

Data sheet acquired from Harris Semiconductor SCHS062A – Revised March 2002

CMOS

Binary Rate Multiplier

High-Voltage Types (20-Volt Rating)

rate multiplier that provides an output pulse rate multiplier that provides an output pulse rate that is the clock-input-pulse rate multiplied by 1/16 times the binary input. For example, when the binary input number is 13, there will be 13 output pulses for every 16 input pulses. This device may be used in conjunction with an up/down counter and control logic used to perform arithmetic operations (adds, subtract, divide, raise to a power), solve algebraic and differential equations, generate natural logarithms and trigometric functions, A/D and D/A conversions, and frequency division.

For words of more than 4 bits, CD4089B devices may be cascaded in two different modes: an Add mode and a Multiply mode (see Figs. 14 and 15). In the Add mode some of the gaps left by the more significant unit at the count of 15 are filled in by the less significant units. For example, when two units are cascaded in the Add mode and programmed to 11 and 13, respectively, the more significant unit will have 11 output pulses for every 16 input pulses and the other unit will have 13 output pulses for every 256 input pulses for a total of

 $\frac{11}{16} + \frac{13}{256} = \frac{189}{256}$

In the Multiply mode the fraction programmed into the first rate multiplier is multiplied by the fraction programmed into the second multiplier. Thus the output rate will be 11 13 143

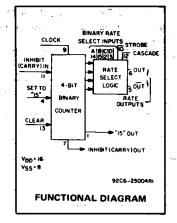
16 16 256

Features:

- Cascadable in multiples of 4-bits
- Set to "15" input and "15" detect output
- 100% tested for guiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V

Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:

- Numerical control
- Instrumentation
- Digital filtering
- **■** Frequency synthesis

The CD4089B has an internal synchronous 4-bit counter which, together with one of the four binary input bits, produces pulse trains as shown in Fig. 2.

If more than one binary input bit is high, the resulting pulse train is a combination of the separate pulse trains as shown in Fig. 2.

The CD4089B types are supplied in 16-lead ceramic dual-in-line packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

CD4089B Types

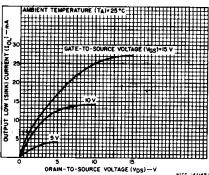


Fig. 1 — Typical output low (sink) current characteristics.

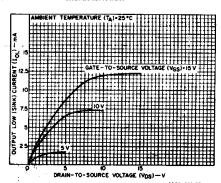


Fig. 2 - Minimum output low (sink) current characteristics.

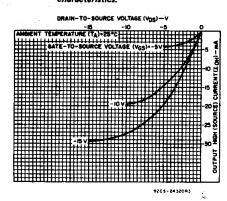


Fig. 3 — Typical output high (source) current characteristics.

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)

Voltages referenced to V§S Terminal)

-0.5V to +20V INPUT VOLTAGE RANGE, ALL INPUTS

-0.5V to V_{DD} +0.5V DE INPUT CURRENT, ANY ONE INPUT

±10mA

POWER DISSIPATION PER PACKAGE (P_D):

For T_A = -55°C to +100°C

For T_A = +100°C to +125°C

Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

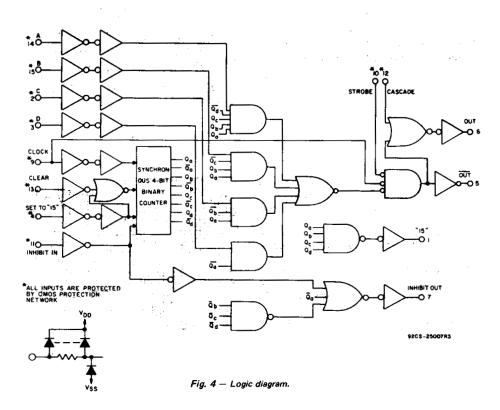
FOR T_A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)

100mW

OPERATING-TEMPERATURE RANGE (T_A)

-55°C to +125°C

STORAGE TEMPERATURE RANGE (T_{stg})


-65°C to +150°C

LEAD TEMPERATURE (DURING SOLDERING):

Copyright © 2002, Texas Instruments Incorporated

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIÑ	UNITS		
	·	(V)	Min.	Max.	
Supply-Voltage Range (For TA Temperature Range)	= Full Package-		3	18	٧
Set or Clear Pulse Width,	tw	5 10 15	160 90 60	- -	ns
Clock Pulse Width,	t _W	5 10 15	330 170 100	- - -	ns
Clock Frequency,	^f CL	5 10 15	dc	1.2 5 2.5 3.5	MHz
Clock Rise or Fall Time.	trCL or tfCL	5, 10,15	_	15	μς
Inhibit In Setup Time,	^t su	5 10 15	100 40 20	_ · ·	ns
Inhibit In Removal Time,	[‡] REM	5 10 15	240 130 110		ns
Set Removal Time,	[†] REM	5 10 15	150 80 50	= ** ***	ns
Clear Removal Time,	^t REM	5 10 15	60 40 30	_ _ _	ns

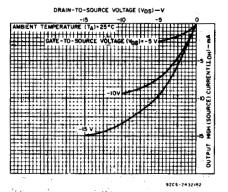


Fig. 5 — Minimum output high (source) current characteristics.

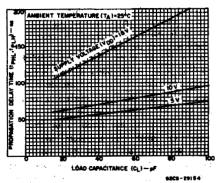


Fig. 6 — Typical propagation delay time as a function of load capacitance (Clock or Strobe to Out).

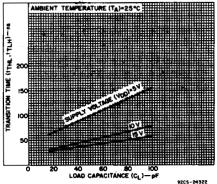


Fig. 7 — Typical transition time as a function of load capacitance.

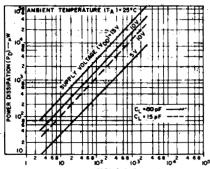


Fig. 8 — Typical dynamic power dissipation as a function of input frequency.

CD4089B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TES CONDIT			UNITS			
		V _{DD}	 _	LIMITS			
	_	<u> </u>	Min.	Тур.	Max.		
Propagation Delay Time, tpHL, tpLH		5	-	110	220		
Clock to Out		10	-	55	110		
	<u> </u>	15		45	90	ns	
		5	-	150	300		
Clock or Strobe to Out		10	-	75	150		
		15		60	120		
Clock to Inhibit Out	ļ	5	_	360	720		
High Level to Low Level		10	-	160	320	ns	
		15		110	220		
·	ļ	5	_	250	500		
Low Level to High Level	1	10	-	100	200	ns	
		15	-	75	150		
		5	_	380	760		
Clear to Out		10	-	175	350	ns	
		15	_	130	260		
		5	_	300	600		
Clock to "9" or "15" Out		10	_	125	250	ns	
		15	_	90	180		
		5	_	90	180		
Cascade to Out		10	_ ;	45	90	ns	
		15		35	70		
		5		160	320		
Inhibit In to Inhibit Out		10		75	150		
		15	_	55	110		
:		5		330	660	กร	
Set to Out		10	_	150	300		
		15		110	220		
		5	_	100	200		
Transition Time, tTHL, tTLH		10	_	50	100	ns	
THE THE		15	l _ i	40	80	113	
			1.0				
Maximum Clock Frequency, f _{CL}		5 10	1.2 2.5	2.4	- 1	MHz	
Maximum Glock Frequency, ICL		15	3.5	5 7		WITZ	
	-	_	- 0.0				
Minimum Clock Pulse Width, tw		5 10	-	165	330		
www.main Glock Laise Wiath, tw		15		85 50	170 100	ns	
				- 30			
Clock Rise or Fall Time, trCl , tfCl		5	- :	_	15		
Clock Rise or Fall Time, trCL, tfCL		10 15			15 15	μς	
	-						
Minimum Set or Clear Pulse Width, t _W		5	-	80 45	160		
. I		10 15	_	45 30	90 60	ns	
· · · · · · · · · · · · · · · · · · ·							
Minimum Inhibit In Catala Time		5	-	50	100		
Minimum Inhibit-In Setup Time, t _{SU}		10 15	-	20	40	ns	
		15		10	20		
Minimum Inhibit In		5	-	120	240		
Removal Time, tREM		. 10	-	65	130	ns	
		15	_	55	110		

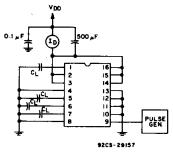


Fig. 9 — Dynamic power dissipation test circuit.

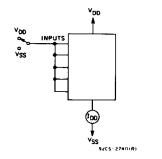


Fig. 10 - Quiescent device current test circuit.

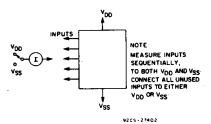


Fig. 11 - Input-current test circuit.

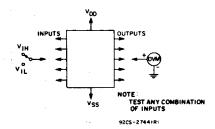
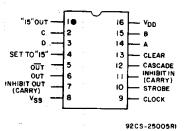



Fig. 12 - Input-voltage test circuit.

TOP VIEW
TERMINAL ASSIGNMENT

CD4089B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C (cont'd) Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TEST CONDITIO	NS		UNITS			
		v_{DD}		LIMITS			
		🗸	Min.	Тур.	Max.		
		5	-	75	150		
Minimum Set Removal Time, tREN	1	10		40	80	ns	
		15		25	50		
		5	- '	30	60		
Minimum Clear Removal Time, tRE	м	10		- 20	40	ns	
	<u> </u>	15	<u> </u>	. 15	30		
Input Capacitance, CIN	Any Input	-	i — *	5	7.5	pF	

STATIC ELECTRICAL CHARA	CTERISTICS
-------------------------	------------

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)							
	V _O (V)	V _{IN}	V _{DD}	55	40	+85	+125	10	+25	Max.	S
	(V)		111					Min.	Тур.		
Quiescent		0,5	5	5	5	150	150	-	0.04	5	μΑ
Device Current,		0,10	10	10	10	300	300		0.04	10	
IDD Max.		0,15	15	20	20	600	600		0.04	20	
	-	0,20	20	100	100	3000	3000	-	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	mA
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	+3.2	_	
Current, IOH Min.	9.5	0,10	10	1.6	-1.5	<u>−</u> 1.1	-0.9	-1.3	-2.6	-	
OH WITT	13.5	0,15	15	-4.2	-4	-2.8	- 2.4	-3.4	-6.8	-	
Output Voltage:	_	0,5	5	0.05					0	0.05	П
Low-Level,	_	0,10	10		0	**	0	0.05			
VOL Max.		0,15	15		0	_	0	0.05	v		
Output	_	0,5	5	4.95 4.95 5				_]		
Voltage:	-	0,10	10		9	9.95 9.95 10				-	1
High-Level, VOH Min.	-	0,15	15		14.95			14.95	15	_	
1 - 1 - 1	0.5,4.5	_	5			1.5		-	_	1.5	Г
Input Low Voltage	1,9	_	10			3		_	7 -	3	Ì
VIL Max.	1.5,13.5	-	15		4				=	4	l۷
Input High	0.5,4.5		5			3.5		3.5	. –	-	
Voltage,	1,9	-	10			7		7	1	-	
V _{IH} Min.	1.5,13.5	-	15			11		11	. –	-	
Input Current		0,18	18.	±0.1	±0.1	±1	±1.	_	±10-5	±0.1	μΑ

	TRUTH TABLE												
INPUTS											OUTPL	JTS	-
Number of Pulses or Input Logic Level (0 = Low; 1 = High; X = Don't Care)									0	umber of l utput Log . = Low; H	ic Leve)	
D	С	В	Α	CLK	INH IN	STR	CAS	CLR	SET	OUT	OUT	INH OUT	"15" OUT
0	0	0	0	16	0	0	0	0	0	L	Н	1	1
0	0	0	1	16	0	0	0	0	0	1	1	1	1
0	0	1	0	16	0	0	0	0	0	2	2	1	1.
0	0	1	1	16	0	0	0	0	0	3	. 3	1.	1
0	1	0	0	16	0	0	0	0	0	4	4	1	1
0	1	0	1	16	0	0	0	0	0	5	5	1	1
0	1	1	0	16	0	0	0	0	0	6	6	1	1
0	1	1	1	16	0	0	0	0	0	7	7	1	1
1	0	0	0	16	0	0	0	0	0	8	8	1	1
1	0	0	1	16	0	0	0	0	0	9	9	1	1
1	0	1	0	16	0	. 0	0	0	0	10	10	1	1
1	0	1	1	16	0	0	0	0	0	. 11	11	. 1	1
1	1	0	0	16	0	0	0	0	0	12	12	1	1
1	1	0	1	16	0	0	0	0	0	13	13	1	1
1	1	1	0	16	0	0	0	0	0	14	14	1	1
1	1	1	1	16	0	0	0	0	0	15	15	1	1
x	x	х	х	16	1	0	- O	0	0	t	†	н	t
X	х	х	X	16	0	1	0	0	0	L	н	1 1	1
Х	x	х	Х	16	0	0	1	0	0	н	*	1	1
1	x	х	х	16	0	0	0	1	0	16	16	Н	L
0	Х		x	16	0	0	0	1	0	L	Н	Н.	L
Х	Х	х	X	16	0	0	0	Х	1	L	н	L	Ιн

MOST SIGNIFICAN	T LEAST SIGNIFIÇANT DIGIT
O C DRM () OUT	O - B ORM ® OUT C OUT CLOCK CASC CASC CASC CLEAR S
CLOCK	92 CS - 25008

Fig. 13 – Two CD4089B's cascaded in the "Add" mode with a preset number

of 189
$$\left(\frac{11}{16} + \frac{13}{256} = \frac{189}{256}\right)$$

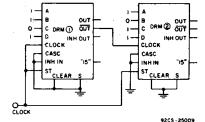


Fig. 14 — Two CD4089B's cascaded in the "Multiply' mode with a preset number

of 143 $\left(\frac{11}{16} \times \frac{13}{16} = \frac{143}{256}\right)$.

* Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

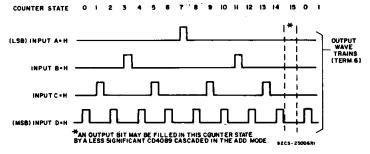
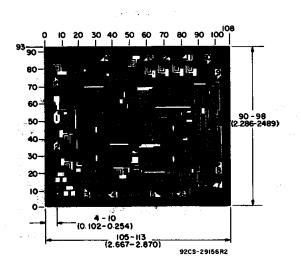



Fig. 15 - Timing diagram.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Dimensions and Pad Layout for CD4089BH

[†] Depends on internal state of counter.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated