

Data sheet acquired from Harris Semiconductor SCHS079A – Revised March 2002

RECOMMENDED FOR

CD4522B Types

Advance Information/ **Preliminary Data**

CMOS Programmable BCD Divide-by-"N" Counter

High-Voltage Types (20-Volt Rating) Standard symmetrical output charac-

Features:

- Internally synchronous for high internal and external speeds.
- Logic edge-clocked design increments on positive Clock transition or on negative Clock Inhibit transition.
- 100% tested for quiescent current at 20-V.
- 5-V, 10-V, and 15-V parametric ratings.
- teristics.
- Maximum input current of 1 µA at 18 V over full package-temperature range: 100 nA at 18 V and 25° C.
- Meets all requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices."

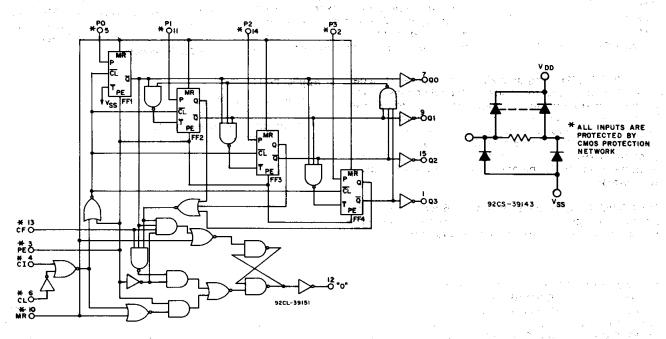
CD4522B programmable BCD counter has a decoded "0" state output for divide-by-N applications. In single stage operation the "0" output is tied to the Preset Enable input. The Cascade Feedback allows multiple stage divide-by-N operation without the need for external gating. A HIGH on the Clock Inhibit disables the pulse-counting function. A HIGH on the Master Reset asynchronously resets the divide-by-N operation. The output is presented in BCD format.

The CD4522B types are supplied in 16-lead dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

Applications:

- Frequency synthesizers
- Phase-locked loops
- Programmable down counters
- Programmable frequency dividers

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (Vnn)


· · · · · · · · · · · · · · · · · · ·	
SS Terminal)0.5V to +20V	Voltages referenced to VSS Ten
ALL INPUTS0.5V to V _{DD} +0.5V	INPUT VOLTAGE RANGE, ALL IN
ONE INPUT ±10mA	
R PACKAGE (PD):	POWER DISSIPATION PER PAC
0°C	For $T_A = -55^{\circ}C$ to $+100^{\circ}C$
25°C Derate Linearity at 12mW/°C to 200mW	For $T_A = +100^{\circ}C$ to $+125^{\circ}C$.
	DEVICE DISSIPATION PER OUT
GE-TEMPERATURE RANGE (All Package Types)	FOR TA = FULL PACKAGE-TE
URE RANGE (T _A)55°C to +125°C	
E RANGE (T _{sta})65°C to +150°C	
	LEAD TEMPERATURE (DURING
inch (1.59 ± 0.79mm) from case for 10s max	At distance 1/16 ± 1/32 inch (1

TRUTH TABLES

CLOCK	CLOCK INHIBIT		MASTER RESET	ACTION
0	0	0	0	No Count
_	0	0	0	Count Down
X	1	0	0	No Count
[1]	\sim	0	0	Count Down
Х	Х	1	0	Preset
X	х	Х	1	Reset

X = Don't Care

		OUTPUTS							
Count	Qo	Q ₁	Q ₂	Q ₃					
0	0	0	0	0					
1	1 1	0	0	- 0					
(4 /2)	0	1	0	0					
3-2"	ern 🖍 🖈	1	0	0					
4	0	0 -	1	0					
5	1 6	0	. 1	0					
6	0	1 .	- 1	0 1					
7	1	1	1	0					
8	0	0	0	1 1					
9	1 2	0 .	0	1 1					

a. Basic diagram.

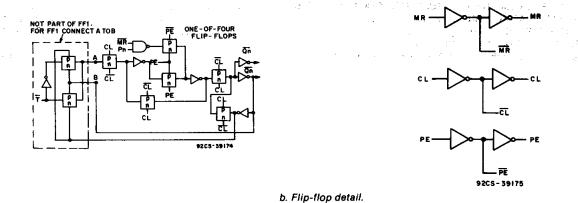


Fig. 1 - Logic diagram for the CD4522B.

RECOMMENDED OPERATING CONDITIONS at T_A = 25°C, except as noted.

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	Voo	LIMITS		UNITS	
	(V)	Min.	Max.		
Supply-Voltage Range (For T _A = Full Package- Temperature Range		3	18	v	
Pulse Width: Clock, tw(cc)	5 10 15	250 100 80		ns	
Preset Enable, tw(cc)	5 10 15	250 100 80	_	ns	
Master Reset, tw(_{MR})	5 10 15	350 250 200	<u> </u>	ns	
Clock Frequency, fcL	5 10 15	_	1.5 3.0 4.0	MHz	
Clock Rise and Fall Time t _{rct} , t _{rct}	5 10 15	+ -	15 15 15	μs	
Preset Enable Set-up Time, t _{su}	5 10 15	0 0 0	<u>-</u>	ns	
Preset Enable Hold Time, th	5 10 15	75 25 20		ns	
Master Reset Removal Time, t _{rem}	5 10 15	130 50 30		ns	

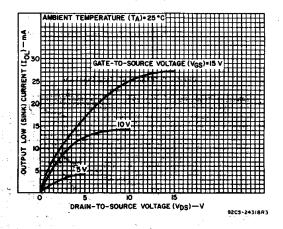


Fig. 2 — Typical output low (sink) current characteristics.

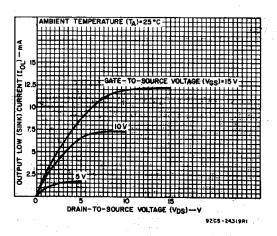


Fig. 3 — Minimum output low (sink) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS			LI	LIMITS AT INDICATED TE			MPERAT	URES (PC)	UNITS
	v _o	Vin	V _{DD}						+25		
	(v)	(v)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	<u></u>
Quiescent Device		0, 5	5	5	5	150	150		0.04	5	
Current, IDD Max.	_ [0, 10	10	10	10	300	300	_	0.04	10	
	_	0, 15	15	20	20	600	600	_	0.04	20	μΑ
		0, 20	20	100	100	3000	3000	_	0.08	100	
Output Low	0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0, 10	10	1.6	1.5	1.1	0.9	1.3	2.6		
lo∟ Min.	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8	_	
Output High	4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA
(Source)	2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		
Current,	9.5	0, 10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6]
I _{он} Min.	13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_	
Output Voltage:	_	0, 5	5		0.	05		_	0	0.05	
Low-Level,		0, 10	10		0.	05		_	0	0.05	
V _{OL} Max.		0, 15	15		0.	05		[_	0	0.05	
Output Voltage:	_	0, 5	5		4.	95		4.95	5		
High-Level	_	0, 10	10		9.	95		9.95	10		
V _{он} Min.		0, 15	15		. 14	.95		14.95	15		V
Input low	0.5, 4.5	_	5		1	.5		I –	_	1.5] `
Voltage, V _{IL} Max.	1, 9		10	 				—	3		
	1.5, 13.5		15	4 -				Ī —	_	4]
Input High	0.5, 4.5	_	5	3.5			3.5	_	_		
Voltage, V _{IH} Min.	1, 9	-	10	7 7]		
_	1.5, 13.5	_	15	11 11							
Input Current,	_	0, 18	-18	±0.1	±0.1	±1.	±1	_	±10 ⁻⁵	±0.1	μΑ

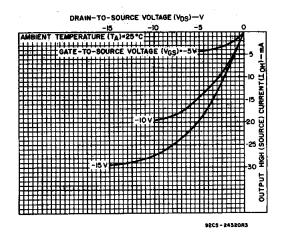


Fig. 4 — Typical output high (source) current characteristics.

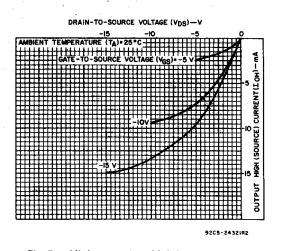
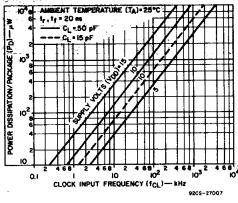
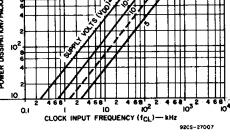




Fig. 5 — Minimum output high (source) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A=25^{\circ}C$, Input t_r , $t_f=20$ ns, $C_i=50$ pF, R_L , = 200 k Ω

0114040#510710	TEST CO	NDITIONS		LINUTO		
CHARACTERISTIC		V _{DD} (V)	Min.	Тур.	Max.	UNITS
Propagation Delay Time; t _{PHL} , t _{PLH:}		5	-	550	1100	
Clock to "Q" outputs		10		225	450	ns
Clock to G. butputs	·	15		160	320	
N		5	. —	420	710	
Clock to "0" output	* * * * * * * * * * * * * * * * * * * *	10	l –	160	270	ns
	·	15	_	110	190	ļ
. *		5	<u> </u>	270	540	
Clock inhibit to "Q" outputs		10	_	100	200	ns
		15		70	140	<u> </u>
		5	_	270	540	
Master reset to "Q" outputs		10	—	100	200	ns
		15	_	70	. 140	
		5	_	0	0	
Preset Enable Setup Time, t _{su}		10	-	0	0	ns
		15	_	0	0	<u> </u>
		5		75	150	
Preset Enable Hold Time, th		10		25	50	ns
· · · · · · · · · · · · · · · · · · ·		15		20	40	
	:	5		130	260	
Master Reset Removal Time, trem		10	_	50	100	ns
		*:15 · .		30	60	
		5	T -	100	200	1
Transition Time, t _{THL} , t _{TLH}		10	_	50	100	ns
	-	15	· —	40	80	
Minimum Pulse Width		5	_	125	250	
		10		50	100	ns
Clock, twich		15	l –	40	80	
		5		125	250	
Preset Enable, twopen		10	_	50	100	ns
	·	15		40	80	1
	are the transfer of	5		175	350	
Master Reset, twime	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	_	125	250	ns
		15		100	200	<u> </u>
		5		3	1.5	1
Max Clock Freq, fc⊾		10	l –	6	3.0	MHz
man alani i i adi i ve		15	6:	8	4.0	l
Max Clock or Clock Inhibit Rise &		5	<u> </u>		15	1.
		10	-	_	15	us
Fall Time, t _{TLH} , t _{THL}		15		_	15	:
Input Capacitance, CiN	Δnv	Input	_	5	7.5	ρF

16 VDD . 15 QZ PZ 13 12 3.1 90 10 VIEW 92CS-39177

TERMINAL ASSIGNMENT

Fig. 6 — Typical dynamic power dissipation vs. frequency.

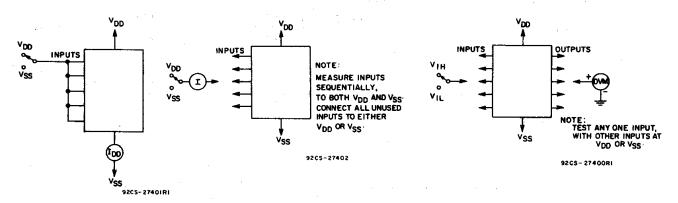
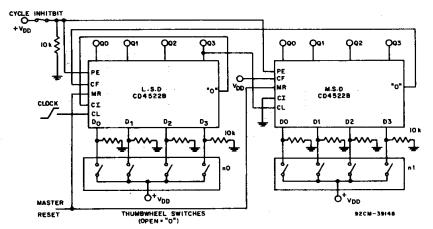
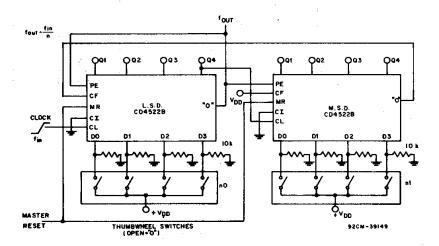



Fig. 7 — Quiescent device current test circuit.

Fig. 8 — Input current test circuit.


Fig. 9 — Input voltage test circuit.

APPLICATION CIRCUITS

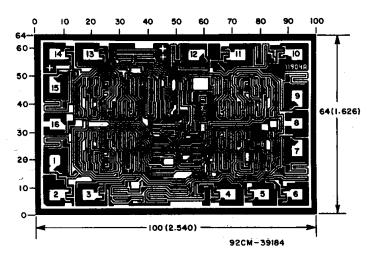

Fro	m	То		Donne of N
Stage	Pin	Stage	Pin	Range of N
LSD	"0"	Ali	PE	LSD < N < MSD
N	"0"	N-1	CF	LSD+1 <n<msd< td=""></n<msd<>
N	"0₃"	N+1	CL	LSD < N < MSD-1

Fig. 10 — 2-Stage Programmable Down Counter (One Cycle)

Fro	From		>	Dones of N
Stage	Pln	Stage	Pin	Range of N
LSD	"0"	All	PE	LSD < N < MSD
N	"0"	N-1	CF	LSD + 1 < N < MSD
N	"03"	N+1	CL	LSD < N < MSD-1

Fig. 11 — 2-Stage Programmable Frequency Divider

Dimensions and pad layout for CD4522BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated