INSTRUMENTS Data sheet acquired from Harris Semiconductor SCHS083A – Revised March 2002

CD4536B Types

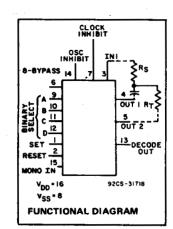
CMOS Programmable Timer

High-Voltage Types (20-Volt Rating)

CD4536B is a programmable timer consisting of 24 ripple-binary counter stages. The salient feature of this device is its flexibility. The device can count from 1 to 2²⁴ or the first 8 stages can be bypassed to allow an output, selectable by a 4-bit code, from any one of the remaining 16 stages. It can be driven by an external clock or an RC oscillator that can be constructed using onchip components. Input IN1 serves as either the external clock input or the input to the on-chip RC oscillator, OUT1 and OUT2 are connection terminals for the external RC components. In addition, an on-chip monostable circuit is provided to allow a variable pulse width output. Various timing functions can be achieved using combinations of these capabilities.

A logic 1 on the 8-BYPASS input enables a bypass of the first 8 stages and makes stage 9 the first counter stage of the last 16 stages. Selection of 1 of 16 outputs is accomplished by the decoder and the BCD inputs A, B, C and D. MONO IN is the timing input for the on-chip monostable oscillator. Grounding of the MONO IN terminal through a resistor of 10K ohms or higher, disables the one-shot circuit and connects the decoder directly to the DECODE OUT terminal. A resistor to V_{DD} and a capacitor to ground from the MONO IN terminal enables the one-shot circuit and controls its pulse width.

A fast test mode is enabled by a logic 1 on 8-BYPASS, SET, and RESET. This mode


Features:

- 24 flip-flop stages -- counts from 2° to 2²⁴
- Last 16 stages selectable by BCD select code.
- Bypass input allows bypassing first 8 stages
- On-chip RC oscillator provision
- Clock inhibit input
- Schmitt-trigger in clock line permits operation with very long rise and fall times
- On-chip monostable output provision
- Typical f_{CL} = 3 MHz at V_{DD} = 10 V
- Test mode allows fast test sequence
- Set and reset inputs
- Capable of driving two low power TTL loads, one lower-power Schottky load, or two HTL loads over the rated temperature range
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

divides the 24-stage counter into three 8-stage sections to facilitate a fast test sequence.

The CD4536B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to VSS Terminal)
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to VDD +0.5V
DC INPUT CURRENT, ANY ONE INPUT ±10mA
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +265°C

RECOMMENDED OPERATING CONDITIONS

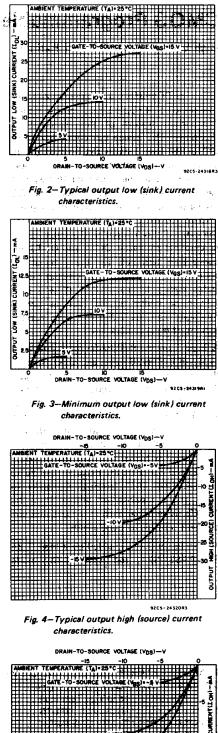
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

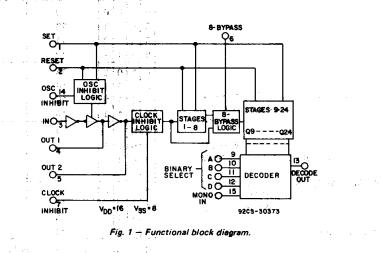
CHARACTERISTIC	LIN	ITS	UNITS	
	Min.	Max.		
Supply-Voltage Range (For T _A = Full				
Package Temperature				
Range)	3	18	v	

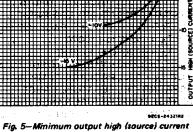
DECODE OUT SELECTION TABLE

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
8-BYPASS = 0 8-BYPASS = 1 0 0 0 9 1 0 0 1 10 2 0 0 1 10 2 0 1 0 11 3 0 0 1 12 4 0 1 0 13 5 0 1 0 13 5 0 1 0 13 5 0 1 0 15 7 0 1 1 16 8 1 0 0 17 9 1 0 1 18 10 1 0 1 20 12 1 1 0 21 13 1 1 0 23 15	D	c	B	A								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ĺ				8-BYPASS = 0	8-BYPASS = 1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	9	1						
0 0 1 1 12 4 0 1 0 0 13 5 0 1 0 1 14 6 0 1 1 0 15 7 0 1 1 16 8 1 0 0 17 9 1 0 0 17 9 1 0 0 17 9 1 0 1 18 10 1 0 1 18 10 1 0 1 20 12 1 1 0 21 13 1 1 0 23 15	0	0	0	1	10	2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q	0	1	0	11	3						
0 1 0 1 14 6 0 1 1 0 15 7 0 1 1 1 16 8 1 0 0 17 9 1 0 1 18 10 1 0 1 9 11 1 0 1 19 11 1 0 1 20 12 1 1 0 21 13 1 1 0 23 15	0	0	1	1	12	4						
0 1 1 0 15 7 0 1 1 1 16 8 1 0 0 17 9 1 0 0 17 9 1 0 1 18 10 1 0 1 9 11 1 0 1 19 11 1 0 1 20 12 1 1 0 21 13 1 1 0 1 22 14 1 1 0 23 15	0	1	0	0	13	5						
0 1 1 1 16 8 1 0 0 0 17 9 1 0 0 1 18 10 1 0 1 0 19 11 1 0 1 1 20 12 1 1 0 21 13 1 1 0 1 22 14 1 1 0 23 15	0	1	0	1	14	6						
1 0 0 17 9 1 0 1 18 10 1 0 1 9 11 1 0 1 9 11 1 0 1 20 12 1 1 0 21 13 1 1 0 1 22 14 1 1 0 23 15	0	1	1	0	15	7						
1 0 0 1 18 10 1 0 1 0 19 11 1 0 1 1 20 12 1 1 0 0 21 13 1 1 0 1 22 14 1 1 1 0 23 15	0	1	1	1	16	8						
1 0 1 0 19 11 1 0 1 1 20 12 1 1 0 0 21 13 1 1 0 1 22 14 1 1 1 0 23 15	1	0	0	0	17	9						
1 0 1 1 20 12 1 1 0 0 21 13 1 1 0 1 22 14 1 1 1 0 23 15	1	0	0	1	18	10						
1 1 0 0 21 13 1 1 0 1 22 14 1 1 0 23 15	1	0	1	0	19	11						
1 1 0 1 22 14 1 1 1 0 23 15	1	0	1	1	20	12						
1 1 1 0 23 15	1	1	0	0	21	13						
	1	1	0	1	22	14						
1 1 1 1 24 16	1	1	1	0	23	15						
	1	1	1	1	24	16						

Copyright © 2002, Texas Instruments Incorporated


1 = High Level


0 = Low Level


3

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CON	DITIO	NS	LIM	ITS AT II	NDICATI	ED TEMI	PERATU	IRES (⁰ (* 14 >	U N I T
	V ₀ (V)	V _{IN} (V)	V _{DD} (V)	-55	-40	+85	+125	Min.	+25 Typ.	Max.	S
	- '	0,5	5	5	5	150	150	_	0.04	5	
Quiescent Device		0,10	10	10	10	300	300	-	0.04	10	шA
Current,		0,15	15	20	20	600	600		0.04	20	,
IDD Max.	-	0,20	20	100	100	3000	3000	- `	°0.08	100	14
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	··· 4 • •	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	- 1	
Output High	4.6	0,5	5	0.64	-0.61	-0,42	-0.36	-0.51	-1	-	m/
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	1. - - 1.	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-i	ŀ
OH Min!	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	ŀ
Output Voltage:	-	0,5	5	0.05			-	0	0.05		
Low-Level,	.—	,0,10	10	0.05				0	0.05] ·	
VOL Max.	- .	0,15	15	0.05				-	0	0.05] v
Output		0,5	5		4	.95	en la compañía de la	4.95	s 5		
Voltage: High-Level,	-	0,10	10		9	.95	1. A	9.95	¹⁰ , 10	-	
V _{OH} Min.	—	.0,15	15		14	.95		14.95	15	-	
Input Low	0.5,4.5	-	5			1.5		-	_	1.5	
Voltage	1,9	-	10			3			· · -	3]
VIL Max.	1.5,13.5		15			4			-	4	١v
Input High Voltage, V _{IH} Min.	0.5,4.5	-	5		٤,	3.5	-	3.5	-	-	
	1,9	-	10			, 7 ;		7	.]
	1.5,13.5	-	15			11		- 11			
Input Current	_	0,18	18	±0.1	±0.1	. ±1 .	. ±1	:	±10-5	±0.1	μ/

characteristics.

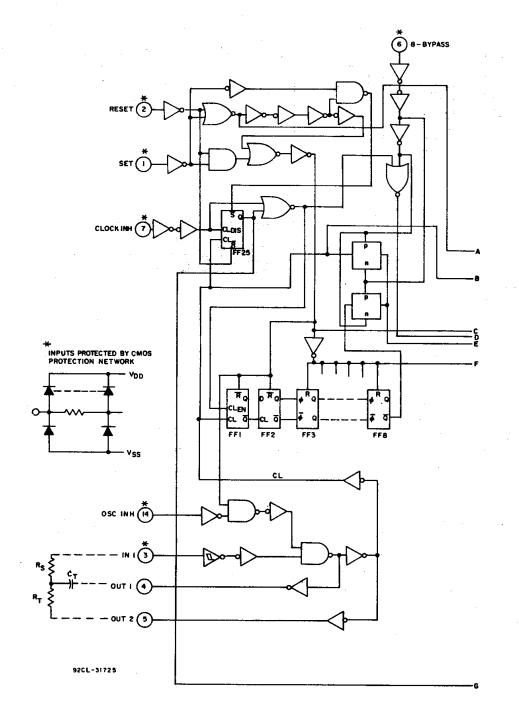


Fig.6 - Logic diagram for CD4536B [continued on next page].

NOTE:
$$f \approx \frac{1}{3R_T C_T}$$
, $R_S \approx (5 \rightarrow 10) \times R_T$

3 COMMERCIAL CMOS HIGH VOLTAGE ICs

CD4536B Types

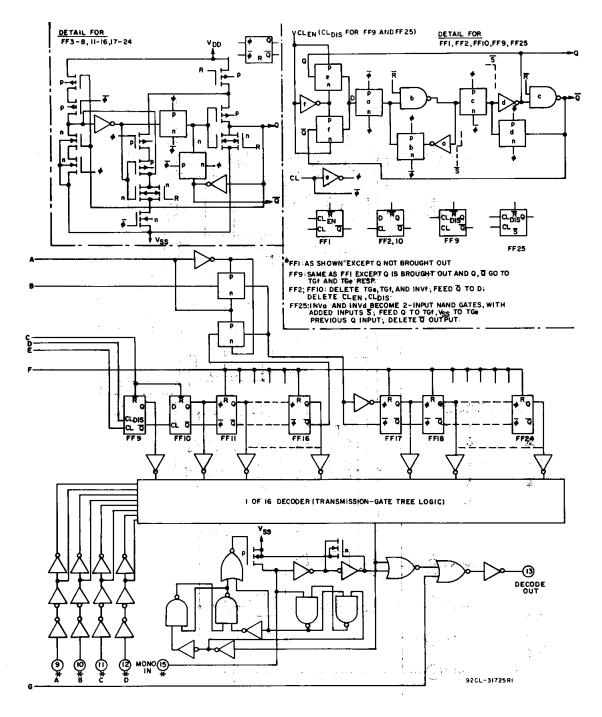
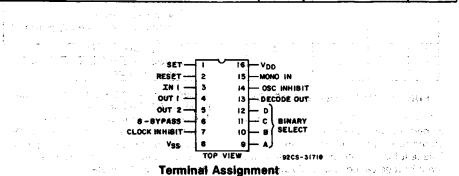
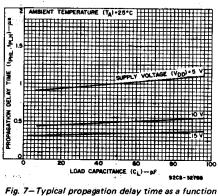
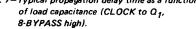


Fig.6 - Logic diagram for CD4536B [continued from previous page].

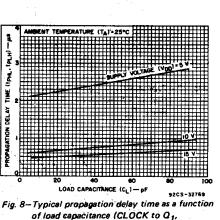

and the second second

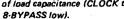

۰,

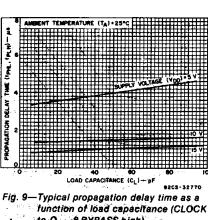

a constant a second de la Second

DYNAMIC ELECTRICAL CHARACTERISTICS, at $T_A = 25$ °C, Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ kQ

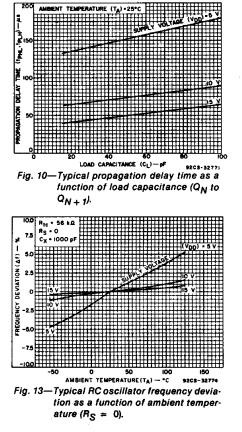
CHARACTERISTIC	V _{DD}	<u> </u>	LIMITS	\$	UNITS
UTANAG I ENGING	M M	Min.	Тур.	Max.	UNITS
Propagation Delay Times:	5	-	1	2	
Clock to Q1, 8-Bypass High	10	_		1	μs
	15	· · · _ ·		0.7	
Clock to Q1, 8-Bypass Low	5				
				-	μş
					րց
Clock to Q16, Tput tput	-				
	-				μs
	15	_			μ
Q _n to Q _{n + 1} , t _{PHL} , t _{PLH}	5				
	-				ns
				1	113
Set to Q _n , t _{PLH}		<u> </u>			
		1* <u> </u>			ាទ
Reset to Q _n , t _{PHL}	-				
HOSEL TO AU.		-			·
	· • • • • • • • • • • • • • • • • • • •	-	4 ° 4		μS
		-			
Transition Time, THL, TTLH	-	·			
		-			ns
Minimum Dulas Mital					
Clock		—			
		—			ns
Set	_				
		-			ns
				120	
Reset	-	—	-	6	
1		-	·		μS
· · · · · · · · · · · · · · · · · · ·	(V) Min. Typ. Max. tion Delay Times: 5 - 1 2 to Q1, 8-Bypass Low 5 - 0.5 1 to Q1, 8-Bypass Low 5 - 2.5 5 tpHL, tpLH 10 - 0.6 1.2 to Q16, TpHL tpLH 5 - 4 8 10 - 1.5 3 15 - 1 22 to Q16, TpHL tpLH 5 - 4 8 10 - 1.5 3 Qn + 1: tpHL, tpLH 5 - 10 - 125 250 15 - 50 100 - 125 250 16 - 300 600 10 - 125 250 15 - 30 6 100 - 125 250 10 - 12 15 - 100 200				
Minimum Set Recovery Time,	5	-	2.5	5	
n na hErren an h	10) ·	1		μs
and the second	15	· ·	0.6	1.6	
Minimum Reset Recovery Time,	5	—	3.5	7	:
P 37)∛	10	—	1.5	3	μs
	15		1	2	
Maximum Clock Pulse Input	5	0.5	1	_	
Frequency, f _{GL}	10	1.5	3	-	MHz
4	15	2.5	5	—	
Maximum Clock Pulse Input	5,10,15		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Rise or Fall Time, t _r , t _f		ιu	nlimited	d I	μS
	ł	1 1		-	μο

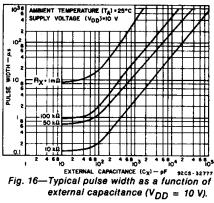






3


COMMERCIAL CMOS HIGH VOLTAGE ICs



CD4536B Types

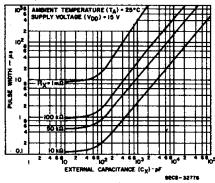


Fig. 17—Typical pulse width as a function of external capacitance (V_{DD} = 15 V).

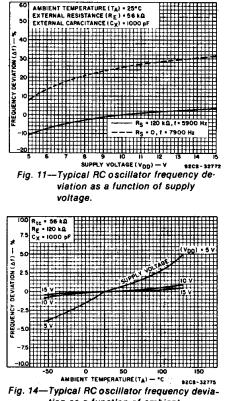


Fig. 14—Typical RC oscillator frequency devia tion as a function of ambient temperature (R_S = 120 kΩ).

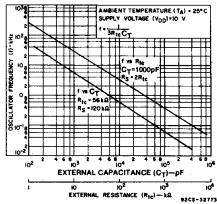


Fig. 12—Typical RC oscillator frequency deviation as a function of time constant resistance and capacitance.

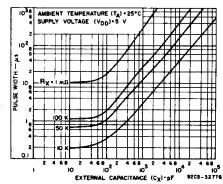
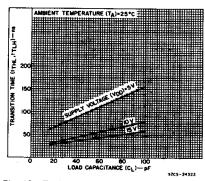
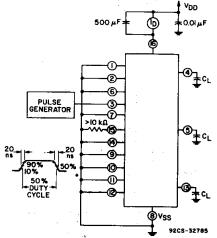
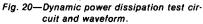
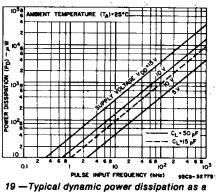


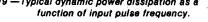
Fig. 15—Typical pulse width as a function of external capacitance (V_{DD} = 5 V).

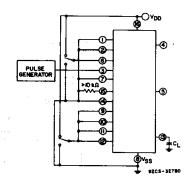
	Functional Test Sequence									
inputs		Comments								
In ₁	Set	Reset	8-Bypass	Decode Out Q1 thru Q24	All 24 steps are in Reset mode					
_ 1	0	1	. 1	0]					
1	1	1 .	1	0	Counter is in three 8-stage section in parallel mode					
0	1	1	1	0	First "1" to "0" transition of clock					
1 0 	1	1	1		255 "1" to "0" transitions are clocked in the counter					
0	1	1	1	1	The 255 "1" to "0" transition					
0	0	O	0	1	Counter converted back to 24 stages in series mode Set and Reset must be connected together and simultaneously go from "1' to "0"					
1	0	0	0	1	In 1 Switches to a "1"					
0	0	0	0	0	Counter Ripples from an all "1" state to an all "0" state					

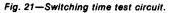
FUNCTIONAL TEST SEQUENCE

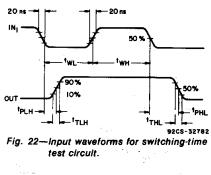
Test Function (Figure 23) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections and 255 counts are loaded in each of the 8-stage sections in parallel. All flip-flops are now at a "1". The counter is now returned to the normal 24-steps in series configuration. One more pulse is entered into ln_1 which will cause the counter to ripple from an all "1" state to an all "0" state.

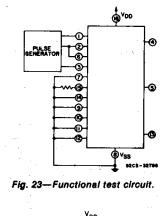





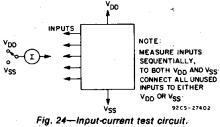

Fig. 18—Typical transition time as a function of load capacitance.

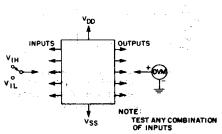


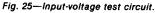


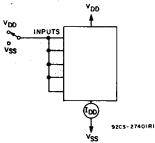









3


COMMERCIAL CMOS HIGH VOLTAGE ICS

92CS-27441RI

vss	

Fig. 26-Quiescent-device current test circuit.

TRUTH TABLE

IN1	SET	RESET	CLOCK INH	OSC INH	OUT1	OUT2	DECODE OUT
	Ó	0	0,	0	\int	$\overline{}$	No Change
	0	0	-0	0			Advance to Next State
X	1	0	0	0		1	1
X	0		0	0	0	1	· · · · 0
x	0	0	1	0			No Change
0	0	.0	0	×	O	1	No Change
1	0	0	0		Ĺ		Advance to Next State

CD4536B Types

APPLICATIONS

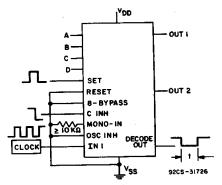


Fig. 27—Time interval configuration using external clock; set and clock inhibit functions.

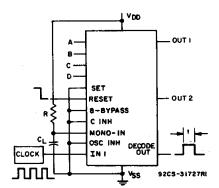


Fig. 28—Time interval configuration using external clock; reset and output monostable to achieve a pulse output.

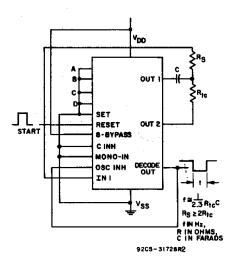
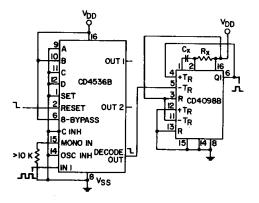



Fig. 29—Time interval configuration using onchip RC oscillator and reset input to initiate time interval.

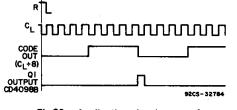


Fig.30 – Application showing use of CD4098B and CD4536B to get decode pulse 8 clock pulses after Reset pulse.

Dimensions and pad layout for CD4536BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3}$ inch).

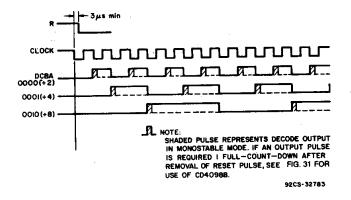
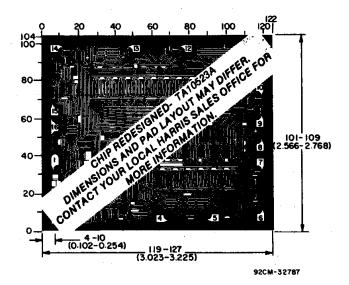



Fig.31 — CD4536B Timing Diagram.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated