit instructions include load/store, jump, and

instructions that handle 16-bit immediate data.

Some instructions have an unused field (RFU). This field is reserved for future expansion and must be fixed

to 0.

An instruction is actually stored in memory as follows:

• Lower bytes of instruction (including bit 0) → lower address

• Higher bytes of instruction (including bit 15 or 31) → higher address

(1) reg-reg instruction (Format I)

A 16-bit instruction format having a 6-bit op code field and two general register specification fields for operand

specification.

(2) imm-reg instruction (Format II)

A 16-bit instruction format having a 6-bit op code field, 5-bit immediate field, and a general register specification

field.

(3) Conditional branch instruction (Format III)

A 16-bit instruction format having a 4-bit op code field, 4-bit condition code, and an 8-bit displacement.

15 11 10 5 4 0

reg2 opcode reg1

15 11 10 5 4 0

reg2 opcode imm

15 11 10 6 4 0

disp opcode conddisp

37

CHAPTER 5 INSTRUCTIONS

39User’s Manual U10243EJ7V0UM

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format having a 4-bit op code field, a general register specification field, and a 7-bit

displacement (or 6-bit displacement + 1-bit sub-op code).

(6) 3-operand instruction (Format VI)

A 32-bit instruction format having a 6-bit op code field, two general register specification fields, and a 16-bit

immediate field.

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format having a 6-bit op code field, two general register specification fields, and a 16-bit

displacement (or 15-bit displacement + 1-bit sub-op code).

(5) Jump instruction (Format V)

A 32-bit instruction format having a 5-bit op code field, a general register specification field, and a 22-bit

displacement.

15 11 10 56 0

reg2 opcode disp

disp/sub-opcode

17

15 11 10 16

opcode disp 0

0 31

reg2

176 5

15 11 10 16

opcode imm 0

0 31

reg2

45

reg1

15 11 10 16

opcode disp

0 31

reg2

45

reg1

disp/sub-opcode

17

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM40

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format having a 6-bit op code field, 2-bit sub-op code, 3-bit bit specification field, a general

register specification field, and a 16-bit displacement.

(9) Extended instruction format 1 (Format IX)

A 32-bit instruction format having a 6-bit op code field, 6-bit sub-op code, and two general register specification

fields (one field may be regID or cond).

(10) Extended instruction format 2 (Format X)

A 32-bit instruction format having a 6-bit op code field and 6-bit sub op code.

Remark RFU: Reserved field (Reserved for Future Use)

15 11 10 16

opcode disp

0 31

bit #

45

reg1sub

14 13

15 11 10 16

opcode sub-opcode

0 31

reg2

45

reg1/regID/cond RFURFU

27 26 2021

15 11 10 16

opcode sub-opcode

0 31

RFU

45

RFURFU

27 26 202113 12

RFU/sub-opcode RFU/immediate/vector

CHAPTER 5 INSTRUCTIONS

41User’s Manual U10243EJ7V0UM

5.2 Outline of Instructions

Load/store instructions Transfer data from memory to a register or from a register to memory.

Table 5-1. Load/Store Instructions

SLD

LD

SST

ST

Arithmetic operation instructions Add, subtract, multiply, divide, transfer, or compare data between regis-

ters.

Table 5-2. Arithmetic Operation Instructions

MOV

MOVHI

MOVEA

ADD

ADDI

SUB

SUBR

MULH

MULHI

DIVH

CMP

SETF

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM42

Saturated operation instructions Execute saturation addition or subtraction. If the result of the operation

exceeds the maximum positive value (7FFFFFFFH), 7FFFFFFFH is

returned. If the result exceeds the negative value (80000000H), 80000000H

is returned.

Table 5-3. Saturated Operation Instructions

SATADD

SATSUB

SATSUBI

SATSUBR

Logical operation instructions These instructions include logical operation instructions and shift instruc-

tions. The shift instructions include arithmetic shift and logical shift

instructions. Operands can be shifted by two or more bit positions in one

clock cycle by the universal barrel shifter.

Table 5-4. Logical Operation Instructions

TST

OR

ORI

AND

ANDI

XOR

XORI

NOT

SHL

SHR

SAR

CHAPTER 5 INSTRUCTIONS

43User’s Manual U10243EJ7V0UM

Branch instructions Branch operations include unconditional branch along with conditional branch

instructions which alter the flow of control, depending on the status of

conditional flags in the PSW. Program control can be transferred to the

address specified by a branch instruction.

Table 5-5. Branch Instructions

JMP

JR

JARL

BGT

BGE

BLT

BLE

BH

BNL

BL

BNH

BE

BNE

BV

BNV

BN

BP

BC

BNC

BZ

BNZ

BR

BSA

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM44

Bit manipulation instructions Execute a logical operation to bit data in memory. Only a specified bit is

affected as a result of executing a bit manipulation instruction.

Table 5-6. Bit Manipulation Instructions

SET1

CLR1

NOT1

TST1

Special instructions These instructions are special in that they do not fall in any of the categories

of instructions described above.

Table 5-7. Special Instructions

LDSR

STSR

TRAP

RETI

HALT

DI

EI

NOP

CHAPTER 5 INSTRUCTIONS

45User’s Manual U10243EJ7V0UM

Symbol

reg1

reg2

bit#3

imm×

disp×

regID

vector

cccc

ep

Meaning

General register (used as source register)

General register (mainly used as destination register. Some are also used as

source registers)

3-bit data for specification bit number

×-bit immediate

×-bit displacement

System register number

5-bit data for trap vector (00H to 1FH) specification

4-bit data for condition code specification

Element pointer (r30)

Mnemonic of instruction
Meaning of instruction

Instruction format Indicates the description and operand of the instruction. The following symbols are used in

description of an operand:

5.3 Instruction Set

Example of instruction description

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM46

Meaning

Assignment

General register

System register

Zero-extends n to word

Sign-extends n to word

Reads data of size b from address a

Writes data b of size c to address a

Reads bit b from address a

Writes c to bit b of address a

Performs saturation processing of n.

 If n ≥ 7FFFFFFFH as result of calculation, 7FFFFFFFH.

 If n ≤ 80000000H as result of calculation, 80000000H.

Reflects result on flag

Byte (8 bits)

Half-word (16 bits)

Word (32 bits)

Add

Subtract

Bit concatenation

Multiply

Divide

And

Or

Exclusive Or

Logical negate

Logical left shift

Logical right shift

Arithmetic right shift

Symbol

←

GR []

SR []

zero-extend (n)

sign-extend (n)

load-memory (a, b)

store-memory (a, b, c)

load-memory-bit (a, b)

store-memory-bit (a, b, c)

saturated (n)

result

Byte

Halfword

Word

+

–

||

×

÷

AND

OR

XOR

NOT

logically shift left by

logically shift right by

arithmetically shift right by

Operation Describes the function of the instruction. The following symbols are used:

Format Indicates instruction format number.

CHAPTER 5 INSTRUCTIONS

47User’s Manual U10243EJ7V0UM

Op code Describes the separate bit fields of the instruction opcode.

The following symbols are used:

Symbol

R

r

d

i

cccc

bbb

Meaning

1-bit data of code specifying reg1 or regID

1-bit data of code specifying reg2

1-bit data of displacement

1-bit data of immediate

4-bit data for condition code specification

3-bit data for bit number specification

Flag Indicates the flags which are altered after executing the instruction.

CY – ← Indicates that the flag is not affected.

OV 0 ← Indicates that the flag is cleared to 0.

S 1 ← Indicates that the flag is set to 1.

Z –

SAT –

Instruction Describes the function of the instruction.

Explanation Explains the operation of the instruction.

Remark Supplementary information on the instruction

Caution Important cautions regarding use of this instruction

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM48

Mnemonic

SLD.B

SLD.H

SLD.W

LD.B

LD.H

LD.W

SST.B

SST.H

SST.W

ST.B

ST.H

ST.W

MOV

MOVHI

MOVEA

ADD

ADDI

SUB

SUBR

MULH

MULHI

DIVH

CMP

SETF

SATADD

SATSUB

SATSUBI

SATSUBR

Function

Load/Store instructions

Load Byte

Load Half-Word

Load Word

Load Byte

Load Half-Word

Load Word

Store Byte

Store Half-Word

Store Word

Store Byte

Store Half-Word

Store Word

Arithmetic instructions

Move

Move High Half-Word

Move Effective Address

Add

Add Immediate

Subtract

Subtract Reverse

Multiply Half-Word

Multiply Half-Word Immediate

Divide Half-Word

Compare

Set Flag Condition

Saturate instructions

Saturated Add

Saturated Subtract

Saturated Subtract Immediate

Saturated Subtract Reverse

Instruction List

Mnemonic

TST

OR

ORI

AND

ANDI

XOR

XORI

NOT

SHL

SHR

SAR

JMP

JR

JARL

Bcond

SET1

CLR1

NOT1

TST1

LDSR

STSR

TRAP

RETI

HALT

DI

EI

NOP

Function

Logical operation instructions

Test

Or

Or Immediate

And

And Immediate

Exclusive-Or

Exclusive-Or Immediate

Not

Shift Logical Left

Shift Logical Right

Shift Arithmetic Right

Branch instructions

Jump

Jump Relative

Jump and Register Link

Branch on Condition Code

Bit manipulation instructions

Set Bit

Clear Bit

Not Bit

Test Bit

Special instructions

Load System Register

Store System Register

Trap

Return from Trap or Interrupt

Halt

Disable Interrupt

Enable Interrupt

No Operation

Most of these mnemonics are acronyms of functions.

CHAPTER 5 INSTRUCTIONS

49User’s Manual U10243EJ7V0UM

ADD
Add

Instruction format (1) ADD reg1, reg2

(2) ADD imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] + GR [reg1]

(2) GR [reg2] ← GR [reg2] + sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 0

(1) rrrrr001110RRRRR

15 0

(2) rrrrr010010iiiii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise 0.

SAT –

Instruction (1) ADD Add Register

(2) ADD Add Immediate (5-bit)

Explanation (1) Adds the word data of general register reg1 to the word data of general register reg2, and

stores the result in general register reg2. The data of general register reg1 is not affected.

(2) Adds 5-bit immediate data, sign-extended to word length, to the word data of general

register reg2, and stores the result in general register reg2.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM50

ADDI
Add Immediate

Instruction format ADDI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] + sign-extend (imm16)

Format Format VI

Op code 15 0 31 16

rrrrr110000RRRRR iiiiiiiiiiiiiiii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise 0.

SAT –

Instruction ADDI Add Immediate

Explanation Adds 16-bit immediate data, sign-extended to word length, to the word data of general register

reg1, and stores the result in general register reg2. The data of general register reg1 is not

affected.

CHAPTER 5 INSTRUCTIONS

51User’s Manual U10243EJ7V0UM

AND
And

Instruction format AND reg1, reg2

Operation GR [reg2] ← GR [reg2] AND GR [reg1]

Format Format I

Op code 15 0

 rrrrr001010RRRRR

Flag CY –

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise 0.

SAT –

Instruction AND And

Explanation ANDs the word data of general register reg2 with the word data of general register reg1, and

stores the result in general register reg2. The data of general register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM52

ANDI
And Immediate

Instruction format ANDI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] AND zero-extend (imm16)

Format Format VI

Op code 15 0 31 16

rrrrr110110RRRRR iiiiiiiiiiiiiiii

Flag CY –

OV 0

S 0

Z 1 if the result of an operation is 0; otherwise 0.

SAT –

Instruction ANDI And Immediate (16-Bit)

Explanation ANDs the word data of general register reg1 with the value of the 16-bit immediate data, zero-

extended to word length, and stores the result in general register reg2. The data of general

register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

53User’s Manual U10243EJ7V0UM

Bcond
Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied

 then PC ← PC + sign-extend (disp9)

Format Format III

Op code 15 0

ddddd1011dddcccc

dddddddd is the higher 8 bits of disp9.

Flag CY –

OV –

S –

Z –

SAT –

Instruction Bcond Branch on Condition Code with 9-Bit Displacement

Explanation Tests a condition flag specified by the instruction. Branches if a specified condition is satisfied;

otherwise, executes the next instruction. The branch destination PC holds the sum of the

current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-

extended to word length.

Remark Bit 0 of the 9-bit displacement is masked to 0. The current PC value used for calculation is

the address of the first byte of this instruction. If the displacement value is 0, therefore, the

branch destination is this instruction itself.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM54

Table 5-8. List of Conditional Branch Instructions

Instruction
Condition Code

Status of Condition Flag Branch Condition
(cccc)

Signed BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

integer BGE 1110 (S xor OV) = 0 Greater than or equal signed

BLT 0110 (S xor OV) = 1 Less than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal signed

Unsigned BH 1011 (CY or Z) = 0 Higher (Greater than)

integer BNL 1001 CY = 0 Not lower (Greater than or equal)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Others BV 0000 OV = 1 Overflow

BNV 1000 OV = 0 No overflow

BN 0100 S = 1 Negative

BP 1100 S = 0 Positive

BC 0001 CY = 1 Carry

BNC 1001 CY = 0 No carry

BZ 0010 Z = 1 Zero

BNZ 1010 Z = 0 Not zero

BR 0101 – Always (unconditional)

BSA 1101 SAT = 1 Saturated

Caution If executing a conditional branch instruction of a signed integer (BGT, BGE, BLT, or BLE) when

the SAT flag is set to 1 as a result of executing a saturated operation instruction, the branch

condition loses its meaning. In ordinary arithmetic operations, if an overflow condition occurs,

the S flag is inverted (0 → 1 or 1 → 0). This is because the result is a negative value if it exceeds

the maximum positive value and it is a positive value if it exceeds the maximum negative value.

However, when a saturated operation instruction is executed, and if the result exceeds the

maximum positive value, the result is saturated with a positive value; if the result exceeds the

maximum negative value, the result is saturated with a negative value. Unlike the ordinary

operation, therefore, the S flag is not inverted even if an overflow occurs.

Hence, the S flag of the PSW is affected differently when the instruction is a saturate operation,

as opposed to an ordinary arithmetic operation. A branch condition which is an XOR of S and

OV flags will therefore, have no meaning.

CHAPTER 5 INSTRUCTIONS

55User’s Manual U10243EJ7V0UM

CLR1
Clear Bit

Instruction format CLR1 bit#3, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

Z flag ← Not (Load-memory-bit (adr, bit#3))

Store-memory-bit (adr, bit#3, 0)

Format Format VIII

Op code 15 0 31 16

10bbb111110RRRRR dddddddddddddddd

Flag CY –

OV –

S –

Z 1 if bit NO.bit#3 of memory disp16 [reg1] = 0.

0 if bit NO.bit#3 of memory disp16 [reg1] = 1.

SAT –

Instruction CLR1 Clear Bit

Explanation Adds the data of general register reg1 to the 16-bit displacement, sign-extended to word length,

to generate a 32-bit address. Then clears the bit, specified by the bit number of 3 bits, of the

byte data referenced by the generated address. Not specified bit is not affected.

Remark The Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction

is executed. It does not indicate the content of the specified bit after this instruction has been

executed.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM56

CMP
Compare

Instruction format (1) CMP reg1, reg2

(2) CMP imm5, reg2

Operation (1) result ← GR [reg2] – GR [reg1]

(2) result ← GR [reg2] – sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 0

(1) rrrrr001111RRRRR

15 0

(2) rrrrr010011iiiii

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

OV 1 if an overflow occurs; otherwise 0.

S 1 if the result of the operation is negative; otherwise, 0.

Z 1 if the result of the operation is 0; otherwise, 0.

SAT –

Instruction (1) CMP Compare Register

(2) CMP Compare Immediate (5-Bit)

Explanation (1) Compares the word data of general register reg2 with the word data of general register

reg1, and indicates the result by using the condition flags. To compare, the contents of

general register reg1 are subtracted from the word data of general register reg2. The data

of general registers reg1 and reg2 is not affected.

(2) Compares the word data of general register reg2 with 5-bit immediate data, sign-extended

to word length, and indicates the result by using the condition flags. To compare, the

contents of the sign-extended immediate data is subtracted from the word data of general

register reg2. The data of general register reg2 is not affected.

CHAPTER 5 INSTRUCTIONS

57User’s Manual U10243EJ7V0UM

DI
Disable Interrupt

Instruction format DI

Operation PSW.ID ← 1 (Disables maskable interrupt)

Format Format X

Op code 15 0 31 16

0000011111100000 0000000101100000

Flag CY –

OV –

S –

Z –

SAT –

ID 1

Instruction DI Disable Interrupt

Explanation Sets the ID flag of the PSW to 1 to disable the acknowledgement of maskable interrupts during

executing this instruction.

Remark Interrupts are not sampled during execution of this instruction. The ID flag actually becomes

valid at the start of the next instruction. But because interrupts are not sampled during

instruction execution, interrupts are immediately disabled. Non-maskable interrupts (NMI) are

not affected by this instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM58

DIVH
Divide Half-Word

Instruction format DIVH reg1, reg2

Operation GR [reg2] ← GR [reg2] ÷ GR [reg1]

Format Format I

Op code 15 0

rrrrr000010RRRRR

Flag CY –

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction DIVH Divide Half-Word

Explanation Divides the word data of general register reg2 by the lower half-word data of general register

reg1, and stores the quotient in general register reg2. If the data is divided by 0, Overflow

occurs, and the quotient is undefined. The data of general register reg1 is not affected.

Remark The remainder is not stored. Overflow occurs when the maximum negative value (80000000H)

is divided by –1 (in which case the quotient is 80000000H) and when data is divided by 0 (in

which case the quotient is undefined).

If an interrupt occurs while this instruction is executed, division is aborted, and the interrupt is

processed. Upon returning from the interrupt, the division is restarted from the beginning, with

the return address being the address of this instruction. Also, general registers reg1 and reg2

will retain their original values prior to the start of execution.

The higher 16 bits of general register reg1 are ignored when division is executed.

CHAPTER 5 INSTRUCTIONS

59User’s Manual U10243EJ7V0UM

EI
Enable Interrupt

Instruction format EI

Operation PSW.ID ← 0 (enables maskable interrupt)

Format Format X

Op code 15 0 31 16

1000011111100000 0000000101100000

Flag CY –

OV –

S –

Z –

SAT –

ID 0

Instruction EI Enable Interrupt

Explanation Resets the ID flag of the PSW to 0 and enables the acknowledgement of maskable interrupts

beginning at the next instruction.

Remark Interrupts are not sampled during instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM60

HALT
Halt

Instruction format HALT

Operation Halts

Format Format X

Op code 15 0 31 16

0000011111100000 0000000100100000

Flag CY –

OV –

S –

Z –

SAT –

Instruction HALT Halt

Explanation Stops the operating clock of the CPU and places the CPU in the HALT mode.

Remark The HALT mode is exited by any of the following three events:

• RESET input

• NMI input

• Maskable interrupt (when ID of PSW = 0)

If an interrupt is acknowledged during the HALT mode, the address of the following instruction

is stored in EIPC or FEPC.

CHAPTER 5 INSTRUCTIONS

61User’s Manual U10243EJ7V0UM

JARL
Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] ← PC + 4

PC ← PC + sign-extend (disp22)

Format Format V

Op code 15 0 31 16

rrrrr11110dddddd ddddddddddddddd0

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CY –

OV –

S –

Z –

SAT –

Instruction JARL Jump and Register Link

Explanation Saves the current PC value plus 4 to general register reg2, adds the current PC value and 22-

bit displacement, sign-extended to word length, and transfers control to that PC. Bit 0 of the

22-bit displacement is masked to 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If

the displacement value is 0, the branch destination is this instruction itself.

This instruction is equivalent to a call subroutine instruction, and saves the PC return address

to general register reg2. The JMP instruction, which is equivalent to a subroutine-return

instruction, can be used to specify the general register containing the return address saved

during the JARL subroutine-call instruction, to restore the program counter.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM62

JMP
Jump Register

Instruction format JMP [reg1]

Operation PC ← GR [reg1]

Format Format I

Op code 15 0

 00000000011RRRRR

Flag CY –

OV –

S –

Z –

SAT –

Instruction JMP Jump Register

Explanation Transfers control to the address specified by general register reg1. Bit 0 of the address is

masked to 0.

Remark When using this instruction as the subroutine-return instruction, specify the general register

containing the return address saved during the JARL subroutine-call instruction, to restore the

program counter. When using the JARL instruction, which is equivalent to the subroutine-call

instruction, store the PC return address in general register reg2.

CHAPTER 5 INSTRUCTIONS

63User’s Manual U10243EJ7V0UM

JR
Jump Relative

Instruction format JR disp22

Operation PC ← PC + sign-extend (disp22)

Format Format V

Op code 15 0 31 16

0000011110dddddd ddddddddddddddd0

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CY –

OV –

S –

Z –

SAT –

Instruction JR Jump Relative

Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and stores

the value in the PC, and then transfers control to that PC. Bit 0 of the 22-bit displacement is

masked to 0.

Remark The current PC value used for the calculation is the address of the first byte of this instruction

itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM64

LD
Load

Instruction format (1) LD.B disp16 [reg1], reg2

(2) LD.H disp16 [reg1], reg2

(3) LD.W disp16 [reg1], reg2

Operation (1) adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

(2) adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

(3) adr ← GR [reg1] + sign-extend (disp16)

GR [reg2] ← Load-memory (adr, Word)

Format Format VII

Op code 15 0 31 16

(1) rrrrr111000RRRRR dddddddddddddddd

15 0 31 16

(2) rrrrr111001RRRRR ddddddddddddddd0

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16

(3) rrrrr111001RRRRR ddddddddddddddd1

ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

OV –

S –

Z –

SAT –

Instruction (1) LD.B Load Byte

(2) LD.H Load Half-Word

(3) LD.W Load Word

CHAPTER 5 INSTRUCTIONS

65User’s Manual U10243EJ7V0UM

Explanation (1) Adds the data of general register reg1 to a 16-bit displacement, sign-extended to word

length, to generate a 32-bit address. Byte data is read from the generated address, sign-

extended to word length, and then stored in general register reg2.

(2) Adds the data of general register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Half-word data is read from this 32-bit address with

its bit 0 masked to 0, sign-extended to word length, and stored in general register reg2.

(3) Adds the data of general register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Word data is read from this 32-bit address with bits

0 and 1 masked to 0, and stored in general register reg2.

Caution When the data of general register reg1 is added to a 16-bit displacement sign-extended to word

length, the lower bits of the result may be masked to 0 depending on the type of data to be

accessed (half word, word) to generate an address.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM66

LDSR
Load to System Register

Instruction format LDSR reg2, regID

Operation SR [regID] ← GR [reg2]

Format Format IX

Op code 15 0 31 16

rrrrr111111RRRRR 0000000000100000

Remark The fields used to define reg1 and reg2 are swapped in this instruction. Normally,

“RRR” is used for reg1 and is the source operand while “rrr” signifies reg2 and is

the destination operand. In this instruction, “RRR” is still the source operand, but

is represented by reg2, while “rrr” is the special register destination, as labeled

below:

rrrrr: regID specification

RRRRR: reg2 specification

Flag CY – (See Remark below.)

OV – (See Remark below.)

S – (See Remark below.)

Z – (See Remark below.)

SAT – (See Remark below.)

Instruction LDSR Load to System Register

Explanation Loads the word data of general register reg2 to a system register specified by the system

register number (regID). The data of general register reg2 is not affected.

Remark If the system register number (regID) is equal to 5 (PSW register), the values of the

corresponding bits of the PSW are set according to the contents of reg2. This only affects the

flag bits, the reserved bits remain at 0. Also, interrupts are not sampled when the PSW is being

written with a new value. If the ID flag is enabled with this instruction, interrupt disabling begins

at the start of execution, even though the ID flag does not become valid until the beginning of

the next instruction.

Caution The system register number regID is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined

results.

CHAPTER 5 INSTRUCTIONS

67User’s Manual U10243EJ7V0UM

MOV
Move

Instruction format (1) MOV reg1, reg2

(2) MOV imm5, reg2

Operation (1) GR [reg2] ← GR [reg1]

(2) GR [reg2] ← sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 0

(1) rrrrr000000RRRRR

15 0

(2) rrrrr010000iiiii

Flag CY –

OV –

S –

Z –

SAT –

Instruction (1) MOV Move Register

(2) MOV Move Immediate (5-Bit)

Explanation (1) Transfers the word data of general register reg1 to general register reg2. The data of

general register reg1 is not affected.

(2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general

register reg2.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM68

MOVEA
Move Effective Address

Instruction format MOVEA imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] + sign-extend (imm16)

Format Format VI

Op code 15 0 31 16

rrrrr110001RRRRR iiiiiiiiiiiiiiii

Flag CY –

OV –

S –

Z –

SAT –

Instruction MOVEA Move Effective Address

Explanation Adds the 16-bit immediate data, sign-extended to word length, to the word data of general

register reg1, and stores the result in general register reg2. The data of general register reg1

is not affected. The flags are not affected by the addition.

Remark This instruction calculates a 32-bit address and stores the result without affecting the PSW

flags.

CHAPTER 5 INSTRUCTIONS

69User’s Manual U10243EJ7V0UM

MOVHI
Move High Half-Word

Instruction format MOVHI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] + (imm16 II 016)

Format Format VI

Op code 15 0 31 16

rrrrr110010RRRRR iiiiiiiiiiiiiiii

Flag CY –

OV –

S –

Z –

SAT –

Instruction MOVHI Move High Half-Word

Explanation Adds a word value, whose higher 16 bits are specified by the 16-bit immediate data and lower

16 bits are 0, to the word data of general register reg1 and stores the result in general register

reg2. The data of general register reg1 is not affected. The flags are not affected by the addition.

Remark This instruction is used to generate the higher 16 bits of a 32-bit address.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM70

MULH
Multiply Half-Word

Instruction format (1) MULH reg1, reg2

(2) MULH imm5, reg2

Operation (1) GR [reg2] (32) ← GR [reg2] (16) × GR [reg1] (16)

(2) GR [reg2] ← GR [reg2] × sign-extend (imm5)

Format (1) Format I

(2) Format II

Op code 15 0

(1) rrrrr000111RRRRR

15 0

(2) rrrrr010111iiiii

Flag CY –

OV –

S –

Z –

SAT –

Instruction (1) MULH Multiply Half-Word by Register

(2) MULH Multiply Half-Word by Immediate (5-Bit)

Explanation (1) Multiplies the lower half-word data of general register reg2 by the half-word data of general

register reg1, and stores the result in general register reg2 as word data. The data of

general register reg1 is not affected.

(2) Multiplies the lower half-word data of general register reg2 by a 5-bit immediate data, sign-

extended to half-word length, and stores the result in general register reg2.

Remark The higher 16 bits of general registers reg1 and reg2 are ignored in this operation.

CHAPTER 5 INSTRUCTIONS

71User’s Manual U10243EJ7V0UM

MULHI
Multiply Half-Word Immediate

Instruction format MULHI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] × imm16

Format Format VI

Op code 15 0 31 16

rrrrr110111RRRRR iiiiiiiiiiiiiiii

Flag CY –

OV –

S –

Z –

SAT –

Instruction MULHI Multiply Half-Word by Immediate (16-Bit)

Explanation Multiplies the lower half-word data of general register reg1 by the 16-bit immediate data, and

stores the result in general register reg2. The data of general register reg1 is not affected.

Remark The higher 16 bits of general register reg1 are ignored in this operation.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM72

NOP
No Operation

Instruction format NOP

Operation Executes nothing and consumes at least one clock.

Format Format I

Op code 15 0

0000000000000000

Flag CY –

OV –

S –

Z –

SAT –

Instruction NOP No Operation

Explanation Executes nothing and consumes at least one clock cycle.

Remark The contents of the PC are incremented by two. The op code is the same as that of MOV r0,

r0.

CHAPTER 5 INSTRUCTIONS

73User’s Manual U10243EJ7V0UM

NOT
Not

Instruction format NOT reg1, reg2

Operation GR [reg2] ← NOT (GR [reg1])

Format Format I

Op code 15 0

rrrrr000001RRRRR

Flag CY –

OV –

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction NOT Not

Explanation Logically negates (takes the 1’s complement of) the word data of general register reg1, and

stores the result in general register reg2. The data of general register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM74

NOT1
Not Bit

Instruction format NOT1 bit#3, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

Z flag ← Not (Load-memory-bit (adr, bit#3))

Store-memory-bit (adr, bit#3, Z flag)

Format Format VIII

Op code 15 0 31 16

01bbb111110RRRRR dddddddddddddddd

Flag CY –

OV –

S –

Z 1 if bit NO.bit#3 of memory disp16 [reg1] = 0.

0 if bit NO.bit#3 of memory disp16 [reg1] = 1.

SAT –

Instruction NOT1 Not Bit

Explanation Adds the data of general register reg1 to a 16-bit displacement, sign-extended to word length

to generate a 32-bit address. The bit, specified by the 3-bit field “bbb”, is inverted at the byte

data location referenced by the generated address. The bits other than the specified bit are

not affected.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been

executed.

CHAPTER 5 INSTRUCTIONS

75User’s Manual U10243EJ7V0UM

OR
Or

Instruction format OR reg1, reg2

Operation GR [reg2] ← GR [reg2] OR GR [reg1]

Format Format I

Op code 15 0

rrrrr001000RRRRR

Flag CY –

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction OR Or

Explanation ORs the word data of general register reg2 with the word data of general register reg1, and

stores the result in general register reg2. The data of general register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM76

ORI
Or Immediate

Instruction format ORI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] OR zero-extend (imm16)

Format Format VI

Op code 15 0 31 16

rrrrr110100RRRRR iiiiiiiiiiiiiiii

Flag CY –

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction OR Or Immediate (16-Bit)

Explanation ORs the word data of general register reg1 with the value of the 16-bit immediate data, zero-

extended to word length, and stores the result in general register reg2. The data of general

register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

77User’s Manual U10243EJ7V0UM

RETI
Return from Trap or Interrupt

Instruction format RETI

Operation if PSW.EP = 1

then PC ← EIPC

PSW ← EIPSW

else if PSW.NP = 1

then PC ← FEPC

PSW ← FEPSW

else PC ← EIPC

PSW ← EIPSW

Format Format X

Op code 15 0 31 16

0000011111100000 0000000101000000

Flag CY Value read from FEPSW or EIPSW is set.

OV Value read from FEPSW or EIPSW is set.

S Value read from FEPSW or EIPSW is set.

Z Value read from FEPSW or EIPSW is set.

SAT Value read from FEPSW or EIPSW is set.

Instruction RETI Return from Trap or Interrupt

Explanation This instruction restores the restore PC and PSW from the appropriate system register and

returns from an exception or interrupt routine. The operations of this instruction are as follows:

(1) If the EP flag of the PSW is 1, the restore PC and PSW are read from the EIPC and EIPSW,

regardless of the status of the NP flag of the PSW.

If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restore PC and PSW

are read from the FEPC and FEPSW.

If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the restore PC and PSW

are read from the EIPC and EIPSW.

(2) Once the PC and PSW are restored to the return values, control is transferred to the return

address.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM78

Caution When restoring from an NMI or exception processing using the RETI instruction, the PSW.NP

and PSW.EP flags must be set accordingly to restore the PC and PSW:

• When returning from non-maskable interrupt processing using the RETI instruction:

PSW.NP = 1 and PSW.EP = 0

• When restoring from an exception processing using the RETI instruction:

PSW.EP = 1

Use the LDSR instruction for setting the flags.

Interrupts are not accepted in the latter half of the ID stage during LDSR execution because

of the operation of the interrupt controller.

CHAPTER 5 INSTRUCTIONS

79User’s Manual U10243EJ7V0UM

SAR
Shift Arithmetic Right

Instruction format (1) SAR reg1, reg2

(2) SAR imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] arithmetically shift right by GR [reg1]

(2) GR [reg2] ← GR [reg2] arithmetically shift right by zero-extend

Format (1) Format IX

(2) Format II

Op code 15 0 31 16

(1) rrrrr111111RRRRR 0000000010100000

15 0

(2) rrrrr010101iiiii

Flag CY 1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction (1) SAR Shift Arithmetic Right by Register

(2) SAR Shift Arithmetic Right by Immediate (5-Bit)

Explanation (1) Arithmetically shifts the word data of general register reg2 to the right by ‘n’ positions, where

‘n’ is a value from 0 to +31, specified by the lower 5 bits of general register reg1 (after the

shift, the MSB prior to shift execution is copied and set as the new MSB value), and then

writes the result to general register reg2. If the number of shifts is 0, general register reg2

retains the same value prior to instruction execution. The data of general register reg1

is not affected.

(2) Arithmetically shifts the word data of general register reg2 to the right by ‘n’ positions, where

‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word

length (after the shift, the MSB prior to shift execution is copied and set as the new MSB

value), and then writes the result to general register reg2. If the number of shifts is 0,

general register reg2 retains the same value prior to instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM80

SATADD
Saturated Add

Instruction format (1) SATADD reg1, reg2

(2) SATADD imm5, reg2

Operation (1) GR [reg2] ← saturated (GR [reg2] + GR [reg1])

(2) GR [reg2] ← saturated (GR [reg2] + sign-extend (imm5))

Format (1) Format I

(2) Format II

Op code 15 0

(1) rrrrr000110RRRRR

15 0

(2) rrrrr010001iiiii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.

Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

Instruction (1) SATADD Saturated Add Register

(2) SATADD Saturated Add Immediate (5-Bit)

Explanation (1) Adds the word data of general register reg1 to the word data of general register reg2, and

stores the result in general register reg2. However, if the result exceeds the maximum

positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set

to 1. The data of general register reg1 is not affected.

(2) Adds a 5-bit immediate data, sign-extended to word length, to the word data of general

register reg2, and stores the result in general register reg2. However, if the result exceeds

the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The SAT

flag is set to 1.

Remark The SAT flag is a cumulative flag. Once the result of the saturated operation instruction has

been saturated, this flag is set to 1 and is not reset to 0 even if the result of the subsequent

operation is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

81User’s Manual U10243EJ7V0UM

SATSUB
Saturated Subtract

Instruction format SATSUB reg1, reg2

Operation GR [reg2] ← saturated (GR [reg2] – GR [reg1])

Format Format I

Op code 15 0

rrrrr000101RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.

Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

Instruction SATSUB Saturated Subtract

Explanation Subtracts the word data of general register reg1 from the word data of general register reg2,

and stores the result in general register reg2. However, if the result exceeds the maximum

positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the maximum

negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to 1. The data

of general register reg1 is not affected.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation

instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the

subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM82

SATSUBI
Saturated Subtract Immediate

Instruction format SATSUBI imm16, reg1, reg2

Operation GR [reg2] ← saturated (GR [reg1] – sign-extend (imm16))

Format Format VI

Op code 15 0 31 16

rrrrr110011RRRRR iiiiiiiiiiiiiiii

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.

Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

Instruction SATSUBI Saturated Subtract Immediate

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of

general register reg1, and stores the result in general register reg2. However, if the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag

is set to 1. The data of general register reg1 is not affected.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation

instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the

subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

83User’s Manual U10243EJ7V0UM

SATSUBR
Saturated Subtract Reverse

Instruction format SATSUBR reg1, reg2

Operation GR [reg2] ← saturated (GR [reg1] – GR [reg2])

Format Format I

Op code 15 0

rrrrr000100RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.

Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

Instruction SATSUBR Saturated Subtract Reverse

Explanation Subtracts the word data of general register reg2 from the word data of general register reg1,

and stores the result in general register reg2. However, if the result exceeds the maximum

positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the maximum

negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to 1. The data

of general register reg1 is not affected.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation

instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the

subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM84

SETF
Set Flag Condition

Instruction format SETF cccc, reg2

Operation if conditions are satisfied

then GR [reg2] ← 00000001H

else GR [reg2] ← 00000000H

Format Format IX

Op code 15 0 31 16

rrrrr1111110cccc 0000000000000000

Flag CY –

OV –

S –

Z –

SAT –

Instruction SETF Set Flag Condition

Explanation The general register reg2 is set to 1 if a condition specified by condition code “cccc” is satisfied;

otherwise, 0 are stored in the register. One of the codes shown in Table 5-9 should be specified

as the condition code “cccc”.

Remark Here are some examples of using this instruction:

(1) Translation of two or more condition clauses: If A of statement if (A) in C language consists

of two or more condition clauses (a1, a2, a3, and so on), it is usually translated to a sequence

of if (a1) then, if (a2) then. The object code executes “conditional branch” by checking the

result of evaluation equivalent to an. A pipeline processor takes more time to execute

“condition judgment” + “branch” than to execute an ordinary operation, the result of

evaluating each condition clause if (an) is stored to register Ra. By performing a logical

operation to Ran after all the condition clauses have been evaluated, the delay due to the

pipeline can be prevented.

(2) Double-length operation: To execute a double-length operation such as Add with Carry,

the result of the CY flag can be stored to general register reg2. Therefore, a carry from

the lower bits can be expressed as a numeric value.

CHAPTER 5 INSTRUCTIONS

85User’s Manual U10243EJ7V0UM

Table 5-9. Condition Codes

Condition Code
Condition Name Condition Expression

(cccc)

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T always

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM86

SET1
Set Bit

Instruction format SET1 bit#3, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

Z flag ← Not (Load-memory-bit (adr, bit#3))

Store-memory-bit (adr, bit#3, 1)

Format Format VIII

Op code 15 0 31 16

00bbb111110RRRRR dddddddddddddddd

Flag CY –

OV –

S –

Z 1 when bit NO.bit#3 of memory disp16 [reg1] = 0.

0 when bit NO.bit#3 of memory disp16 [reg1] = 1

SAT –

Instruction SET1 Set Bit

Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general register reg1

to generate a 32-bit address. The bit, specified by the 3-bit field “bbb”, is set at the byte data

location referenced by the generated address. The bits other than the specified bit are not

affected.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been

executed.

CHAPTER 5 INSTRUCTIONS

87User’s Manual U10243EJ7V0UM

SHL
Shift Logical Left

Instruction format (1) SHL reg1, reg2

(2) SHL imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] logically shift left by GR [reg1]

(2) GR [reg2] ← GR [reg2] logically shift left by zero-extend (imm5)

Format (1) Format IX

(2) Format II

Op code 15 0 31 16

(1) rrrrr111111RRRRR 0000000011000000

15 0

(2) rrrrr010110iiiii

Flag CY 1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction (1) SHL Shift Logical Left by Register

(2) SHL Shift Logical Left by Immediate (5-Bit)

Explanation (1) Logically shifts the word data of general register reg2 to the left by ‘n’ positions, where ‘n’

is a value from 0 to +31, specified by the lower 5 bits of general register reg1 (0 is shifted

to the LSB side), and then writes the result to general register reg2. If the number of shifts

is 0, general register reg2 retains the same value prior to instruction execution. The data

of general register reg1 is not affected.

(2) Logically shifts the word data of general register reg2 to the left by ‘n’ positions, where ‘n’

is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word length

(0 is shifted to the LSB side), and then writes the result to general register reg2. If the

number of shifts is 0, general register reg2 retains the value prior to instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM88

SHR
Shift Logical Right

Instruction format (1) SHR reg1, reg2

(2) SHR imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] logically shift right by GR [reg1]

(2) GR [reg2] ← GR [reg2] logically shift right by zero-extend (imm5)

Format (1) Format IX

(2) Format II

Op code 15 0 31 16

(1) rrrrr111111RRRRR 0000000010000000

15 0

(2) rrrrr010100iiiii

Flag CY 1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction (1) SHR Shift Logical Right by Register

(2) SHR Shift Logical Right by Immediate (5-Bit)

Explanation (1) Logically shifts the word data of general register reg2 to the right by ‘n’ positions where

‘n’ is a value from 0 to +31, specified by the lower 5 bits of general register reg1 (0 is shifted

to the MSB side). This instruction then writes the result to general register reg2. If the

number of shifts is 0, general register reg2 retains the same value prior to instruction

execution. The data of general register reg1 is not affected.

(2) Logically shifts the word data of general register reg2 to the right by ‘n’ positions, where

‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word

length (0 is shifted to the MSB side). This instruction then writes the result to general

register reg2. If the number of shifts is 0, general register reg2 retains the same value prior

to instruction execution.

CHAPTER 5 INSTRUCTIONS

89User’s Manual U10243EJ7V0UM

SLD
Load

Instruction format (1) SLD.B disp7 [ep], reg2

(2) SLD.H disp8 [ep], reg2

(3) SLD.W disp8 [ep], reg2

Operation (1) adr ← ep + zero-extend (disp7)

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

(2) adr ← ep + zero-extend (disp8)

GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

(2) adr ← ep + zero-extend (disp8)

GR [reg2] ← Load-memory (adr, Word)

Format Format IV

Op code 15 0

(1) rrrrr0110ddddddd

15 0

(2) rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

15 0

(3) rrrrr1010dddddd0

dddddd is the higher 6 bits of disp8.

Flag CY –

OV –

S –

Z –

SAT –

Instruction (1) SLD.B Short format Load Byte

(2) SLD.H Short format Load Half-Word

(3) SLD.W Short format Load Word

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM90

Explanation (1) Adds the 7-bit displacement, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, sign-extended

to word length, and stored in reg2.

(2) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to

generate a 32-bit address. Half-word data is read from this 32-bit address with bit 0 masked

to 0, sign-extended to word length, and stored in reg2.

(3) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to

generate a 32-bit address. Word data is read from this 32-bit address with bits 0 and 1

masked to 0, and stored in reg2.

Caution When the element pointer is added to the 8-bit displacement zero extended to word length, the

lower bits of the result may be masked to 0 depending on the type of data to be accessed (half

word, word).

CHAPTER 5 INSTRUCTIONS

91User’s Manual U10243EJ7V0UM

SST
Store

Instruction format (1) SST.B reg2, disp7 [ep]

(2) SST.H reg2, disp8 [ep]

(3) SST.W reg2, disp8 [ep]

Operation (1) adr ← ep + zero-extend (disp7)

Store-memory (adr, GR [reg2], Byte)

(2) adr ← ep + zero-extend (disp8)

Store-memory (adr, GR [reg2], Halfword)

(2) adr ← ep + zero-extend (disp8)

Store-memory (adr, GR [reg2], Word)

Format Format IV

Op code 15 0

(1) rrrrr0111ddddddd

15 0

(2) rrrrr1001ddddddd

ddddddd is the higher 7 bits of disp8.

15 0

(3) rrrrr1010dddddd1

dddddd is the higher 6 bits of disp8.

Flag CY –

OV –

S –

Z –

SAT –

Instruction (1) SST.B Short format Store Byte

(2) SST.H Short format Store Half-Word

(3) SST.W Short format Store Word

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM92

Explanation (1) Adds the 7-bit displacement, zero-extended to word length, to the element pointer to

generate a 32-bit address, and stores the data of the lowest byte of reg2 at the generated

address.

(2) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to

generate a 32-bit address, and stores the lower half-word data of reg2 at the generated

32-bit address with bit 0 masked to 0.

(3) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to

generate a 32-bit address, and stores the word data of reg2 at the generated 32-bit address

with bits 0 and 1 masked to 0.

Caution When the element pointer is added to the 8-bit displacement zero-extended to word length, the

lower bits of the result may be masked to 0 depending on the type of data to be accessed (half

word, word).

CHAPTER 5 INSTRUCTIONS

93User’s Manual U10243EJ7V0UM

ST
Store

Instruction format (1) ST.B reg2, disp16 [reg1]

(2) ST.H reg2, disp16 [reg1]

(3) ST.W reg2, disp16 [reg1]

Operation (1) adr ← GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Byte)

(2) adr ← GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Halfword)

(2) adr ← GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Word)

Format Format VII

Op code 15 0 31 16

(1) rrrrr111010RRRRR dddddddddddddddd

15 0 31 16

(2) rrrrr111011RRRRR ddddddddddddddd0

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16

(3) rrrrr111011RRRRR ddddddddddddddd1

ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

OV –

S –

Z –

SAT –

Instruction (1) ST.B Store Byte

(2) ST.H Store Half-Word

(3) ST.W Store Word

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM94

Explanation (1) Adds the 16-bit displacement, sign-extended to word length, to the data of general register

reg1 to generate a 32-bit address, and stores the lowest byte data of general register reg2

at the generated address.

(2) Adds the 16-bit displacement, sign-extended to word length, to the data of general register

reg1 to generate a 32-bit address, and stores the lower half-word data of general register

reg2 at the generated 32-bit address with bit 0 masked to 0. Therefore, stored data is

automatically aligned on a half-word boundary.

(3) Adds the 16-bit displacement, sign-extended to word length, to the data of general register

reg1 to generate a 32-bit address, and stores the word data of general register reg2 at the

generated 32-bit address with bits 0 and 1 masked to 0. Therefore, stored data is

automatically aligned on a word boundary.

Caution When the data of general register reg1 is added to a 16-bit displacement sign-extended to word

length, the lower bits of the result may be masked to 0 depending on the type of data to be

accessed (half word, word) to generate an address.

CHAPTER 5 INSTRUCTIONS

95User’s Manual U10243EJ7V0UM

STSR
Store Contents of System Register

Instruction format STSR regID, reg2

Operation GR [reg2] ← SR [regID]

Format Format IX

Op code 15 0 31 16

rrrrr111111RRRRR 0000000001000000

Flag CY –

OV –

S –

Z –

SAT –

Instruction STSR Store Contents of System Register

Explanation Stores the contents of a system register specified by system register number (regID) in general

register reg2. The contents of the system register are not affected.

Remark The system register number regID is a number which identifies a system register. Accessing

system register which is reserved is prohibited and will lead to undefined results.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM96

SUB
Subtract

Instruction format SUB reg1, reg2

Operation GR [reg2] ← GR [reg2] – [reg1]

Format Format I

Op code 15 0

rrrrr001101RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction SUB Subtract

Explanation Subtracts the word data of general register reg1 from the word data of general register reg2,

and stores the result in general register reg2. The data of general register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

97User’s Manual U10243EJ7V0UM

SUBR
Subtract Reverse

Instruction format SUBR reg1, reg2

Operation GR [reg2] ← GR [reg1] – GR [reg2]

Format Format I

Op code 15 0

rrrrr001100RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

OV 1 if an overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction SUBR Subtract Reverse

Explanation Subtracts the word data of general register reg2 from the word data of general register reg1,

and stores the result in general register reg2. The data of general register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM98

TRAP
Software Trap

Instruction format TRAP vector

Operation EIPC ← PC + 4 (restore PC)

EIPSW ← PSW

ECR.EICC ← interrupt code

PSW.EP ← 1

PSW.ID ← 1

PC ← 00000040H (vector = 00H to 0FH)

00000050H (vector = 10H to 1FH)

Format Format X

Op code 15 0 31 16

00000111111iiiii 0000000100000000

Flag CY –

OV –

S –

Z –

SAT –

Instruction TRAP Trap

Explanation Saves the restore PC and PSW to EIPC and EIPSW, respectively; sets the exception code

(EICC of ECR) and the flags of the PSW (EP and ID flags); jumps to the address of the trap

handler corresponding to the trap vector specified by vector number (0 to 31), and starts

exception processing. The condition flags are not affected.

The restore PC is the address of the instruction following the TRAP instruction.

CHAPTER 5 INSTRUCTIONS

99User’s Manual U10243EJ7V0UM

TST
Test

Instruction format TST reg1, reg2

Operation result ← GR [reg2] AND GR [reg1]

Format Format I

Op code 15 0

rrrrr001011RRRRR

Flag CY –

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction TST Test

Explanation ANDs the word data of general register reg2 with the word data of general register reg1. The

result is not stored, and only the flags are changed. The data of general registers reg1 and

reg2 are not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM100

TST1
Test Bit

Instruction format TST1 bit#3, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

Z flag ← Not (Load-memory-bit (adr,bit#3))

Format Format VIII

Op code 15 0 31 16

11bbb111110RRRRR dddddddddddddddd

Flag CY –

OV –

S –

Z 1 if bit NO.bit#3 of memory disp16 [reg1] = 0.

0 if bit NO.bit#3 of memory disp16 [reg1] = 1.

SAT –

Instruction TST1 Test Bit

Explanation Adds the data of general register reg1 to a 16-bit displacement, sign-extended to word length,

to generate a 32-bit address. Performs the test on the bit, specified by the 3-bit field “bbb”,

at the byte data location referenced by the generated address. If the specified bit is 0, the Z

flag is set to 1; if the bit is 1, the Z flag is reset to 0. The byte data, including the specified bit,

is not affected.

CHAPTER 5 INSTRUCTIONS

101User’s Manual U10243EJ7V0UM

XOR
Exclusive Or

Instruction format XOR reg1, reg2

Operation GR [reg2] ← GR [reg2] XOR GR [reg1]

Format Format I

Op code 15 0

rrrrr001001RRRRR

Flag CY –

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction XOR Exclusive Or

Explanation Exclusively ORs the word data of general register reg2 with the word data of general register

reg1, and stores the result in general register reg2. The data of general register reg1 is not

affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM102

XORI
Exclusive Or Immediate

Instruction format XORI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] XOR zero-extend (imm16)

Format Format VI

Op code 15 0 31 16

rrrrr110101RRRRR iiiiiiiiiiiiiiii

Flag CY –

OV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT –

Instruction XORI Exclusive Or Immediate (16-Bit)

Explanation Exclusively ORs the word data of general register reg1 with a 16-bit immediate data, zero-

extended to word length, and stores the result in general register reg2. The data of general

register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

103User’s Manual U10243EJ7V0UM

5.4 Number of Instruction Execution Clock Cycles

The number of instruction execution clock cycles differs depending on the combination of instructions. For details,

see CHAPTER 8 PIPELINE.

Table 5-10 shows a list of the number of instruction execution clock cycles.

Table 5-10. List of Number of Instruction Execution Clock Cycles (1/3)

Instructions Mnemonic Operand Byte
Execution clock

i – r – l

Load/store SLD.B disp7 [ep], r 2 1 – 1 – 2

SLD.H disp8 [ep], r 2 1 – 1 – 2

SLD.W disp8 [ep], r 2 1 – 1 – 2

SST.B r, disp7 [ep] 2 1 – 1 – 1

SST.H r, disp8 [ep] 2 1 – 1 – 1

SST.W r, disp8 [ep] 2 1 – 1 – 1

LD.B disp16 [R], r 4 1 – 1 – 2

LD.H disp16 [R], r 4 1 – 1 – 2

LD.W disp16 [R], r 4 1 – 1 – 2

ST.B r, disp16 [R] 4 1 – 1 – 1

ST.H r, disp16 [R] 4 1 – 1 – 1

ST.W r, disp16 [R] 4 1 – 1 – 1

Arithmetic MOV R, r 2 1 – 1 – 1

operation MOV imm5, r 2 1 – 1 – 1

MOVEA imm16, R, r 4 1 – 1 – 1

MOVHI imm16, R, r 4 1 – 1 – 1

DIVH R, r 2 36 – 36 – 36

MULH R, r 2 1 – 1 – 2

MULH imm5, r 2 1 – 1 – 2

MULHI imm16, R, r 4 1 – 1 – 2

ADD R, r 2 1 – 1 – 1

ADD imm5, r 2 1 – 1 – 1

ADDI imm16, R, r 4 1 – 1 – 1

CMP R, r 2 1 – 1 – 1

CMP imm5, r 2 1 – 1 – 1

SUBR R, r 2 1 – 1 – 1

SUB R, r 2 1 – 1 – 1

SETF cccc, r 4 1 – 1 – 1

Saturated SATSUBR R, r 2 1 – 1 – 1

operation SATSUB R, r 2 1 – 1 – 1

SATADD R, r 2 1 – 1 – 1

SATADD imm5, r 2 1 – 1 – 1

SATSUBI imm16, R, r 4 1 – 1 – 1

CHAPTER 5 INSTRUCTIONS

User’s Manual U10243EJ7V0UM104

Table 5-10. List of Number of Instruction Execution Clock Cycles (2/3)

Instructions Mnemonic Operand Byte
Execution clock

i – r – l

Logical NOT R, r 2 1 – 1 – 1

operation OR R, r 2 1 – 1 – 1

XOR R, r 2 1 – 1 – 1

AND R, r 2 1 – 1 – 1

TST R, r 2 1 – 1 – 1

SHR imm5, r 2 1 – 1 – 1

SAR imm5, r 2 1 – 1 – 1

SHL imm5, r 2 1 – 1 – 1

ORI imm16, R, r 4 1 – 1 – 1

XORI imm16, R, r 4 1 – 1 – 1

ANDI imm16, R, r 4 1 – 1 – 1

SHR R, r 4 1 – 1 – 1

SAR R, r 4 1 – 1 – 1

SHL R, r 4 1 – 1 – 1

Branch JMP [R] 2 3 – 3 – 3

JR disp22 4 3 – 3 – 3

JARL disp22, r 4 3 – 3 – 3

Bcond disp9 When condition is satisfied 2 3 – 3 – 3

When condition is not satisfied 2 1 – 1 – 1

Bit SET1 bit#3, disp16 [R] 4 4 – 4 – 4

manipulation CLR1 bit#3, disp16 [R] 4 4 – 4 – 4

NOT1 bit#3, disp16 [R] 4 4 – 4 – 4

TST1 bit#3, disp16 [R] 4 3 – 3 – 3

Special LDSR R, SR 4 1 – 1 –Note

STSR SR, r 4 1 – 1 – 1

NOP – 2 1 – 1 – 1

DI – 4 1 – 1 – 1

EI – 4 1 – 1 – 1

TRAP vector 4 4 – 4 – 4

HALT – 4 1 – 1 – 1

RETI – 4 4 – 4 – 4

Undefined instruction code trap 4 4 – 4 – 4

Note When accessing EIPC, FEPC: 3

 When accessing EIPSW, FEPSW, PSW: 1

CHAPTER 5 INSTRUCTIONS

105User’s Manual U10243EJ7V0UM

Table 5-10. List of Number of Instruction Execution Clock Cycles (3/3)

Operand

Symbol Meaning

R: reg1 General register (used as source register)

r: reg2 General register (mainly used as destination register)

SR: System Register System register

imm×: immediate ×-bit immediate

disp×: displacement ×-bit displacement

bit#3: bit number 3-bit data for bit number specification

ep: Element Pointer Element pointer

B: Byte Byte (8 bits)

H: Halfword Half-word (16 bits)

W: Word Word (32 bits)

cccc: conditions 4-bit data condition code specification

vector 5-bit data for trap vector (00H to 1FH) specification

Execution clock

Symbol Meaning

i: issue When other instruction is executed immediately after executing an instruction

r: repeat When the same instruction is repeatedly executed immediately after the instruction has

been executed

l: latency If result of instruction execution is quoted by immediately subsequent instruction

User’s Manual U10243EJ7V0UM106

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Interrupts are events that occur independently of the program execution and are divided into two types: maskable

and non-maskable interrupts. In contrast, an exception is an event whose occurrence is dependent on the program

execution. There is no major difference between interrupts and exceptions in terms of control flow.

The V850 Family can process various interrupt requests from the on-chip peripheral hardware and external

sources. In addition, exception processing can be started by an instruction (TRAP instruction) and by the occurrence

of an exception event (exception trap).

The interrupts and exceptions supported in the V850 Family are described below. When an interrupt or exception

is deleted, control is transferred to a handler whose address is determined by the source of the interrupt or exception.

The source of the event is specified by the exception code that is stored in the exception cause register (ECR). Each

handler analyzes the exception cause register (ECR) and performs appropriate interrupt servicing or exception

handling. The restore PC and PSW are written to the status saving registers (EIPC, EIPSW/FEPC, FEPSW).

To restore execution from interrupt or exception processing, use the RETI instruction.

Read the restore PC and PSW from the status saving register, and transfer control to the restore PC.

• Types of interrupt/exception processing

The V850 Family handles the following four types of interrupts/exceptions:

• Non-maskable interrupt

• Maskable interrupt

• Software exception

• Exception trap

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

107User’s Manual U10243EJ7V0UM

Table 6-1. List of Interrupt/Exception Codes

Interrupt/Exception Cause Classification Exception Code Handler Address Restore PC

Name Trigger

NMI NMI input Interrupt 0010H 00000010H next PCNote 2

Maskable interrupt Note 1 Interrupt Note 1 Note 1 next PCNote 2

TRAP0n (n = 0 to FH) TRAP instruction Exception 004nH 00000040H next PC

TRAP1n (n = 0 to FH) TRAP instruction Exception 005nH 00000050H next PC

ILGOP Illegal op code Exception 0060H 00000060H next PCNote 3

Notes 1. Differs depending on the type of the maskable interrupt.

2. If an interrupt is acknowledged during execution of a DIVH (divide) instruction, the restore PC becomes

the PC value for the currently executed instruction (DIVH).

3. The execution address of the illegal instruction is obtained by “restore PC-4” when an illegal op code

exception occurs.

The restore PC is the PC saved to the EIPC or FEPC when interrupt/exception processing is started. “next PC”

is the PC that starts processing after interrupt/exception processing.

The processing of maskable interrupts is controlled by the user through the INTC unit (interrupt controller). The

INTC is different for each device in the V850 Family due to the variations of on-chip peripherals, interrupt/exception

causes and exception codes.

6.1 Interrupt Processing

6.1.1 Maskable interrupts

A maskable interrupt can be masked by the program status word (PSW).

The INTC issues an interrupt request to the CPU, based on the acknowledged interrupt with the highest priority.

If a maskable interrupt occurs due to INT input, the processor performs the following steps, and transfers control

to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower half-word of ECR (EICC).

(4) Sets ID bit of PSW and clears EP bit.

(5) Sets handler address for each interrupt to PC and transfers control.

The EIPC and EIPSW are used as the status saving registers. Interrupts are held pending in the interrupt controller

(INTC) when one of the following two conditions occurs: when the interrupt input (INT) is masked by its INTC, or when

an interrupt processing routine is currently being executed (when the NP bit of the PSW is 1 or when the ID bit of

the PSW is 1). New maskable interrupt processing is started by the pending INT input when the mask condition is

cleared and the NP and ID bits of the PSW are reset to 0 by the LDSR and RETI instructions.

The EIPC and EIPSW must be saved by the program to enable nesting of interrupts because only one set of EIPC

and EIPSW is provided. Bits 31 through 24 of the EIPC and bits 31 through 8 of the EIPSW are fixed to 0.

Figure 6-1 illustrates how a maskable interrupt is processed.

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U10243EJ7V0UM108

Figure 6-1. Maskable Interrupt Processing Format

Mask

PSW.NP

PSW.ID

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PC

←
←
←
←
←
←

Restore PC
PSW
Exception code
0
1
Handler address

Yes

1

1

0

0

No

Maskable
interrupt (INT) occurs

Interrupt request pending

Interrupt processing pending

Interrupt processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

109User’s Manual U10243EJ7V0UM

6.1.2 Non-maskable interrupts

A non-maskable interrupt cannot be disabled by an instruction and therefore can be always acknowledged. The

non-maskable interrupt of the V850 Family is generated by NMI input.

When a non-maskable interrupt is generated by NMI input, the processor performs the following steps, and

transfers control to the handler routine.

(1) Saves restore PC to FEPC.

(2) Saves current PSW to FEPSW.

(3) Writes exception code to higher half-word of ECR (FECC).

(4) Sets NP and ID bits of PSW and clears EP bit.

(5) Sets handler address (00000010H) for non-maskable interrupt to PC and transfers control.

The FEPC and FEPSW are used as the status saving registers. Non-maskable interrupts are held pending in the

INTC when another non-maskable interrupt is currently being executed (when the NP bit of the PSW is 1). New non-

maskable interrupt processing is started by the pending non-maskable interrupt request when the NP bit of the PSW

is reset to 0 by the RETI and LDSR instructions.

Figure 6-2 illustrates how a non-maskable interrupt is processed.

Figure 6-2. Non-maskable Interrupt Processing Format

PSW.NP

FEPC
FEPSW
ECR.FECC
PSW.NP
PSW.EP
PSW.ID
PC

←
←
←
←
←
←
←

Restore PC
PSW
Exception code
1
0
1
00000010H

1

0

Non-maskable
interrupt (NMI) occurs

Interrupt request pending

Interrupt processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U10243EJ7V0UM110

6.2 Exception Processing

6.2.1 Software exceptions

A software exception is generated when the CPU executes the TRAP instruction and is always acknowledged.

If a software exception occurs, the CPU performs the following steps,and transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR (interrupt cause).

(4) Sets EP and ID bits of PSW.

(5) Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

Figure 6-3 illustrates how the software exception is processed.

Figure 6-3. Software Exception Processing Format

Handler address: 00000040H (vector = 0nH)

00000050H (vector = 1nH)

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PC

←
←
←
←
←
←

Restore PC
PSW
Exception code
1
1
Handler address

Software
exception (TRAP instruction) occurs

Exception processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

111User’s Manual U10243EJ7V0UM

6.2.2 Exception trap

An exception trap is an interrupt requested when an instruction is illegally executed. The exception trap of the

V850 Family is generated by an illegal op code instruction code trap (ILGOP: ILleGal OPcode trap).

An illegal op code instruction has an instruction code with an op code (bits 5 through 10) of 111111B and a sub-

op code (bits 23 through 26) of 0011B through 1111B. When this kind of an illegal op code instruction is executed,

an illegal op code instruction code trap occurs.

Figure 6-4. Illegal Instruction Code

Remark × : don’t care

: Op code/sub-op code position

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR.

(4) Sets NP, EP, and ID bits of PSW.

(5) Sets handler address (00000060H) for exception trap to PC and transfers control.

Figure 6-5 illustrates how the exception trap is processed.

Figure 6-5. Exception Trap Processing Format

The execution address of the illegal instruction is obtained by “restore PC - 4” when an exception trap occurs.

Caution The operation is not guaranteed when an instruction that has not been defined either as an

instruction or an illegal instruction is executed.

× × × × × × × × × × × × × × ×
0 0 1 1

1 1 1 1
× × × × × × ×

15 13 12 11 10 5 4 0 31 27 26 23 22 21 20 17 16

1 1 1 1 1 1 to

EIPC
EIPSW
ECR.EICC
PSW.NP
PSW.EP
PSW.ID
PC

←
←
←
←
←
←
←

Restore PC
PSW
Exception code
1
1
1
00000060H

Exception trap
(ILGOP) occurs

Exception processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U10243EJ7V0UM112

6.3 Restoring from Interrupt/Exception

All restoration from interrupt/exception processing is executed by the RETI instruction.

With the RETI instruction, the processor performs the following steps,and transfers control to the address of the

restore PC.

(1) If the EP bit of the PSW is 0 and the NP bit of the PSW is 1, the restore PC and PSW are read from the FEPC

and FEPSW; otherwise, the restore PC and PSW are read from the EIPC and EIPSW.

(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from exception processing or non-maskable interrupt processing, the NP and EP

bits of the PSW must be set to the following values by using the LDSR instruction immediately before the RETI

instruction, in order to restore the PC and PSW normally:

To restore from non-maskable interrupt ··················· PSW’s NP bit = 1, EP bit = 0

To restore from exception processing ······················· PSW’s EP bit = 1

Figure 6-6 illustrates how restoring from interrupt/exception is performed.

Figure 6-6. Restoring from Interrupt/Exception

PSW.EP

PSW.NP

PC
PSW

←
←

EIPC
EIPSW

1

0

RETI instruction

Jump to PC

PC
PSW

←
←

FEPC
FEPSW

1

0

Restore
from
exception

Restore from
non-maskable
interrupt

Restore
from maskable
interrupt

113User’s Manual U10243EJ7V0UM

CHAPTER 7 RESET

When a low-level signal is input to the RESET pin, the system is reset, and all on-chip hardware is initialized.

7.1 Initialization

When a low-level signal is input to the RESET pin, the system is reset, and each hardware register is set in the

status shown in Table 7-1. When the RESET signal goes high, program execution begins. If necessary, re-initialize

the contents of each register by program control.

Table 7-1. Register Status after Reset

Hardware (Symbol) Status after Reset

Program counter PC 00000000H

Interrupt status saving register EIPC Undefined

EIPSW Undefined

NMI status saving register FEPC Undefined

FEPSW Undefined

Exception cause register (ECR) FECC 0000H

EICC 0000H

Program status word PSW 00000020H

General register r0 Fixed to 00000000H

r1 to r31 Undefined

7.2 Start Up

All devices in the V850 Family begin program execution from address 00000000H after reset. After reset, no

immediate interrupt requests are acknowledged. To enable interrupts, clear the ID bit of the program status word

(PSW) to 0.

User’s Manual U10243EJ7V0UM114

CHAPTER 8 PIPELINE

The V850 Family is based on the RISC architecture and executes almost all the instructions in one clock cycle

under control of a 5-stage pipeline.

The processor uses a 5-stage pipeline.

The operation to be performed in each stage is as follows:

IF (instruction fetch) .. Instruction is fetched and fetch pointer is incremented.

ID (instruction decode) .. Instruction is decoded, immediate data is generated,

and register is read.

EX (execution of ALU, multiplier, and barrel shifter) The instruction is executed.

MEM (memory access) ... Memory at specified address is accessed.

WB (write back) ... Result of execution is written to register.

8.1 Outline of Operation

The instruction execution sequence of the V850 Family consists of five stages including fetch and write back stages.

The execution time of each stage differs depending on the type of the instruction and the type of the memory to

be accessed.

As an example of pipeline operation, Figure 8-1 shows the processing of the CPU when nine standard instructions

are executed in succession.

Figure 8-1. Example of Executing Nine Standard Instructions

 1 through 13 in the figure above indicate the states of the CPU. In each state, write back of instruction n, memory

access of instruction n+1, execution of instruction n+2, decoding of instruction n+3, and fetching of instruction n+4

are simultaneously performed. It takes five clock cycles to process a standard instruction, including fetching and write

back. Because five instructions can be processed at the same time, however, a standard instruction can be executed

in 1 clock cycle on average.

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

1 2 3 4 5 6 7 8 9 10 11 12 13

System clock

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6
Instruction 7
Instruction 8
Instruction 9

Time flow (state)

Processing CPU performs
simultaneously

End of
instruc-
tion 3

End of
instruc-
tion 4

End of
instruc-
tion 5

End of
instruc-
tion 6

End of
instruc-
tion 7

End of
instruc-
tion 8

End of
instruc-
tion 9

End of
ionstruc-
tion 2

End of
instruc-
tion 1

Executes instruction every 1 clock cycle

CHAPTER 8 PIPELINE

115User’s Manual U10243EJ7V0UM

8.2 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.

During instruction fetch (IF stage) and memory access (MEM stage), the internal ROM/PROM and the internal RAM

are accessed, respectively. In this case, the IF and MEM stages are processed in 1 clock. In all other cases, the

required time for access consists of the fixed access time, with the addition in some cases of a path wait time. Access

times are shown in Figure 8-2 below.

Table 8-1. Access Times (in Clocks)

Resource (Bus Width) Internal ROM/PROM Internal RAM Internal Peripheral I/O External Memory

Stage (32 Bits) (32 Bits) (8/16 Bits) (16 Bits)

Instruction fetch 1 3 Impossible 3 + n

Memory access (MEM) 3 1 3 + n 3 + n

Remark n: Wait number

8.2.1 Load instructions

[Instructions] LD, SLD

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the execution

result is placed immediately after the load instruction, data wait time occurs. For details, see

8.3 Pipeline Disorder.

8.2.2 Store instructions

[Instructions] ST, SST

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed

in the WB stage, because no data is written to registers.

8.2.3 Arithmetic operation instructions (excluding multiply and divide instructions)

[Instructions] MOV, MOVEA, MOVHI, ADD, ADDI, CMP, SUB, SUBR, SETF

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed

in the MEM stage, because memory is not accessed.

IF ID EX MEM WB
IF ID EX MEM WB

Load instruction

Next instruction

1 2 3 4 5 6

Store instruction
Next instruction

IF ID EX MEM WB
IF ID EX MEM WB

1 2 3 4 5 6

IF ID EX MEM WB
IF ID EX MEM WB

Arithmetic operation
instruction
Next instruction

1 2 3 4 5 6

CHAPTER 8 PIPELINE

User’s Manual U10243EJ7V0UM116

8.2.4 Multiply instructions

[Instructions] MULH, MULHI

[Pipeline] (1) When the next instruction is not a multiply instruction

(2) When the next instruction is a multiply instruction

[Description] The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. There is no MEM stage. The EX

stage requires 2 clocks, but the EX1 and EX2 stages can operate independently. Therefore,

the number of clocks for instruction execution is always 1, even if several multiply instructions

are executed in a row. However, if an instruction using the execution result is placed

immediately after a multiply instruction, data wait time occurs. For details, see 8.3 Pipeline

Disorder.

8.2.5 Divide instructions

[Instructions] DIVH

[Pipeline]

– : Idle inserted for wait

[Description] The pipeline consists of 40 stages, IF, ID, EX1 to EX36, MEM, and WB. The EX stage requires

36 clocks. No operation is performed in the MEM stage, because memory is not accessed.

8.2.6 Logical operation instructions

[Instructions] NOT, OR, ORI, XOR, XORI, AND, ANDI, TST, SHR, SAR, SHL

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. No operation is performed in the

MEM stage, because memory is not accessed.

IF ID EX1 EX2 WB
IF ID EX MEM WB

Multiply instruction

Next instruction

1 2 3 4 5 6

Multiply instruction 1

Multiply instruction 2
IF ID EX1 EX2 WB

IF ID EX1 EX2 WB

1 2 3 4 5 6

1 2 3 4

Divide instruction
Next instruction

IF ID EX1 EX2
IF – – –

38 39 40

EX35 EX36 MEM WB
ID EX MEM WB
IF ID EX MEM WBNext to next instruction

37 41 42

IF ID EX MEM WB
IF ID EX MEM WB

Logical operation
instruction
Next instruction

1 2 3 4 5 6

CHAPTER 8 PIPELINE

117User’s Manual U10243EJ7V0UM

8.2.7 Saturation operation instructions

[Instructions] SATADD, SATSUB, SATSUBI, SATSUBR

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the MEM stage, because memory is not accessed.

8.2.8 Branch instructions

(1) Conditional branch instructions

[Instructions] Bcond instructions (BGT, BGE, BLT, BLE, BH, BNL, BL, BNH, BE, BNE, BV, BNV, BN, BP,

BC, BNC, BZ, BNZ, BSA): Except BR instruction

[Pipeline] (a) When the condition is not realized

(b) When the condition is realized

IF ×: Instruction fetch that is not executed

ID ×: Instruction decode that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the MEM and WB stages, because memory is not accessed and no data is written to registers.

(a) When the condition is not realized

The number of execution clocks for the branch instruction is 1.

(b) When the condition is realized

The number of execution clocks for the branch instruction is 3. The IF stage of the next

instruction and next to next instruction of the branch instruction is not executed.

IF ID EX MEM WB
IF ID EX MEM WB

Saturation operation
instruction
Next instruction

1 2 3 4 5 6

IF ID EX MEM WB
IF ID EX MEM WB

Conditional branch
instruction
Next instruction

1 2 3 4 5 6

IF ID EX MEM WB
IF × ID ×

Conditional branch
instruction
Next instruction

IF ID EX
IF ×

MEM WB
Next to next instruction
Branch destination instruction

1 2 3 4 5 6 7 8

CHAPTER 8 PIPELINE

User’s Manual U10243EJ7V0UM118

(2) Unconditional branch instructions

[Instructions] JMP, JR, JARL, BR

[Pipeline]

IF ×: Instruction fetch that is not executed

WB *: No operation is performed in the case of the JMP instruction, JR

instruction, and BR instruction, but in the case of the JARL instruction,

data is written to the restore PC.

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the MEM and WB stages, because memory is not accessed and no data is written to registers.

However, in the case of the JARL instruction, data is written to the restore PC in the WB stage.

Also, the IF stage of the next instruction of the branch instruction is not executed.

8.2.9 Bit manipulation instructions

(1) SET1, CLR1, NOT1

[Pipeline]

– : Idle inserted for wait

[Description] The pipeline consists of 8 stages, IF, ID, EX1, MEM, EX2, EX3, MEM, and WB. However, no

operation is performed in the WB stage, because no data is written to registers.

In the case of these instructions, the memory access is read modify write, and the EX and MEM

stages require 3 and 2 clocks, respectively.

IF ID EX MEM WB *
IF ×

Unconditional branch
instruction
Next instruction

IF ID EX MEM WBBranch destination instruction

1 2 3 4 5 6 7 8

Next instruction
IF ID EX1 MEM

IF – – ID
EX3 MEM WB

EX MEM WB
ID EX MEM WBNext to next instruction

EX2
–

IF

1 2 3 4 5 6 7 8 9 10
SET1, CLR1, NOT1
instruction

CHAPTER 8 PIPELINE

119User’s Manual U10243EJ7V0UM

(2) TST1

[Pipeline]

– : Idle inserted for wait

[Description] The pipeline consists of 8 stages, IF, ID, EX1, MEM, EX2, EX3, MEM, and WB. However, no

operation is performed in the second MEM and WB stages, because there is no second memory

access nor data write to registers.

In the case of this instruction, the memory access is read modify write, and the EX and MEM

stage require 3 and 2 clocks, respectively.

8.2.10 Special instructions

(1) LDSR, STSR

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the MEM stage, because memory is not accessed. Also, if the STSR instruction using the

EIPC and FEPC system registers is placed immediately after the LDSR instruction setting these

registers, data wait time occurs. For details, see 8.3 Pipeline Disorder.

(2) NOP

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the EX, MEM and WB stages, because no operation and no memory access is executed,

and no data is written to registers.

(3) EI, DI

[Pipeline]

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the MEM and WB stages, because memory is not accessed and data is not written to

registers.

TST1 instruction
Next instruction

IF ID EX1 MEM
IF – – ID

EX3 MEM WB
EX MEM WB
ID EX MEM WBNext to next instruction

EX2
–

IF

1 2 3 4 5 6 7 8 9 10

IF ID EX MEM WB
IF ID EX MEM WB

LDSR, STSR instruction

Next instruction

1 2 3 4 5 6

IF ID EX
IF ID EX MEM

WBNOP instruction

Next instruction

MEM
WB

1 2 3 4 5 6

IF ID EX MEM WB
IF ID EX MEM WB

EI, DI instruction

Next instruction

1 2 3 4 5 6

CHAPTER 8 PIPELINE

User’s Manual U10243EJ7V0UM120

(4) HALT

[Pipeline]

– : Idle inserted for wait

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the

MEM and WB stages, because memory is not accessed and no data is written to registers. Also,

for the next instruction, the ID stage is delayed until the HALT state is released.

(5) TRAP

[Pipeline]

IF ×: Instruction fetch that is not executed

ID1: Trap code detect

ID2: Address generate

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is

performed in the MEM stage, because memory is not accessed. The ID stage requires 2 clocks.

Also, the IF stage of the next instruction and next to next instruction is not executed.

(6) RETI

[Pipeline]

IF ×: Instruction fetch that is not executed

ID1: Register select

ID2: Read EIPC/FEPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because memory is not accessed and no data is written

to registers. The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next

to next instruction is not executed.

IF ID EX MEM
IF

1 2 3 4 5 6

WB

IF ID EX MEM
– – – – ID EX MEM WB–

WB

HALT
instruction
Next
instruction
Next to next instruction

HALT release

IF ID1 ID2 EX MEMTRAP instruction

Next instruction

1 2 3 4 5 6

WB

IF ID EX MEM WB

7 8 9

Jump destination instruction

IF ×

IF ID1 ID2 EX MEM
IF ×

RETI instruction

Next instruction

1 2 3 4 5 6

WB

IF ID EX MEM WB

7 8 9

Jump destination instruction

CHAPTER 8 PIPELINE

121User’s Manual U10243EJ7V0UM

8.3 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires

1 clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.

This section describes the main causes of pipeline disorder.

8.3.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1=1, A0=0) and is 4 bytes in length, it is necessary

to repeat IF twice in order to align instructions in word units. This is called an align hazard.

For example, the instructions a to e are placed from address X0H, and that instruction b consists of 4 bytes, and

the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1=1, A0=0), and is not

word aligned (A1=0, A0=0). Therefore, when this instruction b becomes the branch destination instruction, an align

hazard occurs. When an align hazard occurs, the number of execution clocks of the branch instruction becomes 4.

Figure 8-2. Align Hazard Example

(a) Memory map (b) Pipeline

IF ×: Instruction fetch that is not executed

–: Idle inserted for wait

IF1: First instruction fetch that occurs during align hazard. It is a 2-byte

fetch that fetches the 2 bytes on the lower address of instruction

b.

IF2: Second instruction fetch that occurs during align hazard. It is

normally a 4-byte fetch that fetches the 2 bytes on the upper

address of instruction b in addition to instruction c (2-byte length).

Align hazards can be prevented through the following handling in order to obtain faster instruction execution.

• Use 2-byte branch destination instruction.

• Use 4-byte instructions placed at word boundaries (A1=0, A0=0) for branch destination instructions.

Instruc-
tion d

Instruc-
tion e

Instruc-
tion b

Instruc-
tion c

Instruc-
tion a

Instruc-
tion b

X8H

X4H

X0H

32 bits

Address of branch destination
instruction (instruction b)

IF ID EX MEM WB
IF ×

Branch instruction
Next instruction
Next to next instruction

1 2 3 4 5 6 7 8

–

IF1 IF2 ID EX MEM
IF ×

WB
IF ID EX MEM WB

9 10

Branch destination instruction (instruction b)

Branch destination’s next instruction (instruction c)

CHAPTER 8 PIPELINE

User’s Manual U10243EJ7V0UM122

8.3.2 Referencing execution result of load instruction

For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the contents

of the same register are used by the instruction immediately after the load instruction, it is necessary to delay the

use of the register by this later instruction until the load instruction has ended using that register. This is called a hazard.

The V850 Family has an interlock function that causes the CPU to automatically handle this hazard by delaying the

ID stage of the next instruction.

The V850 Family also has a short path that allows the data read during the MEM stage to be used in the ID stage

of the next instruction. This short path allows data to be read with the load instruction during the MEM stage and the

use of this data in the ID stage of the next instruction with the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the number

of execution clocks of the load instruction is 2.

Figure 8-3. Example of Execution Result of Load Instruction

IL: Idle inserted for data wait by interlock function

–: Idle inserted for wait

: Short path

As described in Figure 8-3, when an instruction placed immediately after a load instruction uses its execution result,

a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution speed

can be avoided by placing instructions that use the execution result of a load instruction at least 2 instructions after

the load instruction.

8.3.3 Referencing execution result of multiply instruction

For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage. Therefore,

if the contents of the same register are used by the instruction immediately after the multiply instruction, it is necessary

to delay the use of the register by this later instruction until the multiply instruction has ended using that register

(occurrence of hazard).

The V850 Family’s interlock function delays the ID stage of the instruction following immediately after. A short path

is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation result

to be used in the ID stage of the instruction following immediately after with the same timing.

Figure 8-4. Example of Execution Result of Multiply Instruction

IL: Idle inserted for data wait by interlock function

–: Idle inserted for wait

: Short path

IF ID EX MEM WB
IF IL ID EX MEM

Load instruction 1
(LD [R4], R6)
Instruction 2 (ADD 2, R6) WB

IF – ID EX MEM
IF ID EX MEM WB

WBInstruction 3
Instruction 4

1 2 3 4 5 6 7 8 9

IF ID EX1 EX2 WB
IF IL ID EX MEMInstruction 2 (ADD 2, R6) WB

IF – ID EX MEM
IF ID EX MEM WB

WBInstruction 3
Instruction 4

1 2 3 4 5 6
Multiply instruction 1
(MULH 3, R6)

7 8 9

CHAPTER 8 PIPELINE

123User’s Manual U10243EJ7V0UM

As described in Figure 8-4, when an instruction placed immediately after a multiply instruction uses its execution

result, a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution

speed can be avoided by placing instructions that use the execution result of a multiply instruction at least 2 instructions

after the multiply instruction.

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after

referencing the same system registers with the STSR instruction, the use of the system registers for the STSR

instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of

hazard).

The V850 Family’s interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR

instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

Figure 8-5. Example of Execution Result of LDSR Instruction for EIPC and FEPC

IL: Idle inserted for data wait by interlock function

–: Idle inserted for wait

Note System register 0 used for the LDSR and STSR instructions designates EIPC.

As described in Figure 8-5, when an STSR instruction is placed immediately after an LDSR instruction that uses

the operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock

function causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be

avoided by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least

3 instructions after the LDSR instruction.

8.3.5 Cautions when creating programs

When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by

observing the following cautions.

• Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the

load instruction.

• Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions

after the multiply instruction.

• If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR

instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

• For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at the word

boundary.

IF ID EX MEM
IF IL IL EX

LDSR instruction
(LDSR R6, 0) Note

STSR instruction
(STSR 0, R7) Note MEM

IF – ID EX MEM
IF ID EX MEM WB

WBNext instruction
Next to next instruction

WB
WB
ID

–

1 2 3 4 5 6 7 8 9 10

CHAPTER 8 PIPELINE

User’s Manual U10243EJ7V0UM124

(2) Not V850 Family (Other than Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of instruction 2

and the IF stage of instruction 5 are in contention, causing path waiting to occur and slower execution time due

to disorderly pipeline operation.

–: Idle inserted for wait

8.4 Additional Items Related to Pipeline

8.4.1 Harvard architecture

The V850 Family uses the Harvard architecture to operate an instruction fetch path from internal ROM and a

memory access path to internal RAM independently. This eliminates path arbitration conflicts between the IF and MEM

stages and allows orderly pipeline operation.

(1) V850 Family (Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruction 2 and

the IF stage of instruction 5 can be executed simultaneously with orderly pipeline operation.

IF ID EX MEM
IF ID EX WB

Instruction 1

Instruction 2
IF EX MEM WB

EX MEM WB
Instruction 3

Instruction 4

WB
MEM

ID

Instruction 5

ID
EX MEM WB

IF
IF ID

1 2 3 4 5 6 7 8 9

IF ID EX MEM
IF ID – MEM

Instruction 1

Instruction 2
IF ID – EX

– ID EX
Instruction 3

Instruction 4

WB
EX

–

Instruction 5

IF
IF ID EX

1 2 3 4 5 6 7 8 9 10

WB
MEM

MEM
MEM

11

WB
WB

WB

CHAPTER 8 PIPELINE

125User’s Manual U10243EJ7V0UM

8.4.2 Short path

The V850 Family provides on chip a short path that allows the use of the execution result of the preceding instruction

by the following instruction before write back (WB) is completed for the previous instruction.

Example 1. Execution result of arithmetic operation instruction and logical operation used by instruction

following immediately after

• V850 Family (on-chip short path)

The execution result of the preceding instruction can be used for the ID stage of the instruction

following immediately after as soon as the result is out (EX stage), without having to wait for write

back to be completed.

• Not V850 Family (No short path)

The ID stage of the instruction following immediately after is delayed until write back of the

previous instruction is completed.

–: Idle inserted for wait

: Short path

IF ID EX MEM WB
IF ID EX MEM WB

ADD 2, R6
MOV R6, R7

1 2 3 4 5 6

IF ID EX MEM WB
IF – – ID EX

ADD 2, R6
MOV R6, R7 MEM WB

1 2 3 4 5 6 7 8

CHAPTER 8 PIPELINE

User’s Manual U10243EJ7V0UM126

Example 2. Data read from memory by the load instruction used by instruction following immediately after

• V850 Family (on-chip short path)

The execution result of the preceding instruction can be used for the ID stage of the instruction

following immediately after as soon as the result is out (MEM stage), without having to wait for

write back to be completed.

• Not V850 Family (No short path)

The ID stage of the instruction following immediately after is delayed until write back of the

previous instruction is completed.

IL: Idle inserted for data wait by interlock function

–: Idle inserted for wait

: Short path

IF ID EX MEM WB
IF IL ID EX MEM

LD [R4], R6
ADD 2, R6 WB

ID EX MEM
ID EX MEM WB

WBNext instruction
Next to next instruction

1 2 3 4 5 6 7 8 9

IF –
IF

IF ID EX MEM WB
IF – – ID EX

LD [R4], R6
ADD 2, R6 MEM

IF ID EX
IF ID EX MEM

MEMNext instruction
Next to next instruction

WB
WB

WB

1 2 3 4 5 6 7 8 9 10

127User’s Manual U10243EJ7V0UM

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

This appendix summarizes the instruction mnemonic list described previously.

Instructions are listed in the alphabetical order of their mnemonics.

The illustration and table shown below indicates how to read this appendix and what each symbol and word means.

Name Meaning

reg1 General register (used as source register)

reg2 General register (mainly used as destination register. Some are also

used as source registers)

bit#3 3-bit data for bit number specification

imm× ×-bit immediate

disp× ×-bit displacement

regID System register number

vector Trap handler address corresponding to trap vector

cccc 4-bit data for 4-bit condition code specification

Identifier Meaning

0 Reset to 0

* Set to 1 or reset to 0 according to instruction execution result

– No change

Instruction
mnemonic

Operand
name

Indicates
instruction format

Describes
movements of flags

ADD reg1, reg2 I *

Convention

Instruction

Mnemonic

Operand Format CY OV S Z SAT

* * * –

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

User’s Manual U10243EJ7V0UM128

Table A-1. Instruction Mnemonic (In Alphabetical Order) (1/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

ADD reg1, reg2 I * * * * – Add. Adds the word data of reg1 to the word

data of reg2, and stores the result in reg2.

ADD imm5, reg2 II * * * * – Add. Adds the 5-bit immediate data, sign-

extended to word length, to the word data of

reg2, and stores the result in reg2.

ADDI imm16, reg1, reg2 VI * * * * – Add. Adds the 16-bit immediate data, sign-

extended to word length, to the word data of

reg1, and stores the result in reg2.

AND reg1, reg2 I – 0 * * – AND. ANDs the word data of reg2 with the word

data of reg1, and stores the result in reg2.

ANDI imm16, reg1, reg2 VI – 0 * * – AND. ANDs the word data of reg1 with the 16-bit

immediate data, zero-extended to word length,

and stores the result in reg2.

Bcond disp9 III – – – – – Conditional branch (if Carry). Tests a condition

flag specified by an instruction. Branches if a

specified condition is satisfied; otherwise,

executes the next instruction. The branch

destination PC holds the sum of the current PC

value and 9-bit displacement which is the 8-bit

immediate shifted 1 bit and sign-extended to

word length.

CLR1 bit#3, disp16 [reg1] VIII – – – * – Bit clear. Adds the data of reg1 to 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Then clears the bit,

specified by the instruction bit field, of the byte

data referenced by the generated address.

CMP reg1, reg2 I * * * * – Compare. Compares the word data of reg2 with

the word data of reg1, and indicates the result

by using the condition flags. To compare, the

contents of reg1 are subtracted from the word

data of reg2.

CMP imm5, reg2 II * * * * – Compare. Compares the word data of reg2 with

the 5-bit immediate data, sign-extended to word

length, and indicates the result by using the

condition flags. To compare, the contents of the

sign-extended immediate data are subtracted

from the word data of reg2.

DI – X – – – – – Disables maskable interrupt. Sets the ID flag of

the PSW to 1 to disable the acknowledgement of

maskable interrupts from acceptance; interrupts

are immediately disabled at the start of this

instruction execution.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

129User’s Manual U10243EJ7V0UM

Table A-1. Instruction Mnemonic (In Alphabetical Order) (2/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

DIVH reg1, reg2 I – * * * – Signed divide. Divides the word data of reg2 by

the lower half-word data of reg1, and stores the

quotient to reg2.

EI – X – – – – – Enables maskable interrupt. Resets the ID flag

of the PSW to 0 and enables the acknowledge-

ment of maskable interrupts at the beginning of

next instruction.

HALT – X – – – – – CPU halt. Stops the operating clock of the CPU

and places the CPU in the HALT mode.

JARL disp22, reg2 V – – – – – Jump and register link. Saves the current PC

value plus 4 to general register reg2, adds a 22-

bit displacement, sign-extended to word length,

to the current PC value, and transfers control to

the PC. Bit 0 of the 22-bit displacement is

masked to 0.

JMP [reg1] I – – – – – Register indirect unconditional branch. Trans-

fers control to the address specified by reg1. Bit

0 of the address is masked to 0.

JR disp22 V – – – – – Unconditional branch. Adds a 22-bit displace-

ment, sign-extended to word length, to the

current PC value, and transfers control to the

PC. Bit 0 of the 22-bit displacement is masked

to 0.

LD.B disp16 [reg1], reg2 VII – – – – – Byte load. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Byte data is read

from the generated address, sign-extended to

word length, and then stored in reg2.

LD.H disp16 [reg1], reg2 VII – – – – – Half-word load. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Half-word data is

read from this 32-bit address with its bit 0

masked to 0, sign-extended to word length, and

stored in reg2.

LD.W disp16 [reg1], reg2 VII – – – – – Word load. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Word data is read

from this 32-bit address with bits 0 and 1 masked

to 0, and stored in reg2.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

User’s Manual U10243EJ7V0UM130

Table A-1. Instruction Mnemonic (In Alphabetical Order) (3/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

LDSR reg2, regID IX – – – – – Load to system register. Set the word data of

reg2 to a system register specified by regID. If

regID is PSW, the values of the corresponding

bits of reg2 are set to the respective flags of the

PSW.

MOV reg1, reg2 I – – – – – Moves data. Transfers the word data of reg1 to

reg2.

MOV imm5, reg2 II – – – – – Moves data. Transfers the value of a 5-bit

immediate data, sign-extended to word length, to

reg2.

MOVEA imm16, reg1, reg2 VI – – – – – Moves effective address. Adds a 16-bit immediate

data, sign-extended to word length, to the word

data of reg1, and stores the result in reg2.

MOVHI imm16, reg1, reg2 VI – – – – – Moves higher half-word. Adds word data, in

which the higher 16 bits are defined by the 16-bit

immediate data while the lower 16 bits are set to

0, to the word data of reg1 and stores the result

in reg2.

MULH reg1, reg2 I – – – – – Signed multiply. Multiplies the lower half-word

data of reg2 by the lower half-word data of reg1,

and stores the result in reg2 as word data.

MULH imm5, reg2 II – – – – – Signed multiply. Multiplies the lower half-word

data of reg2 by a 5-bit immediate data, sign-

extended to half-word length, and stores the

result in reg2 as word data.

MULHI imm16, reg1, reg2 VI – – – – – Signed multiply. Multiplies the lower half-word

data of reg1 by a 16-bit immediate data, and

stores the result in reg2.

NOP – I – – – – – No operation.

NOT reg1, reg2 I – 0 * * – Logical not. Logically negates (takes 1’s comple-

ment of) the word data of reg1, and stores the

result in reg2.

NOT1 bit#3, disp16 [reg1] VIII – – – * – Bit not. First, adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. The bit specified by

the 3-bit field “bbb” is inverted at the byte data

location referenced by the generated address.

OR reg1, reg2 I – 0 * * – Logical sum. ORs the word data of reg2 with the

word data of reg1, and stores the result in reg2.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

131User’s Manual U10243EJ7V0UM

Table A-1. Instruction Mnemonic (In Alphabetical Order) (4/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

ORI imm16, reg1, reg2 VI – 0 * * – Logical sum. ORs the word data of reg1 with the

16-bit immediate data, zero-extended to word

length, and stores the result in reg2.

RETI – X * * * * * Returns from exception or interrupt routine.

Restores the restore PC and PSW from the

appropriate system register, and restores from

exception or interrupt routine.

SAR reg1, reg2 IX * 0 * * – Arithmetic right shift. Arithmetically shifts the word

data of reg2 to the right by ‘n’ positions, where ‘n’

is specified by the lower 5 bits of reg1 (the MSB

prior to shift execution is copied and set as the

new MSB), and then writes the result to reg2.

SAR imm5, reg2 II * 0 * * – Arithmetic right shift. Arithmetically shifts the word

data of reg2 to the right by ‘n’ positions specified

by the 5-bit immediate data, zero-extended to

word length (the MSB prior to shift execution is

copied and set as the new MSB), and then writes

the result to reg2.

SATADD reg1, reg2 I * * * * * Saturated add. Adds the word data of reg1 to the

word data of reg2, and stores the result in reg2.

However, if the result exceeds the maximum

positive value, the maximum positive value is

stored in reg2; if the result exceeds the maximum

negative value, the maximum negative value is

stored in reg2. The SAT flag is set to 1.

SATADD imm5, reg2 II * * * * * Saturated add. Adds the 5-bit immediate data,

sign-extended to word length, to the word data of

reg2, and stores the result in general register

reg2. However, if the result exceeds the positive

maximum value, the maximum positive value is

stored in reg2; if the result exceeds the maximum

negative value, the maximum negative value is

stored in reg2. The SAT flag is set to 1.

SATSUB reg1, reg2 I * * * * * Saturated subtract. Subtracts the word data of

reg1 from the word data of reg2, and stores the

result in reg2. However, if the result exceeds the

maximum positive value, the maximum positive

value is stored in reg2; if the result exceeds the

maximum negative value, the maximum negative

value is stored in reg2. The SAT flag is set to 1.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

User’s Manual U10243EJ7V0UM132

Table A-1. Instruction Mnemonic (In Alphabetical Order) (5/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

SATSUBI imm16, reg1, reg2 VI * * * * * Saturated subtract. Subtracts a 16-bit immediate

sign-extended to word length from the word data

of reg1, and stores the result in reg2. However, if

the result exceeds the maximum positive value,

the maximum positive value is stored in reg2; if

the result exceeds the maximum negative value,

the maximum negative value is stored in reg2.

The SAT flag is set to 1.

SATSUBR reg1, reg2 I * * * * * Saturated subtract reverse. Subtracts the word

data of reg2 from the word data of reg1, and

stores the result in reg2. However, if the result

exceeds the maximum positive value, the

maximum positive value is stored in reg2; if the

result exceeds the maximum negative value, the

maximum negative value is stored in reg2. The

SAT flag is set to 1.

SETF cccc, reg2 IX – – – – – Set flag condition. The reg2 is set to 1 if a

condition specified by condition code “cccc” is

satisfied; otherwise, a 0 is stored in the register.

SET1 bit#3, disp16 [reg1] VIII – – – * – Bit set. First, adds a 16-bit displacement, sign-

extended to word length, to the data of reg1 to

generate a 32-bit address. The bits, specified by

the 3-bit bit field “bbb” is set at the byte data

location specified by the generated address.

SHL reg1, reg2 IX * 0 * * – Logical left shift. Logically shifts the word data of

reg2 to the left by ‘n’ positions (0 is shifted to the

LSB side), where ‘n’ is specified by the lower 5

bits of reg1, and writes the result to reg2.

SHL imm5, reg2 II * 0 * * – Logical left shift. Logically shifts the word data of

reg2 to the left by ‘n’ positions (0 is shifted to the

LSB side), where ‘n’ is specified by a 5-bit

immediate data, zero-extended to word length,

and writes the result to reg2.

SHR reg1, reg2 IX * 0 * * – Logical right shift. Logically shifts the word data

of reg2 to the right by ‘n’ positions (0 is shifted to

the MSB side), where ‘n’ is specified by the lower

5 bits of reg1, and writes the result to reg2.

SHR imm5, reg2 II * 0 * * – Logical right shift. Logically shifts the word data

of reg2 to the right by ‘n’ positions (0 is shifted to

the MSB side), where ‘n’ is specified by a 5-bit

immediate data, zero-extended to word length,

and writes the result to reg2.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

133User’s Manual U10243EJ7V0UM

Table A-1. Instruction Mnemonic (In Alphabetical Order) (6/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

SLD.B disp7 [ep], reg2 IV – – – – – Byte load. Adds the 7-bit displacement, zero-

extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read

from the generated address, sign-extended to

word length, and stored in reg2.

SLD.H disp8 [ep], reg2 IV – – – – – Half-word load. Adds the 8-bit displacement,

zero-extended to word length, to the element

pointer to generate a 32-bit address. Half-word

data is read from this 32-bit address with bit 0

masked to 0, sign-extended to word length, and

stored in reg2.

SLD.W disp8 [ep], reg2 IV – – – – – Word load. Adds the 8-bit displacement, zero-

extended to word length, to the element pointer to

generate a 32-bit address. Word data is read

from this 32-bit address with bits 0 and 1 masked

to 0, and stored in reg2.

SST.B reg2, disp7 [ep] IV – – – – – Byte store. Adds the 7-bit displacement, zero-

extended to word length, to the element pointer to

generate a 32-bit address, and stores the data of

the lowest byte of reg2 at the generated address.

SST.H reg2, disp8 [ep] IV – – – – – Half-word store. Adds the 8-bit displacement,

zero-extended to word length, to the element

pointer to generate a 32-bit address, and stores

the lower half-word of reg2 at the generated 32-

bit address with bit 0 masked to 0.

SST.W reg2, disp8 [ep] IV – – – – – Word store. Adds the 8-bit displacement, zero-

extended to word length, to the element pointer to

generate a 32-bit address, and stores the word

data of reg2 at the generated 32-bit address with

bits 0 and 1 masked to 0.

ST.B reg2, disp16 [reg1] VII – – – – – Byte store. Adds the 16-bit displacement, sign-

extended to word length, to the data of reg1 to

generate a 32-bit address, and stores the lowest

byte data of reg2 at the generated address.

ST.H reg2, disp16 [reg1] VII – – – – – Half-word store. Adds the 16-bit displacement,

sign-extended to word length, to the data of reg1

to generate a 32-bit address, and stores the

lower half-word of reg2 at the generated 32-bit

address with bit 0 masked to 0.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

User’s Manual U10243EJ7V0UM134

Table A-1. Instruction Mnemonic (In Alphabetical Order) (7/7)

Instruction Operand Format CY OV S Z SAT Instruction Function

Mnemonic

ST.W reg2, disp16 [reg1] VII – – – – – Word store. Adds the 16-bit displacement, sign-

extended to word length, to the data of reg1 to

generate a 32-bit address, and stores the word

data of reg2 at the generated 32-bit address with

bits 0 and 1 masked to 0.

STSR regID, reg2 IX – – – – – Stores contents of system register. Stores the

contents of a system register specified by regID

in reg2.

SUB reg1, reg2 I * * * * – Subtract. Subtracts the word data of reg1 from

the word data of reg2, and stores the result in

reg2.

SUBR reg1, reg2 I * * * * – Subtract reverse. Subtracts the word data of reg2

from the word data of reg1, and stores the result

in reg2.

TRAP vector X – – – – – Software trap. Saves the restore PC and PSW to

the system register; sets the exception code and

the flags of the PSW; jumps to the address of the

trap handler corresponding to the trap vector

specified by vector number, and starts exception

processing.

TST reg1, reg2 I – 0 * * – Test. ANDs the word data of reg2 with the word

data of reg1. The result is not stored, and only

the flags are changed.

TST1 bit#3, disp16 [reg1] VIII – – – * – Bit test. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Performs the test on

the bit, specified by the 3-bit field “bbb”, at the

byte data location referenced by the generated

address. If the specified bit is 0, the Z flag is set

to 1; if the bit is 1, the Z flag is reset to 0.

XOR reg1, reg2 I – 0 * * – Exclusive OR. Exclusively ORs the word data of

reg2 with the word data of reg1, and stores the

result in reg2.

XORI imm16, reg1, reg2 VI – 0 * * – Exclusive OR immediate. Exclusively ORs the

word data of reg1 with a 16-bit immediate data,

zero-extended to word length, and stores the

result in reg2.

135User’s Manual U10243EJ7V0UM

APPENDIX B INSTRUCTION LIST

Table B-1. Mnemonic List

Mnemonic Function Mnemonic Function

Load/store (3-operand)

LD.B Load Byte MOVHI Move High Halfword

LD.H Load Halfword MOVEA Move Effective Address

LD.W Lord Word ADDI Add Immediate

SLD.B Load Byte MULHI Multiply Halfword Immediate

SLD.H Load Halfword SATSUBI Saturated Subtract Immediate

SLD.W Load Word ORI Or Immediate

ST.B Store Byte ANDI And Immediate

ST.H Store Halfword XORI Exclusive Or Immediate

ST.W Store Word
Branch

SST.B Store Byte

SST.H Store Halfword JMP Jump Register

SST.W Store Word JR Jump Relative

Integer arithmetic operation/logical
JARL Jump and Register Link

operation/saturated operation
Bcond Branch on condition code

(2-operand register) Bit manipulation

MOV Move SET1 Set Bit

ADD Add CLR1 Clear Bit

SUB Subtract NOT1 Not Bit

SUBR Subtract Reverse TST1 Test Bit

MULH Multiply Halfword
Special

DIVH Divide Halfword

CMP Compare LDSR Load System Register

SATADD Saturated Add STSR Store System Register

SATSUB Saturated Subtract TRAP Trap

SATSUBR Saturated Subtract Reverse RETI Return from Trap or Interrupt

TST Test HALT Halt

OR Or DI Disable Interrupt

AND And EI Enable Interrupt

XOR Exclusive Or NOP No operation

NOT Not

SHL Shift Logical Left

SHR Shift Logical Right

SAR Shift Arithmetic Right

(2-operand immediate)

MOV Move

ADD Add

CMP Compare

SATADD Saturated Add

SETF Set Flag Condition

SHL Shift Logical Left

SHR Shift Logical Right

SAR Shift Arithmetic Right

APPENDIX B INSTRUCTION LIST

User’s Manual U10243EJ7V0UM136

Table B-2. Instruction Set

Instruction Code Instruction Format Format Remarks
b10 • • • • b5

0 0 0 0 1 0 MOV reg1, reg2 I When reg1, reg2 = 0, NOP
0 0 0 0 0 1 NOT reg1, reg2
0 0 0 0 1 0 DIVH reg1, reg2
0 0 0 0 1 1 JMP [reg1]
0 0 0 1 0 0 SATSUBR reg1, reg2
0 0 0 1 0 1 SATSUB reg1, reg2
0 0 0 1 1 0 SATADD reg1, reg2
0 0 0 1 1 1 MULH reg1, reg2
0 0 1 0 0 0 OR reg1, reg2
0 0 1 0 0 1 XOR reg1, reg2
0 0 1 0 1 0 AND reg1, reg2
0 0 1 0 1 1 TST reg1, reg2
0 0 1 1 0 0 SUBR reg1, reg2
0 0 1 1 0 1 SUB reg1, reg2
0 0 1 1 1 0 ADD reg1, reg2
0 0 1 1 1 1 CMP reg1, reg2

0 1 0 0 0 0 MOV imm5, reg2 II
0 1 0 0 0 1 SATADD imm5, reg2
0 1 0 0 1 0 ADD imm5, reg2
0 1 0 0 1 1 CMP imm5, reg2
0 1 0 1 0 0 SHR imm5, reg2
0 1 0 1 0 1 SAR imm5, reg2
0 1 0 1 1 0 SHL imm5, reg2
0 1 0 1 1 1 MULH imm5, reg2

0 1 1 0 × × SLD.B disp7 [ep], reg2 IV
0 1 1 1 × × SST.B reg2, disp7 [ep]
1 0 0 0 × × SLD.H disp8, [ep], reg2
1 0 0 1 × × SST.H reg2, disp8 [ep]
1 0 1 0 × × SLD.W disp8 [ep], reg2
1 0 1 0 × × SST.W reg2, disp8 [ep]

1 0 1 1 × × Bcond disp9 III

1 1 0 0 0 0 ADDI imm16, reg1, reg2 VI
1 1 0 0 0 1 MOVEA imm16, reg1, reg2
1 1 0 0 1 0 MOVHI imm16, reg1, reg2
1 1 0 0 1 1 SATSUBI imm16, reg1, reg2
1 1 0 1 0 0 ORI imm16, reg1, reg2
1 1 0 1 0 1 XORI imm16, reg1, reg2
1 1 0 1 1 0 ANDI imm16, reg1, reg2
1 1 0 1 1 1 MULHI imm16, reg1, reg2

1 1 1 0 0 0 LD.B disp16 [reg1], reg2 VII
1 1 1 0 0 1 LD.H disp16 [reg1], reg2
1 1 1 0 1 0 LD.W disp16 [reg1], reg2
1 1 1 0 1 0 ST.B reg2, disp16 [reg1]
1 1 1 0 1 1 ST.H reg2, disp16 [reg1]
1 1 1 0 1 1 ST.W reg2, disp16 [reg1]

1 1 1 1 0 × JARL disp22, reg2 V When reg2 = r0, JR disp22

1 1 1 1 1 0 SET1 bit#3, disp16 [reg1] VIII
1 1 1 1 1 0 CLR1 bit#3, disp16 [reg1]
1 1 1 1 1 0 NOT1 bit#3, disp16 [reg1]
1 1 1 1 1 0 TST1 bit#3, disp16 [reg1]

1 1 1 1 1 1 SETF cccc, reg2 IX
1 1 1 1 1 1 LDSR reg2, regID
1 1 1 1 1 1 STSR regID, reg2
1 1 1 1 1 1 SHR reg1, reg2
1 1 1 1 1 1 SAR reg1, reg2
1 1 1 1 1 1 SHL reg1, reg2

1 1 1 1 1 1 TRAP vector X
1 1 1 1 1 1 HALT
1 1 1 1 1 1 RETI
1 1 1 1 1 1 DI
1 1 1 1 1 1 EI
1 1 1 1 1 1 Undefined instruction

137User’s Manual U10243EJ7V0UM

APPENDIX C INSTRUCTION OP CODE MAP

The following tables (a) through (f) show the op code maps corresponding to instruction codes.

Instruction code

• 16-bit length instruction format

• 32-bit length instruction format

(a) Op code

Bits 6 to 5
00 01 10 11 Format

Bits 10 to 7

0000 MOV/NOP NOT DIVH JMP I

0001 SATSUBR SATSUB SATADD MULH

0010 OR XOR AND TST

0011 SUBR SUB ADD R, r CMP R,r

0100 MOV imm5, r SATADD ADD imm5, r CMP imm5, r II

0101 SHR imm5, r SAR imm5, r SHL imm5, r MULH

0110 SLD.B IV

0111 SST.B

1000 SLD.H

1001 SST.H

1010 SLD.W/SST.WNote 1

1011 Bcond III

1100 ADDI MOVEA MOVHI SATSUBI VI

1101 ORI XORI ANDI MULHI

1110 LD.B LD.H/LD.WNote 2 ST.B ST.H/ST.WNote 2 V/VII/VIII/IX/X

1111 JARL Bit manipulationNote 3 Extension 1Note 4

Notes 1. See (b).

2. See (c).

3. See (d).

4. See (e).

15 11 10 5 4 014 13 12 31 27 26 21 20 17 16

Op code (see (a))

Sub-op code (see (d))
Sub-op code (see (f))

Sub-op code (see (e))

Sub-op code
(see (c))

15 11 10 5 4 0

Op code (see (a))
Sub op code (see (b))

APPENDIX C INSTRUCTION OP CODE MAP

User’s Manual U10243EJ7V0UM138

(b) Short format load/store instruction (displacement/sub-op code)

 Bit 0
0 1

Bits 10 to 7

0110 SLD.B

0111 SST.B

1000 SLD.H

1001 SST.H

1010 SLD.W SST.W

(c) Load/store instruction (displacement/sub-op code)

 Bit 16
0 1

Bits 6 to 5

00 LD.B

01 LD.H LD.W

10 ST.B

11 ST.H ST.W

(d) Bit manipulation instruction (sub-op code)

 Bit 14
0 1

Bit 15

0 SET1 NOT1

1 CLR1 TST1

(e) Extension 1 (sub-op code)

 Bits 22 to 21
00 01 10 11

Bits 26 to 23

0000 SETF LDSR STSR Undefined

0001 SHR R, r SAR R, r SHL R, r Undefined

0010 TRAP HALT RETI Extension 2Note

0011

to Illegal instruction

1111

Note See (f).

(f) Extension 2 (sub-op code)

 Bits 14 to 13
00 01 10 11

Bit 15

0 DI Undefined

1 EI

139User’s Manual U10243EJ7V0UM

APPENDIX D INDEX

[A]

ADD .. 49

Add .. 49

ADDI ... 50

Add immediate ... 50

Address space .. 30

Addressing modes ... 32

Alignment hazard ... 121

AND .. 46, 51

And .. 51

ANDI ... 52

And immediate ... 52

Arithmetic operation instructions 41, 115

arithmetically shift right by 46

Assembler-reserved register 22

[B]

Based addressing .. 35

bbb .. 47

BC ... 54

Bcond .. 53

BE ... 54

BGE .. 54

BGT ... 54

BH ... 54

Bit .. 28

BIT .. 28

Bit addressing .. 37

Bit manipulation instructions 44, 118

bit#3 .. 45

BL .. 54

BLE ... 54

BLT ... 54

BN ... 54

BNC .. 54

BNE ... 54

BNH .. 54

BNL ... 54

BNV ... 54

BNZ ... 54

BP ... 54

BR ... 54

Branch instructions .. 43, 117

Branch on condition code 53

BSA ... 54

BV ... 54

BYTE... 27

Byte ... 27, 46

BZ ... 54

[C]

cccc ... 45, 47

Clear bit .. 55

CLR1 ... 55

CMP .. 56

Compare ... 56

Conditional branch instructions 117

CPU internal configuration 19

CY ... 25

[D]

Data alignment ... 29

Data format ... 27

Data representation ... 28

Data type .. 27

Data type and addressing 27

DI .. 57

Disable interrupt ... 57

disp× ... 45

DIVH ... 58

Divide half-word ... 58

Divide instructions .. 116

[E]

ECR .. 23

EI ... 59

EICC ... 24

EIPC.. 23

EIPSW .. 23

Element pointer .. 22

Enable interrupt .. 59

EP ... 25

ep .. 45

Exception .. 106

Exception cause register 23

Exception processing ... 110

Exception trap .. 111

Exclusive or .. 101

APPENDIX D INDEX

User’s Manual U10243EJ7V0UM140

Exclusive or immediate .. 102

[F]

FECC .. 24

FEPC .. 24

FEPSW ... 24

Flag ... 47

Format .. 46

[G]

General registers .. 20

Global pointer ... 22

GR [] .. 46

[H]

Half word .. 27

HALT ... 60

Halt .. 60

Harvard architecture .. 124

[I]

i ... 47

ID .. 25

Illegal instruction code ... 111

Immediate addressing .. 35

imm× ... 45

Initialization ... 113

Instruction address ... 32

Instruction format ... 45

Instruction list ... 135

Instruction mnemonic ... 127

Instruction op code map 137

Instruction set ... 45

Integer ... 28

Interrupt .. 106

Interrupt status saving registers 23

Interrupt processing ... 107

Introduction ... 16

[J]

JARL ... 61

JMP ... 62

JR .. 63

Jump and register link ... 61

Jump register .. 62

Jump relative .. 63

[L]

LD ... 64

LDSR .. 66

Link pointer ... 22

List of conditional branch instruction 54

List of interrupt/exception codes 107

List of program register operaitons 22

Load .. 64, 89

Load instruction .. 115

Load to system register ... 66

load-memory (a, b) ... 46

load-memory-bit (a, b) ... 46

Load/store instruction .. 41

Logical operation instructions 42, 116

logically shift left by .. 46

logically shift right by ... 46

[M]

Maskable interrupts .. 107

Memory map... 31

MOV .. 67

Move ... 67

MOVEA ... 68

Move effective address .. 68

Move high half-word .. 69

MOVHI .. 69

MULH .. 70

MULHI ... 71

Multiply half-word ... 70

Multiply half-word immediate 71

Multiply instructions .. 116

[N]

NMI status saving registers 24

No operation ... 72

Non-maskable interrupts 109

NOP .. 72

Not .. 73

NOT .. 73

Not bit ... 74

NOT1 .. 74

NP ... 25

Number of instruction execution clock cycles 103

[O]

Op code .. 47

Operand address ... 35

Operation .. 46

APPENDIX D INDEX

141User’s Manual U10243EJ7V0UM

OR ... 46, 75

Or .. 75

ORI .. 76

Or immediate .. 76

Outline of instructions .. 41

OV ... 25

[P]

PC ... 22

PC relative .. 32

Pipeline ... 114

Pipeline disorder .. 121

Product development ... 18

Program counter .. 22

Program status word .. 24

Program registers ... 20

Program register list ... 21

Program register set .. 20

PSW .. 24

[R]

R.. 47

r ... 47

r0 to r31 .. 22

Register addressing ... 34, 35

Register indirect ... 34

Register set .. 20

reg1 ... 45

reg2 ... 45

regID ... 45

Relative addressing ... 32

Reset ... 113

Restoring from interrupt/exception 112

result ... 46

RETI .. 77

Return from trap or interrupt 77

[S]

S .. 25

SAR ... 79

SAT ... 25

SATADD ... 80

SATSUB ... 81

SATSUBI .. 72

SATSUBR ... 83

saturated (n) ... 46

Saturated add ... 80

Saturated operation instructions 42, 117

Saturated subtract .. 81

Saturated subtract immediate 82

Saturated subtract reverse 83

Set bit ... 86

SET1 ... 86

SETF ... 84

Set flag condition ... 84

Shift arithmetic right ... 79

Shift logical left ... 87

Shift logical right .. 88

SHL ... 87

SHR .. 88

Short path ... 125

sign-extend (n) ... 46

SLD ... 89

Software exceptions ... 110

Software trap .. 98

Special instructions .. 44, 119

SR[] .. 46

SST ... 91

ST ... 93

Stack pointer .. 22

Starting up .. 113

Store ... 91, 93

Store contents of system register 95

Store instructions ... 115

store-memory (a, b, c) ... 46

store-memory-bit (a, b, c) 46

STSR .. 95

SUB ... 96

SUBR .. 97

Subtract .. 96

Subtract reverse ... 97

System registers .. 23

System register number ... 26

[T]

Test ... 99

Test bit .. 100

Text pointer .. 22

TRAP .. 98

TST ... 99

TST1 ... 100

[U]

Unsigned integer .. 29

Unconditional branch instructions 118

APPENDIX D INDEX

User’s Manual U10243EJ7V0UM142

[V]

vector .. 45

[W]

WORD... 28

Word ... 28

[X]

XOR .. 46, 101

XOR1 .. 102

[Z]

zero-extend (n) ... 46

Zero register ... 22

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we’ve taken, you may
encounter problems in the documentation.
Please complete this form whenever
you’d like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.2

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Revisions in this Edition
	INTRODUCTION
	CHAPTER 1 INTRODUCTION
	1.1 General
	1.2 Architecture Features
	1.3 Product Development
	1.4 CPU Internal Configuration

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.1.1 Program register set

	2.2 System Registers
	2.2.1 Interrupt status saving registers
	2.2.2 NMI status saving registers
	2.2.3 Exception cause register
	2.2.4 Program status word
	2.2.5 System register number

	CHAPTER 3 DATA TYPE
	3.1 Data Format
	3.1.1 Data type and addressing

	3.2 Data Representation
	3.2.1 Integer
	3.2.2 Unsigned integer
	3.2.3 Bit

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Modes
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Instruction Format
	5.2 Outline of Instructions
	5.3 Instruction Set
	5.4 Number of Instruction Execution Clock Cycles

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 Interrupt Processing
	6.1.1 Maskable interrupts
	6.1.2 Non-maskable interrupts

	6.2 Exception Processing
	6.2.1 Software exceptions
	6.2.2 Exception trap
	6.3 Restoring from Interrupt/Exception

	CHAPTER 7 RESET
	7.1 Initialization
	7.2 Start Up

	CHAPTER 8 PIPELINE
	8.1 Outline of Operation
	8.2 Pipeline Flow During Execution of Instructions
	8.2.1 Load instructions
	8.2.2 Store instructions
	8.2.3 Arithmetic operation instructions (excluding multiply and divide instructions)
	8.2.4 Multiply instructions
	8.2.5 Divide instructions
	8.2.6 Logical operation instructions
	8.2.7 Saturation operation instructions
	8.2.8 Branch instructions
	8.2.9 Bit manipulation instructions
	8.2.10 Special instructions

	8.3 Pipeline Disorder
	8.3.1 Alignment hazard
	8.3.2 Referencing execution result of load instruction
	8.3.3 Referencing execution result of multiply instruction
	8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC
	8.3.5 Cautions when creating programs

	8.4 Additional Items Related to Pipeline
	8.4.1 Harvard architecture
	8.4.2 Short path

	APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)
	APPENDIX B INSTRUCTION LIST
	APPENDIX C INSTRUCTION OP CODE MAP
	APPENDIX D INDEX

