

W250-03

Features

- Maximized EMI Suppression using Cypress's Spread Spectrum Technology
- System frequency synthesizer for VIA Apollo Pro-266
- Supports Intel® Pentium® II and Pentium® III class processor
- Three copies of CPU output
- Nine copies of PCI output
- One 48-MHz output for USB
- One 24-MHz or 48-MHz output for SIO
- Two buffered reference outputs
- Three copies of APIC output
- Supports frequencies up to 200 MHz
- SMBus interface for programming
- · Power management control inputs
- Available in 48-pin SSOP

Key Specifications

CPU Cycle-to-Cycle Jitter:	250 ps
CPU to CPU Output Skew:	
PCI Cycle to Cycle Jitter:	500 ps
PCI to PCI Output Skew:	500 ps

Table 1. Pin Selectable Frequency

	Inpu	ut Addr	ess		CPU,		PCI	Spread
FS4	FS3	FS2	FS1	FS0	(MHz)			Spectrum
0	0	0	0	0	200.0	66.6	33.3	OFF
0	0	0	0	1	190.0	63.3	31.7	OFF
0	0	0	1	0	180.0	60.0	30.0	OFF
0	0	0	1	1	170.0	56.7	28.3	OFF
0	0	1	0	0	166.0	83.0	41.5	OFF

Input Address				CPU,		PCI	Spread	
FS4	FS3	FS2	FS1	FS0	(MHz)	AGP	(MHz)	Spectrum
0	0	1	0	1	160.0	80.0	40.0	OFF
0	0	1	1	0	150.0	75.0	37.5	OFF
0	0	1	1	1	145.0	72.5	36.3	OFF
0	1	0	0	0	140.0	70.0	35.0	OFF
0	1	0	0	1	136.0	68.0	34.0	OFF
0	1	0	1	0	130.0	65.0	32.5	OFF
0	1	0	1	1	124.0	62.0	31.0	OFF
0	1	1	0	0	66.6	66.6	33.3	OFF
0	1	1	0	1	100.0	66.6	33.3	OFF
0	1	1	1	0	118.0	78.7	39.3	OFF
0	1	1	1	1	133.3	66.6	33.3	OFF
1	0	0	0	0	66.8	66.8	33.4	<u>+</u> 0.25%
1	0	0	0	1	100.2	66.8	33.4	<u>+</u> 0.25%
1	0	0	1	0	115.0	76.7	38.3	OFF
1	0	0	1	1	133.6	66.8	33.4	<u>+</u> 0.25%
1	0	1	0	0	66.8	66.8	33.4	<u>+</u> 0.5%
1	0	1	0	1	100.2	66.8	33.4	<u>+</u> 0.5%
1	0	1	1	0	110.0	73.3	36.7	OFF
1	0	1	1	1	133.6	66.8	33.4	<u>+</u> 0.5%
1	1	0	0	0	105.0	70.0	35.0	OFF
1	1	0	0	1	90.0	60.0	30.0	OFF
1	1	0	1	0	85.0	56.7	28.3	OFF
1	1	0	1	1	78.0	78.0	39.0	OFF
1	1	1	0	0	66.6	66.6	33.3	-0.5%
1	1	1	0	1	100.0	66.6	33.3	-0.5%
1	1	1	1	0	75.0	75.0	37.5	OFF
1	1	1	1	1	133.3	66.6	33.3	-0.5%

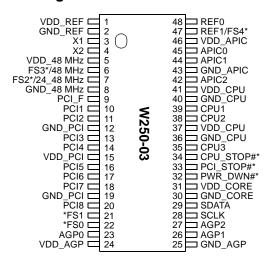

FTG for VIA Apollo Pro-266

Table 1. Pin Selectable Frequency (continued)

Innut Address

Block Diagram VDD_REF REF0 REF1/FS4 X1 XTAL OSC X2 VDD_APIC PLL Ref Fi APIC0:2 DIV VDD_AGP AGP0:2 DIV CPU_STOP# VDD CPU PWR DWN# CPU1:3 Stop Clock Control ES0:1 PLL 1 VDD PCI ÷2,3,4 PCI F PCI1:8 PCI_STOP# Stop SMBus SDATA SCLK Logic VDD_48 MHz 48MHz/FS3 PLL2 24_48MHz/FS2 _

Pin Configuration^[1]

Note:

1. Signals marked with '*' have internal pull-up resistors.

Intel and Pentium are registered trademarks of Intel Corporation.

Cypress Semiconductor Corporation • Document #: 38-07254 Rev. *A

3901 North First Street •

San Jose • CA 951

CA 95134 • 408-943-2600 Revised December 14, 2002

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
CPU1:3	39, 38, 35	0	CPU Clock Output: Frequency is set by the FS0:4 input or through serial input interface. The CPU1:3 output are gated by the CLK_STOP# input.
CPU_STOP#*	34	I	CPU Output Control: 3.3V LVTTL compatible input that stop CPU1:3 clocks.
PCI1:8	10, 11, 13, 14, 16, 17, 18, 20	0	PCI Clock Outputs 1 through 8: Frequency is set by FS0:4 inputs or through serial input interface, see <i>Table 1</i> and <i>Table 5</i> for details. Output voltage swing is controlled by voltage applied to VDD_PCI.
PCI_STOP#*	33	0	PCI_STOP# Input: 3.3V LVTTL compatible input that stops PCI1:8.
PCI_F	9	0	<i>Free-Running PCI Clock Output:</i> Output voltage swing is controlled by the voltage applied to VDD_PCI. See <i>Table 1.</i> and <i>Table 5.</i> for detailed frequency information.
PWR_DWN#*	32	I	PWR_DWN# Input: LVTTL-compatible input that places the device in power-down mode when held LOW.
APIC0:2	45, 44, 42	0	APIC Clock Output: APIC clock outputs. The output voltage swing is controlled by VDD_APIC.
48MHz/FS3*	6	I/O	48-MHz Output/Frequency Select 3: 48 MHz is provided in normal operation. In standard PC systems, this output can be used as the reference for the Universal Serial Bus host controller. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 1</i> .
24_48MHz/ FS2*	7	I/O	24_48-MHz Output/Frequency Select 2: In standard PC systems, this output can be used as the clock input for a Super I/O chip. The output frequency is controlled by Configuration Byte 3 bit[6]. The default output frequency is 24 MHz. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 1</i> .
REF1/FS4*	47	I/O	Reference Clock Output 1/Frequency Select 4: 3.3V 14.318-MHz output clock. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 1</i> . Upon power-up, FS4 input will be latched which will set clock frequencies as described in <i>Table 1</i> .
REF0	48	0	Reference Clock Output 0: 3.3V 14.318 MHz output clock.
SCLK	28	I	Clock pin for serial interface circuitry.
SDATA	29	I/O	Data pin for serial interface circuitry.
X1	3	I	<i>Crystal Connection or External Reference Frequency Input:</i> This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input.
X2	4	I	<i>Crystal Connection:</i> An input connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.
FS0,FS1	22, 21	I	FS0, FS1 Inputs: Latched frequency select inputs. These latched input serve as a power- on strap option to determine device operating frequency as described in <i>Table 1</i> .
AGP0:2	23, 26, 27	0	AGP Outputs: Output frequency is set by FS0:4 inputs or through serial interface.
VDD_REF, VDD_48MHz, VDD_PCI, VDD_AGP, VDD_CORE	1, 5,15, 24, 31	Р	Power Connection: Power supply for core logic, PLL circuitry, PCI outputs, reference outputs, 48-MHz output, and 24_48-MHz output, connect to 3.3V supply.
VDD_CPU, VDD_APIC	41, 46, 37	Р	<i>Power Connection:</i> Power supply for APIC and CPU1 output buffers, connect to 2.5V.
GND_REF, GND_48MHz, GND_PCI, GND_AGP, GND_CORE, GND_CPU, GND_APIC	2, 8, 12, 19, 25, 30, 36, 40, 43	G	<i>Ground Connections:</i> Connect all ground pins to the common system ground plane.

Serial Data Interface

The serial data interface can be used to configure internal register settings that control particular device functions. Upon power-up, the W250-03 initializes with default register settings, therefore the use of this serial data interface is optional. The serial interface is write-only (to the clock chip) and is the dedicated function of device pins SDATA and SCLOCK. In motherboard applications, SDATA and SCLOCK are typically driven by two logic outputs of the chipset. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions. *Table 2* summarizes the control functions of the serial data interface.

Operation

Data is written to the W250-03 in eleven bytes of eight bits each. Bytes are written in the order shown in *Table 3*.

Table 2. Serial Data Interface Control Functions Summary

Control Function	Description	Common Application
Clock Output Disable	Any individual clock output(s) can be disabled. Dis- abled outputs are actively held LOW.	Unused outputs are disabled to reduce EMI and system power. Examples are clock out- puts to unused PCI slots.
CPU Clock Frequency Selection	Provides CPU/PCI frequency selections through software. Frequency is changed in a smooth and controlled fashion.	For alternate microprocessors and power management options. Smooth frequency transition allows CPU frequency change un- der normal system operation.
Spread Spectrum Enabling	Enables or disables spread spectrum clocking.	For EMI reduction.
Output Three-state	Puts clock output into a high impedance state.	Production PCB testing.
(Reserved)	Reserved function for future device revision or pro- duction device testing.	No user application. Register bit must be written as 0.

Table 3. Byte Writing Sequence

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the W250-03 to accept the bits in Data Bytes 0–6 for internal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the W250-03 is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the W250-03, therefore bit values are ignored ("don't care"). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the W250-03, therefore bit values are ignored ("don't care"). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Refer to Table 4	The data bits in Data Bytes 0-7 set internal W250-03 registers that
5	Data Byte 1		control device operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description
6	Data Byte 2		of bit control functions, refer to Table 4, Data Byte Serial Configuration
7	Data Byte 3		Map.
8	Data Byte 4	1	
9	Data Byte 5		
10	Data Byte 6	1	
11	Data Byte 7	1	

Writing Data Bytes

Each bit in Data Bytes 0–7 controls a particular device function except for the "reserved" bits which must be written as a logic 0. Bits are written MSB (most significant bit) first, which is bit

Table 4. Data Bytes 0–7 Serial Configuration Map

7. Table 4 gives the bit formats for registers located in Data Bytes 0-7.

Table 5 details additional frequency selections that are available through the serial data interface.

	Affected Pin t(s) Pin No. Pin Name			Bit C	ontrol	Default
Bit(s)			Control Function	0	1	
Data By	/te 0					
7			(Reserved)			0
6			SEL_2	See	Table 5	0
5			SEL_1	See	Table 5	0
4			SEL_0	SEL_0 See Table 5		0
3			Hardware/Software Frequency Select Hardware Software		0	
2			SEL_4	See	Table 5	1
1			SEL_3	See	Table 5	0
0				Normal	Three-stated	0
Data By	/te 1	I	l			1
7			(Reserved)			0
6			(Reserved)			0
5			(Reserved)			0
4			(Reserved)			0
3	35	CPU3	Clock Output Disable	Low	Active	1
2	38	CPU2	Clock Output Disable	Low	Active	1
1	39	CPU1	Clock Output Disable	Low	Active	1
0	42	APIC2	Clock Output Disable	Low	Active	1
Data By	/te 2		•			
7	20	PCI8	Clock Output Disable	Low	Active	1
6	18	PCI7	Clock Output Disable	Low	Active	1
5	17	PCI6	Clock Output Disable	Low	Active	1
4	16	PCI5	Clock Output Disable	Low	Active	1
3	14	PCI4	Clock Output Disable	Low	Active	1
2	13	PCI3	Clock Output Disable	Low	Active	1
1	11	PCI2	Clock Output Disable	Low	Active	1
0	10	PCI1	Clock Output Disable	Low	Active	1
Data By	/te 3					
7			(Reserved)			0
6		SEL_48MHz	SEL 48MHz as the output frequency for 24_48MHz	24 MHz	48 MHz	0
5	6	48MHz	Clock Output Disable	Low	Active	1
4	7	24_48MHz	Clock Output Disable	Low	Active	1
3	9	PCI_F	Clock Output Disable	Low	Active	1
2	27	AGP2	Clock Output Disable	Low	Active	1
1	26	AGP1	Clock Output Disable	Low	Active	1

Table 4. Data Bytes 0–7 Serial Configuration Map (continued)

	Affe	cted Pin		Bit C	ontrol		
Bit(s)	Pin No.	Pin Name	Control Function	0	1	Default	
0	23	AGP0	Clock Output Disable	Low	Active	1	
Data By	/te 4		•		1		
7			(Reserved)			0	
6			(Reserved)			0	
5			(Reserved)			0	
4			(Reserved)			0	
3			(Reserved)			0	
2			(Reserved)			0	
1			(Reserved)			0	
0			(Reserved)			0	
Data By	/te 5				1		
7			(Reserved)			0	
6			(Reserved)			0	
5	44	APIC1	Clock Output Disable	Low	Active	1	
4	45	APIC0	Clock Output Disable	Low	Active	1	
3			(Reserved)			0	
2			(Reserved)			0	
1	47	REF1	Clock Output Disable	Low	Active	1	
0	48	REF0	Clock Output Disable	Low	Active	1	
Data By	/te 6		•		1		
7			(Reserved)			0	
6			(Reserved)			0	
5			(Reserved)			0	
4			(Reserved)			0	
3			(Reserved)			0	
2			(Reserved)			0	
1			(Reserved)			0	
0			(Reserved)			0	
Data By	/te 7						
7			(Reserved)			0	
6			(Reserved)			0	
5			(Reserved)			0	
4			(Reserved)			0	
3			(Reserved)			0	
2			(Reserved)			0	
1			(Reserved)			0	
0			(Reserved)			0	

	Inp	out Conditio	ons		Output Frequency				
	Data	Byte 0, Bit	3 = 1						
Bit 2 SEL_4	Bit 1 SEL_3	Bit 6 SEL_2	Bit 5 SEL_1	Bit 4 SEL_0	CPU	AGP	PCI	Spread Spectrum	
0	0	0	0	0	200.0	66.6	33.3	OFF	
0	0	0	0	1	190.0	63.3	31.7	OFF	
0	0	0	1	0	180.0	60.0	30.0	OFF	
0	0	0	1	1	170.0	56.7	28.3	OFF	
0	0	1	0	0	166.0	83.0	41.5	OFF	
0	0	1	0	1	160.0	80.0	40.0	OFF	
0	0	1	1	0	150.0	75.0	37.5	OFF	
0	0	1	1	1	145.0	72.5	36.3	OFF	
0	1	0	0	0	140.0	70.0	35.0	OFF	
0	1	0	0	1	136.0	68.0	34.0	OFF	
0	1	0	1	0	130.0	65.0	32.5	OFF	
0	1	0	1	1	124.0	62.0	31.0	OFF	
0	1	1	0	0	66.6	66.6	33.3	OFF	
0	1	1	0	1	100.0	66.6	33.3	OFF	
0	1	1	1	0	118.0	78.7	39.3	OFF	
0	1	1	1	1	133.3	66.6	33.3	OFF	
1	0	0	0	0	66.8	66.8	33.4	±0.25%	
1	0	0	0	1	100.2	66.8	33.4	±0.25%	
1	0	0	1	0	115.0	76.7	38.3	OFF	
1	0	0	1	1	133.6	66.8	33.4	±0.25%	
1	0	1	0	0	66.8	66.8	33.4	±0.5%	
1	0	1	0	1	100.2	66.8	33.4	±0.5%	
1	0	1	1	0	110.0	73.3	36.7	OFF	
1	0	1	1	1	133.6	66.8	33.4	±0.5%	
1	1	0	0	0	105.0	70.0	35.0	OFF	
1	1	0	0	1	90.0	60.0	30.0	OFF	
1	1	0	1	0	85.0	56.7	28.3	OFF	
1	1	0	1	1	78.0	78.0	39.0	OFF	
1	1	1	0	0	66.6	66.6	33.3	-0.5%	
1	1	1	0	1	100.0	66.6	33.3	-0.5%	
1	1	1	1	0	75.0	75.0	37.5	OFF	
1	1	1	1	1	133.3	66.6	33.3	-0.5%	

Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes

Absolute Maximum Ratings ^[2]

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
Τ _B	Ambient Temperature under Bias	-55 to +125	°C
T _A	Operating Temperature	0 to +70	°C
ESD _{PROT}	Input ESD Protection	2 (min.)	kV

DC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, 3.3V, $V_{DD} = 3.3V \pm 5\%$, 2.5V, $V_{DD} = 2.5V \pm 5\%$

Parameter	Descrip	otion	Test Condition	Min.	Тур.	Max.	Unit
Supply Curr	ent			•		•	
I _{DD}	3.3V Supply Current		CPU1:3 = 133 MHz ^[3]		TBD		mA
I _{DD}	2.5V Supply Current				TBD		mA
Logic Inputs	S						
V _{IL}	Input Low Voltage			GND – 0.3		0.8	V
V _{IH}	Input High Voltage			2.0		V _{DD} + 0.3	V
IIL	Input Low Current ^[4]					-25	μA
I _{IH}	Input High Current ^[4]					10	μA
Clock Outpu	uts			•		•	
V _{OL}	Output Low Voltage		I _{OL} = 1 mA			50	mV
V _{OH}	Output High Voltage		I _{OH} = -1 mA	3.1			V
V _{OH}	Output High Voltage	CPU1:3, APIC0:2	$I_{OH} = -1 \text{ mA}$	2.2			V
I _{OL}	Output Low Current	CPU1:3	V _{OL} = 1.25V	27	57	97	mA
		PCI_F, PCI1:8	V _{OL} = 1.5V	20.5	53	139	mA
		AGP0:2	V _{OL} = 1.5V	40	85	140	mA
		APIC 0:2	V _{OL} = 1.25V	40	85	140	mA
		REF0:1	V _{OL} = 1.5V	25	37	76	mA
		48 MHz	V _{OL} = 1.5V	25	37	76	mA
		24 MHz	V _{OL} = 1.5V	25	37	76	mA
I _{ОН}	Output High Current	CPU1:3	V _{OH} = 1.25V	25	55	97	mA
		PCI_F, PCI1:8	V _{OH} = 1.5V	31	55	139	mA
		AGP0:2	V _{OL} = 1.5V	40	85	140	mA
		APIC0:2	V _{OH} = 1.25V	40	87	155	mA
		48 MHz	V _{OH} = 1.5V	27	44	94	mA
		24 MHz	V _{OH} = 1.5V	25	37	76	mA

Notes:

Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. All clock outputs loaded with 6" 60 Ω transmission lines with 22-pF capacitors. Inputs have internal pull-up resistors.

2. 3. 4.

DC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, 3.3V, $V_{DD} = 3.3V \pm 5\%$, 2.5V, $V_{DD} = 2.5V \pm 5\%$ (continued)

Parameter	Description	Test Condition	Min.	Тур.	Max.	Unit
Crystal Osc	illator		•	•		
V _{TH}	X1 Input Threshold Voltage ^[5]	V _{DDQ3} = 3.3V		1.65		V
C _{LOAD}	Load Capacitance, Imposed on External Crystal ^[6]			18		pF
C _{IN,X1}	X1 Input Capacitance ^[7]	Pin X2 unconnected		28		pF
Pin Capacita	ance/Inductance	·		•		•
C _{IN}	Input Pin Capacitance	Except X1 and X2			5	pF
C _{OUT}	Output Pin Capacitance				6	pF
L _{IN}	Input Pin Inductance				7	nH

AC Electrical Characteristics

$\rm T_{A}$ = 0°C to +70°C, 3.3V, $\rm V_{DD}$ = 3.3V±5%, 2.5V, $\rm V_{DD}$ = 2.5V± 5% $\rm f_{XTL}$ = 14.31818 MHz

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output; Spread Spectrum is disabled.

		Test Condition/	CPU	= 66.6	6 MHz	CPU	= 100	MHz	CPU	= 133	MHz	
Parameter	Description	Comments	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.25	15		15.5	10		10.5	7.5		8.0	ns
t _H	High Time	Duration of clock cycle above 2.0V	5.2			3.0			1.87			ns
tL	Low Time	Duration of clock cycle be- low 0.4V	5.0			2.8			1.67			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.0V	1		4	1		4	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.0V to 0.4V	1		4	1		4	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.25V	45		55	45		55	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.25V. Maximum differ- ence of cycle time be- tween two adjacent cycles.			250			250			250	ps
t _{SK}	Output Skew	Measured on rising edge at 1.25V			175			175			175	ps
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply volt- age reached within 1 ms from power-up. Short cy- cles exist prior to frequen- cy stabilization.			3			3			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series ter- mination value.		20			20			20		Ω

CPU Clock Outputs (Lump Capacitance Test Load = 20 pF)

Notes:

X1 input threshold voltage (typical) is 3.3V/2.
 The W250-03 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 18 pF; this includes typical stray capacitance of short PCB traces to crystal.
 X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).

PCI Clock Outputs, PCI0:5 (Lump Capacitance Test Load = 30 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.5V	30			ns
t _H	High Time	Duration of clock cycle above 2.4V	12			ns
tL	Low Time	Duration of clock cycle below 0.4V	12			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V			55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.			500	ps
t _{SK}	Output Skew	Measured on rising edge at 1.5V			500	ps
t _O	CPU to PCI Clock Skew	Covers all CPU/PCI outputs. Measured on rising edge at 1.5V. CPU leads PCI output.	1.5		4	ns
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.		30		Ω

AGP Clock Outputs (Lump Capacitance test Load = 30 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
t _P	Period	Measured on rising edge at 1.5V	15			ns
t _H	High Time	Duration of clock cycle above 2.4V	5.25			ns
tL	Low Time	Duration of clock cycle below 0.4V	5.05			ns
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1		4	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1		4	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
t _{JC}	Jitter, Cycle-to-Cycle	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.			500	ps
t _{SK}	Output Skew	Measured on rising edge at 1.5V			250	ps
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.		30		Ω

APIC Clock Output (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Min.	Тур.	Max.	Unit	
f	Frequency, Actual	Frequency, Actual Frequency generated from PCI divided by 2		PCI/2		MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	Measured from 0.4V to 2.4V 0.5 2		2	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	0.5		2	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.		20		Ω

REF Clock Outputs (Lump Capacitance Test Load = 20 pF)

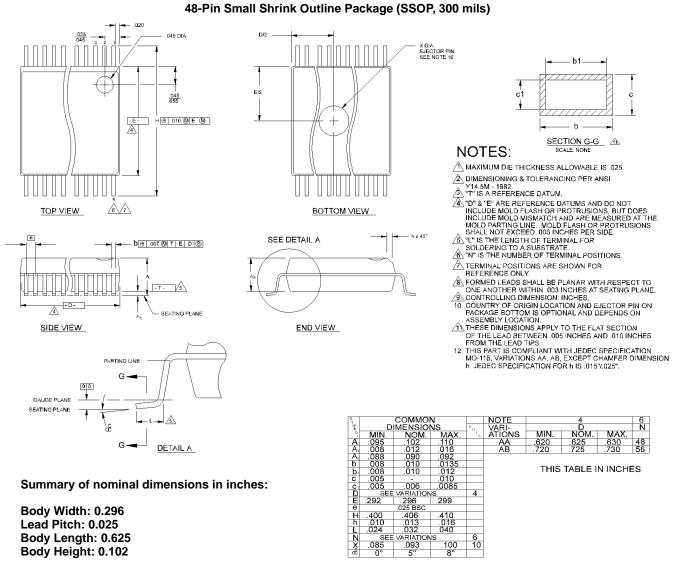
Parameter	Description	Min.	Тур.	Max.	Unit	
f	Frequency, Actual	equency, Actual Frequency generated by crystal oscillator		14.318		MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	Measured from 0.4V to 2.4V 0.5 2		2	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V 0.5			2	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization.			3	ms
Zo	AC Output Impedance	Average value during switching transition. Used for determining series termination value.		40		Ω

48-MHz Clock Output (Lump Capacitance Test Load = 20 pF)

Parameter	Description Test Condition/Comments		Min.	Тур.	Max.	Unit
f	Frequency, Actual	Determined by PLL divider ratio (see m/n below)	v) 48.008			MHz
f _D	Deviation from 48 MHz	(48.008 - 48)/48	+167			ppm
m/n	PLL Ratio	(14.31818 MHz x 57/17 = 48.008 MHz)	57/17			
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	0.5		2	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	0.5 2		2	V/ns
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to fre- quency stabilization.		3	ms	
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.		40		Ω

24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)

Parameter	Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
f	Frequency, Actual	Determined by PLL divider ratio (see m/n below)	24.004			MHz
f _D	Deviation from 24 MHz	(24.004 - 24)/24	+167			ppm
m/n	PLL Ratio	(14.31818 MHz x 57/34 = 24.004 MHz)	57/34			
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V 0.5		2	V/ns	
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	0.5 2		V/ns	
t _D	Duty Cycle	Measured on rising and falling edge at 1.5V	45		55	%
f _{ST}	Frequency Stabilization from Power-up (cold start)	Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to fre- quency stabilization.		3	ms	
Z _o	AC Output Impedance	Average value during switching transition. Used for determining series termination value.				


Ordering Information

Ordering Code	Package Name	Package Type
W250-03	Н	48-pin SSOP (300 mils)

PRELIMINARY

Package Diagram

S Y		COMMO			NOTE		4		6
M R	D	IMENSIO	NS	N.0	VARI-		D		N
2	MIN.	NOM.	MAX.	'ε	ATIONS	MIN.	NOM.	MAX.	
A	2.41	2.59	2.79		AA	15.75	15.88	16.00	48
A,	0.20	0.31	0.41		AB	18.29	18.42	18.54	56
A,	2.24	2.29	2.34						
b	0.203	0.254	0.343			TU I O TA			
b,	0.203	0.254	0.305			THIS TAI	SLE IN IV		ERS
С	0.127	-	0.254						
C	0.127	0.152	0.216						
D	SEE	VARIATION	IS	4					
E	7.42	7.52	7.59						
е		0.635 BSC							
H	10.16	10.31	10.41						
h	0.25	0.33	0.41						
L	0.61	0.81	1.02						
N	SEE	VARIATION	IS	6					
X	2.16	2.36	2.54	10					
ď	0°	5°	8°						

	Document Title: W250-03 FTG for VIA Apollo Pro-266 Document Number: 38-07254										
REV.	REV. ECN NO. Issue Date Orig. of Change Description of Change			Description of Change							
**	110519	01/07/02	SZV	Change from Spec number: 38-01080 to 38-07254							
*A	122856	12/14/02	RBI	Power up requirements added to Operating Conditions Information							

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.