NEC Electronics Inc.

μPD70335 (V35 Plus) 16-Bit Microcomputer: Advanced, High-Speed DMA, Single-Chip, CMOS

T-49-19-59

Description

The μ PD70335 (V35 Plus) is a high-performance, 16-bit single-chip microcomputer with a 16-bit external data bus. The μ PD70335 is fully software compatible with the μ PD70108/116 (V20®/V30®) as well as the μ PD70320/330 (V25 $^{\text{tm}}$ /V35 $^{\text{tm}}$). The V35 Plus demonstrates numerous enhancements over the standard V35; however, it maintains strict pin compatibility with its predecessor, the V35.

The V35 Plus offers improved DMA transfer rates (over 5M bytes per second), additional serial channel status flags, improved memory access timing, and enhanced software control of register bank context switching.

The μ PD70335 has the same complement of internal peripherals as the V35, and maintains compatibility with existing drivers; however, some modification of the DMA drivers may be necessary. The μ PD70335 does not offer on-chip ROM or EPROM.

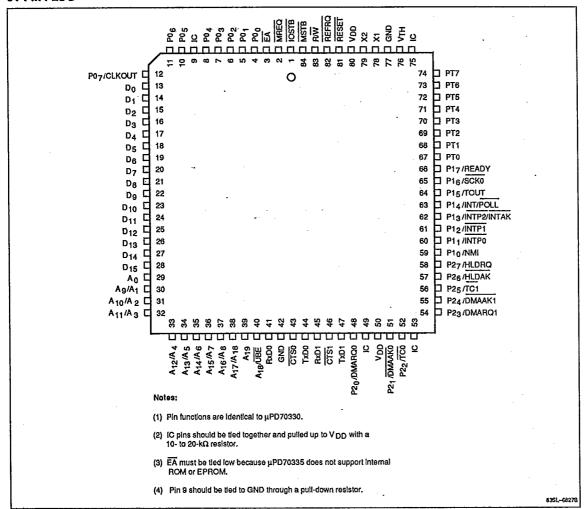
Features

- □ 16-bit CPU and internal data paths
- □ 16-bit non-multiplexed external data path
- □ Direct RAS/CAS DRAM interface
- Functional and pin compatibility with the V35
- Software compatible with μPD8086
- New and enhanced V-Series instructions
- ☐ Minimum instruction cycle 200 ns (at 10 MHz)
- □ 6-byte prefetch queue
- □ Two-channel high-speed DMA controller
- ☐ Internal 256 bytes RAM memory
- □ One 1M-byte memory address space
- □ Eight internal memory-mapped register banks

V20 and V30 are registered trademarks of NEC Corporation. V25 and V35 are trademarks of NEC Corporation.

- □ Four multifunction I/O ports
 - 8-bit analog comparator port
 - 20 bidirectional port lines
 - 4 input-only port lines
- Two independent full-duplex serial channels
- Priority interrupt controller
 - Standard vectored service
 - Register bank switching
 - Macroservice
- Pseudo-SRAM and DRAM refresh controller
- □ Two 16-bit timers
- On-chip time base counter
- Programmable wait state generator
- Two standby modes: STOP and HALT

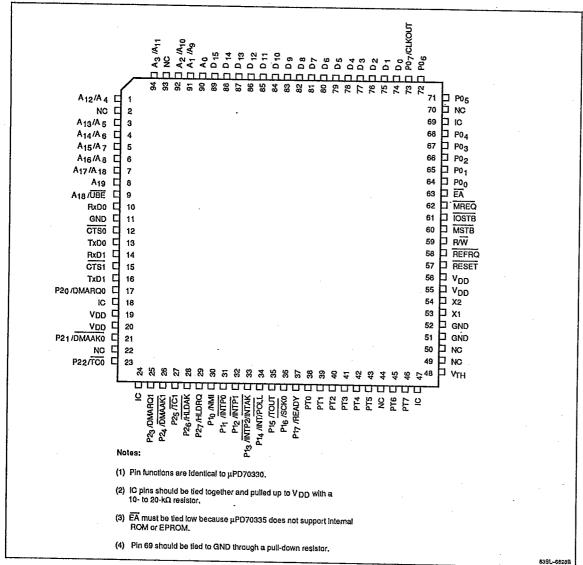
Ordering Information


Part Number	Clock (MHz)	Package
μPD70335L-8	8	84-pin PLCC
L-10	10	•
GJ-8	8	94-pin plastic QFF
GJ-10	10	•

T-49-19-59

Pin Configuration

84-Pin PLCC



NEC

μPD70335 (V35 Plus)

T-49-19-59

94-Pin Plastic QFP

T-49-19-59

Pin Identification

	anio Maiori
Symbol	Function
A ₀ -A ₁₉	Address bus outputs
CLKOUT	System clock output
CTSO	Clear-to-send input, serial channel 0
CTS1	Clear-to-send input, serial channel 1
D ₀ -D ₁₅	Bidirectional data bus
DMAAKO	DMA acknowledge output, DMA controller channel 0
DMAAK1	DMA acknowledge output, DMA controller channel 1
DMARQ0	DMA request input, DMA controller channel 0
DMARQ1	DMA request input, DMA controller channel 1
ĒĀ	External memory access; fixed low for V35 Plus
HLDAK	Hold acknowledge output
HLDRQ	Hold request input
INT	Interrupt request input
INTAK	Interrupt acknowledge output
INTPO	Interrupt request 0 input
INTP1	Interrupt request 1 input
INTP2	Interrupt request 2 Input
IOSTB	I/O read or write strobe output
MREQ	Memory request output
MSTB	Memory strobe output
NMI	Nonmaskable interrupt request
P0 ₀ -P0 ₇	I/O port 0
P1 ₀ -P1 ₇	I/O port 1
P2 ₀ -P2 ₇	I/O port 2
POLL	Input on POLL synchronizes the CPU and external devices
PTO-PT7	Comparator port input lines
READY	Ready signal input controls insertion of wait states
REFRQ	DRAM refresh request output
RESET	Reset signal input
R/W	Read/write strobe output
RxD0	Receive data input, serial channel 0
RxD1	Receive data input, serial channel 1
SCKO	Serial clock output
TCO	Terminal count output; DMA completion, channel 0
TC1	Terminal count output; DMA completion, channel 1
TOUT	Timer output
TxD0	Transmit data output, serial channel 0
TxD1	Transmit data output, serial channel 1
UBE	Upper byte enable
X1, X2	Connections to external frequency control source (crystal, ceramic resonator, or clock)

Symbol	Function
V _{DD}	+5-yolt power source input (two pins)
V _{TH}	Threshold voltage input to comparator circuits
GND	Ground reference (two pins)
IC	Internal connection; must be tied to V _{DD} externally through a pullup resistor

PIN FUNCTIONS

A₀-A₁₉ (Address Bus)

To support dynamic RAMs, the 20-bit address is multiplexed on 11 lines. When $\overline{\text{MREQ}}$ is asserted, $A_9\text{-}A_{17}$ are valid. When $\overline{\text{MSTB}}$ or $\overline{\text{IOSTB}}$ is asserted, $A_1\text{-}A_8$ and A_{18} are valid. A_{18} is also multiplexed with $\overline{\text{UBE}}$ and is valid when $\overline{\text{MREQ}}$ is asserted. Therefore A_{18} is active throughout the bus cycle. A_{19} and A_0 are not multiplexed but have dedicated pins and are valid throughout the bus cycle.

CLKOUT (Clock Out)

The system clock (CLK) is distributed from the internal clock generator to the CPU and output to peripheral hardware at the CLKOUT pin.

CTS0 (Clear-to-Send 0)

This is the CTS pin of the channel 0 serial interface. In asynchronous mode, a low-level input on CTS0 enables transmit operation. In I/O interface mode, CTS0 is the receive clock pin.

CTS1 (Clear-to-Send 1)

This is the CTS pin of the channel 1 serial interface. In asynchronous mode, a low-level input on CTS1 enables transmit operation.

D₀-D₁₅ (Data Bus)

D₀-D₁₅ is the 16-bit data bus.

DMAAKO and DMAAK1 (DMA Acknowledge)

These are the DMA acknowledge outputs of the DMA controller, channels 0 and 1. Signals are not output during DMA memory-to-memory transfer operations (burst mode, single-step mode).

DMARQ0 and DMARQ1 (DMA Request)

These are the DMA request inputs of the DMA controller, channels 0 and 1.

NEC

μPD70335 (V35 Plus)

T-49-19-59

EA (External Access)

This pin must be externally fixed low. Since the μ PD70335 has no internal ROM, this will force execution of program code from external memory instead of internal ROM.

HLDAK (Hold Acknowledge)

The $\overline{\text{HLDAK}}$ output signal indicates that the hold request (HLDRQ) has been accepted. When $\overline{\text{HLDAK}}$ is active (low), the following lines go to the high-Impedance state with Internal 4700- Ω pullup resistors: A₀-A₁₉, D₀-D₇, $\overline{\text{IOSTB}}$, $\overline{\text{MREQ}}$, $\overline{\text{MSTB}}$, $\overline{\text{REFRQ}}$, and $\overline{\text{R/W}}$.

HLDRQ (Hold Request)

The HLDRQ input from an external device requests that the μ PD70335 relinquish the address, data, and control buses to an external bus master.

INT (Interrupt)

The INT input is a vectored interrupt request from an external device that can be masked by software. The active high level is detected in the last clock cycle of an instruction. The external device confirms that the INT interrupt request has been accepted by the INTAK signal output from the CPU.

The INT signal must be held high until the first $\overline{\text{INTAK}}$ signal is output. Together with $\overline{\text{INTAK}}$, INT is used for operation with an interrupt controller such as $\mu\text{PD71059}$.

INTAK (interrupt Acknowledge)

The $\overline{\text{INTAK}}$ output is the acknowledge signal for the software-maskable interrupt request INT. The $\overline{\text{INTAK}}$ signal goes low when the CPU accepts INT. The external device inputs the interrupt vector to the CPU via data bus D₀-D₇ in synchronization with $\overline{\text{INTAK}}$.

INTP0, INTP1, INTP2 (Interrupt from Peripheral 0, 1, 2)

The $\overline{\text{INTPn}}$ inputs (n = 0, 1, 2) are external interrupt requests that can be masked by software. The $\overline{\text{INTPn}}$ input is detected at the effective edge specified by external interrupt mode register INTM.

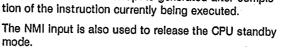
The INTPn inputs can be used to release the HALT mode.

IOSTB (I/O Strobe)

A low-level output on $\overline{\text{IOSTB}}$ indicates that the I/O bus cycle has been initiated and that the I/O address output on A₀-A₁₅ is valid.

MREQ (Memory Request)

A low-level output on MREQ indicates that the memory or I/O bus cycle has started and that address bits A₀, A₉-A₁₇, A₁₈ and A₁₉ are valid.


MSTB (Memory Strobe)

Together with MREQ and R/W, MSTB controls memory-accessing operations. MSTB should be used either to enable data buffers or as a data strobe. During memory write, a low-level output on MSTB indicates that data on the data bus is valid and that multiplexed address bits A₁-A₈, A₁₈ and UBE are valid.

NMI (Nonmaskable Interrupt)

The NMI input is an interrupt request that cannot be masked by software. The NMI is always accepted by the CPU; therefore, it has priority over any other interrupt.

The NMI input is detected at the effective edge specified by external interrupt mode register INTM. Sampled in each clock cycle, NMI is accepted when the active level lasts for several clock cycles. When the NMI is accepted, a number 2 vector interrupt is generated after completion of the instruction currently being executed.

P0₀-P0₇ (Port 0)

Port 0 is an 8-bit bidirectional I/O port.

P10-P17 (Port 1)

Lines $P1_4$ - $P1_7$ are individually programmable as an input, output, or control function. The status of $P1_0$ - $P1_3$ can be read but these lines are always control functions.

P20-P27 (Port 2)

P2₀-P2₇ are the lines of port 2, an 8-bit bidirectional I/O port. These lines can also be used as control signals for the on-chip DMA controllers.

POLL (Poll)

The POLL input is checked by the POLL instruction, if the level is low, execution of the next instruction is initiated. If the level is high, the POLL input is checked every five clock cycles until the level becomes low. The POLL functions are used to synchronize the CPU program and the operation of external devices.

T-49-19-59

Note: POLL is effective when P14 is specified for the input port mode; otherwise, POLL is assumed to be at low level when the POLL instruction is executed.

PTO-PT7 (Port with Comparator)

The threshold port (PT) comprises 8 independent input bits, each of which is compared with a threshold voltage programmable to one of 16 voltage steps.

READY (Ready)

After READY is de-asserted low, the CPU will synchronize and insert wait states into a read or write cycle to memory or I/O. This allows the processor to accommodate devices whose access times are longer than normal execution allows. Use of the READY pin is controlled by the WTC register.

REFRO (Refresh Request)

This output pulse can refresh nonstatic RAM. It can be programmed to meet system specifications and is internally synchronized so that refresh cycles do not interfere with normal CPU operation. $\overline{\text{REFRQ}}$ also signals that A0-A8 contain a valid row address.

RESET (Reset)

This input signal is asynchronous. A low on RESET for the specified duration resets the CPU and all on-chip peripherals regardless of clock operation. The reset operation has priority over all other operations.

The reset signal is used for normal initialization/startup and also for releasing the STOP or HALT mode. After the reset signal returns high, program execution begins from address FFFOH.

R/W (Read/Write Strobe)

When an external bus cycle is initiated, the R/W signal output to external hardware indicates a read (high-level) or write (low-level) cycle. It can also control the direction of bidirectional buffers.

RxD0, RxD1 (Receive Data 0, 1)

These pins input data to serial channels 0 and 1.

In the asynchronous mode, when receive operation is enabled, a low level on the RxD0 or RxD1 input pin is recognized as the start bit and receive operation is initiated.

In the I/O interface mode (channel 0 only), receive data is input to the serial register at the rising edge of the receive clock.

SCK0 (Serial Clock)

The SCK0 output is the transmit clock of serial channel 0.

TC0, TC1 (Terminal Count 0, 1)

The TCO and TC1 outputs go low when the terminal count of DMA service channels 0 and 1, respectively, reach zero, indicating DMA completion.

TOUT (Timer Output)

The TOUT signal is a square-wave output from the internal timer unit zero.

TxD0, TxD1 (Transmit Data 0, 1)

These pins output data from serial channels 0 and 1.

In the asynchronous mode, the transmit signal is in a frame format that consists of a start bit, 7 or 8 data bits (least significant bit first), parity bit, and stop bit. The TxD0 and TxD1 pins become mark state (high level) when transmit operation is disabled or when the serial transmitter is idle.

In the I/O interface mode (channel 0 only), the frame has 8 data bits and the most significant bit is transmitted first.

UBE (Upper Byte Enable)

UBE is a high-order memory bank selection signal output. UBE and A₀ determine which bytes of the data bus will be used. UBE is used with A₀ to select the even/odd banks as follows.

Operand	ÜBE	A ₀	Number of Bus Cycles
Even address word	0	0	1
Odd address word	0	1	2
	1	0	
Even address byte	1	0	1
Odd address byte	0	1	1 .

X1, X2 (Clock Control)

The frequency of the internal clock generator is controlled by an external crystal or ceramic resonator connected across pins X1 and X2. The crystal frequency is the same as the clock generator frequency f_X . By programming the PRC register, the system clock frequency f_{CLK} is selected as f_X divided by 2, 4, or 8.

T-49-19-59

As an alternative to the crystal or ceramic resonator, the positive and negative phases of an external clock (with frequency f_X) can be connected to pins X1 and X2.

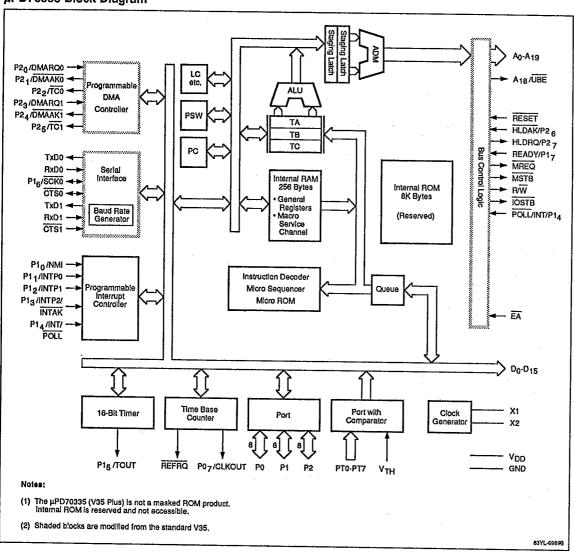
VDD (Power Supply)

+5-volt power source (two pins).

V_{TH} (Threshold Voltage)

Comparator port PT0-PT7 uses threshold voltage V_{TH} to determine the analog reference points. The actual

threshold each comparator input is tested against is programmable to $V_{TH} \times n/16$ where n=1 to 16.


GND (Ground)

Ground reference (multiple pins).

IC (Internal Connection)

internal connection; must be tied to V_{DD} externally through a 10-k Ω to 20-k Ω resistor.

μPD70335 Block Diagram

T-49-19-5

FUNCTIONAL DESCRIPTION

Architectural Enhancements

The following features enable the μ PD70335 to perform high-speed execution of instructions.

- Dual data bus
- 16-/32-bit temporary registers/shifters (TA, TB, TA + TB)
- 16-bit loop counter (LC)
- Program counter (PC) and prefetch pointer (PFP)
- Internal ROM pass bus

Dual Data Bus. The μ PD70335 has two internal 16-bit data buses: the main data bus and a subdata bus. This reduces the processing time required for addition/subtraction and logical comparison instructions by one-third over single-bus systems. The dual data bus method allows two operands to be fetched simultaneously from general-purpose registers and transferred to the ALU.

16-/32-Bit Temporary Registers/Shifters. The 16-bit temporary registers/shifters (TA, TB) allow high-speed execution of multiplication/division and shift/rotation instructions. By using the temporary registers/shifters,the μ PD70335 can execute multiplication/division instructions about four times faster than with the microprogramming method.

Loop Counter (LC). The dedicated hardware loop counter counts the number of loops for string operations and the number of shifts performed for multiple bit shift/ rotation instructions. The loop counter works with internal dedicated shifters to speed the processing of multiplication/division instructions.

Program Counter and Prefetch Pointer (PC and PFP). The hardware PC addresses the memory location of the instruction to be executed next. The hardware PFP addresses the program memory location to be accessed next. Several clocks are saved for branch, call, return, and break instructions compared with processors having only one instruction pointer.

Register Set

The μ PD70335 CPU has a general-purpose register set compatible with the μ PD70108/70116, the μ PD70320/70322, and μ PD70330/70332 microprocessors. Like the μ PD70320/70322 and μ PD70330/70332, it also has a set of special function registers for controlling the on-board peripherals. All registers reside in the CPU's memory space. They are grouped in a 512-byte block called the internal data area (IDA). The 256-byte internal RAM is also in the IDA. The addresses of the register are given as offsets into the IDA. The start address of the IDA is set by

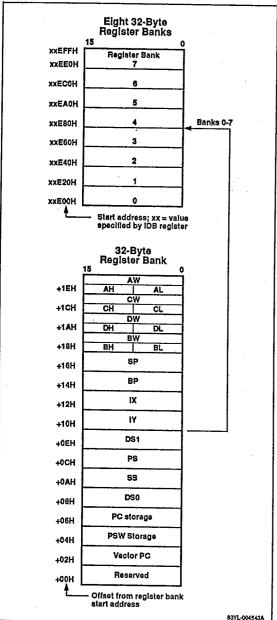
the Internal Data Area Base register (IDB), and may be programmed to any 4K boundary in the memory address space.

Register Banks. Because the general-purpose register set is in internal RAM, it is possible to have multiple banks of registers. The μPD70335 CPU supports up to 8 register banks. A bit field in the PSW selects which bank is currently being used. Each bank contains the entire CPU register set plus additional information needed for context switching. Register banks may be switched using special instructions (TSKSW, BRKCS, MOVSPA, MOVSPB), or may switch in response to an interrupt. This provides fast context switching and fast interrupt handling. During and after RESET, register bank 7 is selected.

Figure 1 shows the configuration of a register bank and how the banks are mapped to internal RAM. The Vector PC field contains the value that will be loaded into the PC when a register bank switch occurs. The PC Save and PSW Save fields contain the values of the PC and the PSW just before the banks are switched. The PSW is left unmodified after a bank switch; the PSW Save field is used to restore the PSW to its previous state upon termination of the context switch.

General-Purpose Registers (AW, BW, CW, DW). These four 16-bit general-purpose registers can also serve as independent 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL). The instructions below use general-purpose registers for default:

- AW Word multiplication/division, word I/O, data conversion
- AL Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation
- AH Byte multiplication/division
- BW Translation
- CW Loop control branch, repeat prefix
- CL Shift instructions, rotation instructions, BCD operations
- DW Word multiplication/division, indirect addressing I/O



N E C ELECTRONICS INC

μPD70335 (V35 Plus)

T-49-19-59

Figure 1. Register Bank Configuration

Pointers (SP, BP) and Index Registers (IX, IY). These registers are used as 16-bit base pointers or index registers in based addressing, indexed addressing, and based-indexed addressing. The registers are used as default registers under the following conditions:

SP Stack operations

IX Block transfer (source), BCD string operations

IY Block transfer (destination), BCD string operations

Segment Registers. The segment registers divide the 1M-byte address space into 64K-byte blocks. Each segment register functions as a base address to a block; the effective address is an offset from that base. Physical addresses are generated by shifting the associated segment register left four binary digits and then adding the effective address. The segment registers are:

<u>Segment Register</u>
PS (Program segment)
SS (Stack segment)
DS0 (Data segment-0)
DS1 (Data segment-1)

Default Offset

PC

SP, Effective address IX, Effective address

IY, Effective address

During RESET, PS is set to FFFFH; DS0, DS1 and SS are set to 0000H.

Program Counter (PC). The PC is a 16-bit binary counter that contains the offset address from the program segment of the next instruction to be executed. It is incremented every time an instruction is received from the queue. It is loaded with a new location whenever a branch, call, return, break, or interrupt is executed. During RESET, PC is set to 0000H.

Program Status Word (PSW). The PSW contains the following status and control flags.

15			PS	SW	•		8
1	RB2	RB1	RB0	٧	DIR	IE	BRK
7				· · ·			
S	7	F1	AC	F0		BRKI	CY

Stat	us Flags	<u>Control</u>	Flags
٧	Overflow bit	DIR	Direction of string
S	Sign		processing
Z	Zero	ΙE	Interrupt enable
AC	Auxiliary carry	BRK	Break (after every
P	Parity		instruction)
CY	Carry	RBn	Current register bank flags
		BRKI	I/O trap enable
		F0, F1	General-purpose user flags

N E C ELECTRONICS INC

T-49-19-59

The eight low-order bits of the PSW can be stored in the AH register and restored by a MOV instruction. The only way to alter the RBn bits via software is to execute an RETRBI or RETI instruction. During RESET, PSW is set to F002H. The F0 and F1 flags may be accessed as bits in the FLAG special functioning register.

Functional Comparison

The μ PD70335 (V35 Plus) is built around the same core and contains the same peripherals as the μ PD70325 (V25 Plus) as well as the μ PD70330 (V35). The primary difference between the V35 and V25 is confined to the external bus interface and bus control logic. While V25 and V25 Plus are designed with an 8-bit external interface, V35 and V35 Plus provide the full 16-bit external data path.

The μ PD70335 provides a direct DRAM style bus interface. This interface is obtained by multiplexing the 20 address lines in row/column fashion and also providing a non-multiplexed 16-bit external data bus. The resulting nominal bus cycle is three CLOCKOUT states. During the first bus state, the address lines output the high 9 bits of the physical address: A9 to A17.

During the second bus state, the address lines output the low address bits: A_1 to A_8 . Address lines A_0 and A_{19} are not multiplexed and are valid during the entire bus cycle. The final address line (A18) is multiplexed with the Upper Byte Enable signal (UBE) and is valid as an address during bus state one. During 16-bit transfers to odd addresses (UBE = 0 and A_0 = 1), two bus cycles are performed; each cycle transfers eight bits.

Typically, the MREQ signal is used to generate the DRAM RAS control signal, and the MSTB signal is used to generate the CAS signal. Like the V35, the V35 Plus provides a refresh output from the internal refresh control unit, which is typically gated into the DRAM RAS signal.

As a result of this memory access scheme, the clock cycle counts for instruction execution on the V35 Plus are different from the V25 Plus.

Another V35 Plus difference is the operation of the READY input pin. This pin is sampled in the middle of the second bus cycle (BAW1) on the V25 Plus, whereas the V35 samples one clock period later in the middle of BAW2.

Other than these bus controller differences, the V35 Plus is identical to the V25 Plus in its operation. All internal peripherals are programmed and operate in the same manner as those of the V25 Plus. The instruction sets of the two processors are identical, and internally both processors operate on 16-bit data paths.

INSTRUCTIONS

The μ PD70335 instruction set is fully upward compatible with the V20 native mode instruction set. The V20 instruction set is a superset of the μ PD8086/8088 instruction set with different execution times and mnemonics.

The μ PD70335 does not support the V20 8080 emulation mode. All of the instructions pertaining to this have been deleted from the μ PD70335 instruction set.

Enhanced Instructions

In addition to the μ PD8086/88 instructions, the μ PD70335 has the following enhanced instructions.

Eupotion

PUSH imm	Function Pushes immediate data onto stack
PUSH R	Pushes eight general registers onto stack
POP R	Pops eight general registers from stack
MUL imm	Executes 16-bit multiply of register or memory contents by immediate data
SHL imm8 SHR imm8 SHRA imm8 ROL imm8 ROR imm8 ROLC imm8 RORC imm8	Shifts/rotates register or memory by immediate value
CHKIND	Checks array index against designated boundaries
INM	Moves a string from an I/O port to memory
OUTM	Moves a string from memory to an I/O port
PREPARE	Allocates an area for a stack frame and copies previous frame pointers
DISPOSE	Frees the current stack frame on a procedure exit

T-49-19-59

Unique Instructions

The μ PD70335 has the following unique instructions.

Instruction	Function
INS	inserts bit field
EXT	Extracts bit field
ADD4S	Performs packed BCD string addition
SUB4S	Performs packed BCD string subtraction
CMP4S	Performs packed BCD string comparisor
ROL4	Rotates BCD digit left
ROR4	Rotates BCD digit right
TEST1	Tests bit
SET1	Sets bit
CLR1	Clears bit
NOT1	Complements bit
REPC	Repeat while carry set
REPNC	Repeat while carry cleared

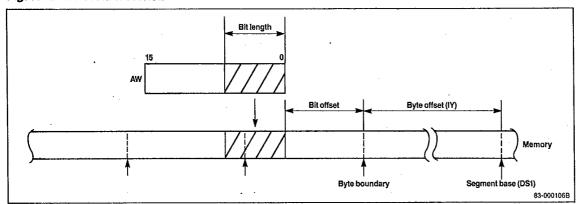
Variable Length Bit Field Operation Instructions

Bit fields are a variable length data structure that can range in length from 1 to 16 bits. The $\mu\text{PD70335}$ supports two separate operations on bit fields: insertion (INS) and extraction (EXT). There are no restrictions on the position of the bit field in memory. Separate segment, byte offset, and bit offset registers are used for insertion and extraction. Following the execution of these instruc-

tions, both the byte offset and bit offset are left pointing to the start of the next bit field, ready for the next operation. Bit field operation instructions are powerful and flexible and are therefore highly effective for graphics, high-level languages, and packing/unpacking applications.

Bit field insertion copies the bit field of specified length from the AW register to the bit field addressed by DS1:IY:reg8 (8-bit general-purpose register). The bit field length can be located in any byte register or supplied as immediate data. Following execution, both the IY and reg8 are updated to point to the start of the next bit field.

Bit field extraction copies the bit field of specified length from the bit field addressed by DS0:IX:reg8 to the AW register. If the length of the bit field is less than 16 bits, the bit field is right justified with a zero fill. The bit field length can be located in any byte register or supplied as immediate data. Following execution, both IX and reg8 are updated to point to the start of the next bit field.


Figures 2 and 3 show bit field insertion and bit field extraction.

Packed BCD Instructions

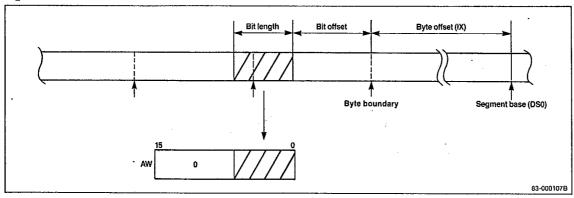

Packed BCD instructions process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte format operands (ROR4, ROL4). Packed BCD strings may be 1 to 254 digits in length. The two BCD rotation instructions perform rotation of a single BCD digit in the lower half of the AL register through the register or the memory operand.

Figure 2. Bit Field Insertion

T-49-19-59

Figure 3. Bit Field Extraction

Bit Manipulation Instructions

The µPD70335 has five unique bit manipulation instructions. The ability to test, set, clear, or complement a single bit in a register or memory operand increases code readability as well as performance over the logical operations traditionally used to manipulate bit data. This feature further enhances control over on-chip peripherals.

Additional Instructions

Besides the V20 instruction set, the μ PD70335 has the following four additional instructions.

Instruction BTCLR sfr. imm3 short label STOP (no operand)	Function Bit test and if true, clear and branch; otherwise, no operation Power down instruction, stops oscillator
RETRBI (no operand)	Return from register bank context switch interrupt
FINT (no operand)	Finished interrupt. After completion of a hardware interrupt request, this instruction must be used to reset the current priority bit in the in-service priority register (ISPR).*

^{*}Do not use with NMI or INTR interrupt service routines.

Repeat Prefixes

Two new repeat prefixes (REPC, REPNC) allow con ditional block transfer instructions to use the state of the CY flag as the termination condition. This allows inequalities to be used when working on ordered data, thus increasing performance when searching and sorting algorithms.

Bank Switch Instructions

Instruction

BRKCS

reg 16

The V35 Plus has the following four instructions that allow the effective use of the register banks for software interrupts and multitasking. Also, see figures 7 and 9.

Performs a high-speed software interrupt with context switch to the

Function

ì		register bank indicated by the lower 3-bits of reg 16. This operation is identical to the interrupt operation shown in figure 9.
	TSKSW reg 16	Performs a high-speed task switch to the register bank indicated by the lower 3-bits of reg 16. The PC and PSW are saved in the old banks. PC and PSW save registers and the new PC and PSW values are retrieved from the new register bank's save areas. See figure 10.
ı	MOVSPA	Transfers both the SS and SP of the old register bank to the new register bank after the bank has been switched by an interrupt or BRKCS instruction.
	MOVSPB	Transfers the SS and the SP of the current register bank before the switch to the SS and SP of the new register bank indicated by the lower 3-bits of

INTERRUPT STRUCTURE

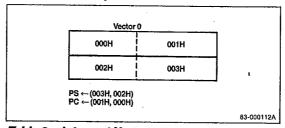
reg 16.

The μ PD70335 can service interrupts generated both by hardware and by software. Software interrupts are serviced through vectored interrupt processing. See table 1 for the various types of software interrupts.

T-49-19-59

Table 1. Software Interrupts

Interrupt	Description
Divide error	The CPU will trap if a divide error occurs as the result of a DIV or DIVU instruction.
Single step	The interrupt is generated after every instruction if the BRK bit in the PSW is set.
Overflow	By using the BRKV instruction, an interrupt car be generated as the result of an overflow.
Interrupt Instructions	The BRK 3 and BRK imm8 instructions can generate interrupts.
Array bounds	The CHKIND instruction will generate an interrupt if specified array bounds have been exceeded.
Escape trap	The CPU will trap on an FP01, 2 instruction to allow software to emulate the floating point processor.
I/O trap	If the I/O trap bit in the PSW is cleared, a trap will be generated on every IN or OUT instruction. Software can then provide an updated peripheral address. This feature allows software interchangeability between different systems.


When executing software written for another system, it is better to implement I/O with on-chip peripherals to reduce external hardware requirements. However, since μPD70335 Internal peripherals are memory mapped, software conversion could be difficult. The I/O trap feature allows easy conversion from external peripherals to on-chip peripherals.

Interrupt Vectors

The starting address of the interrupt processing routines may be obtained from table 2. The table begins at physical address 00H, which is outside the internal ROM space. Therefore, external memory is required to service these routines. By servicing interrupts via the macro service function or context switching, this requirement can be eliminated.

Each interrupt vector is four bytes wide. To service a vectored interrupt, the lower addressed word is transferred to the PC and the upper word to the PS. See figure 4.

Figure 4. Interrupt Vector

Address	Vector No.	Assigned Use
00	0	Divide error
04	1	Break flag
08	2	NMI
oC	3	BRK3 instruction
10	4	BRKV instruction
14	5	CHKIND instruction
18	6	General purpose
1C	7	FPO Instructions
20-2C	8-11	General purpose
30	12	INTSER0 (Interrupt serial error, channel 0)
34	13	INTSR0 (Interrupt serial receive, channel 0)
38	14	INTSTO (interrupt serial transmit, channel 0
ЗC	15	General purpose
40	16	INTSER1 (Interrupt serial error, channel 1)
44	17	INTSR1 (Interrupt serial receive, channel 1)
48	18	INTST1 (Interrupt serial transmit, channel 1)
4C	19	I/O trap
50	20	INTD0 (Interrupt from DMA, channel 0)
54	21	INTD1 (Interrupt from DMA, channel 1)
58	22	General purpose
5C	23	General purpose
60	24	INTPO (Interrupt from peripheral 0)
64	25	INTP1 (Interrupt from peripheral 1)
68	26	INTP2 (Interrupt from peripheral 2)
6C	27	General purpose
70	28	INTTUO (Interrupt from timer unit 0)
74	29	INTTU1 (Interrupt from timer unit 1)
78	30	INTTU2 (Interrupt from timer unit 2)
7C	31	INTTB (Interrupt from time base counter)
080-3FF	32-255	General purpose

NEC 1-49-19-59

Execution of a vectored interrupt occurs as follows:

(SP-1, SP-2) ← PSW

(SP-3, SP-4) ← PS

(SP-5, SP-6) ← PC

SP ← SP-6

IE ← 0, BRK ← 0

PS ← vector high bytes

PC ← vector low bytes

Hardware Interrupt Configuration

The V35 Plus features a high-performance on-chip controller capable of controlling multiple processing for interrupts from up to 17 different sources (5 external, 12 internal). The interrupt configuration includes system interrupts that are functionally compatible with those of the V20/V30 and unique high-performance microcontroller interrupts.

Interrupt Sources

The interrupt sources on the V35 Plus are similar to those on the V35. The 17 interrupt sources (table 3) are divided into groups for management by the interrupt controller. Using software, each of the groups can be assigned a priority from 0 (highest) to 7 (lowest). The priority of individual interrupts within a group is fixed in hardware.

The ISPR is an 8-bit SFR; bits PR_0 - PR_7 correspond to the eight possible interrupt request priorities. The ISPR keeps track of the priority of the interrupt currently being serviced by setting the appropriate bit. The address of the ISPR is XXFFCH. The ISPR format is shown below.

nn l	nn	l nn	- nn	l	l nn		PRo
1 787	I PHO	I PHR	I PHA	I PH3	I PHO	1 PK+ 1	ו אאין ו
1	1				· · · · <u>· · ·</u>		` ' ' '

NMI and INT are system-type external vectored interrupts. NMI is not maskable via software. INTR is maskable (IE bit in PSW) and requires that an external device provide the interrupt vector number. It allows expansion by the addition of an external interrupt controller (μ PD71059).

NMI, INTP0, and INTP1 are edge-sensitive maskable interrupt inputs. By selecting the appropriate bits in the interrupt mode register, these inputs can be programmed to be either rising or falling edge triggered. ES0-ES2 correspond to INTP0-INTP2, respectively. See figure 5.

Figure 5. External Interrupt Mode Register (INTM)

ES2	0	ES1	0	ESO.	0	ES NMI		
·		*	·····			0		
	INTP	2 Input E	ffective	Edge				
	Fall	ing edge)			•		
Rising edge								
INTP1 Input Effective Edge								
Falling edge								
Rising edge								
INTPO Input Effective Edge								
	Fall	ing edge	,					
Rising edge								
II NMI Input Effective Edge								
Falling edge								
Rising edge								
	ES2	INTP: Fall Risi INTP Fall Risi INTP Fall Ris NMI I	INTP2 input E Falling edge Rising edge INTP1 input E Falling edge Rising edge INTP0 input E Falling edge Rising edge NMI input Eff	INTP2 input Effective Falling edge Rising edge INTP1 input Effective Falling edge Rising edge INTP0 input Effective Falling edge Rising edge NMI input Effective E Falling edge	INTP2 input Effective Edge Falling edge Rising edge INTP1 Input Effective Edge Falling edge Rising edge INTP0 Input Effective Edge Falling edge Rising edge NMI Input Effective Edge Falling edge	INTP2 input Effective Edge Falling edge Rising edge INTP1 Input Effective Edge Falling edge Rising edge INTP0 Input Effective Edge Falling edge Rising edge Rising edge NMI Input Effective Edge Falling edge		

Interrupt Factor Register

The primary enhancement of the V35 Plus interrupt control unit is the addition of a special function register that stores the vector type that last caused an interrupt. This IRQS register (figure 5A) stores the vector until the next interrupt request is accepted, but is not changed by response to NMI, INT, or macroservice interrupts.

The main purpose of the IRQS register is to allow several interrupts within a given priority level to be serviced with context switching. Once the interrupt service routine is executing, the cause of the interrupt can be determined only by reading this register, rather than by long and time-consuming software determination. It is recommended that the contents of the IRQS register be read before interrupts are re-enabled to avoid confusion within multiprocessing environments.

T-49-19-59

Figure 5A. Interrupt Factor Register (IRQS)

0	0	0		Interrupt Vector	
7		5	4		. 0
nterrup	t Facto	ж		Interrupt Vector	
INTTU	10			1CH	
INTTU	11			IDH	
INTTU	12			IEH	
INTD0			·	14H	
INTD1				15H	
INTP0				18H	
					

terrupt Factor	Interrupt Vector
INTP1	19H
INTP2	1AH
INTSER0	0CH
INTSR0	ODH
INTSTO	0EH
INTSER1	10H
INTSR1	11H
INTST1	12H
INTTB	· 1FH

Table 3. Interrupt Sources

				Bank Switching	Priority Order			Multiple
Interrupt Source	External/ Internal	Vector	Macro Service		Setting Possible	Between Groups	Within Groups	Processing Control
NMI Nonmaskable interrupt	External ·	2	No	No	No	0		Not accepted
INTTU0 Interrupt from timer unit 0	Internal	28	Yes	Yes	Yes	1	1,	Accepted
INTTU1 Interrupt from timer unit 1	Internal	29	Yes	Yes	Yes	1	2	-
INTTU2 Interrupt from timer unit 2	Internal	30	Yes	Yes	Yes	1	3	
INTD0 Interrupt from DMA channel 0	Internal	20	No	Yes	Yes	2	1	Accepted
INTD1 Interrupt from DMA channel 1	internal	21	No	Yes	Yes	2	2	•
INTPO Interrupt from peripheral 0	External	24	Yes	Yes	Yes	3	1	Accepted
INTP1 Interrupt from peripheral 1	External	25	Yes	Yes	Yes	3	2.	. •
INTP2 Interrupt from petipheral 2	External	26	Yes	Yes	Yes	3	3	•
INTSER0 Interrupt from serial error on channel 0	internal	12	No	Yes	Yes	4	1	Accepted
INTSR0 Interrupt from serial receiver of channel 0	Internal	13	Yes	Yes	Yes	4	2	
INTST0 Interrupt from serial transmitter of channel 0	Internal	14	Yes	Yes	Yes	4	3	

T-49-19-59

Table 3. Interrupt Sources (cont)

μPD70335 (V35 Plus)

		Vector	Macro Service	Bank Switching	Priority Order			Multiple
Interrupt Source	External/ Internal				Setting Possible	Between Groups	Within Groups	Processing Control
INTSER1 Interrupt from serial error on channel 1	Internal	16	No	Yes	Yes	5	1	Accepted
INTSR1 Interrupt from serial receiver of channel 1	Internal	17	Yes	Yes	Yes	5	2	
INTST1 Interrupt from serial transmitter of channel 1	Internal	18	Yes	Yes	Yes	5	3	•
INTTB Interrupt from time base counter	Internal	31	No	No	No (preset to 7)	6	_	Accepted
INT Interrupt	External	Ext Input	No	No	No	7	_	Not accepted

Interrupt Processing Modes

Interrupts, with the exception of NMI, INT, and INTTB, have high-performance capability and can be processed in any of three modes: standard vectored interrupt, register bank context switching, or macro service function. The processing mode for a given interrupt can be chosen by enabling the appropriate bits in the corresponding interrupt request control register. As shown in table 3, each individual interrupt, with the exception of INTR and NMI, has its own associated IRC register. The format for all IRC registers is shown in figure 6.

All interrupt processing routines other than those for NMI and INT must end with the execution of an FINT instruction. Otherwise, subsequently, only interrupts of a higher priority will be accepted. FINT allows the internal interrupt controller to reset the highest priority bit set in the ISPR register.

In the vectored interrupt mode, the CPU traps to the vector location in the interrupt vector table.

Register Bank Switching

Register bank context switching allows interrupts to be processed rapidly by switching register banks. After an interrupt, the new register bank selected is that which has the same register bank number (0-7) as the priority of the interrupt to be serviced. The PC and PSW are automatically stored in the save areas of the new register bank and the address of the interrupt routine is loaded from the vector PC storage location in the new register bank. As in the vectored mode, the IE and BRK bits in the PSW are cleared to zero.

After interrupt processing, execution of the RETRBI (return from register bank interrupt) returns control to the former register bank and restores the former PC and PSW. Figures 7 and 8 show register bank context switching and register bank return. Figure 9 shows softwareinitiated task switching.

Specific IRC registers include the following.

<u>Symbol</u>	IRC Register
DIC0, DIC1	DMA
EXIC0-EXIC2	External
SEICO, SEIC1	Serial error
SRICO, SRIC1	Serial receive
STICO, STIC1	Serial transmit
TMIC0-TMIC2	Timer

T-49-19-59

Figure 6. Interrupt Request Control Registers (IRC)

IF	IMK	MS/INT	ENCS	0	PR ₂	PR ₁	PR ₀	
7					•	·	0	
IF		Interrupt Flag						
0			nterrupt rupt req		generat nerated	ed		
IMK		Interrupt Mask						
0 1		Open (Interrupts enabled) Closed (Interrupts disabled)						
MS/INT		Interrupt Response Method						
0		Vector interrupt or register bank switching Macroservice function						
ENCS		Register Bank Switching Function						
0		Not used Used						
PR2-PR0		Interrupt Group Priority (0-7)						
000		Highest (0)						
111		Lowest (7)						

Figure 7. Register Bank Context Switching

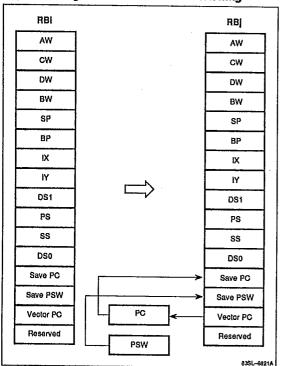
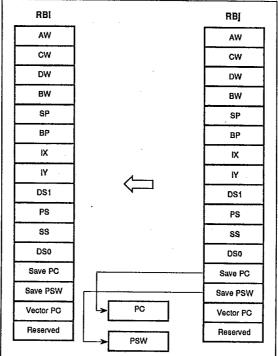
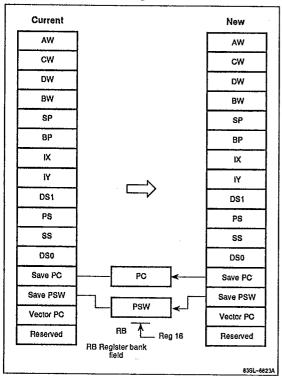



Figure 8. Register Bank Return



T-49-19-59

Figure 9. Task Switching

MACROSERVICE FUNCTION

The macroservice function (MSF) is a special microprogram that acts as an internal DMA controller between on-chip peripherals (special-function registers, SFR) and memory. The MSF greatly reduces the software overhead and CPU time that other processors would require for register save processing, register returns, and other handling associated with interrupt processing.

If the MSF is selected for a particular interrupt, each time the request is received, a byte or word of data will be transferred between the SFR and memory without interrupting the CPU. Each time a request occurs, the macroservice counter is decremented. When the counter reaches zero, an interrupt to the CPU is generated. The MSF also has a character search option. When selected, every byte transferred will be compared to an 8-bit search character and an interrupt will be generated if a match occurs or if the macroservice counter counts out.

Like the NMI, INT, and INTTB, the two DMA controller interrupts (INTD0, INTD1) and the serial error interrupts (INTSER0, INTSER1) do not have MSF capability.

There are eight, 8-byte macroservice channels mapped into internal RAM from XXE00H to XXE3FH. Figure 10 shows the components of each channel.

Setting the macroservice mode for a given interrupt requires programming the corresponding macroservice control register. Each individual interrupt serviceable with the MSF has its own associated MSC special-function register. The general format for all MSC registers is shown in figure 11.

Figure 10. Macroservice Channels

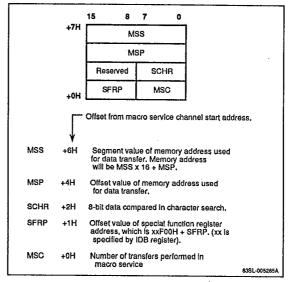


Figure 11. Macroservice Control Registers (MSC)

MSM ₂ -MSM ₀	Macroservice Mode				
000	Normal (8-bit transfer)				
0 0 1	Normal (16-bit transfer)				
100	Character search (8-bit transfer				
	Other combinations are not allowed.				
DIR	Data Transfer Direction				
Q	Memory to SFR				
1	SFR to memory				
CH ₂ -CH ₀	Macroservice Channel				
000	Channel 0				
	· 1				
1 1 1	Channel 7				

MSM₂ MSM₁ MSM₀ DIR 0 CH₂ CH₁ CH₀

N E C ELECTRONICS INC

μPD70335 (V35 Plus)

T-49-19-59

TIMER UNIT

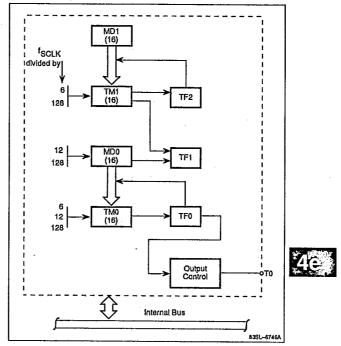
The μ PD70335 (figure 12) has two programmable 16-bit interval timers (TM0, TM1) on-chip, each with variable input clock frequencies. Each of the two 16-bit timer registers has an associated 16-bit modulus register (MD0, MD1). Timer 0 operates in either the interval timer mode or one-shot mode; timer 1 has only the interval timer mode.

Interval Timer Mode

In this mode, TM0/TM1 are decremented by the selected input clock and, after counting out, the registers are automatically reloaded from the modulus registers and counting continues. Each time TM1 counts out, interrupts are generated through TF1 and TF2 (Timer Flags 1, 2). When TM0 counts out, an interrupt is generated through TF0. The timer-out signal can be used as a square-wave output whose half-cycle is equal to the count time. There are two selectable input clocks (SCLK: system clock = fosc/2; fosc = 10 MHz).

Clock	Timer Resolution	Full Count
SCLK/6	1.2 μs	78.643 ms
SCLK/128	25.6 μs	1.678 s

One-Shot Mode


In the one-shot mode, TM0 and MD0 operate as independent one-shot timers. Starting with a preset value, each is decremented to zero. At zero, counting ceases and an interrupt is generated by TF0 (from TM0) or TF1 (from MD0). One-shot mode allows two selectable input clocks (fosc = 10 MHz).

<u>Clock</u>	Timer Resolution	Full Count
SCLK/12	2.4 μs	157.283 ms
SCLK/128	25.6 μs	1.678 s

Timer Control Registers

Setting the desired timer mode requires programming the timer control register. See figures 13 and 14 for format.

Figure 12. Timer Unit Block Diagram

N E C ELECTRONICS INC

Figure 13. Timer Control Register 0 (TMC0)

TS0	TCLKO	MSO	MCLKO	ENT0	ALV	MOD ₁	MOD ₀
7	•	····				·	0
TSO			Timer (in Eith	er Mode	•	
0				countdo			
1			Start	countdo	wn	-	
MOD ₁	MODo	TCLK0	TM0 Re	gister (Clock Fr	equenc	
0	0	0		/6 (Inter			
0	0	1	fSCLK	/128 (int	erval)		
0	1	0	fsclk	/12 (One	-shot)		
0	1	1	fSCLK	/128 (Or	te-shot)		
MSO			MD0 R Shot M		Countd	own (On	e-
0			Stop				
1			Start				
MCLKO			MD0 R	egister	Clock F	requenc	у
0			fSCLK	/12			
1			fSCLK	/128			
ENT0	· · · · · · · ·		TOUT	Square-\	Nave Ou	ıtput	······
0			Disab	ole			
1			Enab	ie			
ALV			TOUT	nitlal Le	vel (Co	unter	
			Stoppe				
0			Low				
1			High				
MOD ₁	MOD ₀		Timer I	Unit Mod	de		
0	0		Interv	/al timer			
0	1		One-s	shot			
1	Х		Rese	rved			
<u>~</u>						·	

Figure 14. Timer Control Register 1 (TMC1)

TS1	TCLK1	0	0	0	0	0	0
7							0
TS1		Time	r 1 Cour	tdown			
0		Sto Sta				·	
TCLK1		Time	r 1 Clock	k Freque	ncy		
0		fsc fsc	_{LK} /6 _{LK} /128				

TIME BASE COUNTER

The 20-bit free-running time base counter (TBC) controls internal timing sequences and is available as the source of periodic interrupts at lengthy intervals. One of four interrupt periods can be selected by programming the TB $_0$ and TB $_1$ bits in the processor control register (PRC). The TBC interrupt is unlike the others because it is fixed as a level 7 vectored interrupt. Macroservice and register

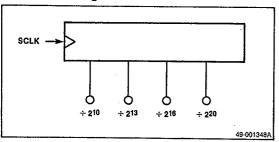
bank switching cannot be used to service this interrupt. See figures 14A and 14B.

Figure 14Å. Time Base Interrupt Request Control Register (TBIC)

TBF	TBMK	0	0	0	1	1	1
7	.1		Address	xxFECH	l		0
TBF	Ti	me Ba	se Inter	rupt Flag			
0			rrupt ge ot gener	nerated ated			
ТВМК	TI	me Ba	se Inter	rupt Ma	sk		
0		Unmas	ked				
1 .		Masked	Ė				

Figure 14B. Processor Control Register (PRC)

RAMEN	0	0	TB ₁	TB ₀	PCK ₁	PCK ₀
		Address	жFЕВН			0
	Built-	In RAM		-		
·····	Ena	016			 .	
TB ₀	Time	Base in	terrupt l	eriod		
0	210/	fSGLK				
1	213/	ÍSCI K				
0	216/	fectiv				
1	220/	SCLK				
PCK ₀	Syste	m Clock	Freque	ncy (fsc	LK)	
0	fosc	/2				
1	fosc	/4				
0						
1						
	TB ₀ 0 1 0 1 PCK ₀ 0	Built- Diss Ena TB ₀ Time 0 210/ 1 213/ 0 216/ 1 220/ PCK ₀ Syste 0 fosc 1 fosc 0 fosc 0 fosc	### Address Built-in RAM	### Address xxFEBH Built-In RAM	Address xxFEBH Built-in RAM Disable Enable TB ₀ Time Base interrupt Period 0 2 ¹⁰ /f _{SCLK} 1 2 ¹³ /f _{SCLK} 0 2 ¹⁶ /f _{SCLK} 1 2 ²⁰ /f _{SCLK} 1 2 ²⁰ /f _{SCLK} PCK ₀ System Clock Frequency (f _{SC}) 0 f _{OSC} /2 1 f _{OSC} /4 0 f _{OSC} /8	### Address xxFEBH Built-In RAM


The RAMEN bit in the PRC register allows the internal RAM to be removed from the memory address space to implement faster instruction execution.

The TBC (figure 14C) uses the system clock as the input frequency. The system clock can be changed by programming the PCK_0 and PCK_1 bits in the processor control register (PRC). Reset initializes the system clock to $f_{OSC}/8$ ($f_{OSC}=$ external oscillator frequency).

T-49-19-59

RFT₀

Figure 14C. Time Base Counter (TBC) Block Diagram

REFRESH CONTROLLER

The $\mu PD70335$ has an on-chip refresh controller for dynamic and pseudostatic RAM mass storage memories. The refresh controller generates refresh addresses and refresh pulses. It inserts refresh cycles between the normal CPU bus cycles according to refresh specifications.

The refresh controller outputs a 9-bit refresh address on address bits A₀-A₈ during the refresh bus cycle. Address bits A9-A19 are all zeros. The 9-bit refresh address is automatically incremented at every refresh timing for 512 row addresses. The 8-bit refresh mode (RFM) register (figure 15) specifies the refresh operation and allows refresh during both CPU HALT and HOLD modes. Refresh cycles are automatically timed to minimize the effect on system throughput,

The following shows the REFRQ pin level in relation to bits 4 (RFEN) and 7 (RFLV) of the refresh mode register.

RFEN	RFLV	REFRQ Level
0	0	0
0	1	1
1	0	0
1	1	Refresh nulse output

It should be noted that since the V35 Plus directly supports dynamic RAM memory, the refresh controller output should be gated into the RAS input of the memory chips. When combined with the chip select logic and the MREQ signals, a direct DRAM interface is supported.

SERIAL CONTROL UNIT

The serial unit of the μ PD70335 is functionally identical to that of the standard V35, with the exception of several enhanced features.

All serial status information is moved to the Serial Status Register (SSTn) on the V35 Plus. Included in this register is an additional flag which signals that the transmit shift register is clear of data. This flag allows software to poll for the completion of a message (the last bit of the last byte is shifted out when the ALL SENT bit is set). All error flags are available in this register (refer to figure 16).

Please refer to the µPD70330 (V35) data sheet for additional information on the serial channels.

Figure 15. Refresh Mode Register (RFM)

RFLV HLDRF HLTRF RFEN RFW1

•		Address XXFE 1H	0
RFLV	RFEN	REFRO Output Signal Level	
0	0	0	
1	Ó	1	
0	1	0	
1	1	Refresh pulse	
HLDRI	-	Automatic Refresh Cycle In HOLD Mo	de

	U	
0	1	0
1	1	Refresh pulse
HLDRF		Automatic Refresh Cycle in HOLD Mode
0		Disabled
1		Enabled
HLTRF		Automatic Refresh Cycle in HALT Mode
0		Disabled
_ 1		Enabled
RFEN		Automatic Refresh Cycle
0		Refresh pin = RFLV
_ 1		Refresh enabled
RFW.	RFW.	No of Welt States Incorted in Defract Couls

ĭ		Enabled
RFEN		Automatic Refresh Cycle
0		Refresh pin = RFLV Refresh enabled
RFW ₁	RFW ₀	No. of Wait States Inserted in Refresh Cycle
0	0	0
0	1	1 ·
1	0	2
1	1	2
RFT ₁	RFT ₀	Refresh Period
0	0	16/SCLK
0	1	32/SCLK

0

64/SCLK 128/SCLK

T-49-19-59

Figure 16. Serial Status Register (SSTn)

RxDN	ASn	TxBEn	RxBFn	0	ERPn	ERFn	EROn
7							. 0
Receive	Termin	al Pin Si	ate			HXE	N
Input sta	te of Rx	D _n pin is	checke	d by Rx	DN bit	•	
All Sent	Flag					ASn	
Reset wh		smit data	has bee	n writte	n to	0	
Set wher transmit						1	
Transmi	t Buffer	Empty	Flag			ТхВ	En
Reset wh			has be	n writte	n to	0	
Set when				it buffer	has	1	

Receive Buffer Full Flag	RxBFn
Reset when receive data has been read from receive buffer (Note 2)	0
Set when receive data has been sent from shift register to receive buffer (Note 3)	1
Parity Error Flag	ERPn
Indicates that transmit parity was not consistent with receive parity (Note 5)	
Framing Error Flag	ERFn
Indicates that stop bit was not detected (Note 5)	
Overrun Error Flag	EROn
Indicates that succeeding receive has completed be- fore the previous receive data is taken over from the receive buffer (Note 5)	

Notes:

- (1) Transmitter flags are reset to 1 when the value of either the band rate generator or serial control register is written.
- (2) Receive buffer full flag is also reset when either the band rate generator or serial control register is written.
- (3) Receive buffer full flag is not related to the receive error state.
- (4) Error flags are cleared when the next data byte is received.
- (5) In the table, n = 0 or 1.

Table 4. DMA Controller Operation

	Single-Step Mode	Burst Mode	Single-Transfer Mode	Demand Release Mode
Transmission coverage	Memory - memory	Memory - memory	Memory - I/O	Memory - I/O
Function	Under one time of DMA request instruction, one bus cycle and one DMA transmission are alternately executed the specified number of times.	Under one DMA request, specified number of DMA transmissions are executed.	One DMA transfer is executed every time DMA request occurs.	DMA transmission is executed while DMARQ terminal is kept high-level.
DMA start	Rise of DMARQ	Rise of DMARQ	Rise of DMARQ	High level of DMARQ
	Setting TDMA bit of DMA control register	Setting TDMA bit of DMA control register		
Halt method	Depends on software	None	Depends on software	Halted at low level of DMARQ during DMA transmission
	Terminal count decremented from zero	Terminal count decremented from zero	Terminal count decremented from zero	Terminal count decremented from zero
Interrupt	All accepted	Not accepted during DMA transmission	All accepted	All accepted except during DMA transmission
During halt	Specified times of DMA transmission are executed consecutively	Specified number of DMA transfers are executed consecutively	Active	Active
DMA request during DMA transmission	DMA at channel 1 is retained while DMA at channel 0 is executed	Other DMA is retained until DMA transmission is terminated.	DMA transmission under request is executed after one DMA transmission is over	DMA at channel 1 is retained while DMA at channel 0 is executed.

T-49-19-59

DMA CONTROLLER

Two memory-to-memory transfer modes (single-step and burst) are supported as well as two I/O-to-memory modes (single-transfer and demand release). Refer to table 4.

The most significant V35 Plus enhancement boosts the transfer rates of the dual internal DMA channels to full bus bandwidth. All operational modes remain the same as the V35, but since the V35 Plus DMA controller is implemented in hard-wired logic, the control delays of a microprogrammed method are not present. As a result, the demand release mode transfer rate boasts a theoretical transfer rate of over 6M bytes per second.

The μ PD70335 DMA control registers are moved from the internal RAM to the SFR area; thus the V35 Plus may effectively have a larger internal RAM memory area than comparable designs on the standard V35.

Additionally, the μ PD70335 DMA controller uses linear registers for both source and destination address pointers. Thus, three 8-bit registers completely specify the DMA address pointers as shown in figure 17. These pointers may be updated by byte (\pm 1) or word (\pm 2) quantities as programmed in the DMA channel mode register shown in figure 18. This register also specifies the operational mode of the channel. The EDMA bit is automatically cleared when terminal count is reached, and DMA requests are ignored when this bit is cleared.

Figure 17. DMA Address Registers

0 0	0 0	SARnH	SARnM	SARnL	Ī
0 0	0 0	DARnH	DARnM	DARnL	1

Figure 18. DMA Channel Mode Registers (DMAMn)

MD ₂	MD ₁	MD ₀	W	EDMA	TDMA	0	0
7							0

MD2-MD0		Transfer Mode
000 , 001 010 011		Single-step (memory to memory) Demand release (I/O to memory) Demand release (memory to I/O) Disabled
100 101 110 111		Burst (memory to memory) Single-transfer (I/O to memory) Single-transfer (memory to I/O) Disabled
w	···	Transfer Method
0		Byte transfer Word transfer
EDMA	TDMA	Transfer Condition
0 1 1	0 0 1	Disabled DMA channel enabled Software initiate DMA (memory to memory modes)

The TDMA bit is only valid for single-step and burst modes. This bit allows software initiation of the DMA transfer (provided the EDMA bit is set); the bit always reads as zero and has no meaning in the demand-release or single-transfer modes.

The DMA address pointers may be incremented or decremented per transfer as specified in the DMA address update register shown in figure 19. The address pointer can also be programmed to remain the same, allowing repeated transfers to or from a location.

Figure 19. DMA Address Control Registers (DMAC)

[0	0	PD ₁	PD ₀	0	0	PS ₁	PS ₀
	7				•			0

PD ₁ -PD ₀	Destination Address Offset					
00	No modification					
0 1	Increment					
10	Decrement					
11	No modification					
PS ₁ -PS ₀	Source Address Offset					
00	No modification					
0 1	Increment					
10	Decrement					
11	No modification					

The DMAAKn signals are not output for memory-tomemory transfer modes, but are driven low for each transfer I/O to/from memory. Nominal DMA bus cycles are three clock states; however, programmable wait N E C ELECTRONICS INC

NEC

T-49-19-59

states may be added. Wait states for memory-to-memory transfers are added to both source and destination addresses as programmed for each specific address.

During memory-to-I/O transfers, the number of wait states inserted is determined by the slower of the source and destination. I/O-to-memory transfers add the number of wait states required by the memory write address.

PARALLEL I/O PORTS

The μ PD70335 has three 8-bit parallel I/O ports: P0, P1, and P2. Refer to figures 20 through 24. Special function register (SFR) locations can access these ports. The port lines are individually programmable as inputs or outputs. Many of the port lines have dual functions as port or control lines.

Use the associated port mode and port mode control registers to select the mode for a given I/O line.

The analog comparator port (PT) compares each input line to a reference voltage. The reference voltage is programmable to be the (V_{TH} input pin) x n/16, where n = 1 to 16. See figure 25.

Figure 20. Port Mode Registers 0 and 2 (PM0, PM2)

PM ₇	PM ₆	PM ₅	PM ₄	РМз	PM ₂	PM ₁	PM ₀
7							0
PMn	· ·· · · · ·	Input	or Out	out Bit S	election		
0		Ou	tput por	t mode			
1		Inp	ut port r	node			
n = 7 t	hrough 0						

Figure 21. Port Mode Register 1 (PM1)

PM17	PM1 ₆	PM1 ₅	PM1 ₄	1	1	1	1
7							(
PMC1 _n	PM1 _n	Port	Mode in	put/Out	put (Por	P1n)	
0	0	Ou	tput por	t mode			
0	1	lnp	ut port r	node			
n = 7, 6	5, or 4.						

Figure 22. Port Mode Control Register 0 (PMC0)

PMC07 -	-	_	_	_	_	_	- 1		
7 0 PMC07 Port or Control Bit Selection									
1		ÇL	KOUT						

Figure 23. Port Mode Control Register 1 (PMC1)

PMC17	PMC1 ₆	PMC15	PMC1 ₄	PMC1 ₃	PMC1 ₂	PMC1 ₁	PMC1 ₀				
,							0				
PMC17	,	Port	/Contro	Bit Sel	ection						
0 .			7 1/0								
1		RI	EADY Inp	ut							
PMC1 ₆	3	Port	Port/Control Bit Selection								
0		Р	61/0								
1		S	CKO out	put	·						
PMC1	5	Port	/Contro	Bit Sel	ection						
0		b.	I ₅ I/O								
1		TO	OUT outp	out							
PMC1	1	Port	/Contro	Bit Sel	ection						
0		P	P1 ₄ I/O or POLL input								
1		IN	IT input								
PMC1	3	Port	Port/Control Bit Selection								
0		IN.	INTP2/P13 input								
1		ĪΝ	ITAK out	put							
PMC1	2	Port	/Contro	l Bit Sel	ection						
×		II.	TP1/P1 ₂	Input		•					
Ò		11	ITP2/P13	input							
PMC1	ı	Por	Port/Control Bit Selection								
x		IN	INTPO/P11 input								
PMC1)	Por	rt/Control Bit Selection								
×		N	NMI/P1 ₀ input								

30E D

μPD70335 (V35 Plus)

T-49-19-59

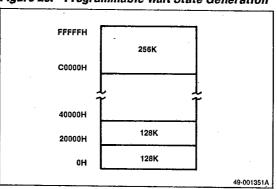
Figure 24. Port Mode Control Register 2 (PMC2)

PMC27	PMC2 ₆	PMC2 ₅	PMC2 ₄	PMC2 ₃	PMC22	PMC2 ₁	PMC2 ₀			
7						<u> </u>	0			
PMC27	,	Port	/Contro	Bit Sel	ection					
0			port							
1		HI	LDRQ or	itput						
PMC2 ₆		Port	/Control	Bit Sel	ection		_			
0			port							
1		H	DAK inp	out						
PMC25		Port	/Control	Bit Sel	ection					
0		1/0	port							
_1		TC	T outpu	t						
PMC24		Port	Port/Control Bit Selection							
0			I/O port							
_1		DN	ΛΑΑΚΙ οι	ıtput						
PMC2 ₃		Port	Port/Control Bit Selection							
0			I/O port							
_1		DΝ	MARQ1 I	nput						
PMC2 ₂		Port	/Control	Bit Sele	etion					
x		I/C) port							
0		TO	0 outpu	t						
PMC21		Port	Control	Bit Sele	ection		_			
x		I/C	port							
_1		DN	MAAKO o	utput						
PMC2 ₀		Port	Control	Bit Sele	ection					
0			port							
1		DN	ARQO II	nput						

Figure 25. Port T Mode Register (PMT)

0	0	0	0	PMT ₃	PMT ₂	PMT ₁	PMT ₀	ı
7								

PMT ₃ -PMT ₀	VREF	
0000	V _{TH} x 16/16	
0001	V _{TH} x 1/16	
0010	V _{TH} x 2/16	
0011	V _{TH} x 3/16	
0100	V _{TH} x 4/16	
0101	V _{TH} x 5/16	
0110	V _{TH} x 6/16	
0111	V _{TH} x 7/16	
1000	V _{TH} x 8/16	
1001	V _{TH} x 9/16	
1010	V _{TH} x 10/16	
1011	V _{TH} x 11/16	
1100	V _{TH} x 12/16	
1101	V _{TH} x 13/16	
1110	V _{TH} x 14/16	
1111	V _{TH} x 15/16	


PROGRAMMABLE WAIT STATE GENERATION

You can generate wait states internally to further reduce the necessity for external hardware. Insertion of these wait states allows direct interface to devices whose access times cannot meet the CPU read/write timing requirements.

When using this function, the entire 1M-byte memory address space is divided into 128K-blocks. Each block can be programmed for zero, one, or two wait states, or two plus those added by the external READY signal. The top two blocks are programmed together as one unit.

The appropriate bits in the wait control word (WTC) control wait state generation. Programming the upper two bits in the wait control word will set the wait state conditions for the entire I/O address space. Figure 26 shows the memory map for programmable wait state generation; see figure 27 for a graphic representation of the wait control word.

Figure 26. Programmable Wait State Generation

STANDBY MODES

The two low-power standby modes are HALT and STOP. Software can cause the processor to enter either mode.

HALT Mode

In the HALT mode, the CPU is inactive and the chip consumes much less power than when operational. The external oscillator remains functional and all peripherals are active. Internal status and output port line conditions are maintained. Any unmasked interrupt can release this mode. In the El state, interrupts subsequently will be serviced and the HALT state released. In the DI state, program execution is restarted with the instruction following the HALT instruction and the interrupt causing the release from HALT will be latched.

NEC

T-49-19-59

STOP Mode

The STOP mode allows the largest power reduction while maintaining RAM. The oscillator is stopped, halting the CPU and all internal peripherals. Internal status and port pin outputs are maintained. Only a RESET or NMI can release this mode.

A standby flag in the STBC register is reset by rises in the supply voltage. Its status is maintained during normal operation and standby. The STBC register (figure 28) is not initialized by RESET. Use the standby flag to determine whether program execution is returning from standby or from a cold start by setting this flag before entering the STOP mode.

SPECIAL-FUNCTION REGISTERS

Table 5 shows the special-function register mnemonio, type, address, reset value, and function. The eight high-order bits of each address (xx) are specified by the IDB register.

SFR area addresses not listed in table 5 are reserved. If read, the contents of these addresses are undefined, and any write operation will be meaningless.

Figure 27. Wait Control Word (WTC)

101	100	Block 61	Block 60	Block 51	Block 50	Block 41	Block 40		
7		Wait Control, High							
Block 31	Block 30								
7		Wait Control, Low							

Wait States	Block n1	Block n0	
0	0	0	
1	0	1	
2	1	0	
2 or more (control from READY pin)	1	1	
n = 0 thru 6			

Figure 28. Standby Register (STBC)

0	0	0	0	0	0	0	SBF	
7							0	
SBF Standby Flag								
0		No cha	nges in	V _{DD} (sta	ndby)			
1					ld start)			

Table 5. Special-Function Registers

Address	Register Function	Symbol	R/W	Manipulation (Note 6)	When Reset
xxF00H	Port 0	P0	R/W	8/1	Undefined
xxF01H	Port mode 0	PM0	W	8	OFFH
xxF02H	Port mode control 0	PMC0	W	8	00H
xxF08H	Port 1	P1	R/W	8/1	Undefined
xxF09H	Port mode 1	PM1	W .	8	OFFH
xxF0AH	Port mode control 1	PMC1	W	8	00H
xxF10H	Port 2	P2	R/W	8/1	Undefined
xxF11H	Port mode 2	PM2	W	8	0FFH
xxF12H	Port mode control 2	PMC2	W	8	00H
xxF38H	Threshold port	PT	R	8	Undefined
xxF3BH	Threshold port mode	PMT	R/W	8/1	00H
xxF40H	External interrupt mode	INTM	R/W	8/1	00H
xxF44H	External interrupt macro service control 0 (Note 1)	EMS0	R/W	8/1	Undefined
xxF45H	External interrupt macro service control 1 (Note 1)	EMS1	R/W	8/1	-
xxF46H	External interrupt macro service control 2 (Note 1)	EMS2	R/W	8/1	-
xxF4CH	External interrupt request control 0 (Note 1)	EXIC0	R/W	8/1	47H
xxF4DH	External interrupt request control 1 (Note 1)	EXIC1	R/W	8/1	=
xxF4EH	External interrupt request control 2 (Note 1)	EXIC2	R/W	8/1	-

T-49-19-59

Table 5. Special-Function Registers (cont)

Table 5.	Special-runction Hegisters (cont)				
Address	Register Function	Symbol	R/W	Manipulation (Note 6)	When Rese
xxF60H	Receive buffer 0	RxB0	R	8	Undefined
xxF62H	Transmit buffer 0	TxB0	W .	8	•
xxF65H	Serial receive macro service control 0 (Note 1)	SRMSO	R/W	8/1	•
xxF66H	Serial transmit macro service control 0 (Note 1)	STMSO	R/W	8/1	•
xxF68H	Serial mode register 0	SCMO	R/W	8/1	00H
xxF69H	Serial control register 0	SCC0	R/W	8/1	
xxF6AH	Baud rate generator 0	BRG0	R/W	8/1	•
xxF6BH	Serial status register 0	SSTO	R	8	60H
xxF6CH	Serial error interrupt request register 0 (Note 1)	SEIC0	R/W	8/1	47H
xxF6DH	Serial receive interrupt request register 0 (Note 1)	SRICO	R/W	8/1	•
xxF6EH	Serial transmit interrupt request register 0 (Note 1)	STICO	R/W	8/1	•
xxF70H	Serial receive buffer 1	RxB1	R	8	Undefined
xxF72H	Serial transmit buffer 1	TxB1	W	8	•
xxF75H	Serial receive macro service register 1 (Note 1)	SRMS1	R/W	8/1.	•
xxF76H	Serial transmit macro service register 1 (Note 1)	STMS1	R/W	8/1	•
xxF78H	Serial communication register 1	SCM1	R/W	8/1	00H
xxF79H	Serial control register 1	SCC1	R/W	8/1	
xxF7AH	Baud rate generator 1	BRG1	R/W	8/1	
xxF7BH	Serial status register 1	SCS1	R	8	60H
xxF7CH	Serial error interrupt request register I (Note 1)	SEIC1	R/W	8/1	47H
xxF7DH	Serial receive interrupt request register 1 (Note 1)	SRIC1	R/W	8/1	. """
xxF7EH	Serial transmit interrupt request register 1 (Note 1)	STIC1	R/W	8/1	•
xxF80H	Timer register 0 (Note 2)	TMO	R/W	16	Undefined
xxF82H	Timer 0 modulo register (Note 2)	MDO	R/W	16	
xxF88H	Timer register 1 (Note 2)	TM1	R/W	16	•
xxF8AH	Timer 1 modulo register (Note 2)	MD1	R/W	16	
xxF90H	Timer 0 control register (Note 2)	TMC0	R/W	8/1	00H
xxF91H	Timer 1 control register (Note 2)	TMC1	R/W	8/1	
xxF94H	Timer unit 0 macro service register (Note 1)	TMMS0	R/W	8/1	Undefined
xxF95H	Timer unit 1 macro service register (Note 1)	TMMS1	R/W	8/1	
xxF96H	Timer unit 2 macro service register (Note 1)	TMMS2	R/W	8/1	
xxF9CH	Timer unit 0 interrupt request register (Note 1)	TMICO	R/W	8/1	47H
xxF9DH	Timer unit 1 interrupt request register (Note 1)	TMIC1	R/W	8/1	
xxF9EH	Timer unit 2 interrupt request register (Note 1)	TMIC2	R/W	8/1	
xxFA0H	DMA address update control register 0	DMAC0	R/W	8/1	Undefined
xxFA1H	DMA mode register 0	DMAMO	R/W	8/1	47H
xxFA2H	DMA address update control register 1	DMAC1	R/W	8/1	Undefined
xxFA3H	DMA mode register 1	DMAM1	R/W	8/1	00H
				-, .	
xxFACH	DMA interrupt request control register 0 (Note 1)	DICO	R/W	8/1	47H

Table 5. Special-Function Registers (cont)

Address	Register Function	Symbol	R/W	Manipulation (Note 6)	When Rese
xxFC0H	DMA channel 0 source address pointer low	SAEOL	R/W	16/8	Undefined
xxFC1H	DMA channel 0 source address pointer mid	SAEOM	R/W	16/8	-
xxFC0H	DMA Channel 0 source address pointer low	SAEOL	R/W	16/8	-
xxFC1H	DMA channel 0 source address pointer mid	SAEOM	R/W	16/8	•
xxFC2H	DMA channel 0 source address pointer high	SAROH	R/W	8	-
xxFC4H	DMA channel 0 destination address pointer low	DAROL.	R/W	16/8	•
xxFC5H	DMA channel 0 destination address pointer mid	DAROM	R/W	16/8	•
xxFC6H	DMA channel 0 destination address pointer high	DAROH	R/W	8	-
xxFC8H	DMA channel 0 count register	DMATC0	R/W	16/8	•
xxFDQH	DMA channel 1 source address pointer low	SAR1L	R/W	16/8	•
xxFD1H	DMA channel 1 source address pointer mid	SAR1M	R/W	16/8	•
xxFD2H	DMA channel 1 source address pointer high	SAR1H	R/W	8	-
xxFD4H	DMA channel 1 destination address pointer low	DAR1L	R/W	16/8	•
xxFD5H	DMA channel 1 destination address pointer mid	DAR1M	R/W	16/8	-
xxFD6H	DMA channel 1 destination address pointer high	DAR1H	R/W	8	-
xxFD8H	DMA channel 1 terminal count register	DMATC1	R/W	16/8	-
xxFE0H	Standby control register	STBC	R/W (Note 3)	8/1	Undefined (Note 4)
xxFE1H	Refresh mode register	RFM	R/W	8/1	0FCH
xxFE8H	Walt state control	WTC	R/W	16/8	OFFFFH
xxFEAH	User flag (Note 5)	FLAG	R/W	8/1	ООН
xxFEBH	Processor control register	PRC	R/W	8/1	4EH
xxFECH	Time base interrupt request control register (Note 1)	TBIC	R/W	8/1	47H
xxFEFH	Interrupt factor register (Note 1)	IRQS	R	8	Undefined
xxFFCH	Interrupt priority control register (Note 1)	ISPR	R	8	00H
xxFFFH	Internal data area base	IDB	R/W	8/1	OFFH

Notes:

- (1) One walt state is inserted into accesses to these registers.
- (2) A maximum of 6 wait states are added into accesses to these registers.
- (3) Each bit of the standby control register can be set to 1 by an instruction; however, once set, bits cannot be reset to 0 by an instruction (only 1 can be written to this register).
- (4) Upon power-on reset = 00H; other = no change.
- (5) For the user flag register (FLAG), manipulating bits other than bits 3 and 5 is meaningless. The contents of user flags 0 and 1 (F0 and F1) of the FLAG register are affected by manipulating F0 and F1 of the PSW.
- (6) The manipulation column indicates which memory operations can read or modify the register according to the following key.
 - 16 Work operations
 - 8 Byte operations
 - 1 Bit operations

Total

N E C ELECTRONICS INC

-20 mA

-10 to +70 °C

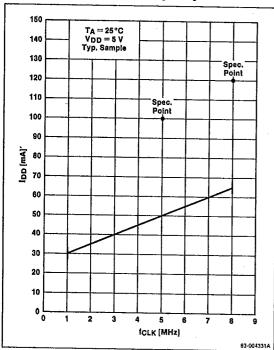
-65 to +150 °C

μPD70335 (V35 Plus)

T-49-19-59

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings


T _A = 25 °C	J
Supply voltage, V _{DD}	−0.5 to +7.0 V
Input voltage, V _I	~0.5 to V _{DD} + 0.5 V (≤ +7.0 V)
Output voltage, VO	-0.5 to V _{DD} + 0.5 V (≤ +7.0 V)
Threshold voltage, V _{TH}	-0.5 to $V_{DD} + 0.5$ V ($\leq +7.0$ V)
Output current, low; I _{OL} Each output pin Total	4.0 mA 50 mA
Output current, high; I _{OH} Each output pin	–2.0 mA

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

Supply Current vs Clock Frequency

Operating temperature range, TOPT

Storage temperature range, TSTG

Comparator Characteristics

 $V_{DD} = +5 \text{ V} \pm 10\%$; $T_A = -10 \text{ to } +70^{\circ}\text{C}$

			-		
Parameter	Symbol	Min	Max	Unit	Conditions
Accuracy	VACOMP		±100	mV	
Threshold voltage	V _{TH}	0	V _{DD} + 0.1	V	•
Comparison time	^t COMP	64	65	tcyk	•
PT input voltage	V _{IPT}	0	V _{DD}	٧	•

Capacitance

V_{DD} = 0 V; T_A = 25 °C

Parameter	Symbol	Min	Max	Unit	Conditions
input capacitance	CI	-	10	pF	f _c = 1 MHz;
Output capacitance	Co		20	рF	unmeasured pins
I/O capacitance	CiO		20	рF	returned to 0 V

DC Characteristics

 $V_{DD} = +5 V \pm 10\%$; $T_A = -10 \text{ to } +70 \,^{\circ}\text{C}$ (Note 1)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Supply current, operating	lopt		65	120	mA	
Supply current, HALT mode	I _{DD2}		25	50	mA	•
Supply current, STOP mode	I _{DD3}		10	30	μА	•
V _{TH} supply current	ITH		0.5	1.0	mA	V _{TH} = 0 to V _{DD}
Input voltage, low	V _{IL}	0		0.8	٧	-
Input voltage, high	V _{IH1}	2.2		V _{DD}	٧	All Inputs except RESET, P1 ₀ /NMI, X1, X2
	V _{lH2}	0.8 x V _{DD}		V _{DD}	٧	RESET, P1 ₀ / NMI, X1, X2
Output voltage, low	V _{OL}	_		0.45	٧	l _{OL} = 1.6 mA
Output voltage, high	VoH	V _{DD} — 1.0			٧	I _{OH} = -0.4 mA
Input current	I _{IN}			±20	μА	EA, P1 ₀ /NMI; V _I = 0 to V _{DD}
Input leakage current	l _{LI}			±10	ДЩ	All except EA, P1 ₀ /NMI; V _I = 0 to V _{DD}
Output leakage current	lLO			±10	μА	$V_{O} = 0$ to V_{DD}

Notes:

 The standard operating temperature range is -10 to +70°C. However, extended temperature range parts (-40 to +85°C) are available.

AC Characteristics $V_{DD} = +5 V \pm 10\%$; $T_A - 10 \text{ to } +70^{\circ}\text{C}$; $C_L = 100 \text{ pF (max)}$

$V_{DD} = +5 \text{ V} \pm 10\%; T_A - 10 \text{ to } +70^{\circ}\text{C}; C_L = 100 \text{ p}$	or (max)				
Parameter	Symbol	Min	Max	Unit	Conditions
input rise, fall time	t _{IR} , t _{IF}		20	ns	Except X1, X2, RESET, NMI
input rise, fall time	tins, tifs		30	ns -	RESET, NMI (Schmitt)
Output rise, fall time	ton, tor		20	ns	Except CLKOUT
X1 cycle time	tcyx	62	250	ns	
X1 width, low	twxL	20		ns	•
X1 width, high	twxH	20		ns	•
X1 rise, fall time	t _{XR} , t _{XF}		20	ns	•
CLKOUT cycle time	toyk	125	2000	ns	•
CLKOUT width, low	t _{WKL}	0.51 - 15		ns	Note 1
CLKOUT width, high	twkH	0.5T - 15		ns	
CLKOUT rise, fall time	tkr, tkf		15	ns	•
Address delay time	[†] DKA	15	90	ns	
Address valid to input data valid	[†] DADR		T(n + 1.5) - 70	ns	Note 2
MREQ to address hold time	†HMRA	0.5T - 30		ns	
MREQ to data delay	^t DMRD		T(n + 2) - 60	пэ	•
MSTB to data delay	t _{DMSD}		T(n + 1) - 60 .	ns	•
MREQ to MSTB delay	tomamsa ,	T - 35	T + 35	ns	•
MREQ width, low	twmrl.	T(n + 2) - 30		Пŝ	•
MREQ, MSTB to address hold time	tHMA	0.5T 30		ns	•
Input data hold time	tHMD	0		ns	•
Next control setup time	tscc	T – 25		ns	•
MREQ to TO delay time	^t DMRTC		0.5T + 50	ns	
MREQ delay time	^t DAMR	0.5T - 30		ns	•
MSTB read delay time	^t DAMSR	0.5 T - 30		ns	•
MSTB width, low	twmslr	T(n + 1) - 30		ns	•
Address data output	wa.ad		0.5T + 50	ns	•
Data output setup time	t _{SDM}	T(n + 2) - 50	,	ns	•
MSTB write delay time	^t DAMSW	T(n + 0.5) - 30		ns	•
MREQ to MSTB write delay time	t _{DMRMSW}	T(n + 1) - 35	T(n + 1) + 35	ns	•
MSTB write width low	twwsrw	T – 30		ns	•
Data output hold time	[†] HMDW	0.5T - 30		ns	•
IOSTB delay time	t _{DAIS}	0.5T - 30		ns	•
IOSTB to data input	t _{DISD}		T(n + 1) - 60	ns	•
IOSTB width, low	twist.	T(n + 1) - 30		ns	•
MREQ to IOSTB delay time	t _{DMRIS}	T - 35		ns	
Next DMARQ setup time	t _{SDADQ}		T – 50	ns	Demand mode
DMARQ hold time	\$HDARQ	0		ns	
DMAAK read width, low	†WDMRL	T(n + 2.5) -30		ns	
DMAAK write width, low	†WDMWL	T(n + 2) - 30	 	ns	•
DMAAK to TC delay time	^t DDATC		0.5T + 50	ns	•

N E C ELECTRONICS INC

μPD70335 (V35 Plus)

Conditions

n ≥ 2 n ≥ 2

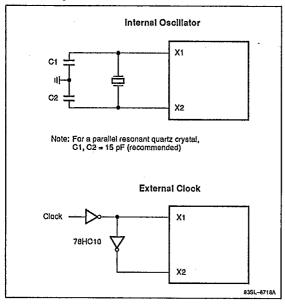
T-49-19-59

Crystal oscillator; STOP/ Power on reset System warm reset

AC Characteristics (cont)

Parameter	Symbol	Min	Max	Unit
TC width, low	\$wtcl_	(n + 2)T - 30		ns
REFRQ delay time	t _{DARF}	0.5T 30		ns
REFRQ width, low	₩RFL	T(n + 2) - 30		ns
Address hold time	†HRFA	0.5T - 30		ns
RESET width low	WRSL1	30		ms
	twasts	5		рэ
MREQ, IOSTB to READY setup time	tscry		T(n) — 100	ns
MREQ, IOSTB to READY hold time	HCRY	T(n)		ns
HLDRQ setup time	tsнак	30	····	ns
HLDAK output delay time	†DKHA	· 15	80	ns
Bus control float to HLDAK↓	[†] CFHA	T – 50		ns
HLDAK 1 to control output time	[‡] DHAC	T – 50	· · · · · · · · · · · · · · · · · · ·	ns
HLDRQ to HLDAK delay	t _{DHQHA}		3T + 160	ns
HLDRQ ↓ to control float time	†DHQC	3T + 30		ns
HLDRQ width, low	twHQL	1.5T		ns
HLDAK width, low	twhal.	Т		ns
INTP, DMARQ setup	tsiak	30		ns
INTP, DMARQ width, high	twiQH	8T		ns
INTP, DMARQ width, low	†WIQL	8T		ns
POLL setup time	t _{SPLK}	30		ns
NMI width, high	†wnih	5		μз
NMI width, low	twnil	5		μз
CTS width, low	twoTL.	2T		ns
INT setup time	t _{SIRK}	30		ns
INTAK delay time	^t DKIA	15	80	ns
INT hold time	[‡] HIAIQ	0		ns
INTAK width, low	twiaL_	2T - 30		ns
INTAK width, high	twiah	T – 30		ns
INTAK to data delay time	t _{DIAD}		2T - 130	ns
INTAK to data hold time	thiad	0	0.5T	ns
SCKO (TSCK) cycle time	[‡] CYTK	1000		ns
SCKO (TSCK) width, high	twsTH	450		ns
SCKO (TSCK) width, low	†wstl	450		ns
TxD delay time	tотко		210	ns
TxD hold time	tнтко	20	 	ns
CTSO (RSCK) cycle time	^t CYRK	1000		ns
CTSO (RSCK) width, high	twsnH	420		กร

N E C ELECTRONICS INC


AC Characteristics (cont)

Parameter	Symbol	Min	Max	Unit	Conditions
CTSO (RSCK) width, low	twsrl	420		ns	· · · · · · · · · · · · · · · · · · ·
RxD setup time	t _{SRDK}	80		ns	•
RxD hold time	†HKRD	80		ns	•

Notes:

- (1) T = CPU clock period (t_{CYK}) .
- (2) n = number of wait states inserted.

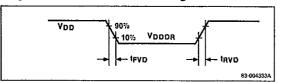
External System Clock Control Source

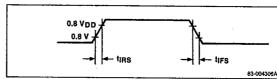
Recommended Oscillator Components

Ceramic Resonator		Capacitors	
Manufacturer	Product No.	C1 (pF)	C2 (pF)
Kyocera	KBR-10.0M	33	33
Murata Mfg.	CSA.10.0MT	47	47
	CSA16.0MX040	30	30
TDK	FCR10.M2S	30	30
	FCR16.0M2S	15	6

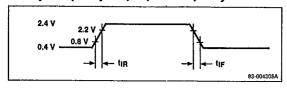
STOP Mode Data Retention Characteristics

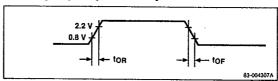
 $T_A = -10 \text{ to } +70^{\circ}\text{C}$

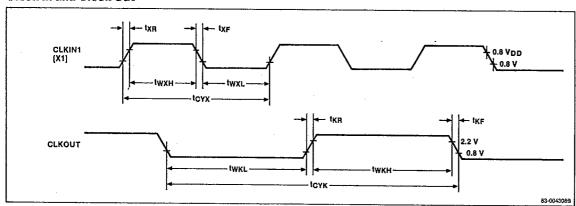

Parameter	Symbol	Min	Max	Unlt
Data retention voltage	V _{DDDR}	2.4	5.5	٧
V _{DD} rise time	t _{RVD}	200		μs
V _{DD} fall time	t _{FVD}	200		μs


T-49-19-59

Timing Waveforms

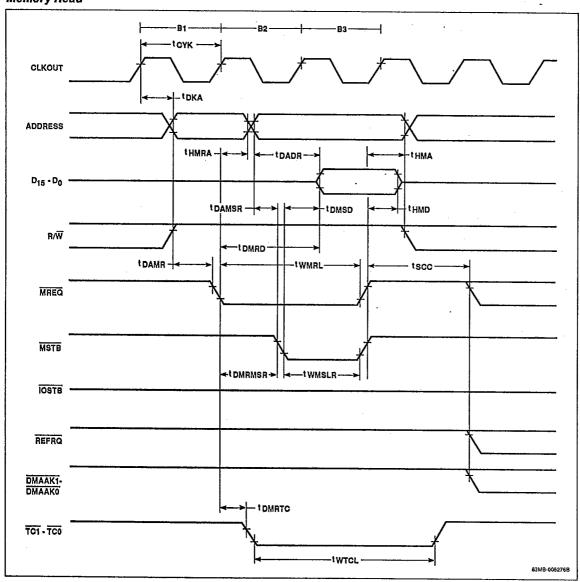

Stop Mode Data Retention Timing


AC Input 2 (RESET, NMI)


AC Input 1 (Except X1, X2, RESET, NMI)

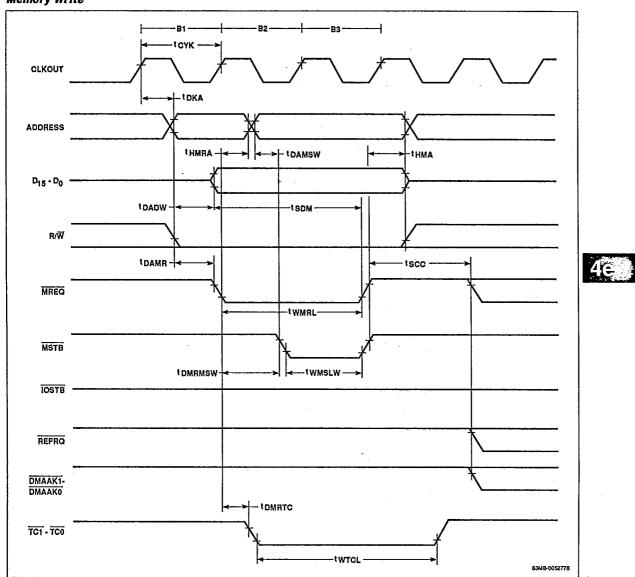
AC Output (Except CLKOUT)

Clock In and Clock Out



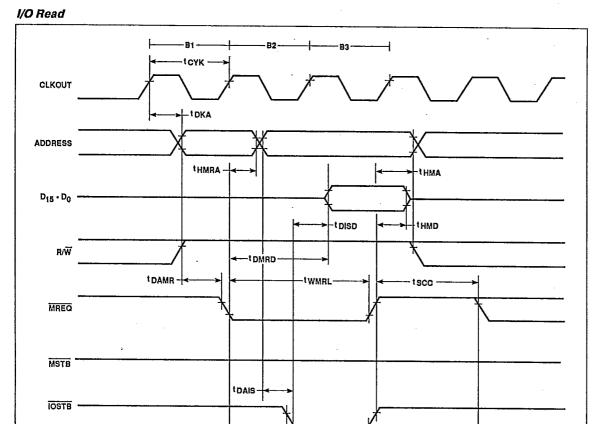
T-49-19-59

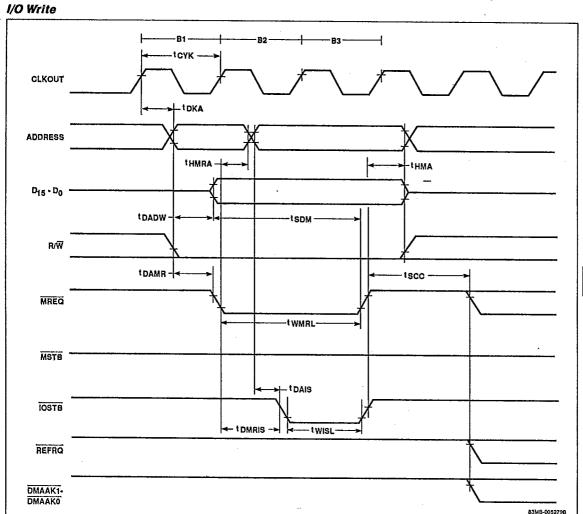
Memory Read



N E C ELECTRONICS INC

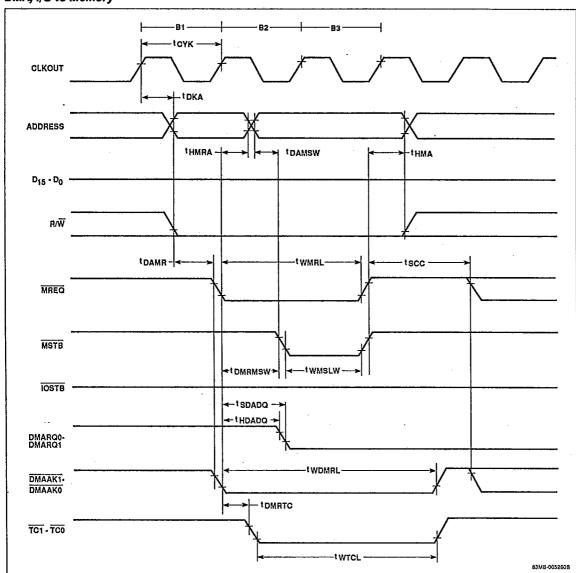
μPD70335 (V35 Plus)


T-49-19-59

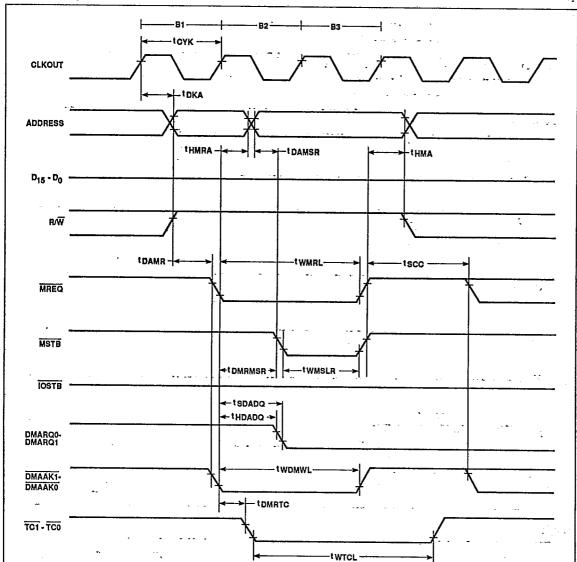

T-49-19-59

-tomais -- twist-

REFRO


DMAAK1-DMAAK0

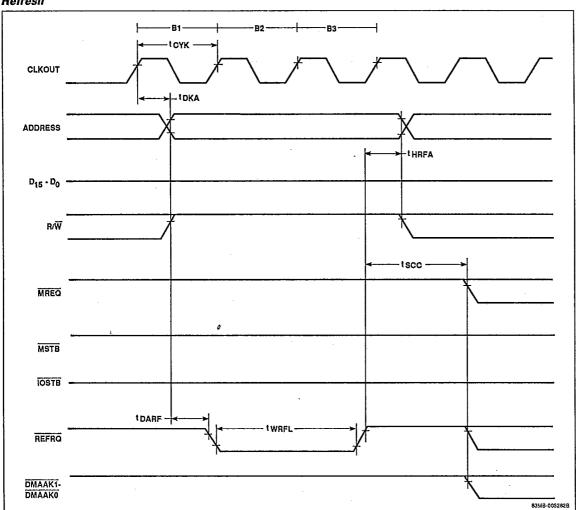
T-49-19-59


DMA, I/O to Memory

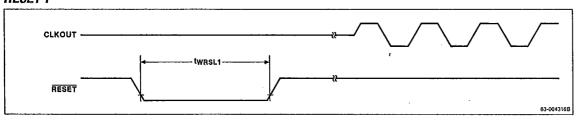
c n 🔤 8451292 nng1578 'S 1

μPD70335 (V35 Plus) T-49-19-59

DMA, Memory to I/O

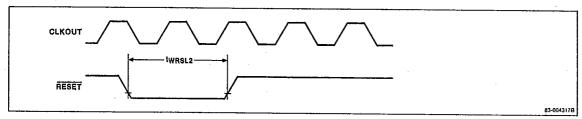


4e

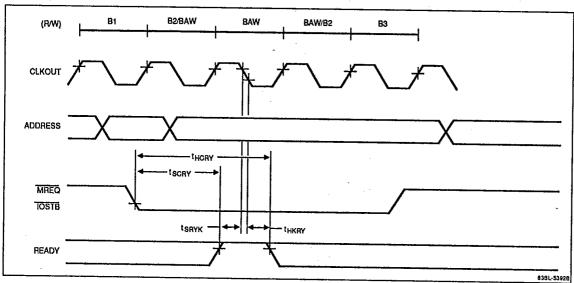


T-49-19-59

RESET 1



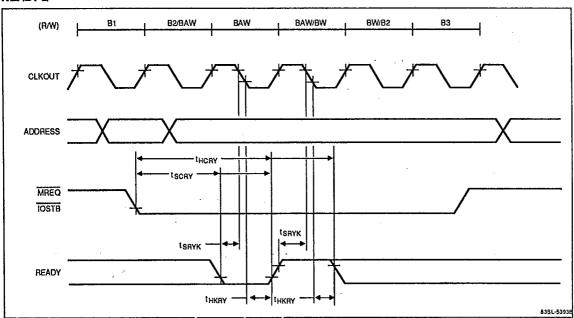
N E C ELECTRONICS INC

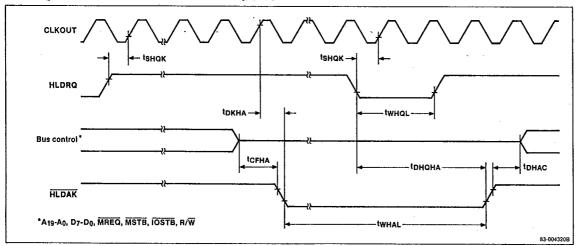

μPD70335 (V35 Plus)

T-49-19-59

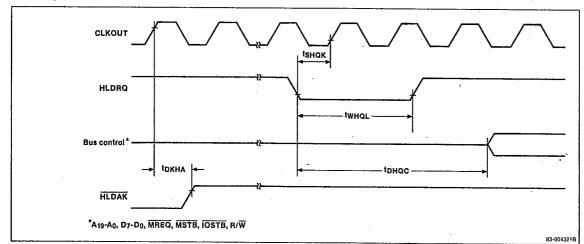
RESET 2

READY 1

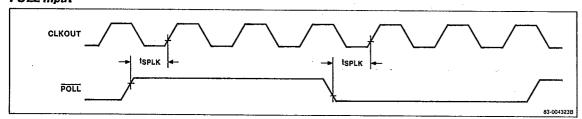



N E C ELECTRONICS INC

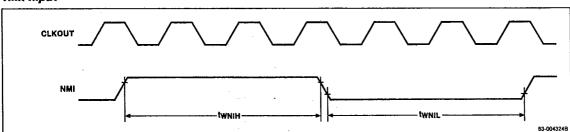
READY 2

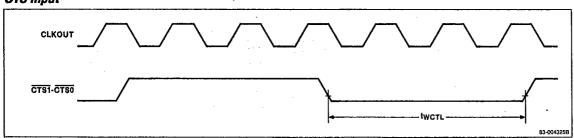

HLDRQ/ HLDAK 1

T-49-19-59

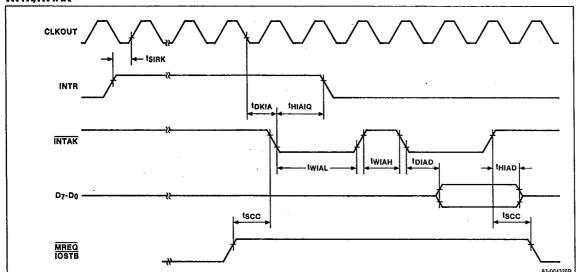

HLDRQ/HLDAK 2

INTP, DMARQ Input


POLL Input

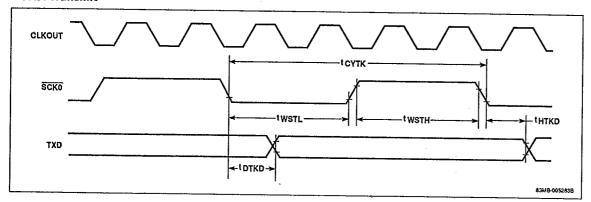


T-49-19-59

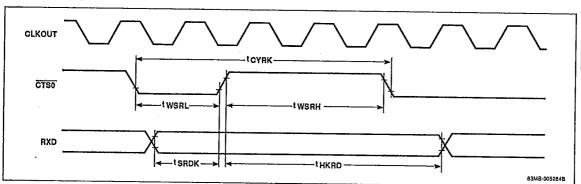

NMI Input

CTS Input

INTR/INTAK



N E C ELECTRONICS INC


μPD70335 (V35 Plus)

T-49-19-59

Serial Transmit

Serial Receive

T-49-19-50

INSTRUCTION SET

Instructions, grouped according to function, are described in a table near the end of this data sheet. Descriptions include source code, operation, opcode, number of bytes, and flag status. Supplementary information applicable to the instruction set is contained in the following tables.

- Symbols and Abbreviations
- Flag Symbols
- 8- and 16-Bit Registers. When mod = 11, the register is specified in the operation code by the byte/word operand (W = 0/1) and reg (000 to 111).
- Segment Registers. The segment register is specified in the operation code by sreg (00, 01, 10, or 11).
- Memory Addressing. The memory addressing mode is specified in the operation code by mod (00, 01, or 10) and mem (000 through 111).
- Instruction Clock Count. This table gives formulas for calculating the number of clock cycles occupied by each type of instruction. The formulas, which depend on byte/word operand and RAM enable/disable, have variables such as EA (effective address), W (wait states), and n (iterations or string instructions).

Symbols and Abbreviations

ldentifier	Description	
reg	8- or 16-bit general-purpose register	
reg8	8-bit general-purpose register	
reg16	16-bit general-purpose register	
dmem	8- or 16-bit direct memory location	
mem	8- or 16-bit memory location	
mem8	8-bit memory location	
mem16	16-bit memory location	
mem32	32-bit memory location	
sfr	8-bit special function register location	
imm	Constant (0 to FFFFH)	
lmm16	Constant (0 to FFFFH)	
imm8	Constant (0 to FFH)	
lmm4	Constant (0 to FH)	
imm3	Constant (0 to 7)	
acc	AW or AL register	
sreg	Segment register	
src-table	Name of 256-byte translation table	
src-block	Name of block addressed by the IX register	
dst-block	Name of block addressed by the IY register	
near-proc	Procedure within the current program segment	

Symbols and Abbreviations (cont)

Identifier	Description	
far-proc	Procedure located in another program segment	
near-label	Label in the current program segment	
short- label	Label between -128 and +127 bytes from the end of instruction	
far-label	Label in another program segment	
memptr16	Word containing the offset of the memory location within the current program segment to which control is to be transferred	
memptr32	Double word containing the offset and segment base address of the memory location to which control is to be transferred	
regptr16	16-bit register containing the offset of the memory location within the program segment to which control is to be transferred	
pop-value	Number of bytes of the stack to be discarded (0 to 64K bytes, usually even addresses)	
fp-op	Immediate data to identify the instruction code of the external floating-point operation	
R	Register set	
W	Word/byte field (0 to 1)	
reg	Register field (000 to 111)	
mem	Memory field (000 to 111)	
mod	Mode field (00 to 10)	
S:W	When S:W = 01 or 11, data = 16 bits. At all other times, data = 8 bits.	
X, XXX, YYY, ZZZ	Data to identify the instruction code of the externa floating point arithmetic chip	
AW	Accumulator (16 bits)	
AH	Accumulator (high byte)	
AL	Accumulator (low byte)	
BP	Base pointer register (16 bits)	
BW	BW register (16 bits)	
BH	BW register (high byte)	
BL	BW register (low byte)	
CW	CW register (16 bits)	
CH	CW register (high byte)	
CL	CW register (low byte)	
DW	DW register (16 bits)	
DH	DW register (high byte)	
DL	DW register (low byte)	
SP	Stack pointer (16 bits)	
PC	Program counter (16 bits)	
PSW	Program status word (16 bits)	
IX	Index register (source) (16 bits)	
iY	Index register (destination) (16 bits)	

XXXXH

μPD70335 (V35 Plus)

T-49-19-59

Symbols and Abbreviations (cont)		
ldentifier	Description	
PS	Program segment register (16 bits)	
SS	Stack segment register (16 bits)	
DSo	Data segment 0 register (16 bits)	
DS ₁	Data segment 1 register (16 bits)	
AC	Auxillary carry flag	
CY	Carry flag	
p	Parity flag	
S	Sign flag	
Z	Zero flag	
DIR	Direction flag	
IE	Interrupt enable flag	
V	Overflow flag	
BRK	Break flag	
MD	Mode flag	
()	Values in parentheses are memory contents	
disp	Displacement (8 or 16 bits)	
ext-disp8	16-bit displacement (sign-extension byte + 8-bit displacement)	
temp	Temporary register (8/16/32 bits)	
tmpcy	Temporary carry flag (1-bit)	
seg	Immediate segment data (16 bits)	
offset	Immediate offset data (16 bits)	
	Transfer direction	
+	Addition	
-	Subtraction	
x	Multiplication	
+	Division	
%	Modulo	
AND	Logical product	
OR	Logical sum	
XOR	Exclusive logical sum	
XXH	Two-digit hexadecimal value	

Four-digit hexadecimal value

Flag Symbols		
Identifier	Description ·	
(blank)	No change	
0	Cleared to 0	
1	Set to 1	
Х	Set or cleared according to the result	
U	Undefined	
A	Value saved earlier is restored	

8- and 16-Bit Registers (mod = 11)		
reg	W = 0	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	СН	BP
110	DH	IX
111	ВН	ΙΥ

Segment Registers		
sreg	Register	
00	DS ₁	· · · · · · · · · · · · · · · · · · ·
01	PS `	· · · · · · · · · · · · · · · · · · ·
10	SS	

DSQ

Memory Addressing mod = 00mod = 01 mod = 10000 BW + IX BW + IX + disp8 BW + IX + disp16 001 BW + IY BW + IY + disp8 BW + IY + disp16 BP + IX + disp8 010 BP + IX BP + IX + disp16 011 BP + IY BP + IY + disp8 BP + IY + disp16 100 ΙX IX + disp8 IX + disp16 101 ΙY IY + disp16 IY + disp8 110 Direct BP + disp8 BP + disp16 111 BW BW + disp8 BW + disp16

T-49-19-59

Instruction Clock Count

Mnemonic	Operand	Clocks
ADD	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 reg16, mem16	EA+10+2W [EA+7+W] EA+10+2W [EA+7+W]
	reg8, lmm8 mem16, lmm16	5 6
	mem8,imm8 mem16, imm16	EA+11+2W [EA+9+2W] EA+12+2W [EA+8+2W]
	AL, imm8 AW, imm16	5 6
ADD4S		22+(30+3W)n [22+(28+3W)n]
ADDC		Same as ADD
ADJ4A		9
ADJ4S		9
ADJBA		17
ADJBS		17
AND	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+10+2W [EA+7+W] EA+10+2W [EA+7+W]
	reg8, imm8 reg16, imm16	5 6
	mem8, lmm8 mem16, imm16	EA+11+2W [EA+9+2W] EA+12+2W [EA+8+2W]
	AL, imm8 AW, imm16	5 6
Boond (condi	tional branch)	8 or 15
BCWZ .		8 or 15
BR	near-label short-label	12 12
	regptr16 memptr16	13 EA+16+W
	far-label memptr32	15 EA+23+2W
BRK	3 lmm8	50+5W [38+5W] 51+5W [39+5W]
BRKCS	****	15
BRKV		50+5W [38+5W]
BTCLR		29
BUSLOCK		2

Mnemonic	Operand	Clocks
CALL	near-proc regptr16	21+W [17+W] 21+W [17+W]
	memptr16 far-proc memptr32	EA+24+2W [EA+22+2W] 36+2W [32+2W] EA+32+4W [EA+20+4W]
CHKIND	reg16, mem32	EA+24+2W
CLR1	CY DIR	2 2
	reg8, CL reg16, CL	8 8
	mem8, CL mem16, CL	EA+16+2W [EA+13+W] EA+16+2W [EA+13+W]
	reg8, imm3 reg16, imm4	7 7
	mem8, imm3 mem16, imm4	EA+13+2W [EA+10+W] EA+13+2W [EA+9+W]
CMP	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+7+W EA+7+W
	reg8, Imm8 reg16, Imm8 reg16, Imm16	5 5 6
	mem8, imm8 mem16, imm8 mem16, imm16	EA+8+W EA+9+W EA+9+W
	AL, imm8 AW, imm16	5 6
CMP4S		22+(25+2W)n
СМРВК	mem8, mem8 mem16, mem16	25+2W [21+2W] 25+2W [19+2W]
СМРВКВ		16+(23+2W)n
СМРВКИ		16+(23+2W)n
СМРМ	mem8 mem16	18+W 19+2W
СМРМВ	n > 1	16+(16+W)n
CMPMW	n > 1	16+(16+2W)n
CVTBD		19
CVTBW		3
CVTDB		20
CVTWL		8
DBNZ		8 or 17
DBNZE		8 or 17
DBNZNE		8 or 17

T-49-19-59

Instruction Clock Count (cont)

Mnemonic	Operand	Clocks
DEC	reg8 reg16	5 2
	mem8 mem16	EA+13+2W [EA+11+2W] EA+13+2W [EA+9+2W]
DI		4
DISPOSE		11+W
DIV	AW, reg8 AW, mem8	46-56 EA+49+W to EA+59+W
	DW: AW, reg16 DW: AW, mem16	54-64 EA+57+W to EA+67+W
DIVU	AW, reg8 AW, mem8	31 EA+34+W
	DW:AW, reg16 DW: AW, mem16	39 EA+43+2W
DSO:		2
DS1:		2
El		12
EXT	reg8, reg8 reg8, lmm4	41-121 42-122
FINT		2
FPO1		55+5W [43+5W]
FPO2		55+5W [43+5W]
HALT		N/A
IN	AL, imm8 AW, imm8	15+W 15+W
	AL, DW AW, DW	14+W 14+W
INC	reg8 reg16	5 2
	mem8 mem16	EA+13+2W [EA+11+2W] EA+13+2W [EA+9+2W]
INM	mem8, DW mem16, DW	21+2W [19+2W] 19+2W [15+2W]
	mem8, DW mem16, DW	18+(15+2W)n [18+(13+2W)n] 18+(13+2W)n [18+(9+2W)n]
NS	reg8, reg8 reg8, imm4	63-155 64-156
LDEA		EA+2
LDM	mem8 mem16	13+W 13+W
LDMB	n > 1	16+(11+W)n
DMW	n > 1	16+(11+W)n

Mnemonic	Operand	Clocks
MOV	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+5+W [EA+2] EA+5+W [EA+2]
	reg8, imm8 reg16, imm16	5 6
	mem8, lmm8 mem16, lmm16	EA+6+W EA+6+W
	AL, dmem8 AW, dmem16	10+W 10+W
	dmem8, AL dmem16, AW	8+W [5] 8+W [5]
	sreg, reg16 sreg, mem16	4 EA+9+W
	reg16, sreg mem16, sreg	3 EA+6+W [EA+3]
	AH, PSW PSW, AH	2
	DS0, reg16, memptr32	EA+17+2W
	DS1, reg16, memptr32	EA+17+2W
MOVBK	mem8, mem8 mem16, mem16	22+2W [17+W] 22+2W [19+W]
MOVBKB	n > 1	16+(18+2W)n [16+(13+W)n]
MOVBKW	n > 1	16+(18+2W)n [16+(10+W)n
MOVSPA		16
MOVSPB	reg16	11
MUL	AW, AL, reg8 AW, AL, mem8	31-40 EA+34+W to EA+43+W
	DW:AW, AW,	39-48
•	reg16 DW:AW, AW, mem16	EA+42+W to EA+51+W
	reg16, reg16, imm8	39-49
	reg16, mem16, imm8	EA+42+W to EA+52+W
	reg16, reg16, imm16	40-50
	reg16, mem16, imm16	EA+43+W to EA+53+W
MULU	reg8 mem8	24 EA+27+W
	reg16 mem16	32 EA+33+W
		

T-49-19-59

μPD70335 (V35 Plus)

Instruction Clock Count (cont)

Mnemonic	Operand	Clocks
NEG	reg8 reg16	ნ 5
	mem8 mem16	EA+13+2W [EA+10+W] EA+13+2W [EA+10+W]
NOP	<u> </u>	4
TOP	reg8 reg16	5 5
	mem8 mem16	EA+13+2W [EA+10+W] EA+13+2W [EA+10+W]
NOT1	CY	2
	reg8, CL reg16, CL	7 .
	mem8, CL mem16, CL	EA+15+W [EA+12+W] EA+15+2W [EA+12+W]
	reg8, lmm3 reg16, lmm4	6 6
	mem8, imm3 mem16, imm4	EA+12+2W [EA+9+W] EA+12+2W [EA+9+W]
OR	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+10+2W [EA+7+W] EA+10+2W [EA+7+W]
	reg8,imm8 reg16, imm16	5 6
	mem8, imm8 mem16, imm16	EA+11+2W [EA+9+2W] EA+12+2W [EA+8+2W]
	AL, imm8 AW, imm16	5 6
OUT	imm8, AL imm8, AW	11 +W 9+W
	DW, AL DW, AW	10 + W 8 + W
OUTM	DW, mem8 DW, mem16	21 +2W [19+2W] 19+2W [15+2W]
	DW, mem8	18 + (15 + 2W)n [18 + (13 + 2W)n]
	DW, mem16	18 + (13 + 2W)n [18 + (9 + 2W)n]
POLL		N/A
POP	reg16 mem16	11 +W EA + 14 + 2W [EA + 11 + W
	DS0,1 SS	12+W 12+W
	DS0 PSW	12+W 13+W
	R	74+8W [58]

Mnemonic	Operand	Clocks
PREPARE	imm16, imm8	Imm8 = 0:26+W imm8 = 1:37+2W
	·	imm8 = n, n > 1:44+19 (n-1)+2Wn
PS:		2
PUSH	reg16 mem16	13+W [9+W] EA+16+2W [EA+12+2W]
	DS1 PS	10+W [7] 10+W [7]
•	SS DS0	10+W [7] 10+W [7]
	PSW R	9+W [6] 74+8W [50]
	lmm8 lmm16	12+W [9] 13+W [10]
REP		2
REPE		2
REPZ		2
REPC		2
REPNC		2
REPNE		2
REPNZ		2
RET	nuli pop-value	19+W 19+W
	nuli pop-value	27 +2W 28 +2W
RETI		40+3W [34+W]
RETRBI		12
ROL	reg8 1 reg16, 1	8 8
	mem8, 1 mem16, 1	EA+16+2W [EA+13+W] EA+16+2W [EA+13+W]
	reg8, CL reg16, CL	11 +2n 11 +2n
	mem8, CL	EA+19+2W+2n [EA+16+W+2n]
	mem16, CL	EA+19+2W+2n [EA+16+W+2n]
	reg8, imm8 reg16, imm8	9+2n 9+2n
	mem8, imm8	EA + 15 + 2W + 2n [EA + 12 + W + 2n]
	mem16, imm8	EA+15+2W+2n [EA+12+W+2n]
ROL4	reg8 mem8	17 EA+20+2W [EA+18+2W]
ROLC		Same as ROL
ROR		Same as ROL

N E C ELECTRONICS INC

μPD70335 (V35 Plus)

T-49-19-59

Instruction Clock Count (cont)

Operand	Clocks
reg8 mem8	21 EA+26+2W [EA+24+2W]
	Same as ROL
CY DIR	2 2
reg8, CL reg16, CL	7 7
mem8, CL mem16, CL	EA+15+2W [EA+12+W] EA+15+2W [EA+12+W]
reg8, imm3 reg16, imm4	6 6
mem8, lmm3 mem16, imm4	EA+12+2W [EA+9+W] EA+12+2W [EA+9+W]
	Same as ROL
	Same as ROL
	Same as ROL
	2
mem8 mem16	13+W [10] 13+W (10]
n > 1	16+(9+W)n [16+(7+W)n]
n > 1	16+(9+W)n [16+(5+W)n]
	N/A
	Same as ADD
	22+(30+3W)n [22+(28+3W)n]
	Same as ADD
reg8, reg8 reg16, reg16	4
reg8, mem8 reg16, mem16	EA+12+W EA+11+2W
mem8, reg8 mem16, reg16	EA+12+W EA+11+2W
reg8, imm8 reg16, imm16	7 8
mem8, lmm8 mem16, lmm16	EA+9+W EA+10+W
	reg8 mem8 CY DIR reg8, CL reg16, CL mem16, CL reg8, Imm3 reg16, imm4 mem8, Imm3 mem16, imm4 mem8 mem16 n > 1 n > 1 reg8, reg8 reg16, reg16 reg8, mem8 reg16, mem16 mem8, reg8 mem16, reg16 reg8, imm8 reg16, imm16 mem8, imm8 reg16, imm16 mem8, imm8

Mnemonic	Operand	Clocks
TEST1	reg8, CL reg16, CL	7
	mem8, CL mem16, CL	EA+12+W EA+12+W
	reg8, imm3 reg16, imm4	6 6
	mem8, imm3 mem16, imm4	EA+9+W EA+9+W
TRANS		11+W
TRANSB		11+W ·
TSKSW		20
XCH	reg8, reg8 reg16, reg16	3 3
	mem8, reg8/ reg8, mem8	EA+12+2W [EA+9+W]
	mem16, reg16/ reg16, mem16	EA+12+2W [EA+9+2W]
	AW, reg16 reg16, AW	4
XOR		Same as AND

Notes:

- (1) If the number of clocks is not the same for RAM enabled and RAM disabled conditions, the RAM enabled value is listed first, followed by the RAM disabled value in brackets; for example, EA+8+2W [EA+6+W]
- (2) Symbols in the Clocks column are defined as follows. EA = additional clock cycles required for calculation of the effective address
 - = 3 (mod 00 or 01) or 4 (mod 10)
 - W = number of wait states selected by the WTC register
 - n = number of iterations or string instructions

N E C ELECTRONICS INC

Instruction Clock Count for Operations

	В	yte	W	ord
	RAM Enable	RAM Disable	RAM Enable	RAM Disable
Context switch interrupt		-	33	33
DMA (Single-step mode)	6+2W	6+2W	6+2W	6+2W
DMA (Demand release mode)	3+W	3+W	3+W	3+W
DMA (Burst mode)	(6+2W)n	(6+2W)n	(6+2W)n	(6+2W)n
DMA (Single-transfer mode)	3+W	3+W	3+W	3+W
Interrupt (INT pin)	-	_	57+3W	57+3W
Macro service, sfr ← mem	31+W	26+W	31 +W	26+W
Macro service, mem ← sfr	28+W	27+W	28+W	27+W
Macro service (Search char mode), sfr - mem	34+W	34+W		_
Macro service (Search char mode), mem ← sfr	44+W	41 + W	_	
Priority interrupt (Vectored mode)			55+5W	55+5W
NMI (Vectored mode)			53+5W	53+5W
· · · · · · · · · · · · · · · · · · ·				

W = number of wait states inserted into external bus cycle

Bus Controller Latency

		Clocks						
Latnecy	Mode ·	Тур	Max					
Hold request	Refresh active		9+3W					
	Intack active		10+2W					
	No refresh or intack		7+2W					
DMA request	Burst	3	14+2W					
(Notes 1, 2)	Single-step	3	. 14+2W					
	Demand releas	3	14+2W					
	Single-transfer	4	14+2W					

Notes:

- (1) The listed DMA latency times are the maximum number of clocks when a DMA request is asserted until DMAAK or MREQ goes low in the corresponding DMA cycle.
- (2) The test conditions are: no wait states, no interrupts, no macroservice requests, and no hold requests.

Interrupt Latency

		Clocks
Source	Тур	Max
NMI pln	12+N	18+N
INT pin	8+N	8+N
Ail others	27+N	15+N

n = number of iterations
N = number of clocks to complete the instruction currently executing

T-49-19-59

Instruction Set

Mnemo	nic Operand	Operation	7	6		perati 4	on C 3			0	Bytes	40	CY	Flag					
Data Tr	ansfer			<u> </u>	_ -			<u>-</u>			bytes	AC			P				
MOV	reg, reg	reg ← reg	1	0	0	0	1	0	1	W	2					—	_		
			<u> </u>	1	Ť	reg	<u> </u>		re		~								
	mem, reg	(mem) ← reg	1	0	0	0	1	0	0	-	2-4								
			m	od	_	reg					mem								
	reg, mem	reg ← (mem)	1	Ö	0	0	1	0	1	w	2-4						_		
			m	od		reg			mer	n									
	mem, imm	(mem) ← imm	1	1	0	0	0	1	1	W	3-6		-				_		
			- m	od	0	0	0		mer	n									
	reg, imm	reg ← imm	1	0	1	1	W		re	3	2-3						_		
	acc, dmem	When W = 0: AL ← (dmem) When W = 1: AH ← (dmem + 1), AL ← (dmem)	1	0	1	0	0	0	0	W	3								
	dmem, acc	When W = 0: (dmem) ← AL When W = 1: (dmem + 1) ← AH, (dmem) ← AL	1	0	1	0	0	0	1	W	3				••••		_		
	sreg, reg16	sreg ← reg16 sreg : SS, DS0, DS1	1	0	0	0	1	1	1	0	2				_		_		
			1	1	0	sre	eg -	_	reg										
	sreg, mem16	sreg ← (mem16) sreg: SS, DS0, DS1	1	0	0	0	1	1	1	0	2-4						_		
			m	od	0	sre	-g		men	n									
	reg16, sreg	reg16 ← sreg	1	0	0	0	1	1	0	0	2						_		
			1	1	. 0	sre	g		reç)	•								
	mem16, sreg	(mem16) ← sreg	1	0	0	0	1	1	0	0	2-4						_		
			m	bd	0	sre	g		men	1									
	DS0, reg16, mem32	reg16 ← (mem32), DS0 ← (mem32 + 2)	1	1	0	0	0	1_	0	1	2-4								
	 	· · · · · · · · · · · · · · · · · · ·		bd		reg			men	1									
	DS1, reg16, mem32	reg16 ← (mem32), DS1 ← (mem32 + 2)		1	0	0	0	1	0	0	2-4								
	AH, PSW			od		reg		_	men	1									
	PSW, AH	AH + S, Z, x, AC, x, P, x, CY		0	0	1_	1_	1	1	1									
LDEA	reg16, mem16	S, Z, x, AC, x, P, x, CY ← AH reg16 ← mem16	1	0	0	1	1	1	1	0	1	X	x		X	x	,		
	regio _l menno	regio & illettito	1	0	0	0	1	1	0		2-4								
TRANS	src-table	AL ← (BW + AL)	1	_		reg		_	men								_		
XCH	reg, reg	reg ↔ reg	<u></u>	1	0	0	0	1	1	1	1						_		
	3,113	9 ,09	1	1				<u> </u>	1	W	2								
	mem, reg	(mem) ↔ reg	1	0	0	reg 0	0	1	reg 1	W	2-4						_		
	or reg, mem		mo		<u> </u>	reg			mem		2-4								
	AW, reg16 or reg16, AW	AW ↔ reg16	1	0	0	1	0		reg		1								

Instruction	Set (cont)
-------------	-------	-------

					QΩ	erat	on C	ode						Flags		
Mnemonic	Operand	Operation	7	6	5	4	3		1	0	Bytes	AC	ÇY	_	S	Z
Repeat Pr	efixes							*								
REPC		While CW ≠ 0, the next byte of the primitive block transfer instruction is executed and CW is decremented (–1). If there is a waiting interrupt, it is processed. When CY ≠ 1, exit the loop.		1	1	0	0	1	0	1	1					
REPNC		While CW ≠ 0, the next byte of the primitive block transfer instruction is executed and CW is decremented (–1). If there is a waiting interrupt, it is processed. When CY ≠ 0, exit the loop.	0	1	1	0	0	1	0		1					
REP REPE REPZ		While CW ≠ 0, the next byte of the primitive block transfer instruction is executed and CW is decremented (-1). If there is a waiting interrupt, it is processed. If the primitive block transfer instruction is CMPBK or CMPM and Z ≠ 1, exit the loop.	1	1	1	1	. 0	0	1	1	1					
REPNE REPNZ		While CW ≠ 0, the next byte of the primitive block transfer instruction is executed and CW is decremented (-1). If there is a waiting interrupt, it is processed. If the primitive block transfer instruction is CMPBK or CMPM and Z ≠ 0, exit the loop.	1	1	1	1	0	0	1	O						
Primitive	Block Transf	er														_
MOVBK	dst-block, src-block	When W = 0: (IY) \leftarrow (IX) DIR = 0: IX \leftarrow IX + 1, IY \leftarrow IY + 1 DIR = 1: IX \leftarrow IX - 1, IY \leftarrow IY - 1 When W = 1: (IY + 1, IY) \leftarrow (IX + 1, IX) DIR = 0: IX \leftarrow IX + 2, IY \leftarrow IY + 2 DIR = 1: IX \leftarrow IX - 2, IY \leftarrow IY - 2	. 1	0	1	0	0	1	0	W	1		-	- 1		
СМРВК	src-block, dst-block	When W = 0: (IX) – (IY) DIR = 0: IX \leftarrow IX + 1, IY \leftarrow IY + 1 DIR = 1: IX \leftarrow IX - 1, IY \leftarrow IY - 1: When W = 1: (IX + 1, IX) – (IY + 1, IY) DIR = 0: IX \leftarrow IX + 2, IY \leftarrow IY + 2 DIR = 1: IX \leftarrow IX - 2, IY \leftarrow IY - 2	1	0	1	0	0	1	1	w	1	x	x	х	× ×	×
СМРМ	dst-block	When W = 0: AL - (IY) DIR = 0: IY ← IY + 1; DIR = 1: IY ← IY - 1 When W = 1: AW - (IY + 1, IY) DIR = 0: IY ← IY + 2; DIR = 1: IY ← IY - 2		0	1	0	1	1	1	W	1	x	x	x	x >	×
LDM	src-block	When W = 0: AL ← (IX) DIR = 0: IX ← IX + 1; DIR = 1: IX ← IX - 1 When W = 1: AW ← (IX + 1, IX) DIR = 0: IX ← IX + 2; DIR = 1: IX ← IX - 2		0	1	0	1	1	0	w	1		-			
STM	dst-block	When W = 0: (IY) ← AL DIR = 0: IY ← IY + 1; DIR = 1: IY ← IY - 1 When W = 1: (IY + 1, IY) ← AW DIR = 0: IY ← IY + 2; DIR = 1: IY ← IY - 2		0	1	0	1	0	1	W	1 .	•				

T-49-19-59

mstru	iction Set (co	ont)																
Mnemo	nic Operand	Operation					eratio								Fla			_
	ld Transfer	Operation		6	_	5	4	3	2	1	0	Bytes	AC	CY	<u> </u>	P	S	Z
INS	reg8, reg8	16-bitfield ← AW					<u> </u>											
	1090(1090	ro-pictiola 4- WAA	(_	0	1		1		3						
			-		_		1	0	0									
	reg8, imm4	16-bit field ← AW	1			_	reg	_		re		 -						
	3-,	is suicid . Wh	. 0				0	1	1	1		4						
			. 1				0	0	0	0								
EXT	reg8, reg8	AW ← 16-bitfield	0				0	1	1	re								
			- 0			-	1	- <u>'</u>	'	1	1	3						
			1				reg	-	-	_								
	reg8, imm4	AW ← 16-bitfield	<u>'</u>				0	1	1	re 1	<u>y</u> 1	4						
			0				1	<u>†</u>	,	_ <u>'</u>		4			-			
			1				0	<u>,</u>		re								
1/0			· ·	<u> </u>				<u> </u>			9							_
IN	acc, imm8	When W = 0: AL ← (imm8) When W = 1: AH ← (imm8 + 1), AL ← (imm8)	1	1	1		0	0	1	0	W	2				<u> </u>		
	acc, DW	When W = 0: AL ← (DW) When W = 1: AH ← (DW + 1), AL ← (DW)	1	1	1		0	1	1	0	W	1	· ·			-		_
OUT	imm8, acc	When W = 0: (imm8) ← AL When W = 1: (imm8 + 1) ← AH, (imm8) ← AL	1	1	1		0	0	1	1	W	2						
	DW, acc	When W = 0: (DW) ← AL When W = 1: (DW + 1) ← AH, (DW) ← AL	1	1	1	-	0	1	1	1	W	1						_
Primitis	re Block I/O Tra	nsfer										···						
INM	dst-block, DW	When W = 0: (IY) \leftarrow (DW) DIR = 0: IY \leftarrow IY + 1 DIR = 1: IY \leftarrow IY - 1 When W = 1: (IY + 1, IY) \leftarrow (DW + 1, DW) DIR = 0: IY \leftarrow IY + 2 DIR = 1: IY \leftarrow IY - 2	0	1	1	(0	1	1	0	W	1						
OUTM	DW, src-block	When W = 0: (DW) ← (IX) DIR = 0: X ← X + 1 DIR = 1: X ← X − 1 When W = 1: (DW + 1, DW) ← (X + 1, X) DIR = 0: X ← X + 2 DIR = 1: X ← X − 2	0	1	1	- (0	1	1	1	W	1						—

-11 -

μPD70335 (V35 Plus)

monuci	ion Set (co								_								_
Mnemonic	Operand	Operation	7	6	Op 5	eratio 4	n Co 3	ode 2	1	0	Bytes	AC	CY	Flag V	S P	s	Z
	Subtraction											• • •					_
ADD	reg, reg	reg ← reg + reg	0	0	0	0	0	0	1	W	2	х	×	×	x	×	->
			1	1	-	reg			re								
	mem, reg	(mem) ← (mem) + reg	0	0	0	0	0	0	0	W	2-4	×	×	x	×	х	,
			me	od		reg			me	m							
	reg, mem	reg ← reg + (mem)	0	0	0	0	0	0	1	W	2-4	×	Х	х	x	x	,
			me	od		reg			me	m							
	reg, imm	reg ← reg + imm	1	0	0	0	0	0	8	W	3-4	×	x	x	x	x	,
			1	1	0	0	0		r	eg							_
	mem, imm	(mem) ← (mem) + imm	1	0	0	0	0	0	5	W	3-6	x	x	x	X	x	:
			m	od	0	0	0		me	m							
	acc, imm	When $W = 0$: $AL \leftarrow AL + imm$ When $W = 1$: $AW \leftarrow AW + imm$	0	0	0	0	0	1	Q	W	2-3	х	х	×	x	×	
ADDC	reg, reg	reg ← reg + reg + CY	0	0	0	1	0	0	1	W	2	х	х	x	×	×	
			1	1		reg			r	eg							
	mem, reg	(mem) ← (mem) + reg + CY	0	0	0	1	0	0	0	W	2-4	x	X	X	x	x	:
			m	od		reg			m	əm							
	reg, mem	reg ← reg + (mem) + CY	0	0	0	1	0	0	1	W.	2-4	x	x	x	x	x	
			m	od		reg			m	em							
	reg, imm	reg ← reg + imm + CY	1	0	0	0	0	0		S W	3-4	x	X	X	x	X	
			1_	1	0	1	0		r	eg							
	mem, imm	(mem) ← (mem) + imm + CY	1	0	0	0	0	0		3 W	3-6	×	X	X	x	x	
			m	od	0	1	0			em							
	acc, imm	When $W = 0$: $AL \leftarrow AL + imm + CY$ When $W = 1$: $AW \leftarrow AW + imm + CY$	0	0	0	1	0	1) W	2-3	×	X	x	х	×	:
SUB	reg, reg	reg ← reg – reg	0	0	1	0	1	0	•	ı w	2	x	X	x	x	x	
			1	1		reg			_!	eg							
	mem, reg	(mem) ← (mem) - reg	0	0	1	0	1	0	() W	2-4	x	x	x	x	x	
			m	od		reg			m	em							
	reg, mem	reg ← reg ~ (mem)	0	0	1	0		0	_	ı w	2-4	x	X	x	X	x	
			m	od		reg			m	em							
	reg, imm	reg ← reg → imm	1	0	0	0	0	0		s w	3-4	x	X	x	x	x	
			1	1	1	0	1		_	reg							
	mem, imm	(mem) ← (mem) imm	1	0	0	0	0	0	;	s w	3-6	x	X	x	×	×	
			n	nod	1	<u> </u>	1			em				•			
	acc, imm	When $W = 0$: $AL \leftarrow AL - imm$ When $W = 1$: $AW \leftarrow AW - imm$	0	0	1	0	1	1		0 W	2-3	x	х	×	х	×	
SUBC	reg, reg	reg ← reg-reg-CY	0	0	0	1	1	0		1 W	2	х	x	×	X	X	
			1	1		reg				reg							
	mem, reg	(mem) ← (mem) – reg – CY	0	0	0	1	1	0		0 W	2-4	x	х	×	x	x	
			n	nod		reg	1		n	em							
	reg, mem	reg ← reg – (mem) – CY	0	0	0	1	1	0		1 W	2-4	x	x	x	х	x	
			n	nod		reg)		m	em							

NEC

μPD70335 (V35 Plus)

T-49-19-59

								erati			-					Flag	1 8		
Mnemonic			Operation	·	7	6	5	4	3	2	1	0	Bytes	AC	CY	٧	P	S	7
Addition	/Subtra	ction (c	ont)																
SUBC	reg, imm	1	reg ← reg-imm-CY		1	0,	0	0	0	0	s	W	3-4	×	х	х	×	×	,
					1	1	Q	1	1		re	9							
	mem, im	ım	(mem) ← (mem) – imm – C	Y	1	0	0	0	0	0	s	W	3-6	х	×	х	х	х	,
					m	od	0	1	1		mer	n							
	acc, imn	1	When W = 0: AL ← AL-im When W = 1: AW ← AW-in		0	0	0	1	1	1	0	W	2-3	х	х	X	X	X	X
BCD Ope	eration																		_
ADD4S			dst BCD string ← dst BCD s	string	0	0	0	0	1	1	1	1	2	ū	×	u	u	u	x
			+ src BCD string		0	0	1	0	0	0	0	0		-		-	_	-	^
SUB4S			dst BCD string ← dst BCD s	string	0	0	0	0	1	1	1	1	2	u	x	u	u	u	×
			- src BCD string	-	0	0.	1	0	0	0	1	0		_	•	_	_	_	•
CMP4\$			dst BCD string - src BCD st	ring	0	0	0	0	1	1	1	1	2	u	x	u	u	u	×
					ō	0	1	0	0	1	1	0		-		_	-	-	^
ROL4	reg 8	7	AL Q 7	reg8 0	0	0	0	0	1	1	1	1	3						_
		Bits 7-			0	0	1	0	1	0	0	0							
		83YL-6770A		1 0 1 5 0 0	1	1	0	0	0	<u> </u>	reg	3							
	mem 8	7	AL 0 7	mem8 0	0	0	0	0	1	1	1	1	3-5					-	
		Bits 7-4	Bits 3-0 ← Bits 7-	4 Bits 3-0	0	0	1	0	1	0	0	0							
					mo	od	0	0	0		men	n			٠				
ROR4	reg 8	7	AL 0 7	reg8 0	0	0	0	0	1	1	1	1	3						_
		Bits 7-4			0	0	1	0	1	0	1	0							
		L			1	1	0	0	0		reç	,							
	mem 8	7	AL 0 7	mem8 0	0	0	0	0	1	1	1	1	3-5						
		Bits 7-4	Bits 3-0	4 Bits 3-0	0	0	1	0	1	0	1	0							
		<u> </u>			mo	bd	0	0	0		men	n							
BCD Adju	ust			——————————————————————————————————————															
ADJBA	·		When (AL AND 0FH) > 9 or AL ← AL + 6, AH ← AH + 1 CY ← AC, AL ← AL AND 0F	, AC ← 1,	0	0	1	1	0	1	1	1	1	х	х	u	u	u	u
ADJ4A			When (AL AND 0FH) > 9 or AL ← AL + 6, CY ← CY OR When AL > 9FH, or GY = 1 AL ← AL + 60H, CY ← 1	AC, AC ← 1,	0	0	1	0	0	1	1	1	1	x	х	u	х	x	х
ADJBS		*	When (AL AND 0FH) > 9 or . CY ← AC, AL ← AL AND 0F		0	0	1	1	1	1	1	1	1	х	x	u	u	u	u
ADJ4S			When (AL AND 0FH) > 9 or AL ← AL − 6, CY ← CYOR When AL > 9FH, or CY = 1: AL ← AL + 60H, CY ← 1	AC, AC ← 1,	0	0	1	0	1	1	1	1	1	x	х	u	x	X	x

Instruction S	et (cont)

						eratio								Flag			
Mnemonic	Operand	Operation	7 6		5	4	3	2	_1_	0	Bytes	AC	CY	٧	Р	S	2
Incremen	t/Decrement																
INC	reg8	reg8 ← reg8 + 1	1 1		1	1	1	1	1	0	2	x		x	x	X	×
			1 1	(0	0	0		reg								
	mem	(mem) ← (mem) + 1	1 1		1	1	1	1	1	W	2-4	х		х	х	х	х
			mod	(0	0	0		men	1							
	reg16	reg16 ← reg16 + 1	0 1	(0	0.	0		reg	l	1	х		×	х	х	×
DEC	reg8	reg8 ← reg8 – 1	1 1		1	1	4	1	1	0	2	х		Х	х	х	×
		<u> </u>	1 1) (0	0	1		reg								
	mem	(mem) ← (mem) - 1	1 1	•	1	1	1	1	1	W	2-4	x		х	×	X	×
	-		mod	-	0	0	1		men	1							
	reg16	reg16 ← reg16 1	0 1		0	0	1		reç		1	x		x	х	х	Х
Multiplica	ation																
MULU	reg8	AW ← ALxreg8	1 1	i	1	1	0	1	1	0	2	и	х	х	u	u	ι
		$AH = 0: CY \leftarrow 0, V \leftarrow 0$ $AH \neq 0: CY \leftarrow 1, V \leftarrow 1$	1	l	1.	0	0		reg)							
	mem8	AW ← ALx (mem8)	1	1	1	1	0.	1	1	0	2-4	ប	x	x	u	u	ι
		AH = 0: CY ← 0, V ← 0 AH ≠ 0: CY ← 1, V ← 1	mod	l	1 .	0	0		men	n	<u> </u>	·					
	reg16	DW, AW ← AW x reg16	1 -	1 .	1	1	0	1	1	1	2	u	X	x	u	u	ι
		$DW = 0:CY \leftarrow 0, V \leftarrow 0$ $DW \neq 0:CY \leftarrow 1, V \leftarrow 1$	1	1	1	0	0		гeç)							
	mem16	DW, AW ← AW x (mem16)	1	t	1	1	0	1	1	1	2-4	u	X	x	u	u	ι
		$DW = 0: CY \leftarrow 0, V \leftarrow 0$ $DW \Rightarrow 0: CY \leftarrow 1, V \leftarrow 1$	mod	ı	1	0	0		mer	n							
MUL	reg8	AW ← ALxreg8	1	1	1	1	0	1	1	0	2	u	x	×	u	u	-
	ū	AH = AL sign expansion: CY $\leftarrow 0$, V $\leftarrow 0$	1.	1	1	0	1		reg								
		AH ≠ AL sign expansion: CY ← 1, V ← 1	4	4	+	1	0	1	1	0	2-4	u	×	x	u	u ·	
	mem8	AW \leftarrow AL x (mem8) AH = AL sign expansion: CY \leftarrow 0, V \leftarrow 0	1 mod		1	0	1	-	mer		2-4	u	^	^	٠	u	•
		AH ≠ AL sign expansion: CY ← 1, V ← 1	11100						11101	•••							
	reg16	DW, AW ← AW x reg16 DW = AW sign expansion: CY ← 0, V ← 0		1	1	1	0		_1	_1_	2	u	X	X	u	u	- 1
		DW = AW sign expansion: CY ← 1, V ← 1		1	1	0	1		re	g							
	mem16	DW, AW ← AW x (mem16)		1	1	1	0	1	1	1	2-4	u	x	x	u	u	ī
		DW = AW sign expansion: CY ← 0, V ← 0 DW ≠ AW sign expansion: CY ← 1, V ← 1		j	1	0	1	,	mer	n							
	reg16,	reg16 ← reg16 x imm8	0	1	1	0	1	0	1	1	3	u	×	х	u	u	-
	reg16, imm8	Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits: CY \leftarrow 1, V \leftarrow 1	1	1		reg			re	g							
	reg16,	reg16 ← (mem16) x imm8	0	1	1	0	1	0	. 1	1	3-5	u	X	x	u	u	1
	mem16, imm8	Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits: CY \leftarrow 1, V \leftarrow 1	mod	d		reg			me	m							
	reg16,	reg16 ← reg16 x imm16	0	1	1	0	1	0	0	1	4	u	x	x	u	u	
	reg16, imm16	Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits: CY \leftarrow 1, V \leftarrow 1	1	1		reg			re	g							
	reg16,	reg16 ← (mem16) ximm16	0	1	1	0	1	0	. 0	1	4-6	u	х	х	u	u	
	mem16,	Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0	mo			reg			me								

T-49-19-59

		.				erat	ion C	od	е					-	Flag	js		
Mnemoni	c Operand	Operation	7	6	5	4	3	2	1.	0	Byt	es	AC	CY	V	Р	s	Z
Unsigne	d Division																	
DIVU	reg8	temp + AW	1	1	1	1	0	1	1	C	2		Ш	u	u	u	u	·
		When temp \div reg8 > FFH: (SP -1, SP -2) \leftarrow PSW, (SP -3, SP -4) \leftarrow PS, (SP -5, SP -6) \leftarrow PC, SP \leftarrow SP -6, IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times: AH \leftarrow temp % reg8, AL \leftarrow temp \div reg8	1	1	1	1	0		re	∍g							,	
	mem8	temp ← AW	1	1	1	1	0	1	1	0	2-4	1	u	u	u	u	u	u
		When temp \div (mem8) $>$ FFH: (SP -1, SP -2) \leftarrow PSW, (SP -3, SP -4) \leftarrow PS, (SP -5, SP -6) \leftarrow PC, SP \leftarrow SP -6, IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times: AH \leftarrow temp $\%$ (mem8), AL \leftarrow temp \div (mem8)		od	1	1	0		me	m	_				-		-	•
	reg16	temp ← AW	1	1	1	1	0	1	1	1	2	-	u	u	u	u	u	u
		When temp ÷ reg16 > FFFFH; (SP-1, SP-2) ← PSW,	1	1	1	1	0		re	eg				_	_	Ī	-	_
		(SP – 3, SP – 4) ← PS, (SP – 5, SP – 6) ← PC, SP ← SP – 6, IE ← 0, BRK ← 0, PS ← (3, 2), PC ← (1, 0) All other times: AH ← temp % reg16, AL ← temp ÷ reg16								•								
	mem16	temp ← AW	1	1	1	1	0	1	1	1	2-4	1	u	u	u	u	u	u
		When temp \div (mem16) $>$ FFFFH: (SP-1, SP-2) \leftarrow PSW, (SP-3, SP-4) \leftarrow PS, (SP-5, SP-6) \leftarrow PC, SP \leftarrow SP-6, IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times: AH \leftarrow temp% (mem16), AL \leftarrow temp \div (mem16)		od	1	1	0		me	em	-							
Signed L	Division																	
DIV	reg8	temp ← AW		1	-		0	1	1									
		When temp ÷ reg8 > 0 and temp ÷ reg8 > 7FH or temp ÷ reg8 < 0 and temp ÷ reg8 < 0 - 7FH - 1: (SP - 1, SP - 2) ← PSW, (SP - 3, SP - 4) ← PS, (SP - 5, SP - 6) ← PC, SP ← SP - 6, IE ← 0, BRK ← 0, PS ← (3, 2), PC ← (1, 0) All other times: AH ← temp % reg8, AL ← temp ÷ reg8	1	1	1	1	1		re		2		u		u	u	u	ų
	mem8	temp ← AW	1	1	1	1	0	1	1	0	2-4	ļ	u	u	u	u	U	u
		When temp ÷ (mem8) > 0 and (mem8) > 7 FH or temp + (mem8) < 0 and temp ÷ (mem8) < 0 - 7 FH - 1; (SP-1, SP-2) ← PSW, (SP-3, SP-4) ← PS, (SP-5, SP-6) ← PC, SP ← SP-6, IE ← 0, BRK ← 0, PS ← (3, 2), PC ← (1, 0) All other times: AH ← temp % (mem8), AL ← temp ÷ (mem8)	mo	od	1	1	1		me	m	-							

NEC

T-49-19-59

·	ion Set (con				On	eratio	n C	ode				-		Flag	s		_
Mnemonic	Operand	Operation	7	6	5	4	3		1	0	Bytes	AC	CY		P	s	7
Signed D	ivision (cont)																
DIV	reg16	temp ← DW, AW When temp ÷ reg16 > 0 and reg16	1	1	1	1	0	1	1	1	2	u	Ц	ш	u	u	ι
		> 7FFFH or temp ÷ reg16 < 0-7FFFH-1: (SP-1, SP-2) ← PSW, (SP-3, SP-4) ← PS, (SP-5, SP-6) ← PC, SP ← SP-6, IE ← 0, BRK ← 0, PS ← (3, 2), PC ← (1, 0) All other times: AH ← temp % reg16, AL ← temp ÷ reg16	1	1	1	1	1		reg)							
	mem16	temp ← DW, AW	1	1	1	1	0	1	1	1	2-4	u	u	u	u	u	ι
		When temp \div (mem16) $>$ 0 and (mem16) $>$ 7 FFFH or temp \div (mem16) $<$ 0 and temp \div (mem16) $<$ 0 $-$ 7FFFH $-$ 1: (SP $-$ 1, SP $-$ 2) \leftarrow PSW, (SP $-$ 3, SP $-$ 4) \leftarrow PS, (SP $-$ 5, SP $-$ 6) \leftarrow PC, SP \leftarrow SP $-$ 6, IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times: AH \leftarrow temp% (mem16), AL \leftarrow temp \div (mem16)		od	1	1	1		men	n							
Data Cor	nversion							•									
CVTBD		AH ← AL ÷ 0AH, AL ← AL%0AH	1 0	0	0	0	0	0	0	0	2	u	u	u	x	x	,
CVTDB		AH ← 0, AL ← AH×0AH + AL	1	1	0	1	0	1	0	1	2	u	u	U	x	х	,
			0	0	0	0	1	0	1	0							
CVTBW		When AL < 80H: AH ← 0 All other times: AH ← FFH	1	0	0	1	1	0	0	0	1						_
CVTWL		When AL < 8000H: DW ← 0 All other times: DW ← FFFFH	1	0	0	1	1	0	0	1	1						
Compari	lson																
CMP	reg, reg	reg-reg	0	0	1	1	1	0	1	W	2	x	x	x	x	X	2
			1	1	<u>-</u>	reg			re	g							
	mem, reg	(mem) – reg	0	0	1	_1	1	0	0		2-4	X	x	X	x	X)
		· · · · · · · · · · · · · · · · · · ·		od		reg			mer								_
	reg, mem	reg – (mem)	0	0	1	1	_ 1	0	1	<u>w</u>	2-4	X	X	X	x	x	>
	roa imm	rog_imm	1	od 0	0	reg 0	0	0	mer S	n W	3-4	x	x	x	x	×	_
	reg, imm	reg – imm	· <u>-</u>	1	1	1	1		re		J-4	^	^	^	^	^	
	mem, imm	(mem) – imm	1	<u>,</u>	<u>'</u>	0	<u>,</u>	0		y W	3-6	x	×	X	х	×	,
		•		od	1	1	1	<u> </u>	mer		•	•	,	•			

0 0 1 1 1 1 0 W

acc, imm

When W = 0: AL-imm When W = 1: AW-imm

Instruction Set (cont)	Insti	ruction	Set	(cont)
------------------------	-------	---------	-----	--------

		•	perati	on C	ode	•	_				Flag	18					
Mnemo	nic Operand	Operation	7	6	5	4	3	2		0	Bytes	AC	CY	٧		S	2
Compl	ement										-				-		
NOT	reg	reg ← reg	1	1	1	1	0	1	1	W	2						_
			1	1	0	1	0		re	g							
	mem	(mem) ← (mem)	1	1	1	1.	0	1	1	W	2-4					-	
			. m	od	0	1	0		me	m							
NEG	reg	reg ← reg + 1	1	1	1	1	0	1	1	W	2	×	х	х	×	х	×
			1	1	0	1	1		re	g							
	mem	(mem) ← (mem) + 1	1	1	1	1	0	1	1	W	2-4	x	х	х	х	х	x
			m	od	0	1	1		me	n							
Logica	l Operation										··						_
TEST	reg, reg	reg AND reg	1	0	0	0	0	1	0	W	2	u	0	0	x	×	x
			1	1	_	reg			re	g				-	.,		
	mem, reg	(mem) AND reg	1	0	0	0	. 0	1	0	W	2-4	u	0	0	x	x	x
	orreg, mem		m	od		reg			mei	n							
	reg, imm	reg AND imm	1	1	1	1	0	1	1	W	3-4	u	0	0	×	x	x
			1	1	0	0	0		re								
	mem, imm	(mem) AND imm	1	1	1	1	0	1	1	W	3-6	u	0	0	x	χ.	×
			m	od	0	0	0	_	mei	n							
	acc, imm	When W = 0: AL AND imm8 When W = 1: AW AND imm8	1	0	1	0	1	0	0	W	2-3	u	0	0	х	x	×
AND	reg, reg	reg ← reg AND reg	0	0	1	0	0	0	1	W	2	u	0	0	×	х	×
			1	1		reg	•		re								
	mem, reg	(mem) ← (mem) AND reg	0	0	1	0	0	0	0	W	2-4	u	0	0	×	x	x
			m	od	-	reg			mer	n							
	reg, mem	reg ← reg AND (mem)	0	0	1	0	0	0	1	W	2-4	u	0	0	×	х	×
			m	od		reg			mer	—- n							
	reg, imm	reg ← reg AND imm	1	0	0	0	0	0	0	W	3-4	u	0	0	×	×	×
			1	1	1	0	0		reg								
	mem, imm	(mem) ← (mem) AND imm	1	0	0	0	Ó	0	0	W	3-6	u	0	0	×	x	×
			m	od	1	0	0		mer	— n							
	acc, imm	When W = 0: AL ← AL AND imm8 When W = 1: AW ← AW AND imm16	0	0	1	0	0	1	0	W	2-3	u	0	0	x	х	x

NEC

T-49-19-59

OR -	operand peration (con reg, reg mem, reg	Operation it) reg ← reg OR reg	7	6	5	4	3	2	1	0	Bytes	AC	CY	٧.	P	S	Z
OR -	reg, reg	· · · · · · · · · · · · · · · · · · ·															_
- - -		reg ← reg OR reg															
_	mem, reg		0	. 0	Q	0	1	0	1	W	2	u	0	0	X.	X	>
_	mem, reg		1	1		reg			reg								
- !		(mem) ← (mem) OR reg	0	0	0	0	1	0	0	W	2-4	u	0	0	x	X	>
			m	od		reg			mem		u						
_	reg, mem	reg ← reg OR (mem)	0	0	0	0	1	0	1	W	2-4	u	0	0	x	X	×
	·		m	od		reg			mem								
1	reg, imm	reg ← reg OR imm	1	0	Q	0	0	0	0	W	3-4	u	0	0	x	x	×
_			1	1	0	0	1		reg								
1	mem, imm	(mem) ← (mem) OR imm	1	0	0	0	Ö	0	0	W	3-6	u	0	0	х	х	×
_			m	bo	0	0	1		men	1							
	acc, imm	When W = 0: AL ← AL OR imm8 When W = 1: AW ← AW OR imm16	0	0	0	0	1	1	0	W	2-3	u	0	0	х	х	×
XOR I	reg, reg	reg ← reg XOR reg	0	0	1	1	0	0	1	W	2	U	0	0	х	х	×
_			1	1		reg			reg								
i	mem, reg	(mem) ← (mem) XOR reg	0	0	1	1	0	0	0	W	2-4	u	0	0	х	х	×
_			m	oď		reg			men	_							
į	reg, mem	reg ← reg XOR (mem)	0	0	1	1	0	0	1	W	2-4	u	0	0	x	х	×
			m	od		reg			men	,							
_	reg, imm	reg ← reg XOR imm	1	0	0	0	0	0	0	W	3-4	u	0	0	X	х	>
			1	1	1	1	0		reg	_							
-	mem, imm	(mem) ← (mem) XOR imm	1	0	0	0	0	0	0	W	3-6	u	0	0	х	x	· ×
			m	od	1	1	0		men	ι .							
	acc, imm	When W = 0; AL ← AL XOR imm8 When W = 1; AW ← AW XOR imm16	0	0	1	1	0	1	0	W	2-3	u	. 0	0	х	х	>
Bit Opera	tion																
TEST1	reg8, CL	reg8 bit no. CL = 0: Z ← 1	0	0	0	0	1	11	1	1	3	u	0	0	u	u	
		reg8 bit no. CL = 1: Z ← 0	0	0	0	1	0	0	0	0							
			1	1	0	0	0		reg								
-	mem8, CL	(mem8) bit no. CL = 0; Z ← 1	0	0	0	0	1	1	1	1	3-5	u	0	0	u	u	-,
		(mem8) bit no. CL = 1; Z ← 0	0	0	0	1	0	0	0	0				-			
			-rr	od	0	0	0		men								
-	reg16, CL	reg16 bit no. CL = 0: Z ← 1	0	0	0	0	1	1	1	1	3	u	0	0	u	u	
	•	reg16 bit no. CL = 1: Z ← 0	0	0	0	1	0	0	0	1	•	-	·	·	_	•	•
			1	1	0	0	0	_	reg								
•	mem16, CL	(mem16) bit no. CL = 0: Z ← 1	<u>.</u>	0	0	0	1	1	1	1	3-5	u	0	0	u	u	
		(mem16) bit no. CL = 1: Z ← 0	0		0	1	0	0	0	<u> </u>		-	•	·	•	•	•
			_	od	0	0	0		men								
•	reg8, imm3	reg8 bit no. imm3 = 0; Z ← 1	0		,	0	1	1	1	1	4	u	0	0	u		
	5-,,	reg8 bit no. imm3 = 1: Z ← 0	0	0	0	1	1	0	0	-	7	u	U	U	u	u	,
			1	1		- <u>'</u>	0		reg								

T-49-19-59

					Op	erati	on C	ode	_					Flag	s		
Mnemonic	Operand	Operation	7	6	5	4	3	2	1	0.	Bytes	AC	CY	v		s	:
Bit Opera	ation (cont)																
TEST1	mem8, imm3	(mem8) bit no. imm3 = 0: Z ← 1	0	0	0	0	1	1	1	1	4-6	u	0	0	u	u	
		(mem8) bit no. imm3 = 1: Z ← 0	0	0	0	1	1	0	0	0							
			m	od	0	0	0	_	men	n							
	reg16, imm4	reg16 bit no. imm4 = 0: Z ← 1	0	0	0	0	1	: 1	1	1	4	u	0	0	u	u	;
		reg16 bit no. imm4 = 1; $Z \leftarrow 0$	0	0	0	1	1	0	0	1							
			1	1	0	0	0		reç								
	mem16, imm4	(mem16) bit no. imm4 = 0: Z ← 1	0	0	0	0	1	1	1	1	4-6	u	0	0	u	u	,
		(mem16) bit no. imm4 = 1; Z ← 0	0	0	0	1	1	0	0	1							
			m	od	0	0	0		men	n							
NOT1	reg8, CL	reg8 bit no. CL ← reg8 bit no. CL	0	0	0	0	1	1	1	1	3		· · ·		•		
		-	0	.0	0	1	0	1	1	0							
			1	1	0	0	0		reç	,							
	mem8, CL	(mem8) bit no. CL ← (mem8) bit no. CL	0	0	Ò	0	1	1	1	1	3-5						_
			0	0	0	1	0	1	1	0							
			m	od	0	0	0		теп	n							
	reg16, CL	reg16 bit no. CL ← reg16 bit no. CL	0	0	0	0	1	1	1	1	3						_
			0	0	0	1	0	1	1	1							
			1	1	0	0	0		reg]							
	mem16, CL	(mem16) bit no. CL ← (mem16) bit no. CL	0	0	0	0	1	1	1	1	3-5						_
			0	0	0	1	0	1	1	1							
			m	od	0	0	0		men	n							
	reg8, imm3	reg8 bit no. imm3 ← reg8 bit no. imm3	0	Q	0	0	1	1	1	1	4						
			0	0	0	1	1	1	1	0							
			1	1	0	0	0		reç	}							
	mem8, imm3	(mem8) bit no. imm3 ← (mem8) bit no. imm3	0	0	0	0	1	1	1	1	4-6						
			0	0	0	1	1	1	1	0							
	·		m	bc	0	0	0		men	1							
	reg16, imm4	reg16 bit no. imm4 ← reg16 bit no. imm4	0	0	0	0	1	1	1	1	4				-		
			0	0	0	1	1	1	1	1							
			1	1	0	0	0		reg								
	mem16,imm4	(mem16)bitno.imm4 ← (mem16)bitno.imm4	0	0	0	0	1	1	1	1	4-6						_
			0	0	0	1	1	1	1	1							
			m	od	0	0	0		men	1							
	CY	CY ← CY	1	1	1	1	0	1	0	1	1		×				_

N E C ELECTRONICS INC

μPD70335 (V35 Plus)

Instructi	on S	iet (CO	nt)

				_			ion C							Flags	_	
	ic Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AC	CY	У Р	S	
<u> </u>	ration (cont)															
CLR1	reg8, CL	reg8 bit no. CL ← 0	0	0	0	0	1	1	1	1	3					
			0	0	0	1	0	0	1	0						
			1	1	0	0	0		reç)			· .			
	mem8, CL	(mem8) bit no. CL ← 0	0	0	0	0	_ 1	1	1	1	3-5					
			0	0	0	1	0	0	1	0						
			m	od	0	0	0		mer	n						
	reg16, CL	reg16 bit no. CL ← 0	0	0	0	0	_ 1	1	1	1	3					
			0	0	0	1	0	Ò	1	1						
			1	1	0	0	0		reg	}						
	mem16, CL	(mem16) bit no. CL ← 0	0	0	0	0	1	1	1	1	3-5					
			0	0	0	1	0	0	1	1						
			m	od	0	0	0		mer	n						
	reg8, imm3	reg8 bit no. imm3 ← 0	0	0	0	0	1	1	1	1	4	-				_
			0	0	0	1	1	0	1	0						
			1	1	0	0	0		re	g						
	mem8, imm3	(mem8) bit no. imm3 ← 0	0	0	0	0	1	1	1	1	4-6					
			0	0	Ø	1	1	0	1	0						
	3	ı	m	od	0	0	0		mer	n ·						
	reg16, imm4	reg16 bit no. imm4 ← 0	0	0	0	0	1	1	1	1	4					
			0	0	0	1	1	0	1	1						
			1	1	0	0	0		re	9						
	mem16, imm4	(mem 16) bit no. imm4 ← 0	0	0	0	0	1	1	1	1	4-6					
		, .	0	0	0	1	1	0	1	1						
			m	od	0	0	0		mer	n						
	CY	CY + 0	1	1	1	1	1	0	0	0	1		0			
	DIR	DIR ← 0	1	1	1		1	1	0	0	1					
SET1	reg8, CL	reg8 bit no. CL ← 1	0	0	0		1	1	1	1	3					_
			0	0			0	1	o	0	_					
			1	1	0		0	<u> </u>	re							
	mem8, CL	(mem8) bit no, CL ← 1	0	0	0		1	1	1	1	3-5					_
		(0	0			<u>.</u>	<u> </u>		<u> </u>						
			_	od	0				mei							
	reg16, CL	reg16 bit no. CL ← 1	0	0			1	1	1	1	3					
	10910,02	regroundle. OL 4-1	0	-0	-			1		- <u>-</u> -	3					
			1	1			- 0			—	•			•		
	mem16, CL	(mam46) bit as GL + 4							re							
	Mentio, CC	(mem16) bit no. CL. ← 1	0	0			1		1		3-5					
			<u>o</u>	0			. 0	1		1						
			m	od	0	0	0		me	m						

Instruction	Set	(cont)

					Op	erat	ion C	ode	•					Flag	18		_
Mnemonic	Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AC	CY			s	2
Bit Opera	tion (cont)																
SET1	reg8, imm3	reg8 bit no. imm3 ← 1	0	0	0	0	1	1	1	1	4						
			0	0	0	1	1	1	0	0							
-			1	1	0	0	0		reg]							
	mem8, imm3	(mem8) bit no. imm3 ← 1	0	0	0	0	1	1	1	1	4-6						_
			0	0	0	1	1	1	0	0							
_			m	od	0	0	0		men	n							
	reg16, imm4	reg16 bit no. imm4 ← 1	0	0	0	0	1	1	1	1	4						
			0	0	0	1	1	1	0	1							
_			1	1	0	0	0		reç]							
	mem16, imm4	(mem16) bit no. imm4 ← 1	0	0	0	0	1	1	1	1	4-6						_
			0	0	0	1	1	1	0	1							
_			m	od	0	0	0		men	n							
_	CY	CY ← 1	1	1	1	1	1	0	0	1	1		1				
	DIR	DIR ← 1	1	1	1	1	1	1	0	1	1		•				
Shift																	_
SHL	reg, 1	CY ← MSB of reg, reg ← reg x 2	1	1	0	1	0	0	0	w	2	u	×	×	x	×	x
_		When MSB of reg ≠ CY, V ← 1 When MSB of reg = CY, V ← 0	1	1	1	0	0		reg	<u> </u>							•
i	mem, 1	CY ← MSB of (mem), (mem) ← (mem) x2	1	1	0	1	0	0	0	w	2-4	u	x	x	×	×	x
		When MSB of (mem) \neq CY, V \leftarrow 1 When MSB of (mem) $=$ CY, V \leftarrow 0	m	od	1	0	0		men	1							
1	reg, CL	temp ← CL, while temp ≠ 0,	1	1	0	1	0	0	1	w	2		×	u	X.	x	x
_		repeat this operation, CY ← MSB of reg, reg ← reg x 2, temp ← temp – 1	1	1	1	0	0	-	reg		_	Ī		-	^	^	^
ı	mem, CL	temp ← CL, while temp ≠ 0,	1	1	0	1	0	0	1	W	2-4	u	×	u	×	x.	x
_		repeat this operation, CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x2, temp \leftarrow temp - 1	m	bd	1	0	0	-	men	1	-			-		,	•
ī	reg, imm8	temp ← imm8, while temp ≠ 0,	1	1	0	0	0	0	0	w	3	u	×	u u	х	x	×
_		repeat this operation, CY ← MSB of reg, reg ← reg x 2, temp ← temp – 1	1	1	1	0	0		reg					-	••		
	nem, imm8	temp ← imm8, while temp ≠ 0,	1	1	0	0	0	0	0	w	3-5	u	х	u.	×		X
		repeat this operation, CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x2, temp \leftarrow temp -1	mo	nd	1	0	0		men					-	••	•	•

Instruction Set (cont)
-----------------------	---

			_				on C				_			Flag			
Mnemonic	Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AC	CY	<u>v</u>	Р	S	Z
Shift (con	it)																
SHR	reg, 1	CY ← LSB of reg, reg ← reg ÷ 2 When MSB of reg ≠ bit following MSB of reg: V ← 1 When MSB of reg = bit following MSB of reg: V ← 0	1	1	1	0	1	0	0 reg	W I	2	U	x	x	x	x	x
	mem, 1	CY ← LSB of (mem), (mem) ← (mem) ÷ 2 When MSB of (mem) ≠ bit following MSB of (mem): V ← 1 When MSB of (mem) = bit following MSB of (mem): V ← 0	1 mo	1 od	1	0	1	0	0 men	W	2-4	u	x	×	×	×	×
	reg, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, temp ← temp – 1	1	1	0	0	0	0	1 reg	W	2	u	х	u	х	x	×
	mem, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp – 1	1 me	1 od	0	0	0	0	1 men	W n	2-4	u	×	u	×	х	×
	reg, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, temp ← temp – 1	1 1	1	0	0	0	0	0 reç	W	3	u	х	u	x	х	x
	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp - 1	1 m	1 od	0	0	0	0	0 men	W n	3-5	U	x	u	x	x	×
SHRA	reg, 1	CY ← LSB of reg, reg ← reg ÷ 2, V ← 0 MSB of operand does not change	1 .	1	0	1	0	0	0 reg	W	2	u	×	0	x	×	X
	mem, 1	CY ← LSB of (mem), (mem) ← (mem) ÷ 2, V ← 0, MSB of operand does not change	1 me	1 od	0	1	0	0	0 mer	W	2-4	u	х	0	x	x	×
	reg, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, temp ← temp – 1 MSB of operand does not change	1	1	1	1	1	0	1 reç	W	2	u	x	u	x	х	×
	mem, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp − 1 MSB of operand does not change	1 m	1 od	1	1	1	0	1 mer	W n	2-4	u	х.	u	x	x	×
	reg.imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, temp ← temp − 1 MSB of operand does not change	1	1	1	0	0	0	0 reg	W	3	u	x	. U	x	x	X
	mem, imm8 -	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp – 1 MSB of operand does not change	1 m	1 od	1	0	1	0	0 mer	W	3-5	U	x	u	x	x	· ·
Rotation			-														_
ROL	reg, 1	CY ← MSB of reg, reg ← reg x 2 + CY MSB of reg ≠ CY: V ← 1 MSB of reg = CY: V ← 0	1	1	0	0	0	0	0 re	W	2		х	x			
	mem, 1	CY ← MSB of (mem), (mem) ← (mem) x2 + CY MSB of (mem) ≠ CY: V ← 1 MSB of (mem) = CY: V ← 0	1 m	1 od	0	0	0	0	0 mer	W	2-4		x	х	·		

NEC

μPD70335 (V35 Plus)

T-49-19-59

Instruction Set (cont)

					Or	erati	on C	ode	,					Flac	IS .		_
Mnemonic	Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AC	CY			S	Z
Rotation	(cont)												•				
ROL	reg, CL	temp ← CL, while temp ≠ 0,	1	1	0	1	0	0	1	W	2		х	u			
		repeat this operation, CY ← MSB of reg, reg ← reg x 2 + CY, temp ← temp – 1	1	1	0	0	0		re	g				٠.			
	mem, CL	temp ← CL, while temp ≠ 0,	1	1	0	1	0	0	1	W	2-4		х	u			
		repeat this operation, CY ← MSB of (mem), (mem) ← (mem) x 2 + CY, temp ← temp – 1	m	od	0	0	0		mei	m							
	reg, imm8	temp ← imm8, while temp ≠ 0,	1	1	0	0	0	Q	0	W	3		x	u			
		repeat this operation, CY ← MSB of reg, reg ← reg x 2 + CY, temp ← temp −1	1	1	0	0	0		re	g							
	mem, imm8	temp ← imm8, while temp ≠ 0,	1	1	0	0	0	0	0	W	3-5	-	х	u			
		repeat this operation, CY ← MSB of (mem), (mem) ← (mem) x 2 + CY, temp ← temp – 1	m	od	0	0	0		mei	m ·							
ROR	reg, 1	CY ← LSB of reg, reg ← reg ÷ 2,	1	1	0	1	0	0	0	W	2 .		х	x			
		MSB of reg ← CY MSB of reg ≠ bit following MSB of reg: V ← 1 MSB of reg = bit following	1	1	0	0	1		re	g							
		MSB of reg: V ← 0															
	mem, 1	CY ← LSB of (mem), (mem) ← (mem) ÷ 2,	1	1	0	1	0	0	0	W	2-4		х	x			
m		MSB of (mem) ← CY, MSB of (mem) ≠ bit following MSB of (mem): V ← 1 MSB of (mem) = bit following MSB of (mem): V ← 0	m	od	0	0	1		mei	n							
	reg, CL	temp ← CL, while temp ≠ 0,	1	1	0	1	0	0	1	W.	2		х	u			
		repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← CY, temp ← temp – 1	1	1	0	0	1		re	9							
	mem, CL	temp ← CL, while temp ≠ 0,	1	1	-0	1	0	0	1	W	2-4		х	u			
		repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, MSB of (mem) ← CY, temp ← temp − 1	m	od	Q	0	1		mei	n							
	reg, imm8	temp ← imm8, while temp ≠ 0,	1	1	0	0	0	Q	0	W	3		x	u		-	
	-	repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← CY, temp ← temp − 1	1	1	0	0	1		re(g							
	mem, imm8	temp ← imm8, while temp ≠ 0,	1	1	0	0	0	0	0	W	3-5	-	x	u			
		repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp − 1	m	od	0	0	1		mer	n							

30E D

Instructi	on Set (co	ont)									1-2	+9-	19–5	9	
Manania	Operand	Omerables				tion C				—			Flags	_	_
Mnemonic Rotate	Operand	Operation	7 6		4		2		0	Bytes	AC	CY	V P	S	
	reg, 1	tmpcy ← CY, CY ← MSB of reg, reg ← reg x 2 + tmpcy MSB of reg = CY: V ← 0 MSB of reg ≠ CY: V ← 1	1 1			0	0	0	W	2		x	х		
•	mem, 1	tmpcy ← CY, CY ← MSB of (mem), (mem) ← (mem) x2 + tmpcy MSB of (mem) = CY: V ← 0 MSB of (mem) ≠ CY: V ← 1	1 1 mod	0		0	0	0 men	W n	2-4		×	x		
	reg, CL	temp ← CL, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← MSB of reg, reg ← reg x 2 + tmpcy, temp ← temp – 1	1 1			0	0	1 reg	W	2		x	u		
	mem, CL	temp ← CL, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← MSB of (mem), (mem) ← (mem) x 2 + tmpcy, temp ← temp – 1	1 1 mod	0		0	0	1 men	W n	2-4	•	x	u		
•	reg, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← MSB of reg, reg ← reg x 2 + tmpcy, temp ← temp – 1	1 1			0	0	0 reg	W	3		X	u	•	_
•	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← MSB of (mem), (mem) ← (mem) x 2 + tmpcy temp ← temp – 1	1 1 mod	0		0	0	0 men	W	3-5		x	ŭ		_
RORC	reg, 1	tmpcy ← CY, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← tmpcy, MSB of reg ≠ bit following MSB of reg = bit following MSB of reg = bit following MSB of reg: V ← 0	1 1			1	0	0 reg	W	2		x	×	-	
•	mem, 1	tmpcy ← CY, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, MSB of (mem) ← tmpcy, MSB of (mem) ≠ bit following MSB of (mem): V ← 1 MSB of (mem) = bit following MSB of (mem): V ← 0	1 1 mod	0		1	0	0 men	W n	2-4		х	×		
•	reg, CL	temp ← CL, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← tmpcy, temp ← temp – 1	1 1	_		1	0	1 reg	W	2		x	u		
•	mem, CL	temp ← CL, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, MSB of (mem) ← tmpcy, temp ← temp – 1	1 1 mod	0		0	0	1 men	W	2-4		х	u		
•	reg, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← tmpcy, temp ← temp – 1	1 1			1	0	0 reg	W	3		х	u		
•	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, MSB of (mem) ← tmpcy, temp ← temp – 1	1 1	0		0	0	0 men	W	3-5		x	u		

T-49-19-59

	<u>.</u> .	_			Oį	erat	ion C	ode	•					Flag	gs		
Mnemoni	c Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AC	CY			S	Z
Subrout	ine Control Tra	nnsfer															
CALL	near-proc	$(SP-1, SP-2) \leftarrow PC, SP \leftarrow SP-2,$ PC \leftarrow PC + disp	1	1	1	0	1	0	0	0	3						
	regptr16	(SP-1, SP-2) ← PC, SP ← SP-2,	1	1	1	1	1	1	1	1	2						_
		PC ← regptr16	1	1	0	1	0		reg	7							
	memptr16	(SP-1,SP-2) ← PC, SP ← SP-2,	1	1	1	1	1	1	1	1	2-4						
		PC ← (memptr16)	m	od	0	1	0		mer	n							
	far-proc	(SP-1, SP-2) ← PS, (SP-3, SP-4) ← PC, SP ← SP-4, PS ← seg, PC ← offset	1	0	0	1	1	0	1	0	5						
	memptr32	(SP-1, SP-2) ← PS,	1	1	1	1	1	1	1	1	2-4						
		(SP-3, SP-4) ← PC, SP ← SP-4, PS ← (memptr32 + 2), PC ← (memptr32)	m	od	0	1	1		men	n							
RET		PC ← (SP + 1, SP), SP ← SP + 2	1	1	0	0	0	0	1	1	1						—
	pop-value	PC ← (SP + 1, SP), SP ← SP + 2, SP ← SP + pop-value	1	1	0	0	0	0	1	0	3						
		PC \leftarrow (SP + 1, SP), PS \leftarrow (SP + 3, SP + 2), SP \leftarrow SP + 4	1	1	0	0	1	0	1	1	1						
	pop-value	PC \leftarrow (SP + 1, SP), PS \leftarrow (SP + 3, SP + 2), SP \leftarrow SP + 4, SP \leftarrow SP + pop-value	1	1	0	0	1	0	1	0	3						
Stack Ma	nipulation																
PUSH	mem16	(SP-1, SP-2) ← (mem16),	1	1	1	1	1	1	1	1	2-4						
		SP ← SP-2	m	od	1	1	0		men	<u> </u>							
	reg16	(SP-1, SP-2) ← reg16, SP ← SP-2	0	1	0	1	0		reg	1	1		_				—
	sreg	(SP-1, SP-2) ← sreg, SP ← SP-2	0	0	0	Sì	reg	1	1	0	1						
	PSW	$(SP-1,SP-2) \leftarrow PSW,SP \leftarrow SP-2$	1	0	0	1	1	1	0	0	1						
	R	Push registers on the stack	0	1	1	0	0	0	0	0	1						<u> </u>
	imm	(SP-1,SP-2) ← imm, SP ← SP-2, When S = 1, sign extension	0	1	1	0	1	0	S	0	2-3						_
POP	mem16	(mem16) ← (SP + 1, SP), SP ← SP + 2	1	Ó	0	0	1	1	1	1	2-4						
			me	bc	0	0	0		men	1							
	reg16	reg16 ← (SP + 1, SP), SP ← SP + 2	0	1	0	1	1		reg		1	_					_
	sreg	sreg ← (SP + 1, SP), sreg : SS, DS0, DS1 SP ← SP + 2	0	O	0	sr	eg	1	1	1	1						
	PSW	PSW ← (SP + 1, SP), SP ← SP + 2	1	0	0	1	1	1	0	1	1	R	R	R	R	R	— В
	R	Pop registers from the stack	0	1	1	0	0	0	0	1	1						<u> </u>
PREPARE	imm16, imm8	Prepare new stack frame	1	1	0	0	1	0	0	0	4						
DISPOSE	_	Dispose of stack frame	1	1	0	0	1	0	0	1	1						

T-49-19-59

-		Operation	7	6	5	4	3	2	1	•			CV	Flag:	Р	S	_
BR						-			<u>'</u>	0	Bytes	AC	<u> </u>		<u>.</u>	<u> </u>	2
-																	
•	near-label	PC ← PC + disp	1	1	1	Q	1.	0	0	1	3						
	short-label	PC ← PC + ext-disp8	1	1	1	0	1	0	. 1	1	2						
•	regptr16	PC ← regptr16	1	1	1	1	1	1	1	1	2						
			1	1	1	0	0		reç	,							
	memptr16	PC ← (memptr16)	1	1	1	1	. 1	1	1	1	2-4						
			mo	od	1	0	0		mer	n							
•	far-label	PS ← seg, PC ← offset	1	1	1	0	1	0	1	0	5						_
•	memptr32	PS ← (memptr32 + 2),	1	1	1	1	1	1	1	1	2-4						_
		PC ← (memptr32)	m	od	1	0	1		mer	n	-						
Condition	nal Branch	į															_
BV	short-label	if V = 1, PC ← PC + ext-disp8	0	1	1	1	0	0	0	0	2					_	_
BNV	short-label	If V = 0, PC ← PC + ext-disp8	0	1	1	1	0	0	0	1	2						_
BC, BL	short-label	if CY = 1, PC ← PC + ext-disp8	0	1	1	1	0	0	1	0	2						_
BNC, BNL	short-label	if CY = 0, PC ← PC + ext-disp8	0	1	1	1	0	0	1	1	2					_	
BE, BZ	short-label	if Z = 1, PC ← PC + ext-disp8	0	1	1	1	0	1	0	0	2						_
BNE, BNZ	short-label	if Z = 0, PC ← PC + ext-disp8	0	1	1	1	0	1	0	1	2						_
BNH	short-label	if CY OR Z = 1, PC ← PC + ext-disp8	0	1	1	1	0	1	1	0	2						_
BH	short-label	if CY OR Z = 0, PC ← PC + ext-disp8	0	1	1	1	0	1	1	1	2	•					
BN	short-label	if S = 1, PC ← PC + ext-disp8	0	1	1	1	1	0	0	0	2					_	_
BP	short-label	if S = 0, PC ← PC + ext-disp8	0	1	1	1	1	0	0	1	2						_
BPE	short-label	if P = 1, PC ← PC + ext-disp8	0	1	1	1	1	0	1	0	2						-
BPO	short-label	if P = 0, PC ← PC + ext-disp8	0	1	1	1	1	0	1	1	2						_
BLT	short-label	if S XOR V = 1, PC ← PC + ext-disp8	0	1	1	1	1	1	0	0	2					_	_
BGE	short-label	if S XOR V = 0, PC ← PC + ext-disp8	0	1	1	1	1	1	0	1	2					_	_
BLE	short-label	if (S XOR V) OR Z = 1, PC ← PC + ext-disp8	0	1	1	1	1.	1	1	0	2						_
BGT	short-label	if (S XOR V) OR Z = 0, PC ← PC + ext-disp8	0	1	1	1	1	1	1	1	2						
DBNZNE	short-label	$CW \leftarrow CW - 1$ if $Z = 0$ and $CW \neq 0$, $PC \leftarrow PC + ext-disp8$	1	1	1	0	0	0	0	0	2						
DBNZE	short-label	$CW \leftarrow CW - 1$ if $Z = 1$ and $CW \neq 0$, $PC \leftarrow PC + ext-disp8$	1	1	1	0	0	0	0	1	2						
DBNZ	short-label	CW ← CW-1 if CW ≠ 0, PC ← PC + ext-disp8	1	1	1	0	0	0	1	0	2						
BCWZ	short-label	if CW = 0, PC ← PC + ext-disp8	1	1	1	0	0	0	1	1	2						
BTCLR	sfr, imm3, short-label	if bit no. imm3 of (sfr) = 1, PC ← PC + ext – disp8,	0	0	0	0	1	1	1	1	5						_

Instruct	lon Se	t (cont)
----------	--------	----------

			Operation Code 7 6 5 4 3 2 1										Flag	38			
Mnemon	ic Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AÇ	CY	٧	P	S	Z
Interrup	ot																
BRK	3	(SP-1, SP-2) ← PSW, (SP-3, SP-4) ← PS, (SP-5, SP-6) ← PC, SP ← SP-6, IE ← 0, BRK ← 0, PS ← (15, 14), PC ← (13, 12)	1	1	0	0	1	1	0	0	1					-	
	imm8 (≠3)	$(SP-1, SP-2) \leftarrow PSW,$ $(SP-3, SP-4) \leftarrow PS,$ $(SP-5, SP-6) \leftarrow PC, SP \leftarrow SP-6,$ $IE \leftarrow 0, BRK \leftarrow 0,$ $PC \leftarrow (nx4+1, nx4),$ $PS \leftarrow (nx4+3, nx4+2) n = imm8$	1	1	0	0	- 1	1	0	1	2	-					
BRKV		When V = 1 (SP −1, SP −2) ← PSW, (SP −3, SP −4) ← PS, (SP −5, SP −6) ← PC, SP ← SP −6, IE ← 0, BRK ← 0, PS ← (19, 18), PC ← (17, 16)	1	1	0	0 .	1	1	1	0	1	•					
RETI		PC ← (SP + 1, SP), PS ← (SP + 3, SP + 2), PSW ← (SP + 5, SP + 4), SP ← SP + 6	1	1	0	0	1	1	1	1	1	R	R	R	R	R	R
RETRBI		PC ← Save PC, PSW ← Save PSW	0	0	0	0	1	1	1	1	2	R	R	R	R	R	R
			1	0	0	1	0	0	0	1							
FINT		Indicates that interrupt service routine to the interrupt controller built in the CPU has been completed	1	0	0	1	0	0	1	1 0	2						
CHKIND	reg16, mem32	When (mem32) > reg16 or (mem32 + 2) < reg16 (SP-1, SP-2) ← PSW, (SP-3, SP-4) ← PS, (SP-5, SP-6) ← PC, SP ← SP-6, IE ← 0, BRK ← 0, PS ← (23, 22), PC ← (21, 20)	<u>0</u> m	1 od	1	0 reg	0	0	1 men	<u>0</u>	2-4	•					
CPU Co	ntrol																
HALT		CPU Halt	1	1	1	1	0	1	0	0							_
STOP	······································	CPU Halt	0	0	0	0	1	1	1	1		1					
			1	0	1	1	1	1	1	0							
BUSLOC	K	Bus Lock Prefix	1	1	1	1	0	0	0	0		1		-	•		_
FP01 (Note 1)	fp-op	No Operation	1	1	0 Y	1 Y	1 Y	z	X	X	2	,					_
	fp-op, mem	data bus ← (mem)	1	1 od	0 Y	1 Y	1 Y	х	X	X	2-4						_
FP02 (Note 1)	(р-ор	No Operation	0	1	1 Y	0 Y	0 Y	1 Z	1 Z	X	2	<u>, </u>					
	fp-op, mem	databus ← (mem)	0	1 od	1 Y	0 Y	0	1	1	X	2-4	-			_		
Notes:			111	Ju			. Y	_	men	<u>'</u>	· · · · · · · · · · · · · · · · · · ·						

Notes:
(1) Does not execute but does generate an interrupt.

T-49-19-59

					Op	erat	ion C	ode						Flag	ıs		
Mnemonic	Operand	Operation	7	6	5	4	3	2	1	0	Bytes	AC		٧	P	S	Z
CPU Cont	rol (cont)																
POLL		Poll and Wait	1	0	0	1	1	0	1	1	. 1						
NOP		No Operation	1	0	0	1	0	Q	0	0	1						
DI		IE ← 0	1	1	1	1	1	0	1	0	1						
El		IE ← 1	1.	1	1	1	1	0	1	1	1						
DS0;DS1; PS;SS	•	Segment Override Prefix	0	0	1	s	reg	1	1	0	1						
Register E	Bank Switchi	ng															
MOVSPA			0	0	0	0	1	1	1	1	2						
		·	0	0	1	0	. 0	1	0	1							
BRKCS	reg16		0	. 0	0	0	1	1	1	1	3		•				
			· 0	0	1	0	1	1	0	1							
MOVSPB	reg16		0	0	0	0	1	1	1	-1	3						
			1	0	- 0	1	0	1	0	1	-						
			1	1	1	1	1		re	9							
TSKSW	reg16	· · · · · · · · · · · · · · · · · · ·	0	0	0	0	1	1	1	1	3	x	х	х	x	х	x
			1	0	0	1	0	1	0	0							
			1	1	1	1	1		re	g							