

зос D 🔳 6427525 0027007 4 🔳

μPD70330/70332 (V35) **16-Bit Microcomputers:** Advanced, Single-Chip, CMOS

T-49-19-16

T-49-19-59

Description

The µPD70330/70332 (V35™) is a high-performance, 16-bit single-chip microcomputer with a 16-bit external data bus. The µPD70330/70332 is fully software compatible with µPD8086/8088 and µPD70108/70116 (V20®/30®) instruction set.

The µPD70330 is a ROMless part. The µPD70332 has 16K ROM, while the µPD70P322 has 16K EPROM and can be used as a μ PD70330 (V35) or a μ PD70320 (V25™).

Features

- \Box Functionally compatible with μ PD70320/322 (V25)
- □ Internal 16-bit architecture and external 16-bit
- data bus \Box Software compatible with μ PD8086/8088.
- µPD70108/70116 (V20/30) in the native mode New and enhanced instructions
- Six-byte prefetch queue
- □ Minimum instruction cycle: 500 ns at 8 MHz □ Internal memory
- - ROM: 16K bytes (µPD70332 only)
- RAM: 256 bytes
- □ Memory space: 1M bytes
- □ Input port with comparator (port T): eight bits Bus interface optimized for use with dynamic
- RAMs
 - Multiplexed address

50006-1 (NECEL-870)

- On-board refresh controller

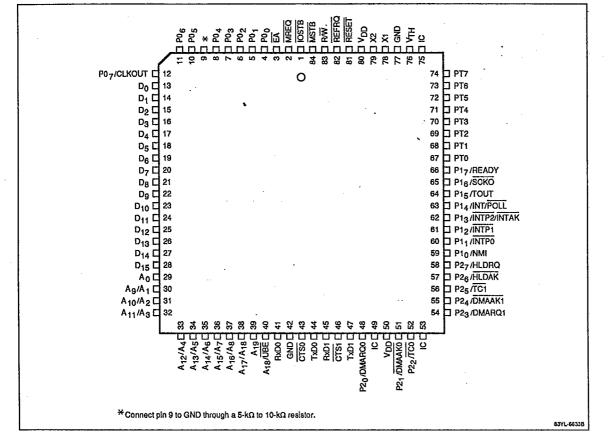
V20 and V30 are registered trademarks of NEC Corporation. V25 and V35 are trademarks of NEC Corporation.

- 24 parallel I/O lines
- Serial interface: two channels
 - Dedicated baud rate generator
- Asynchronous mode, I/O interface mode Interrupt controller
- - Programmable priority (eight levels) - Three interrupt service functions
 - Vectored interrupt, register bank switching, macro service
- DRAM, pseudo SRAM refresh function
- Two DMA channels
- Two 16-bit timers
- One 20-bit time base counter
- Clock generator
- Programmable wait function
- □ Low power modes
 - HALT
 - STOP
- □ 1.2-micron CMOS

Ordering Information

Part- Number	Clock (MHz)	Package	Internal ROM
µPD70330L-8	8	84-pin PLCC	ROMIess
GJ-8	8	94-pin plastic QFP	
µPD70332L-8-xxx	8	84-pin PLCC	16K mask ROM
GJ-8-xxx	8	94-pin plastic QFP	
µPD70P322KE-8	8	84-pin LCC	16K EPROM (UV erasable)

30E D 🖿 6427525 0027008 6


7

T-49-19-16 T-49-19-59

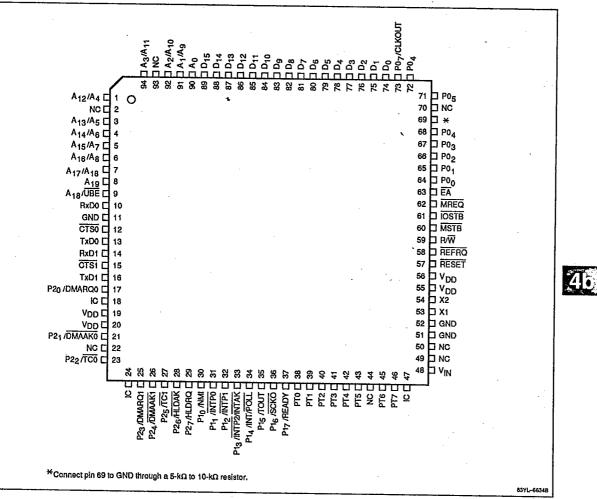
μ**PD7**0330/332 (V35)

Pin Configuration

84-Pin PLCC and 84-Pin LCC

2

:


μ**PD70330/332 (V35)**

T-49-19-16 **T-49-19-59**

3

Pin Configuration (cont)

30E D 🖿 6427525 0027010 4 1

μ**PD70330/332 (V35)**

Pin Identification

Symbol	Function
A19-A0	Address bus outputs
CLKOUT	System clock output
CTS0	Clear-to-send input, serial channel 0
CTS1	Clear-to-send input, serial channel 1
D ₁₅ -D ₀	Bidirectional data bus
DMAAK0	DMA acknowledge output, DMA controller channel 0
DMAAK1	DMA acknowledge output, DMA controller channel 1
DMARQ0	DMA request input, DMA controller channel 0
DMARQ1	DMA request input, DMA controller channel 1
ĒĀ	External access; clamped low or high according to program access requirements
HLDAK	Hold acknowledge output
HLDRQ	Hold request input
INT	Interrupt request input
INTAK	Interrupt acknowledge output
INTPO	Interrupt request 0 input
INTP1	Interrupt request 1 input
INTP2	Interrupt request 2 input
IOSTB	I/O read or write strobe output
MREQ	Memory request output
MSTB	Memory strobe output
NMI	Nonmaskable interrupt request
POLL	Input on POLL synchronizes the CPU and external devices
P07-P00	I/O port 0
P17-P10	I/O port 1
P27-P20	1/0 port 2
PTO-PT7	Comparator port input lines
READY	Ready signal input controls insertion of wait states
REFRO	DRAM refresh request output
RESET	Reset signal input
R/W	Read/write strobe output
RxD0	Receive data input, serial channel 0

	T-49-19-59
Symbol	Function
RxD1	Receive data input, serial channel 1
SCKO	Serial clock output
TCO	Terminal count output; DMA completion, channel 0
TC1	Terminal count output; DMA completion, channel 1
TOUT	Timer output
TxD0	Transmit data output, serial channel 0
TxD1	Transmit data output, serial channel 1
UBE	Upper byte enable
X1, X2	Connections to external frequency control source (crystal, ceramic resonator, or clock)
VDD	+5-volt power source input (two pins)
VTH	Threshold voltage input to comparator circuits
GND	Ground reference (two pins)
IC	Internal connection; must be tied to V _{DD} externally through a pullup resistor

NEC

T-49-19-16

ĥ

μ**PD70330/332 (V35)**

Pin Functions

A₁₉-A₀; Address Bus

To support dynamic RAMs, the 20-bit address is multiplexed on 11 lines. When $\overline{\text{MREQ}}$ is asserted, A_{17} - A_9 are valid. When $\overline{\text{MSTB}}$ or $\overline{\text{IOSTB}}$ are asserted, A_8 - A_1 and A_{18} are valid. A_{18} is also multiplexed with $\overline{\text{UBE}}$ and is valid when $\overline{\text{MREQ}}$ is asserted. Therefore A_{18} is active throughout the bus cycle. A_{19} and A_0 are not multiplexed but have dedicated pins and are valid throughout the bus cycle.

CLKOUT; Clock Out

The system clock (CLK) is distributed from the internal clock generator to the CPU and output to peripheral hardware at the CLKOUT pin.

CTS0; Clear-to-Send 0

This is the CTS pin of the channel 0 serial interface. In asynchronous mode, a low-level input on CTS0 enables transmit operation. In I/O interface mode, CTS0 is the receive clock pin.

CTS1; Clear-to-Send 1

This is the CTS pin of the channel 1 serial interface. In asynchronous mode, a low-level input on CTS1 enables transmit operation.

D₁₅-D₀; Data Bus

D₁₅-D₀ is the 16-bit data bus.

DMAAK0 and DMAAK1; DMA Acknowledge

These are the DMA acknowledge outputs of the DMA controller, channels 0 and 1. Signals are not output during DMA memory-to-memory transfer operations (burst mode, single-step mode).

DMARQ0 and DMARQ1; DMA Request

These are the DMA request inputs of the DMA controller, channels 0 and 1.

EA; External Access

T-49-19-59

T-49-19-16

For the ROM-less μ PD70330, connect this pin to ground. For the μ PD70332, connect EAto ground if program code is in external memory; connect EA to +5 volts if program code is in the internal ROM.

HLDAK; Hold Acknowledge

The HLDAK output signal indicates that the hold request (HLDRQ) has been accepted. When HLDAK is active (low), the following lines go to the high-impedance state with internal 4700-ohm pullup resistors: A_{19} - A_0 , D_7 - D_0 , IOSTB, MREQ, MSTB, REFRQ, and R/W.

HLDRQ; Hold Request

The HLDRQ input from an external device requests that the μ PD70330/332 relinquish the address, data, and control buses to an external bus master.

INT; Interrupt

The INT input is a vectored interrupt request from an external device that can be masked by software. The active high level is detected in the last clock cycle of an instruction. The external device confirms that the INT interrupt request has been accepted by the INTAK signal output from the CPU.

The INT signal must be held high until the first INTAK signal is output. Together with INTAK, INT is used for operation with an interrupt controller such as μ PD71059.

INTAK; Interrupt Acknowledge

The INTAK output is the acknowledge signal for the software-maskable interrupt request INT. The INTAK signal goes low when the CPU accepts INT. The external device inputs the interrupt vector to the CPU via data bus D_7 - D_0 in synchronization with INTAK.

μ**PD7**0330/332 (V35)

INTP0, INTP1, INTP2; Interrupt from Peripheral 0, 1, 2

The \overline{INTPn} inputs (n = 0, 1, 2) are external interrupt requests that can be masked by software. The \overline{INTPn} input is detected at the effective edge specified by external interrupt mode register INTM.

The INTPn input is also used to release the HALT mode.

IOSTB; I/O Strobe

A low-level output on \overline{IOSTB} indicates that the I/O bus cycle has been initiated and that the I/O address output on A_{15} - A_0 is valid.

MREQ; Memory Request

A low-level output on $\overline{\text{MREQ}}$ indicates that the memory or I/O bus cycle has started and that address bits A₀, A₁₇-A₉, A₁₉ and A₁₈ are valid.

MSTB; Memory Strobe

Together with $\overline{\text{MREQ}}$ and $\overline{\text{R/W}}$, $\overline{\text{MSTB}}$ controls memory accessing operations. $\overline{\text{MSTB}}$ should be used either to enable data buffers or as a data strobe. During memory write, a low-level output on $\overline{\text{MSTB}}$ indicates that data on the data bus is valid. A low-level output on $\overline{\text{MSTB}}$ indicates that multiplexed address bits A_8 - A_1 , A_{18} , and $\overline{\text{UBE}}$ are valid.

NMI; Nonmaskable Interrupt

The NMI input is an interrupt request that cannot be masked by software. The NMI is always accepted by the CPU; therefore, it has priority over any other interrupt.

The NMI input is detected at the effective edge specified by external interrupt mode register INTM. Sampled in each clock cycle, NMI is accepted when the active level lasts for some clock cycles. When the NMI is accepted, a number 2 vector interrupt is generated after completion of the instruction currently being executed.

The NMI input is also used to release the CPU standby mode.

P07-P00; Port 0

Port 0 is an 8-bit bidirectional I/O port.

P17-P10; Port 1

30E **D**

Lines P1₇-P1₄ are individually programmable as an input, output, or control function. The status of P1₃-P1₀ can be read but these lines are always control functions.

P27-P20; Port 2

P27-P20 are the lines of port 2, an 8-bit bidirectional I/O port. These lines can also be used as control signals for the on-chip DMA controllers. See table 2-3.

POLL; Poll

The POLL input is checked by the POLL instruction. If the level is low, execution of the next instruction is initiated. If the level is high, the POLL input is checked every five clock cycles until the level becomes low.

The POLL functions are used to synchronize the CPU program and the operation of external devices.

Note: POLL is effective when P14 is specified for the input port mode; otherwise, POLL is assumed to be at low level when the POLL instruction is executed.

PT0-PT7; Port with Comparator

The PT input is compared with a threshold voltage that is programmable to one of 16 voltage steps individually for each of the eight lines.

READY

After READY is de-asserted low, the CPU will synchronize and insert at least two wait states into a read or write cycle to memory or I/O. This allows the processor to accommodate devices whose access times are longer than normal execution allows.

REFRQ; Refresh Request

This output pulse can refresh nonstatic RAM. It can be programmed to meet system specifications and is internally synchronized so that refresh cycles do not interfere with normal CPU operation.

RESET

This input signal is asynchronous. A low on RESET for a certain duration resets the CPU and all on-chip peripherals regardless of clock operation. The reset operation has priority over all other operations.

The reset signal is used for normal initialization/startup and also for releasing the STOP or HALT mode. After the reset signal returns high, program execution begins from address FFFF0H.

6

н 6427525°0027012 8 н NEC т-49-19-16

T-49-19-59

R/W; Read/Write Strobe

When the memory bus cycle is initiated, the R/\overline{W} signal output to external hardware indicates a read (high level) or write (low level) cycle. It can also control the direction of bidirectional buffers.

RxD0, RxD1; Receive Data 0, 1

These pins input data from serial channels 0 and 1.

In the asynchronous mode, when receive operation is enabled, a low level on the RxD0 or RxD1 input pin is recognized as the start bit and receive operation is initiated.

In the I/O interface mode (channel 0 only), receive data is input to the serial register at the rising edge of the receive clock.

SCKO; Serial Clock

The SCKO output is the transmit clock of serial channel 0.

TC0, TC1; Terminal Count 0, 1

The $\overline{TC0}$ and $\overline{TC1}$ outputs go low when the terminal count of DMA service channels 0 and 1, respectively, reach zero, indicating DMA completion.

TOUT; Timer Output

The TOUT signal is a square-wave output from the internal timer.

TxD0, TxD1; Transmit Data 0, 1

These pins output data from serial channels 0 and 1.

In the asynchronous mode, the transmit signal is in a frame format that consists of a start bit, 7 or 8 data bits (least significant bit first), parity bit, and stop bit. The TxD0 and TxD1 pins become mark state (high level) when transmit operation is disabled or when the serial register has no transmit data.

In the I/O interface mode (channel 0 only), the frame has 8 data bits and the most significant bit is transmitted first.

X1, X2; Clock Control

T-49-19-59

T-49-19-16

The frequency of the internal clock generator is controlled by an external crystal or ceramic resonator connected across pins X1 and X2. The crystal frequency is the same as the clock generator frequency f_X . By programming the PRC register, the system clock frequency f_{CLK} is selected as f_X divided by 2, 4, or 8.

μPD70330/332 (V35)

As an alternative to the crystal or ceramic resonator, the positive and negative phases of an external clock (with frequency f_X) can be connected to pins X1 and X2.

VDD

+5-volt power source (two pins).

VTH

Comparator port PT0-PT7 uses threshold voltage V_{TH} to determine the analog reference points. The actual threshold to each comparator line is programmable to $V_{TH} \times n/16$ where n = 1 to 16.

GND

Ground reference (two pins).

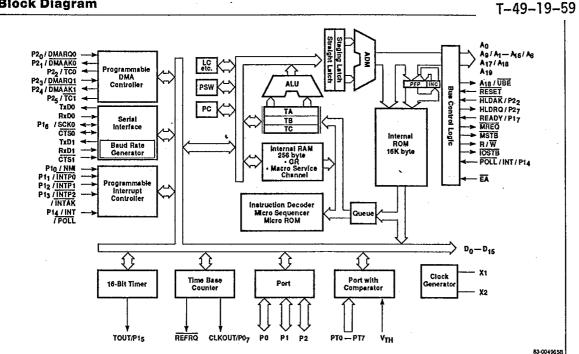
IC

Internal connection; must be tied to V_{DD} externally through a 10-k Ω to 20-k Ω resistor.

UBE, Upper Byte Enable

UBE is a high-order memory bank selection signal output. UBE and A_0 are used to decide which bytes of the data bus will be used. UBE is used along with A_0 to select the even/odd banks as follows.

UBE	Ao	Number of bus cycles
0	0	1
0	1	2
1	0	
1	0	1
Ø	1	1
	UBE 0 0 1 1 0	UBE A0 0 0 1 0 1 0 0 1 0 1 0 1


7

ЗОЕ 🕽' 🖿 6427525 0027013 Т 🔳

30E D ■ 6427525 0027014 1 ■

μ**PD70330/332 (V35)**

Block Diagram

Functional Description

Architectural Enhancements

The following features enable the μ PD70330/332 to perform high-speed execution of instructions:

- Dual data bus .
- 16-/32-bit temporary registers/shifters (TA, TB, . TA + TB
- 16-bit loop counter (LC)
- Program counter (PC) and prefetch pointer (PFP) .
- Internal ROM pass bus (µPD70332 only) •

Dual Data Bus. The µPD70330/332 has two internal 16-bit data buses: the main data bus and a subdata bus. This reduces the processing time required for addition/ subtraction and logical comparison instructions by one-third over single-bus systems. The dual data bus method allows two operands to be fetched simultaneously from the general-purpose registers and transferred to the ALU.

16-/32-Bit Temporary Registers/Shifters. The 16-bit temporary registers/shifters (TA, TB) allow high-speed execution of multiplication/division and shift/rotation instructions. By using the temporary registers/shifters.

the µPD70330/332 can execute multiplication/division instructions about four times faster than with the microprogramming method.

T-49-19-16

Loop Counter [LC]. The dedicated hardware loop counter counts the number of loops for string operations and the number of shifts performed for multiple bit shift/ rotation instructions. The loop counter works with internal dedicated shifters to speed the processing of multiplication/division instructions.

Program Counter and Prefetch Pointer [PC and PFP]. The hardware PC addresses the memory location of the instruction to be executed next. The hardware PFP addresses the program memory location to be accessed next. Several clocks are saved for branch, call, return, and break instructions compared with processors having only one instruction pointer.

Internal ROM Pass Bus. The uPD70332 features a dedicated data bus between the internal ROM and the instruction pre-fetch queue. This allows internal ROM opcode fetches to be performed in a single clock cycle (200 ns at 5 MHz); it also makes it possible for opcode fetches to be performed while the external data bus is busy. This feature gives the V35 a 10-20% performance increase when executing from the internal ROM.

30E 🕽 🖿 6427525 0027015 3 🖿

N E C ELECTRONICS INC

μ**PD70330/332 (V35)** T-49-19-16 T-49-19-59

Register Set

The μ PD70330/70332 CPUs have general purpose register sets compatible with the μ PD70108/70116 and the μ PD70320/70322 microprocessors. Like the μ PD70320/70322, they also have a set of special function registers for controlling the onboard peripherals. All registers reside in the CPU's memory space. They are grouped in a 4K byte block called the internal data area (IDA). The 256 byte internal RAM is also in the IDA. The addresses of the register are given as offsets into the IDA. The start address of the IDA is set by the Internal Data Area Base register (IDB), and may be programmed to any 4K boundary in the memory address space.

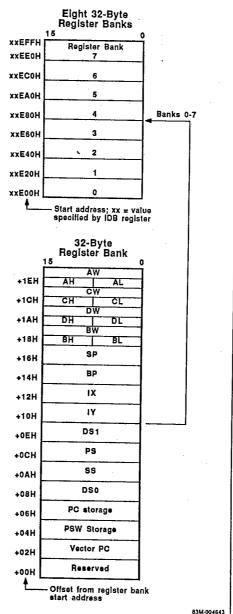

Register Banks. Because the general purpose register set is in internal RAM, it is possible to have multiple banks of registers. The μ PD70330/70332 CPU supports up to 8 register banks. A bit field in the PSW selects which bank is currently being used. Each bank contains the entire CPU register set plus additional information needed for context switching. Register banks may be switched using special instructions (TSKSW, BRKCS, MOVSPA, MOVSPB), or may switch in response to an interrupt. This provides fast context switching and fast interrupt handling. During and after RESET, register bank 7 is selected.

Figure 1 shows the configuration of a register bank and how the banks are mapped to internal RAM. The Vector PC field contains the value that will be loaded into the PC when a register bank switch occurs. The PC Save and PSW Save fields contain the values of the PC and the PSW just before the banks are switched. The PSW is left unmodified after a bank switch; the PSW Save field is used to restore the PSW to its previous state is required.

General-Purpose Registers [AW, BW, CW, DW]. These four 16-bit general-purpose registers can also serve as independent 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL). The instructions below use general-purpose registers for default;

- AW Word multiplication/division, word I/O, data conversion
- AL Byte multiplication/division, byte I/O, BCD rotation, data conversion, translation
- AH Byte multiplication/division
- BW Translation
- CW Loop control branch, repeat prefix
- CL Shift instructions, rotation instructions, BCD operations
- DW Word multiplication/division, indirect addressing I/O

6427525 0027016 5 🛚

T-49-19-59

N E C ELECTRONICS INC

Pointers [SP, BP] and index Registers [IX, IY]. These registers are used as 16-bit base pointers or index registers in based addressing, indexed addressing, and based indexed addressing. The registers are used as default registers under the following conditions:

30E

SP Stack operations

μ**PD7**0330/332 (V35)

- IX Block transfer (source), BCD string operations
- IY Block transfer (destination), BCD string operations

Segment Registers. The segment registers divide the 1M-byte address space into 64K-byte blocks. Each segment register functions as a base address to a block; the effective address is an offset from that base. Physical addresses are generated by shifting the associated segment register left four binary digits and then adding the effective address. The segment registers are:

Segment Register	Default Offset
PS (Program segment)	PC
SS (Stack segment)	SP, Effective address
DS0 (Data segment-0)	IX, Effective address
DS1 (Data segment-1)	IY, Effective address

During RESET, PS is set to FFFFH; DS0, DS1 and SS are set to 0000H.

Program Counter [PC]. The PC is a 16-bit binary counter that contains the offset address from the program segment of the next instruction to be executed. It is incremented every time an instruction is received from the queue. It is loaded with a new location whenever a branch, call, return, break, or interrupt is executed. During RESET, PC is set to 0000H.

Program Status Word [PSW]. The PSW contains the following status and control flags.

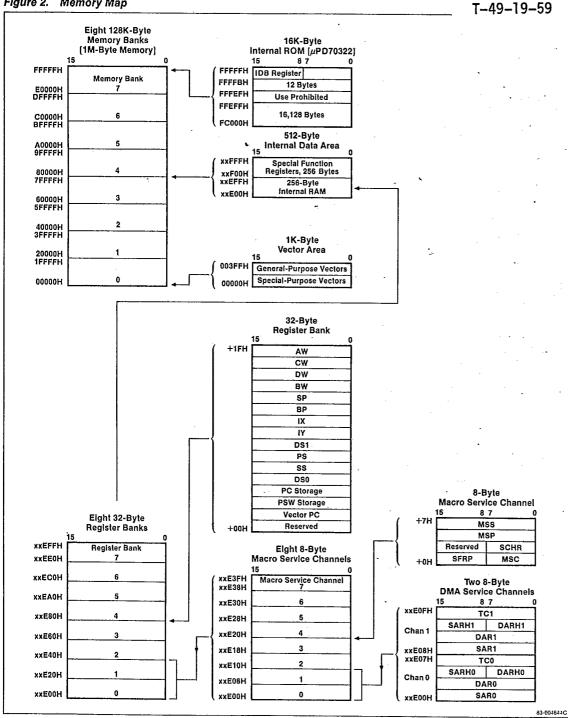
T-49-19-16

15			PS	SW			8
1	RB2	RB1	RB0	V	DIR	IE	BRK
7							0
S	Z	F1	AC	FO	P	BRKI	CY
Stat	us Flags			Contr	ol Fla	gs	
V	Overflo	w bit		DIR			f string
s	Sign				•	essing	
z	Zero			IE	Inter	rupt er	nable
AC	Auxilia	ry carry	/	BRK		k (afte uction)	r every
Р	Parity			RBn	Curr	ent reg	jister
CY	Carry				bank	flags	
				BRKI		•	able (see terrupts)

F0, F1 General-purpose user flags

The eight low-order bits of the PSW can be stored in the A4 register and restored by a MOV instruction execution. The only way to alter the RBn bits via software is to execute an RETRBI or RETI instruction. During RESET, PSW is set to F002H. The F0 and F1 flags may be accessed as bits in the FLAG special functioning register.

Memory Map


The μ PD70330/332 has a 20-bit address bus that can directly access 1M bytes of memory. Figure 2 shows that the 16K bytes of internal ROM (μ PD70332 only) are located at the top of the address space from FC000H to FFFFFH.

30E **D E** 6427525 0027017 7 **E**

μ**PD70330/332 (V35)**

T-49-19-16

Figure 2. Memory Map

.

N E C ELECTRONICS INC

46

μ**PD70330/332 (V35)**

Figure 2 shows the internal data area (IDA) is a 256byte internal RAM area followed consecutively by a 256-byte special function register (SFR) area. All the data and control registers for on-chip peripherals and I/O are mapped into the SFR area and accessed as RAM. For a description of these functions, see table 6. The IDA is dynamically relocatable in 4K-byte increments by changing the value in the internal data base (IDB) register. Whatever value is in this register will be assigned as the uppermost eight bits of the IDA address. The IDB register can be accessed from two different memory locations, FFFFFH and XXFFFH, where XX is the value in the IDB register.

On reset, the internal data base register is set to FFH which maps the IDA into the internal ROM space. However, since the μ PD70332 has a separate bus to internal ROM, this does not present a problem. When these address spaces overlap, program code cannot be executed from the IDA and internal ROM locations cannot be accessed as data.

Figure 2 shows that the internal data area is divided into 2 parts: the 256 byte internal RAM and the special function register area.

The internal RAM area serves various purposes. When the RAMEN bit in the Processor Control Register is set, this area may be accessed as RAM and code may be executed from it. Note that the processor may run slower when the RAMEN bit is set. See the Instruction Clock Count table. In addition, whether the RAMEN bit is on or off, each of the 8 macroservice channels has an 8 byte control block that is assigned to a fixed location in the low 64 bytes of the internal RAM. Similarly, the two 8 byte DMA control blocks are assigned to the low 16 bytes of the RAM. The 8 CPU register banks use 32 bytes each. Since the RAM can't be used for more than one purpose, there are restrictions on how V35 features can be combined. For example, if register bank 0 is used, then macroservice channels 0-3 and both DMA channels cannot be used. If DMA channel 1 is used. then macroservice channel 1 cannot be used.

The special function register area contains the registers used to control the onboard peripheral functions. Table 6 shows the SFRs. The address shown in the table is an offset from the IDB register. Most SFRs can be both read and written, but some are read-only; others are write-only. Some SFRs may be accessed one bit at a time; others only 8 bits at a time, and some SFRs are 16 bits wide.

Instructions

30E D

T-49-19-59

T-49-19-16

The μ PD70330/332 instruction set is fully compatible with the V20 native mode instruction set. The V20 instruction set is a superset of the μ PD8086/8088 instruction set with different execution times and mnemonics.

🖬 6427525 0027018 9 📰

The μ PD70330/332 does not support the V20 8080 emulation mode. All of the instructions pertaining to this have been deleted from the μ PD70330/332 instruction set.

Enhanced Instructions

Implusion

In addition to the μ PD8086/88 instructions, the μ PD70330/332 has the following enhanced instructions.

Instruction	Function
PUSH imm	Pushes immediate data onto stack
PUSH R	Pushes eight general registers onto stack
POP R	Pops eight general registers from stack
MUL imm	Executes 16-bit multiply of register or memory contents by immediate data
SHL imm8 SHR imm8 SHRA imm8 ROL imm8 ROR imm8 ROLC imm8 RORC imm8	Shifts/rotates register or memory by immediate value
CHKIND	Checks array index against designated boundaries
INM	Moves a string from an I/O port to memory
OUTM	Moves a string from memory to an I/O port
PREPARE	Allocates an area for a stack frame and copies previous frame pointers
DISPOSE	Frees the current stack frame on a

procedure exit

30Ė **D**

🖬 6427525 0027019 O 🛤

μ**PD70330/332 (V35)**

Т-49-19-16 Т-49-19-59

Unique Instructions

The μ PD70330/332 has the following unique instructions.

Instruction	Function
the second s	

INS	Inserts bit field
EXT	Extracts bit field
ADD4S	Performs packed BCD string addition
SUB4S	Performs packed BCD string subtraction
CMP4S	Performs packed BCD string comparison
ROL4	Rotates BCD digit left
ROR4	Rotates BCD digit right
TEST1	Tests bit
SET1	Sets bit
CLR1	Clears bit
NOT1	Complements bit
BTCLR	Tests bit; if true, clear and branch
REPC	Repeat while carry set
REPNC	Repeat while carry cleared

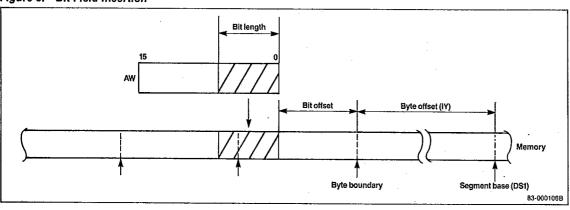
Variable Length Bit Field Operation Instructions

Bit fields are a variable length data structure that can range in length from 1 to 16 bits. The μ PD70330/332 supports two separate operations on bit fields: insertion (INS) and extraction (EXT). There are no restrictions on the position of the bit field in memory. Separate segment, byte offset, and bit offset registers are used for insertion and extraction. Following the execution of these instructions, both the byte offset and bit offset

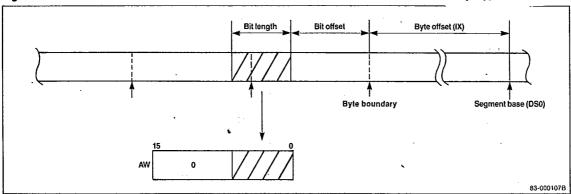
Figure 3. Bit Field Insertion

are left pointing to the start of the next bit field, ready for the next operation. Bit field operation instructions are powerful and flexible and are therefore highly effective for graphics, high-level languages, and packing/ unpacking applications.

Bit field insertion copies the bit field of specified length from the AW register to the bit field addressed by DS1:IY:reg8 (8-bit general-purpose register). The bit field length can be located in any byte register or supplied as immediate data. Following execution, both the IY and reg8 are updated to point to the start of the next bit field.


Bit field extraction copies the bit field of specified length from the bit field addressed by DS0:IX:reg8 to the AW register. If the length of the bit field is less than 16 bits, the bit field is right justified with a zero fill. The bit field length can be located in any byte register or supplied as immediate data. Following execution, both IX and reg8 are updated to point to the start of the next bit field.

Figures 3 and 4 show bit field insertion and bit field extraction.


Packed BCD Instructions

Packed BCD instructions process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or byte format operands (ROR4, ROL4). Packed BCD strings may be 1 to 254 digits in length. The two BCD rotation instructions perform rotation of a single BCD digit in the lower half of the AL register through the register or the memory operand.

μ**PD70330/332 (V35)**

Figure 4. Bit Field Extraction

30E **D**

Bit Manipulation Instructions

The μ PD70330/332 has five unique bit manipulation instructions. The ability to test, set, clear, or complement a single bit in a register or memory operand increases code readability as well as performance over the logical operations traditionally used to manipulate bit data. This feature further enhances control over on-chip peripherals.

Additional Instructions

Besides the V20 instruction set, the μ PD70330/0332 has the eight additional instructions described in table 1.

Table 1. Additional Instructions Instruction Function BTCLR var, imm8, Bit test and if true, clear and branch; short label otherwise, no operation STOP (no operand) Power down instruction, stops oscillator **RETRBI** (no operand). Return from register bank context switch interruot FINT (no operand) Finished interrupt. After completion of a hardware interrupt request, this instruction must be used to reset the current priority bit in the in-service priority register (ISPR).*

*Do not use with NMI or INTR Interrupt service routines.

Repeat Prefixes

Two new repeat prefixes (REPC, REPNC) allow conditional block transfer instructions to use the state of the CY flag as the termination condition. This allows inequalities to be used when working on ordered data, thus increasing performance when searching and sorting algorithms.

Bank Switch Instructions

The V35 has four new instructions that allow the effective use of the register banks for software interrupts and multitasking. These instructions are shown in table 2. Also, see figures 8 and 10.

🛛 🖬 6427525 0027020 7 1

T-49-19-16

T-49-19-59

Table 2. Bank Switch Instructions

Instruction	Function		
BRKCS reg 16	Performs a high-speed software interrupt with context switch to the register bank indicated by the lower 3-bits of reg 16. This operation is identical to the interrupt operation shown in figure 9.		
TSKSW reg 16	Performs a high-speed task switch to the register bank indicated by the lower 3-bits of reg 16. The PC and PSW are saved in the old banks. PC and PSW save registers and the new PC and PSW values are retrieved from the new register bank's save areas. See figure 10.		
MOVSPA	Transfers both the SS and SP of the old register bank to the new register bank after the bank has been switched by an interrupt or BRKCS instruction.		
MOVSPB	Transfers the SS and the SP of the current register bank before the switch to the SS and SP of the new register bank indicated by the lower 3-bits of reg 16.		

Interrupt Structure

The μ PD70330/332 can service interrupts generated both by hardware and by software. Software interrupts are serviced through vectored interrupt processing. See table 3 for the various types of software interrupts.

μPD70330/332 (V35)

Table 3. Software Interrupts

Interrupt	Description
Divide error	The CPU will trap if a divide error occurs as the result of a DIV or DIVU instruction.
Single step	The Interrupt is generated after every instruction if the BRK bit in the PSW is set.
Overflow	By using the BRKV instruction, an interrupt can be generated as the result of an overflow.
Interrupt Instructions	The BRK 3 and BRK imm8 instructions can generate interrupts.
Array bounds	The CHKIND instruction will generate an interrupt if specified array bounds have been exceeded.
Escape trap	The CPU will trap on an FP01,2 instruction to allow software to emulate the floating point processor.
I/O trap	If the I/O trap bit in the PSW is cleared, a trap will be generated on every IN or OUT instruction. Software can then provide an updated peripheral address. This feature allows software interchangeability between different systems.

When executing software written for another system, it is better to implement I/O with on-chip peripherals to reduce external hardware requirements. However, since µPD70330/332 internal peripherals are memory mapped, software conversion could be difficult. The I/O trap feature allows easy conversion from external peripherals to on-chip peripherals.

Interrupt Vectors

The starting address of the interrupt processing routines may be obtained from table 4. The table begins at physical address 00H, which is outside the internal ROM space. Therefore, external memory is required to service these routines. By servicing Interrupts via the macro service function or context switching, this requirement can be eliminated.

Each interrupt vector is four bytes wide. To service a vectored interrupt, the lower addressed word is transferred to the PC and the upper word to the PS. See figure 5.

T-49-19-16 T-49-19-59 Figure 5. Interrupt Vector 0

Vector 0

000H

002H

PS ← (003H, 002H) PC ← (001H, 000H)

ЗÓЕ

001H 003H 83-000112A

Table 4. Interrupt Vectors

Address	Vector No.	Assigned Use
00	0	Divide error
04	1	Break flag
08	2	NMI
00	3	BRK3 instruction
10	4	BRKV instruction
14	5	CHKIND instruction
18	6	General purpose
10	7	FPO instructions
20-2C	8-11	General purpose
30	12	INTSER0 (Interrupt serial error, channel 0)
34	13	INTSR0 (Interrupt serial receive, channel 0)
38	14	INTSTO (Interrupt serial transmit, channel 0)
30	15	General purpose
40	16	INTSER1 (Interrupt serial error, channel 1)
44	17	INTSR1 (Interrupt serial receive, channel 1)
48	18	INTST1 (Interrupt serial transmit, channel 1)
4C	19	I/O trap
50	20	INTDO (Interrupt from DMA, channel 0)
54	21	INTD1 (Interrupt from DMA, channel 1)
58	22	General purpose
5C	23	General purpose
60	24	INTPO (Interrupt from peripheral 0)
64	25	INTP1 (Interrupt from peripheral 1)
68	26	INTP2 (interrupt from peripheral 2)
6C	27	General purpose
70	28	INTTUO (Interrupt from timer unit 0)
74	29	INTTU1 (Interrupt from timer unit 1)
78	30	INTTU2 (Interrupt from timer unit 2)
70	31	INTTB (Interrupt from time base counter)
080-3FF	32-255	General purpose
·		

μ**PD70330/332 (V35)**

T-49-19-16 T-49-19-59

Execution of a vectored interrupt occurs as follows:

 $(SP-1, SP-2) \leftarrow PSW$ $(SP-3, SP-4) \leftarrow PS$ $(SP-5, SP-6) \leftarrow PC$ $SP \leftarrow SP-6$ $IE \leftarrow 0, BRK \leftarrow 0$ $PS \leftarrow$ vector high bytes $PC \leftarrow$ vector low bytes

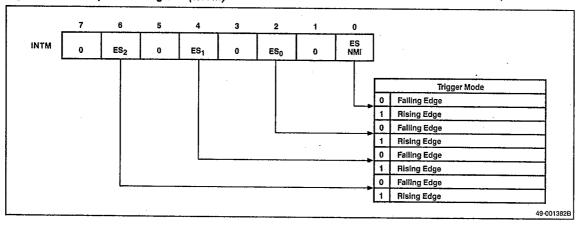
Hardware Interrupt Configuration

The V35 features a high-performance on-bhip controller capable of controlling multiple processing for interrupts from up to 17 different sources (5 external, 12 internal). The interrupt configuration includes system interrupts that are functionally compatible with those of the V20/V30 and unique high-performance microcontroller interrupts.

Interrupt Sources

The 17 interrupt sources (table 5) are divided into groups for management by the interrupt controller. Using software, each of the groups can be assigned a priority from 0 (highest) to 7 (lowest). The priority of individual interrupts within a group is fixed in hardware. If interrupts from different groups occur simultaneously and the groups have the same assigned priority level, the priority followed will be as shown in the Default Priority column of table 5.

30E n 🖬 6427525 0027022 O I


The ISPR is an 8-bit SFR; bits PR_0 - PR_7 correspond to the eight possible interrupt request priorities. The ISPR keeps track of the priority of the interrupt currently being serviced by setting the appropriate bit. The address of the ISPR is XXFFCH. The ISPR format is shown below.

PR ₇	PR ₆	PR5	PR4	PR ₃	PR ₂	PR ₁	PRo
ليجنب ك		- · · ·			-		

NMI and INT are system-type external vectored interrupts. NMI is not maskable via software. INTR is maskable (IE bit in PSW) and requires that an external device provide the interrupt vector number. It allows expansion by the addition of an external interrupt controller (μ PD71059).

NMI, INTP0, and INTP1 are edge-sensitive interrupt inputs. By selecting the appropriate bits in the interrupt mode register, these inputs can be programmed to be either rising or falling edge triggered. ES_0-ES_2 correspond to INTP0-INTP2, respectively. See figure 6.

Figure 6. Interrupt Mode Register (INTM)

30E D 💻 6427525 0027023 2 🔳

μ**PD70330/332 (V35)**

T-49-19-16

T-49-19-59

Table 5. Interrupt Sources

NEC

						Priority Order		Multi-te	
Interrupt Source	External/ Internal	Vector	Macro Service	Bank Switching	Setting Possible	Between Groups	Within Groups	Multiple Processing Control	
NMI Nonmaskable interrupt	External	2	No	No	No	0		Not	-
INTTUO Interrupt from timer unit O	Internal	_ 28	Yes	Yes	Yes	1	1 .	Accepted	- .
NTTU1 nterrupt from timer unit 1	Internal	29	Yes	Yes	Yes	1	2		
NTTU2 Interrupt from timer unit 2	Internal	30	Yes	Yes	Yes	1	3		
NTDO Interrupt from DMA channel O	Internal	20	No	Yes	Yes	2	1	Accepted	_
INTD1 Interrupt from DMA channel 1	Internal	21	No	Yes	Yes	2	2		
INTPO Interrupt from peripheral O	External	24	Yes	Yes	Yes	3	1	Accepted	
NTP1 Interrupt from peripheral 1	External	25	Yes	Yes	Yes	3	2		
NTP2 nterrupt from peripheral 2	External	26	Yes	Yes	Yes	3	3		46
NTSER0 nterrupt from serial error on channel 0	Internal	12	No	Yes	Yes	4	1	Accepted	
NTSRO Interrupt from serial receiver of channel O	Internal	13	Yes	Yes	Yes	4	2		
NTSTO nterrupt from serial transmitter of channel O	Internal	14	Yes	Yes	Yes	4	3		
NTSER1 nterrupt from serial prror on channel 1	Internal	16	No	Yes	Yes	5	1	Accepted	-
NTSR1 nterrupt from serial eceiver of channel 1	Internal	17	Yes	Yes	Yes	5	2		
NTST1 nterrupt from serial ransmitter of channel 1	Internal	18	Yes	Yes	Yes	5	3		
NTTB nterrupt from time pase counter	Internal	31	No	No	No (Preset to 7)	6		Accepted	-
NT nterrupt	External	Ext. input	No	No	No	7	_	Not accepted	-

μ**PD70330/332 (V35)**

Interrupt Processing Modes

Interrupts, with the exception of NMI, INT, and INTTB, have high-performance capability and can be processed in any of three modes: standard vectored interrupt, register bank context switching, or macro service function. The processing mode for a given interrupt can be chosen by enabling the appropriate bits in the corresponding interrupt request control register. As shown in table 6, each individual interrupt, with the exception of INTR and NMI, has its own associated IRC register. The format for all IRC registers is shown in figure 7. There is an IRC for every interrupt source except NHI and INT.

All interrupt processing routines other than those for NMI and INT must end with the execution of an FINT instruction. Otherwise, subsequently, only interrupts of a higher priority will be accepted. FINT allows the internal interrupt controller to begin looking for new interrupts.

In the vectored interrupt mode, the CPU traps to the vector location in the interrupt vector table.

Register Bank Switching

ЗОЕ **О 🖿** 6427525 0027024 4 I

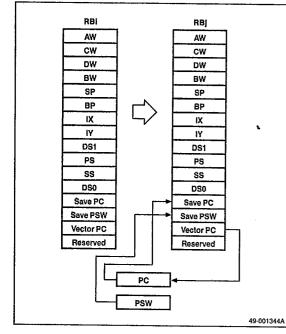
Register bank context switching allows interrupts to be processed rapidly by switching register banks. After an interrupt, the new register bank selected is that which has the same register bank number (0-7) as the priority of the interrupt to be serviced. The PC and PSW are automatically stored in the save areas of the new register bank and the address of the interrupt routine is loaded from the vector PC storage location in the new register bank. As in the vectored mode, the IE and BRK bits in the PSW are cleared to zero. After interrupt processing, execution of the RETRBI (return from register bank interrupt) returns control to the former register bank and restores the former PC and PSW. Figures 8 and 9 show register bank context switching and register bank return.

T-49-19-16 T-49-19-59

Specific IRC registers include the following.

Symbol **IRC Register** DIC0, DIC1 EXIC0-EXIC2 SEICO, SEIC1 SRICO, SRIC1 STICO, STIC1 TMIC0-TMIC2

DMA External Serial error Serial receive Serial transmit Timer


Figure 7. Interrupt Request Control Registers (IRC)

5 6 3 2 0 IRC MS/ FLAG MASK ENCS 0 PR₂ PR₁ PR₀ 1 0 Priority 0 0 Highest 1 Lowes ENCS Context Switch Vectored Interrupt Mode 0 Bank Switching 1 MS/INT Macro Service or Interrupt 0 Interrupt 1 Macro Service xxMKn Interrupt Mask 0 Mask Open; Interrupts Enabled Mask Closed: Interrupts Disabled 1 xxFn Interrupt Request Flag 0 No Request Interrupt Requested 49-001383E

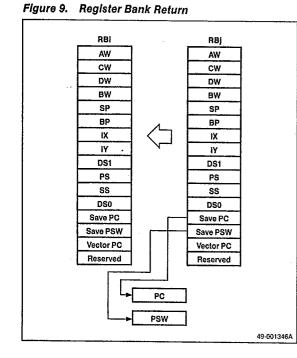
FC

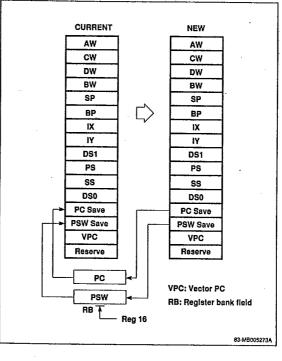
μ**PD**70330/332 (V35)

Figure 8. Register Bank Context Switching

Macro Service Function

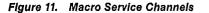
T-49-19-16 T-49-19-59

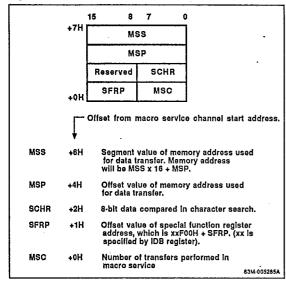

The macro service function (MSF) is a special microprogram that acts as an internal DMA controller between on-chip peripherals (special function registers, SFR) and memory. The MSF greatly reduces the software overhead and CPU time that other processors would require for register save processing, register returns, and other handling associated with interrupt processing.


If the MSF is selected for a particular interrupt, each time the request is received, a byte or word of data will be transferred between the SFR and memory without interrupting the CPU. Each time a request occurs, the macro service counter is decremented. When the counter reaches zero, an interrupt to the CPU is generated. The MSF also has a character search option. When selected, every byte transferred will be compared to an 8-bit search character and an interrupt will be generated if a match occurs or if the macro service counter counts out.

Like the NMI, INT and INTTB, the two DMA controller interrupts (INTD0, INTD1) do not have MSF capability.

Figure 10. Task Switching




μPD70330/332 (V35)

There are eight 8-byte macro service channels mapped into internal RAM from XXE00H to XXE3FH. Figure 11 shows the components of each channel.

30E

Setting the macro service mode for a given interrupt requires programming the corresponding macro service control register. Each individual interrupt, excluding INTR, NMI and TBC, has its own associated MSC register. See table 6. Format for all MSC registers is shown in figure 12.

On-Chip Peripherals

Timer Unit

The μ PD70330/332 (figure 13) has two programmable 16-bit interval timers (TM0, TM1) on-chip, each with variable input clock frequencies. Each of the two 16-bit timer registers has an associated 16-bit modulus register (MD0, MD1). Timer 0 operates in the interval timer mode or one-shot mode; timer 1 has only the interval timer mode. **Interval Timer Mode.** In this mode, TM0/TM1 are decremented by the selected input clock and, after counting out, the registers are automatically reloaded from the modulus registers and counting continues. Each time TM1 counts out, interrupts are generated through TF1 and TF2 (Timer Flags 1, 2). When TM0 counts out, an interrupt is generated through TF0. The timer-out signal can be used as a square-wave output whose half-cycle is equal to the count time. There are two selectable input clocks (SCLK: system clock = $f_{OSC}/2$; $f_{OSC} = 10$ MHz).

T-49-19-59

📕 6427525 0027026 8

T-49-19-16

Clock	Timer Resolution	Full Count
SCLK/6	`1.2 μs	78.643 ms
SCLK/128	25.6 <i>µ</i> s	1.678 s

One-Shot Mode. In the one-shot mode, TM0 and MD0 operate as independent one-shot timers. Starting with a preset value, each is decremented to zero. At zero, counting ceases and an interrupt is generated by TF0 (from TM0) or TF1 (from MD0). One-shot mode allows two selectable input clocks ($f_{OSC} = 10 \text{ MHz}$).

Clock	Timer Resolution	Full Count
SCLK/12	2.4 μs	157.283 ms
SCLK/128	25.6 μs	1.678 s

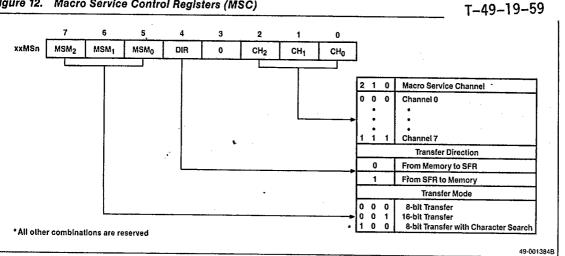
Setting the desired timer mode requires programming the timer control register. See figures 14 and 15 for format.

Time Base Counter/Processor Control Register

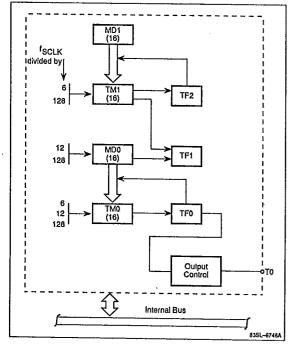
The 20-bit free-running time base counter controls internal timing sequences and is available to the user as the source of periodic interrupts at lengthy intervals. One of four interrupt periods can be selected by programming the TB0 and TB1 bits in the processor control register (PRC). The TBC interrupt is unlike the others in that it is fixed as a level 7 vectored interrupt. Macro service and register bank switching cannot be used to service this interrupt. See figures 16 and 17.

The RAMEN bit in the PRC register allows the internal RAM to be removed from the memory address space to implement faster instruction execution.

The TBC (figure 18) uses the system clock as the input frequency. The system clock can be changed by programming the PCK0 and PCK1 bits in the processor control register (PRC). Reset initializes the system clock to $f_{OSC}/8$ (f_{OSC} = external oscillator frequency).


ЗОЕ **D** 🖿 6427525 0027027 Т 🔳

N E C ELECTRONICS INC


μPD70330/332 (V35)

T-49-19-16

Figure 12. Macro Service Control Registers (MSC)

Figure 13. Timer Unit Block Diagram

N E C ELECTRONICS INC 30E D 🖬 6427525 0027028 1 🖿

T-49-19-16

T-49-19-59

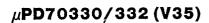
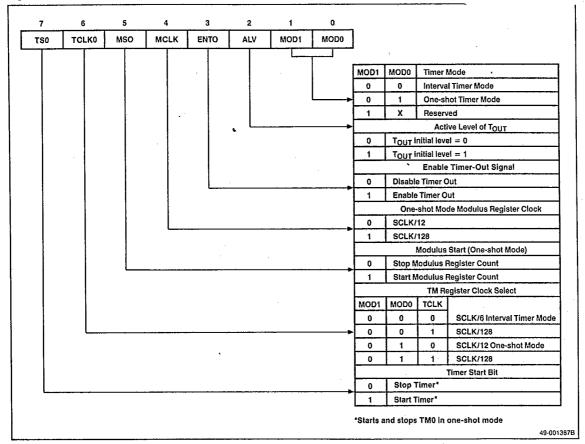
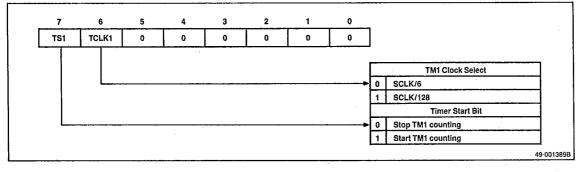
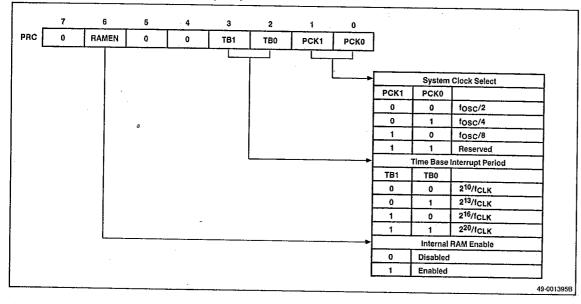
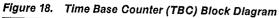
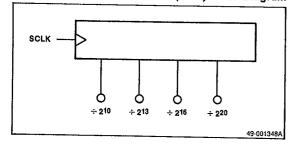




Figure 14. Timer Control Register 0

μ**PD70330/332 (V35)**



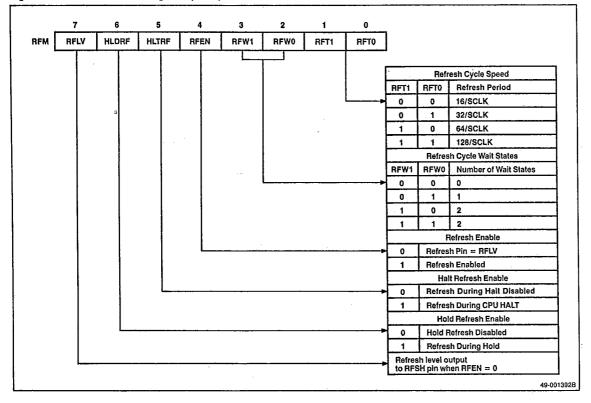

Figure 16. Time Base Interrupt Request Control Register T-49-19-59 7 6 5 4 3 2 1 Ò TBF твмк 0 0 0 1 t 1 , Time Base Interrupt Mask Bit σ Unmasked Masked 1 Time Base Interrupt Flag 0 No Interrupt Generated 1 Interrupt Generated 49-001393B


• •

30E D

Figure 17. Processor Control Register (PRC)

🖿 6427525 0027030 T 🛲 30E N


µPD70330/332 (V35)

Refresh Controller

The µPD70330/332 has an on-chip refresh controller for dynamic and pseudostatic RAM mass storage memories. The refresh controller generates refresh addresses and refresh pulses. It inserts refresh cycles between the normal CPU bus cycles according to refresh specifications.

The refresh controller outputs a 9-bit refresh address on address bits A₀-A₈ during the refresh bus cycle. Address bits A9-A19 are all 1's. The 9-bit refresh address is automatically incremented at every refresh timing for 512 row addresses. The 8-bit refresh mode (RFM) register (figure 19) specifies the refresh operation and allows refresh during both CPU HALT and

Figure 19. Refresh Mode Register (RFM)

T-49-19-59 HOLD modes. Refresh cycles are automatically timed

T-49-19-16

to REFRQ following read/write cycles to minimize the effect on system thoughput.

The following shows the REFRQ pin level in relation to bits 4 (RFEN) and 7 (RFLV) of the refresh mode reaister.

RFEN	RFLV	REFRQ Level
0	0	0
0	1	1
1	0	. 0
1	1	Refresh pulse output
	· · · ·	

Serial Interface

The µPD70330/332 has two full-duplex UARTs, channel 0 and channel 1. Each serial port channel has a transmit line (TxDn), a receive line (RxDn), and a clear to send (CTSn) input line for handshaking. Communication is synchronized by a start bit, and you can program the ports for even, odd, or no parity, character lengths of 7 or 8 bits, and 1 or 2 stop bits.

The µPD70330/332 has dedicated baud rate generators for each serial channel. This eliminates the need to obligate the on-chip timers. The baud rate generator allows a wide range of data transfer rates (up to 1.25 Mb/s). This includes all of the standard baud rates without being restricted by the value of the particular external crystal.

Each baud rate generator has an 8-bit baud rate generator (BRGn) data register, which functions as a prescaler to a programmable input clock selected by the serial communication control (SCCn) register. Together these must be set to generate a frequency equivalent to the desired baud rate.

The baud rate generator can be set to obtain the desired transmission rate according to the following formula:

$$B \times G = \frac{SCLK \times 10^6}{2^{n+1}}$$

where B = baud rate

- G = baud rate generator register (BRGn) value
- n = input clock specifications (n between 0 and 8). This is the value that is loaded into the SCCn register. See figure 23. SCLK = system clock frequency (MHz)

Based on the above expression, the following table shows the baud rate generator values used to obtain standard transmission rates when SCLK = 5 MHz.

μPD70330/332 (V35) T-49-19-16

T-49-19-59

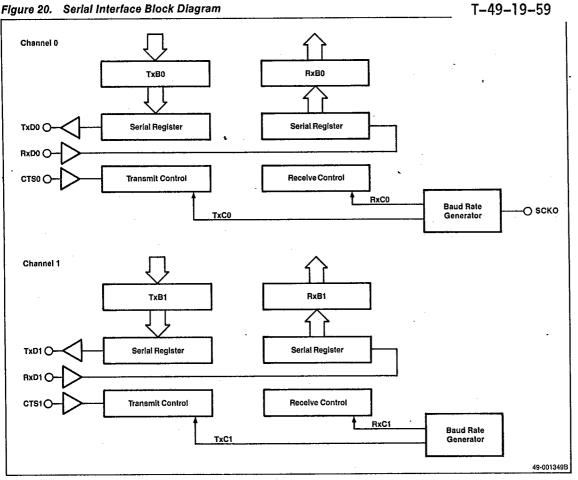
Baud Rate	n	BRGn Value	Error (%)
110	7	178	0.25
150	7	130	0.16
300	6	130	0.16
600	5	130	0.16
1200	4	130	0.16
2400	3	130	0.16
4800	2	130	0.16
9600	1	130	0.16
19,200	0	, 130	0.16
38,400	0	65	0.16
1.25M	0	2	0

In addition to the asynchronous mode, channel 0 has a synchronous I/O interface mode. In this mode, each bit of data tranferred is synchronized to a serial clock (SCKO). This is the same as the NEC μ COM75 and µCOM87 series, and allows easy interfacing to these devices. Figure 20 is the serial interface block diagram; figures 21, 22, and 23 show the three serial communication registers.

DMA Controller

The µPD70330/332 has a two-channel, on-chip DMA controller. This allows rapid data transfer between memory and auxiliary storage devices. The DMA controller supports four modes of operation, two for memory-to-memory transfers and two for transfers between I/O and memory. See figures 24, 25, and 26 for a graphic representation of the DMA registers.

30É Ď 🛲 6427525 0027032 3 🛲

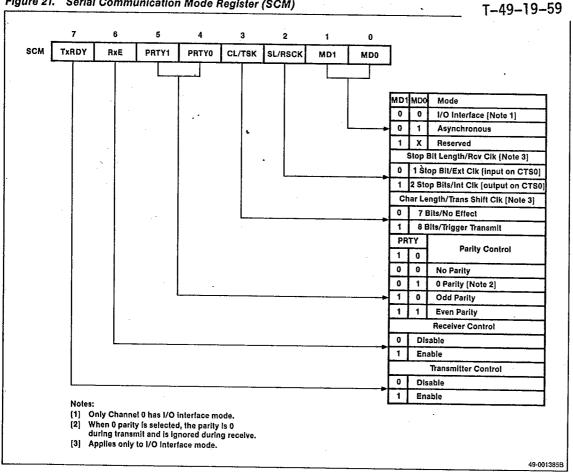

IEC

T-49-19-16

1

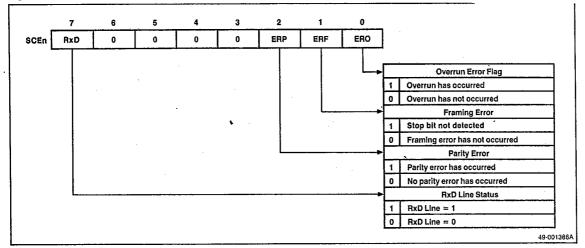
μ**PD70330/332 (V35)**

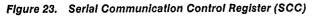
Figure 20. Serial Interface Block Diagram

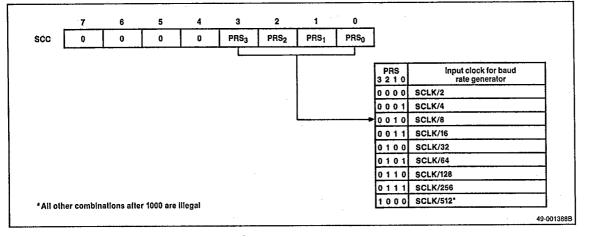


μ**PD70330/332 (V35)**

T-49-19-16


Figure 21. Serial Communication Mode Register (SCM)


μ**PD7**0330/332 (V35)

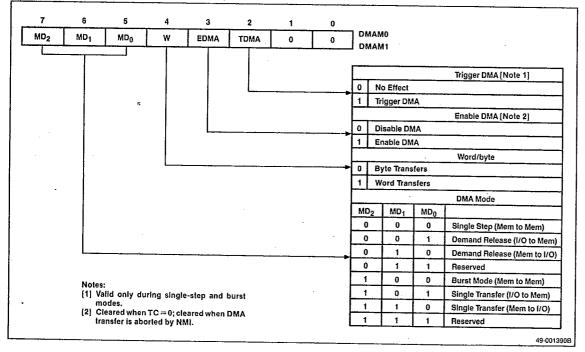

Figure 22. Serial Communication Error Registers (SCE)

30E D = 6427525 0027034 7 =

T-49-19-16 T-49-19-59

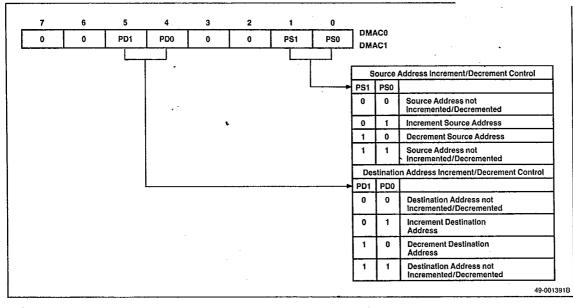
зов Ď 🖿 6427525 оо27035 9 🖿

NEC


μ**PD70330/332 (V35)**

T-49-19-16 T-49-19-59

Figure 24. DMA Channels


Figure 25. DMA Mode Registers (DMAM)

4b

μ**PD70330/332 (V35)**

Figure 26. DMA Control Registers (DMAC)

30E N

Memory-to-Memory Transfers. In the single-step mode, when one DMA request is made, execution of one instruction and one DMA transfer are repeated alternately until the prescribed number of DMA transfers has occurred. Interrupts can be accepted while in this mode. In burst mode, a DMA request causes DMA transfer cycles to continue until the DMA terminal counter decrements to zero. Software can also initiate memory-to-memory transfers.

Transfers Between I/O and Memory. In single-transfer mode, one DMA transfer occurs after each rising edge of DMARQ. After the transfer, the bus is returned to the CPU. In demand release mode, the rising edge of DMARQ enables DMA cycles, which continue as long as DMARQ is high.

In all modes, the \overline{TC} (terminal count) output pin will pulse low and a DMA completion I/O request will be generated after the predetermined number of DMA cycles has been completed.

The bottom of internal RAM contains all the necessary address information for the designated DMA channels. The DMA channel mnemonics are as follows:

тс	Terminal counter
SAR	Source address register
SARH	Source address register high
DAR	Destination address register
DARH	Destination address register high

The DMA controller generates physical source addresses by offsetting SARH 12 bits to the left and then adding the SAR. The same procedure is also used to generate physical destination addresses. You can program the controller to increment or decrement source and/or destination addresses independently during DMA transfers.

🛛 🛲 6427525 0027036 0 📖

T-49-19-16

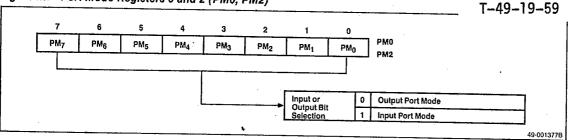
T-49-19-59

When the EDMA bit is set, the internal DMARQ flag is cleared. Therefore, DMARQs are only recognized after the EDMA bit has been set.

Parallel Ports

The μ PD70330/332 has three 8-bit parallel I/O ports: P0, P1, and P2. Refer to figures 27 through 31. Special function register (SFR) locations can access these ports. The port lines are individually programmable as inputs or outputs. Many of the port lines have dual functions as port or control lines.

Use the associated port mode and port mode control registers to select the mode for a given I/O line.


The analog comparator port (PT) compares each input line to a reference voltage. The reference voltage is programmable to be the V_{TH} input x n/16, where n = 1 to 16. See figure 32.

зое 🔘 🗰 6427525 оо27037 2 🖿

T-49-19-16

Figure 27. Port Mode Registers 0 and 2 (PM0, PM2)

Figure 28. Port Mode Register 1 (PM1)

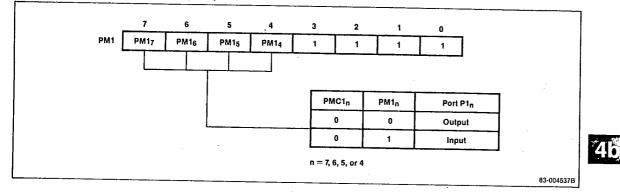
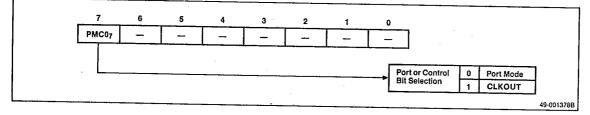
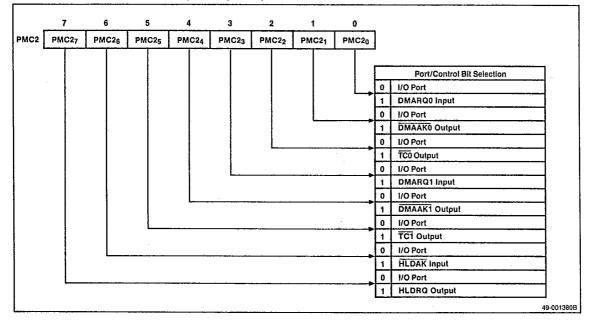



Figure 29. Port Mode Control Register 0 (PMC0)

30E D = 6427525 0027038 4 =

T-49-19-16

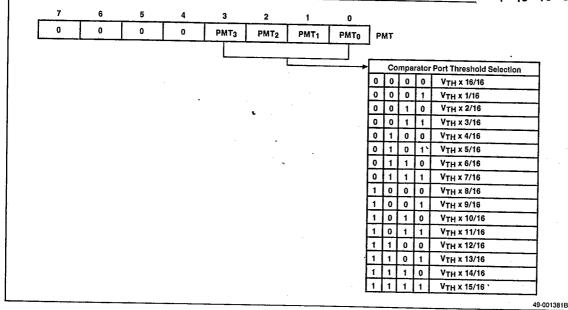

T-49-19-59

μ**PD7**0330/332 (V35)

Figure 30. Port Mode Control Register 1 (PMC1)

	7	6	5	4	3	2	1	0		
F	MC17	PMC16	PMC15	PMC14	PMC13	PMC12	PMC11	PMC10		
										Port/Control Bit Selection
								└→	X	NMI/P10 Input
			1				·	>	X	INTP0/P11 Input
						L			X	INTP1/P12 Input
					•				0	INTP2/P13 Input
									1	INTAK Output
									0	P14 I/O or POLL Input
									1	INT Input
									0	P151/O
							•		1	TOUT Output
									0	P1 ₆ I/O
									1	SCKO Output
									0	P17 I/O
									1	READY Input
										49.0

Figure 31. Port Mode Control Register 2 (PMC2)

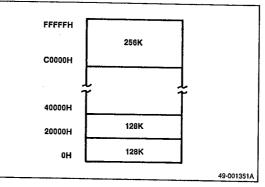


μ**PD70330/332 (V35**)

T-49-19-16

Figure 32. Port Mode Register T (PMT)

T-49-19-59


Programmable Wait State Generation

You can generate wait states internally to further reduce the necessity for external hardware. Insertion of these wait states allows direct interface to devices whose access times cannot meet the CPU read/write timing requirements.

When using this function, the entire 1M-byte memory address space is divided into 128K-blocks. Each block can be programmed for zero, one, or two wait states, or two plus those added by the extenal READY signal. The top two blocks are programmed together as one unit.

The appropriate bits in the wait control word (WTC) control wait state generation. Programming the upper two bits in the wait control word will set the wait state conditions for the entire I/O address space. Figure 33 shows the memory map for programmable wait state generation; see figure 34 for a graphic representation of the wait control word.

30E D 🖬 6427525 0027040 2 1

.

μ**PD7**0330/332 (V35)

Standby Modes

The two low-power standby modes are HALT and STOP. Software causes the processor to enter either mode.

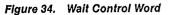
HALT Mode.

In the HALT mode, the processor is inactive and the chip consumes much less power than when operational. The external oscillator remains functional and all peripherals are active. Internal status and output port line conditions are maintained. Any unmasked interrupt can release this mode. In the El state, interrupts subsequently will be processed in vector mode. In the DI state, program execution is restarted with the instruction following the HALT instruction.

STOP Mode.

The STOP mode allows the largest power reduction while maintaining RAM. The oscillator is stopped,

T-49-19-16 T-49-19-59


halting all internal peripherals. Internal status is maintained. Only a reset or NMI can release this mode.

A standby flag in the SFR area is reset by rises in the supply voltage. Its status is maintained during normal operation and standby. The STBC register (figure 35) is not initialized by RESET. Use the standby flag to determine whether program execution is returning from standby or from a cold start by setting this flag before entering the STOP mode.

Special Function Registers

Table 6 shows the special function register mnemonic, type, address, reset value, and function. The 8 highorder bits of each address (xx) are specified by the IDB register.

SFR area addresses not listed in table 6 are reserved. If read, the contents of these addresses are undefined, and any write operation will be meaningless.

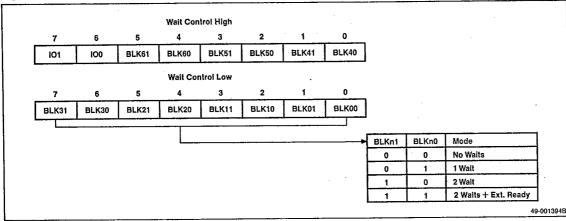
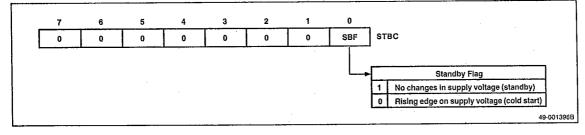



Figure 35. Standby Register

μ**PD70330/332 (V35)**

Table 6. Special-Function Registers

T-49-19-16

T-49-19-59

Table 6.	Special-Function Registers		-		[-49-19-	59
Address	Register Function	Symbol	R/W	Manipulation (Bit)	When RESET	•
xxF00H	Port 0	PO	B/W	8/1	Undefined	
xxF01H	Port mode 0	PMO	W	. 8	FFH	
xxF02H	Port mode control 0	PMCO	W	8	00H	
XXF08H	Port 1	P1	R/W	8/1	Undefined	
xxF09H	Port mode 1	PM1	W	8	FFH	
xxF0AH	Port mode control 1	PMC1	W		00H	
xxF10H	Port 2	P2	R/W	8/1	Undefined	
xxF11H	Port mode 2	PM2	W	8	FFH	
xxF12H	Port mode control 2	PMC2	W	× 8		
xxF38H	Port T	PT	R	8	Undefined	
xxF3BH	Port mode T	РМТ	R/W	8/1	00H	
XXF40H	External interrupt mode	INTM	R/W	8/1	00H	
xxF44H	External interrupt macro service control 0	EMS0	R/W	8/1	Undefined	
xxF45H	External interrupt macro service control 1	EMS1	R/W	8/1	-	
xxF46	External interrupt macro service control 2	EMS2	R/W	8/1	-	
xxF4CH	External interrupt request control 0	EXIC0	R/W	8/1	47H	
XXF4DH	External interrupt request control 1	EXIC1	R/W	8/1	-	_
xxF4EH	External interrupt request control 2	EXIC2	R/W	8/1	-	14
xxF60H	Receive buffer 0	RxB0	R	8	Undefined	à
xxF62H	Transmit buffer 0	TxB0	W			
xxF65H	Serial receive macro service control 0	SRMS0	R/W	8/1	-	
xxF66H	Serial transmit macro service control 0	STMS0	R/W	8/1		
xxF68H	Serial communication mode 0	SCMO	R/W	8/1	.	
xxF69H	Serial communication control 0	SCCO	R/W	8/1	00H	
xxF6AH	Baud rate generator 0	BRGO	R/W	8/1		
xxF6BH	Serial communication error 0	SCE0	R	8	. .	
XXF6CH	Serial error interrupt request control 0	SEIC0	R/W	8/1	47H	
xxF6DH	Serial receive interrupt request control 0	SRICO	R/W	8/1		
xxF6EH	Serial transmit interrupt request control 0	STICO	R/W	8/1		
KXF70H	Receive buffer 1	RxB1	R	8	Undefined	
KXF72H	Transmit buffer 1	TxB1	W	8		
KXF75H	Serial receive macro service control 1	SRMS1	R/W	8/1		
(xF76H	Serial transmit macro service control 1	STMS1	R/W	8/1		
(xF78H	Serial communication mode 1	SCM1	R/W	8/1	00H	
(xF79H	Serial communication control 1	SCC1	R/W	8/1		
(XF7AH	Baud rate generator 1	BRG1	R/W	8/1		
(xF7BH	Serial communication error 1	SCE1	R	8		

46

30É D 🗰 6427525 0027042 6 🛤 R

μ**PD70330/332 (V35)**

T-49-19-16

Table 6.	Special-Function Registers (cont)		7		T-49-19-59
Address	Register Function	Symbol	R/W	Maniputation (Bit)	When RESET
xxF7CH	Serial error interrupt request control 1	SEIC1	R/W	8/1	47H
xF7DH	Serial receive interrupt request control 1	SRIC1	R/W	8/1	
xF7EH	Serial transmit interrupt request control 1	STIC1	R/W	8/1	
xF80H	Timer 0	TM0	R/W	16	Undefined
xF82H	Modulo 0	MD0	R/W	16	_
xF88H	Timer 1	TM1	R/W	16	
xF8AH	Modulo 1 🔹 🔹	MD1	R/W	16	
xF90H	Timer control 0	TMCO	R/W	8/1	00H
xxF91H	Timer control 1	TMC1	R/W	. 8/1	
xF94H	Timer macro service control 0	TMMS0	Ř/W	8/1	Undefined
xF95H	Timer macro service control 1	TMMS1	R/W	8/1	
xxF96H	Timer macro service control 2	TMMS2	R/W	8/1	-
xF9CH	Timer interrupt request control 0	TMICO	R/W	8/1	47H
xF9DH	Timer interrupt request control 1	TMIC1	R/W	8/1	•
xF9EH	Timer interrupt request control 2	TMIC2	R/W	8/1	
xxFA0H	DMA control 0	DMAC0	R/W	8/1	Undefined
xxFA1H	DMA mode 0	DMAMO	R/W	8/1	00H
xxFA2H	DMA control 1	DMAC1	R/W	8/1	Undefined
xxFA3H	DMA mode 1	DMAM1	R/W	8/1	•
XXFACH	DMA interrupt request control 0	DICO	R/W	8/1	47H
XXFADH	DMA interrupt request control 1	DIC1	R/W	8/1	_
XXFEOH	Standby control	STBC	R/W (Note 1)	8/1	Undefined (Note 2)
xxFE1H	Refresh mode	RFM	R/W	8/1	FCH
xxFE8H	Wait control	WTC	R/W	16/8	FFFFH
XXFEAH	User flag (Note 3)	FLAG	R/W	8/1	00H
XXFEBH	Processor control	PRC	R/W	8/1	4EH
XXFECH	Time base interrupt request control	TBIC	R/W	8/1	47H
XXFFCH	Inservice priority register	ISPR	R/W	8/1	Undefined
xxFFFH FFFFFH	Internal data area base	IDB	R/W	8/1	FFH

Notes:

(1) Each bit of the standby control register can be set to 1 by an instruction; however, once set, bits cannot be reset to 0 by an instruction (only 1 can be written to this register).

(3) For the user flag register (FLAG), manipulating bits other than bits 3 and 5 is meaningless. The contents of user flags 0 and 1 (F0 and F1) of the FLAG register are affected by manipulating F0 and F1 of the PSW.

(2) Upon power-on reset = 00H; other = no change.

30E D 🔳 6427525 0027043 8 🔳

μ**PD70330/332 (V35**)

T-49-19-16 T-49-19-59

Absolute Maximum Ratings

-0.5 to +7.0 V
-0.5 to V _{DD} + 0.5 V (\leq +7.0 V)
-0.5 to V _{DD} + 0.5 V (\leq +7.0 V)
-0.5 to V _{DD} + 0.5 V (\leq +7.0 V)
4.0 mA 50 mA
—2.0 mA —20 mA
-40 to +85°C
-65 to +150°C

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

Comparator Characteristics $V_{DD} = +5 V \pm 10\%$; $T_A = -10 \text{ to } +70 \text{ °C}$

		Lin	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Accuracy	VACOMP		±100	mV	
Threshold voltage	VTH	, 0	V _{DD} + 0.1	V	
Comparison time	tCOMP	64	65	†CYK	
PT input voltage	VIPT	0	VDD	٧	· · · · · · · · · · · · · · · · · · ·

Capacitance Characteristics

 $V_{DD} = 0 V; T_A = 25 °C$

		Lin	nits		Test
Parameter	Symbol	Min	Max	Unit	Conditions
Input capacitance	Cl		10	ρF	f _c = 1 MHz;
Output capacitance	Co		20	pF	Unmeasured pins returned to 0 V
I/O capacitance	CIO		20	рF	

DC Charac $V_{DD} = +5 V \pm 10^{\circ}$	e 1)	T-49-19-				
	Limits					Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Supply current, operating	IDD1		50 65	100 120	mA mA	f _{CLK} = 5 MHz f _{CLK} = 8 MHz
Supply current, HALT mode	I _{DD2}		20 25	40 50	mA mA	f _{CLK} = 5 MHz f _{CLK} = 8 MHz
Supply current, STOP mode	1003		10	30	μA	
Threshold current	ITH		0.5	1.0	mΑ	$V_{TH} = 0$ to V_{DD}
Input voltage, low	VIL	ዑ		0.8	V	
Input voltage, high	V _{IH1}	2.2		V _{DD}	V	All inputs excep RESET, P1 ₀ /NMI X1, X2
	V _{IH2}	0.8 x V _{DD}		V _{DD}	۷	RESET, P10/NMI, X1, X2
Output voltage, low	V _{OL}			0.45	V	$I_{0L} = 1.6 \text{ mA}$
Output voltage, high	VOH	V _{DD} - 1.0			V.	$I_{OH} = -0.4 \text{ mA}$
Input current	IIN			±20	μA	\overline{EA} , P1 ₀ /NMI; V _I = 0 to V _{DD}
nput leakage current	lu			±10	μA	All except EA, P1 ₀ /NMI; V _I = 0 to V _{DD}
Output leakage current	IL0			±10	μA	$V_0 = 0$ to V_{DD}
Data retention voltage	VDDDR	2.5		5.5	۷	

(1) The standard operating temperature range is -10 to +70 °C. However, extended temperature range parts (-40 to +85 °C) are available.

ЗОЕ Ď 🖿 6427525 0027044 Т 🖿

,

F i

μ**PD**70330/332 (V35)

.

AC Characteristics $V_{DD} = +5 V \pm 10\%$; T_A = -10 to +70°C; C_L = 100 pF (max)

		Lim	lis	<u> </u>	
Parameter	Symbol	Min	Max	Unit	Test Conditions
V _{DD} rise, fall time	t _{RVD} , t _{FVD}	200	•	μs	STOP mode
Input rise, fall time	t _{IR} , t _{IF}		20	N\$	Except X1, X2, RESET, NMI
Input rise, fall time	t _{IRS} , t _{IF} S		30	ns	RESET, NMI (Schmitt)
Output rise, fall time	tor, tor		20	ns	Except CLKOUT
X1 cycle time	tCYX	98	250	ns	Note 3
		62	250	NS	Note 4
X1 width, low	twxL	35		ns	Note 3
		20		ns	Note 4
X1 width, high	twxH	35		ns	Note 3
		20		ns	Note 4
X1 rise, fall time	t _{XR} , t _{XF}		20	ns	
CLKOUT cycle	tCYK	200	2000	ns	Note 3
time		125	2000	ns	Note 4
CLKOUT width, low	t _{WKL}	0.5T — 15		ns	Note 1
CLKOUT width, high	twкн	0.5T 15		ns	
CLKOUT rise, fall time	t _{KR} , t _{KF}		15	ns	
Address delay time	^t dka		90	ns	
Address valid to input data valid	^t dadr		T(n + 1.5) - 90	ns	Note 2
MREQ to address hold time	t _{HMRA}	0.5T — 30		n\$	
MREQ to data delay	"tomrd		T(n + 2) - 75	ПŜ	
MSTB to data delay	tomso		T(n + 1) - 75	ns	-
MREQ to MSTB delay	tomrmsr	T — 35	T + 35	ns	
MREQ width, low	twmrl	T(n + 2) — 30		NS	
MREQ, MSTB to address hold time	^t HMA	0.5T — 50		ns	
Input data hold time	thmd	0		ns	
Next control setup time	tscc	T 25		ns	
MREQ to TC delay time	†DMRTC		0.5T + 50	ns	

		· .	T-	49-	-19-59
		Limits			Test
Parameter	Symbol	Min	Max	Unit	Conditions
MREQ delay time	t DAMR	0.5T — 30		ns	
MSTB delay time	^t damsr	T 30		ns	
MSTB width, low	twmslr	T(n + 1) - 30		ns	
Address data output	^t dadw		0.5T + 50	ns	· · · · ·
Data output setup time	^t SDM	T(n + 2) 50		ns	
MSTB write delay time	tdamsw	T(n + 0.5) - 30	<u> </u>	ns	
MREQ to MSTB write delay time	tomrmsw	T(n + 1) - 35		ns	
MSTB write width low	twmslw	T — 30		NS	· · · ·
Data output hold time	thmdw	0.5T — 50		ns	- <u>-</u>
IOSTB delay time	tDAIS	0.5T — 30		ns	
IOSTB to data input	tdisd		T(n + 1) — 90	ns	-
IOSTB width, low	twisl	T(n + 1) - 30		ns	-
Address hold time	thisa	0.5T - 30		ns	
input data hold time	^t hisdr	0		ns	
Output data setup time	t _{SDIS}	T(n + 1) - 50		ns	_
Output data hold time	thisdw	0.5T — 30		ns	
Next DMARQ setup time	tsdadq		Ť	ns	Demand mode
DMARQ hold time	thdarq	Q		ns	Demand mode
DMAAK read width, low	twomrl.	T(n + 2.5) — 30		ns	
DMAAK write width, low	twdmwl	T(n + 2) - 30		ns	
DMAAK to TC delay time	^t ddatc	-	0.5T + 50	ns	
TC width, low	twicl	2T — 30		ns	
REFRQ delay time	tDARF	0.5T — 30		ns	
REFRQ width, low	twRFL	T(n + 2) - 30		ns	
Address hold time	thrfa	0.5T — 30	· · · · · · · · ·	ns	

NEC

T-49-19-16

AC Characteristics (cont)

30E D 🗰 6427525 0027045 1 🛲

μ**PD7**0330/332 (V35)

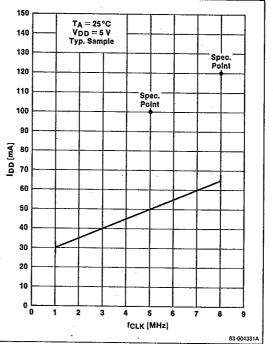
T-49-19-16

T-49-19-59

		Limits			Test
Parameter	Symbol	Min	Max	Unit	Conditions
RESET width low	twrsl1	30		ms	STOP/ POR (Power- on reset)
	twrsl2	5		μs	System reset
MREQ, TOSTB to READY setup time	^t SCRY		T(n 1) 100	ns	n≥2
MREQ, IOSTB to READY hold time	thcry	T(n)		ns	n≥2
Ready setup time	tsryk	20		ns	•
Ready hold time	t _{HKRY}	40		ns	
HLDRQ setup time	tsнак	30		ns	
HLDAK output delay	t dkha		80	ns	
Bus control float to HLDAK	tCFHA	T — 50		ns	
HLDAK1 to control output time	t dhac	T 50		пs	
HLDRQ to HLDAK delay	t dhoha		3T + 160	ns	
HLDRQ I to control float	tohac	3T + 30		ns	
HLDRQ width, low	twhal	1.5T		ns	
HLDAK width, low	tWHAL		Т	ńs	
INTP, DMARQ setup	tsiok	30		ПS	
INTP, DMARQ width, high	twich	8T		ns	••••
INTP, DMARQ width, low	twiaL	8T		ns	
POLL setup time	tSPLK	30		ns	
NMI width, high	twnih	5		μs	
NMI width, low	twniL	5		μs	
CTS width, low	twotl	2T		ns	
INTR setup time	tSIRK	30		ns	
INTAK delay time	tDKIA		80	ns	
INTR hold time	tHIAIQ	0		ns	
INTAK width, low	tWIAL	2T - 30		пs	
INTAK width, high	twiah	T — 30		ns	
INTAK to data delay	tDIAD		2T - 130	ns	
NTAK to data hold	thiad	0	0.5T	ns	······································
SCKO (TSCK) cycle time	tCYTK	1000		ns	
SCKO (TSCK) width, high	twsth	450		ns	
SCKO (TSCK) width, low	twstl	450	· <u> </u>	ns	
TxD delay time	^t DTKD		210	ns	

		Lin	nits	Test		
Parameter	Symbol	Min	Max	Unit Conditions		
CTSO (RSCK) cycle time	t CYRK	1000		NS .		
CTSO (RSCK) width, high	twsRH	420	,	ns		
CTSO (RSCK) width, low	twsrl	420	<u> </u>	ns		
RxD setup time	tsrdk	80		ns		
RxD hold time	tHKRD	80	·	ns		

Notes:

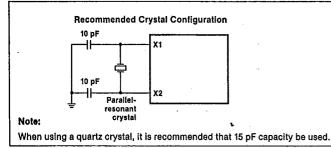

(1) T = CPU clock period (t_{CYK}).

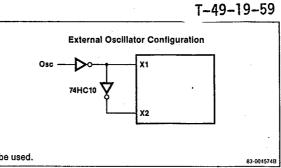
(2) n = number of wait states inserted.

(3) For 5 MHz parts (µPD70320/322).

(4) For 10 MHz parts (µPD70320/322-8).

Supply Current vs Clock Frequency

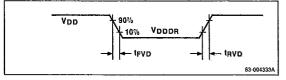




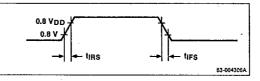
30È Ď 🛲 6427525 0027046 3 📾

μ**PD70330/332 (V35)**

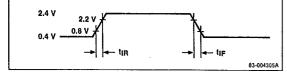
Figure 36. External System Clock Control Source

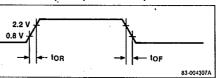

T-49-19-16

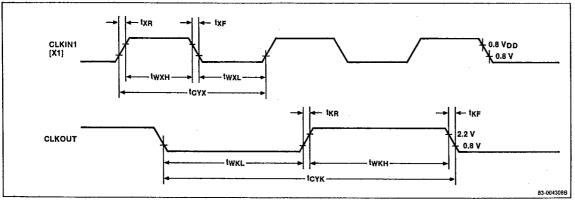
Resonator and Capacitance Requirements


Manufacturer	Product Number	Recommended C1 (pF)	Constants C2 (pF)	Product Number	Recommended C1 (pF)	Constants C2 (pF)
Kyocera	KBR-10.0M	33	33			
Murata Manufacturing	CSA.10.0MT	47	47	CSA16.0MX040	30	30
ТОК	FCR10.0M2S	30	30	FCR16.0M2S	15	6

Timing Waveforms


Stop Mode Data Retention Timing

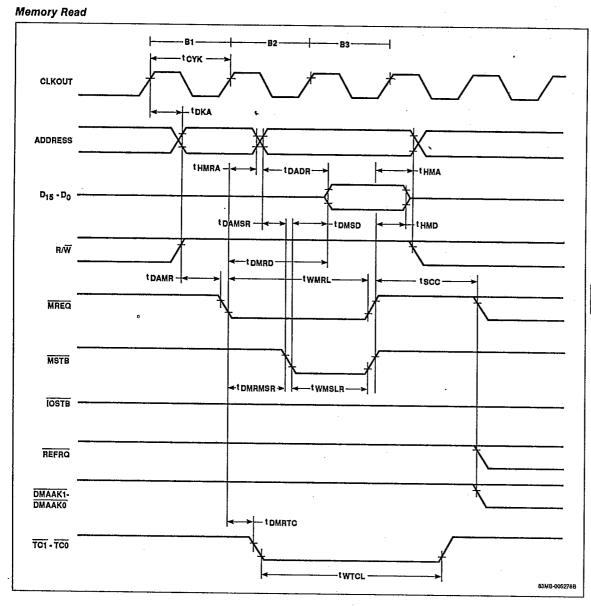

AC Input Waveform 2 (RESET, NMI)


AC Input Waveform 1 (Except X1, X2, RESET, NMI)

AC Output Test Point (Except CLKOUT)

Clock In and Clock Out

C


Timing Waveforms (cont)

ЗОЕ **D** 🖬 6427525 0027047 5 페

μ**PD70330/332 (V35)**

– T-49-19-16

T-49-19-59

4b.

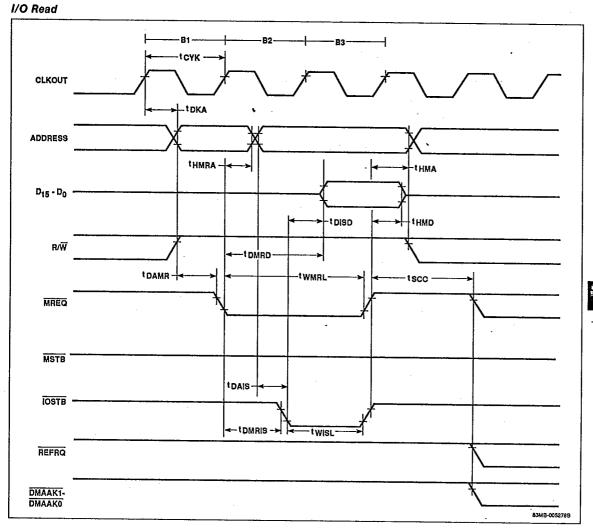
зое **р 📖** 6427525 0027048 7 🖿

NEC
T-49-19-16

µPD70330/332 (V35)

Timing Waveforms (cont)

T-49-19-59


Memory Write 81 **B**3 t CYK CLKOUT -tDKA ADDRESS **t**HMRA - tDAMSW. tHMA D₁₅ - D₀ **tDADW** -tsdM R∕₩ tDAMRtsco MREQ -t WMRL MSTB t DMRMSW tWMSLW IOSTB REFRO DMAAK1-- tomato TC1 - TCO WTCL 83MB-005277B

μ**PD7**0330/332 (V35)

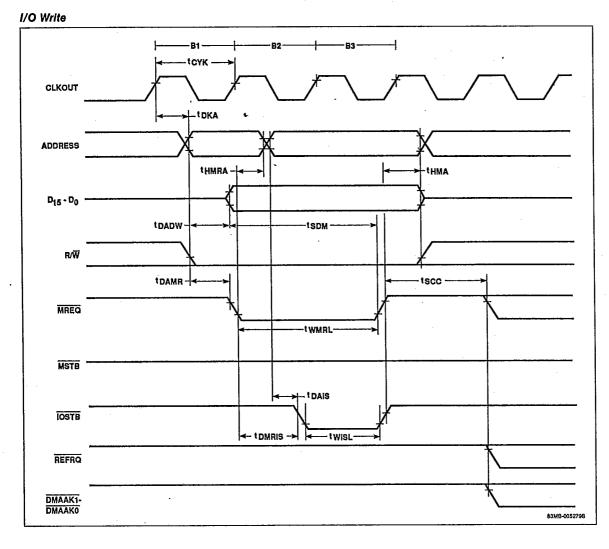
Timing Waveforms (cont)

T-49-19-16 T-49-19-59

۰.

46

.


30E D 🖿 6427525 0027050 5 🖿

NEC

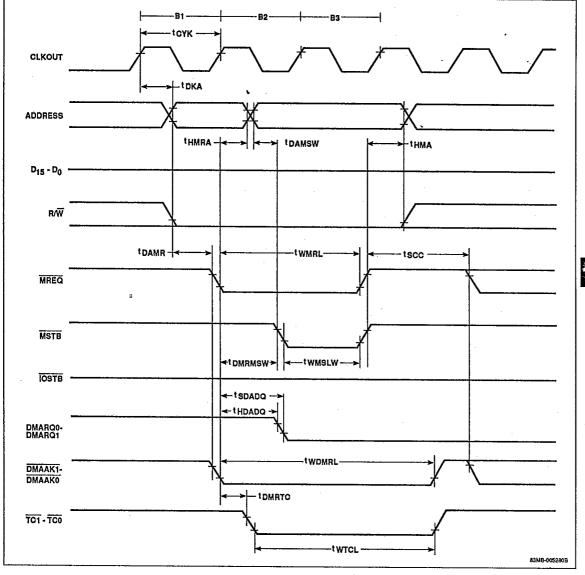
μ**PD7**0330/332 (V35)

Timing Waveforms (cont)

T-49-19-16 **T-49-19-59**

зо́Е ́D 🖿 6427525́ 0027051 7 🖿

μ**PD70330/332 (V35)**

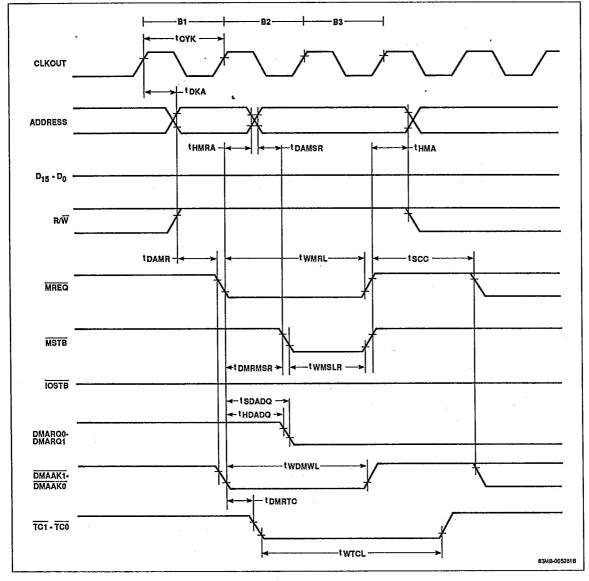

T-49-19-16

T-49-19-59

NEC

Timing Waveforms (cont)

DMA, I/O to Memory


4b

30E D 🖿 6427525 0027052 9 🛤

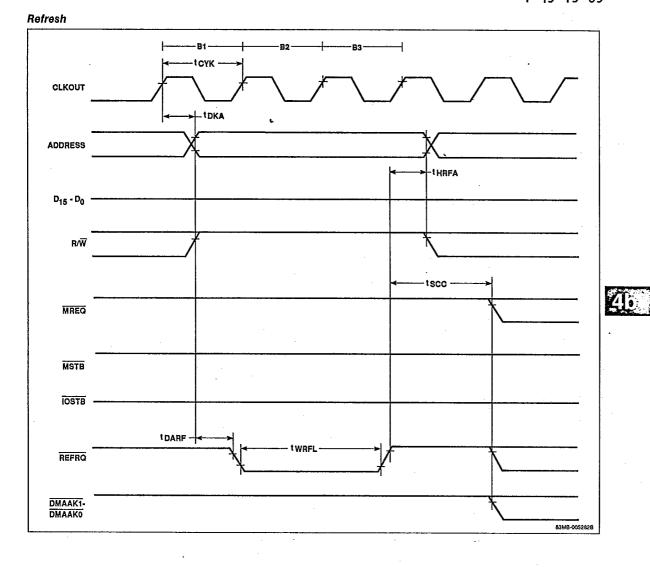
μ**PD7**0330/332 (V35)

Timing Waveforms (cont)

DMA, Memory to I/O

46

T-49-19-16 **T-49-19-59**


FC

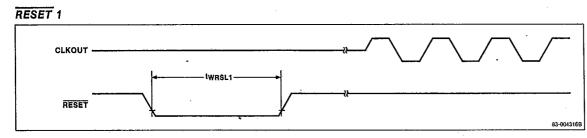
μ**PD7**0330/332 (V35)

T-49-19-16 T-49-19-59

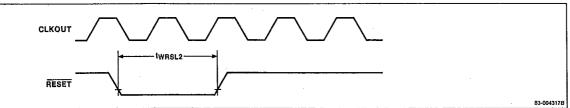
Timing Waveforms (cont)

зое́ **D** 🖿 6427525 0027054 2 📖

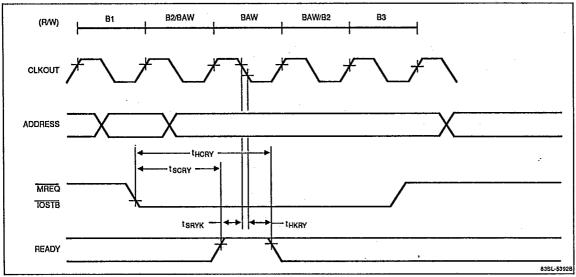
FEC


T-49-19-16

T-49-19-59

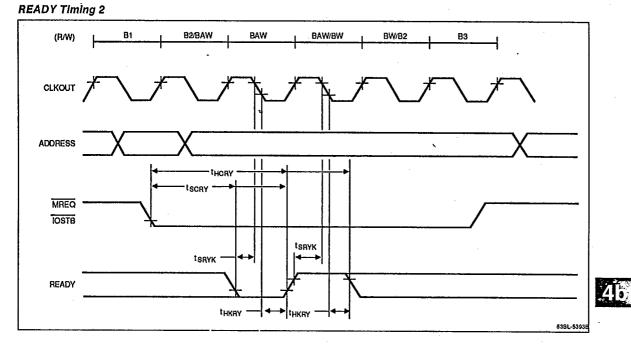

7

μ**PD7**0330/332 (V35)

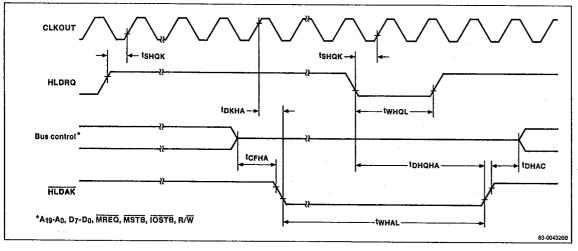

Timing Waveforms (cont)

RESET 2

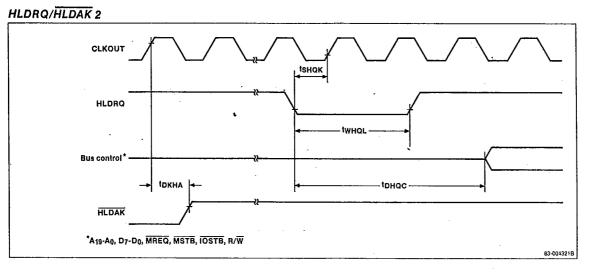
READY Timing 1

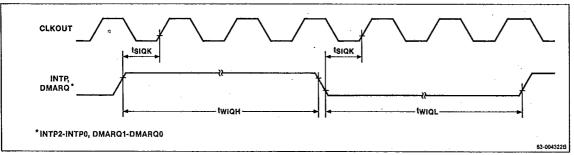


30E D = 6427525 0027055 4 m

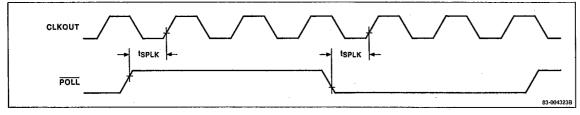

μ**PD70330/332 (V35)**

T-49-19-16 T-49-19-59


HLDRQ/HLDAK 1


зое **) —** 6427525 0027056 6 **—**

μ**PD7**0330/332 (V35)


Timing Waveforms (cont)

INTP, DMARQ Input

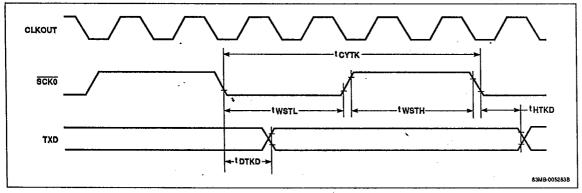
POLL Input

50

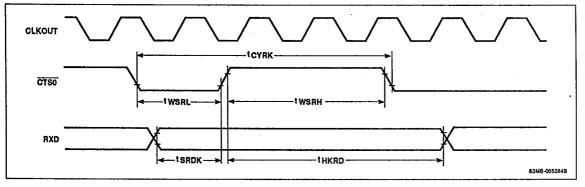
T-49-19-16

T-49-19-59

30E D 🖬 6427525 0027058 T 🛤


EC

T-49-19-16 T-49-19-59


μ**PD70330/332 (V35)**

Timing Waveforms (cont)

Serial Receive

Instruction Set

Instructions, grouped according to function, are described in a table near the end of this data sheet. Descriptions include source code, operation, opcode, number of bytes, and flag status. Supplementary information applicable to the instruction set is contained in the following tables.

- Symbols and Abbreviations
- Flag Symbols
- 8- and 16-Bit Registers. When mod = 11, the register is specified in the operation code by the byte/word operand (W = 0/1) and reg (000 to 111).
- Segment Registers. The segment register is specified in the operation code by sreg (00, 01, 10, or 11).
- Memory Addressing. The memory addressing mode is specified in the operation code by mod (00, 01, or 10) and mem (000 through 111).
- Instruction Clock Count. This table gives formulas for calculating the number of clock cycles occupied by each type of instruction. The formulas, which depend on byte/word operand and RAM enable/disable, have variables such as EA (effective address), W (wait states), and n (iterations or string instructions).

Symbols and Abbreviations

ldentifier	Description
reg	8- or 16-bit general-purpose register
reg8	8-bit general-purpose register
reg16	16-bit general-purpose register
dmem	8- or 16-bit direct memory location
mem	8- or 16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
sfr	8-bit special function register location
imm	Constant (0 to FFFFH)
imm16	Constant (0 to FFFFH)
imm8	Constant (0 to FFH)
imm4	Constant (0 to FH)
imm3	Constant (0 to 7)
acc	AW or AL register
sreg	Segment register
src-table	Name of 256-byte translation table
src-block	Name of block addressed by the IX register

Identifier	Description T-49-19-59
dst-block	Name of block addressed by the IY register
near-proc	Procedure within the current program segment
far-proc	Procedure located in another program segment
near-label	Label in the current program segment
short-label	Label between –128 and +127 bytes from the end of instruction
far-label	Label in another program segment
mempţr16	Word containing the offset of the memory location within the current program segment to which control is to be transferred
memptr32	Double word containing the offset and segment base address of the memory location to which control is to be transferred
regptr16	16-bit register containing the offset of the memory location within the program segment to which control is to be transferred
pop-value	Number of bytes of the stack to be discarded (0 to 64K bytes, usually even addresses)
fp-op	Immediate data to identify the instruction code of the external floating point operation
R	Register set
W	Word/byte field (0 to 1)
reg	Register field (000 to 111)
mem	Memory field (000 to 111)
mod	Mode field (00 to 10)
S:W	When S:W = 01 or 11, data = 16 bits. At all other times, data = 8 bits.
X, XXX, YYY, Z	ZZData to identify the instruction code of the external floating point arithmetic chip
AW	Accumulator (16 bits)
AH	Accumulator (high byte)
AL	Accumulator (low byte)
BP	Base pointer register (16 bits)
BW	BW register (16 bits)
BH	BW register (high byte)
BL	BW register (low byte)
CW	CW register (16 bits)
сн	CW register (high byte)
CL.	CW register (low byte)
DW	DW register (16 bits)
DH	DW register (high byte)
DL	DW register (low byte)
SP	Stack pointer (16 bits)

Program counter (16 bits)

Program status word (16 bits)

μ**PD70330/332 (V35)**

30E D 🗰 6427525 0027059 1 🗰

PC

PSW

μ**PD70330/332 (V35)**

identifier Description		
IX	Index register (source) (16 bits)	
IY	Index register (destination) (16 bits)	
PS	Program segment register (16 bits)	
SS	Stack segment register (16 bits)	
DSO	Data segment 0 register (16 bits)	
DS1	Data segment 1 register (16 bits)	
AC	Auxiliary carry flag	
CY	Carry flag	
P	Parity flag	
\$	Sign flag	
Z	Zero flag	
DIR	Direction flag	
IE	Interrupt enable flag	
٧	Overflow flag	
BRK	Break flag	
MD	Mode flag	
()	Values in parentheses are memory contents	
disp	Displacement (8 or 16 bits)	
ext-disp8	16-bit displacement (sign-extension byte + 8-bit displacement)	
temp	Temporary register (8/16/32 bits)	
tmpcy	Temporary carry flag (1-bit)	
seg	Immediate segment data (16 bits)	
offset	Immediate offset data (16 bits)	
	Transfer direction	
+	Addition	
	Subtraction	
x	Multiplication	
÷	Division	
%	Modulo	
AND	Logical product	
OR	Logical sum	
XOR	Exclusive logical sum	
ХХН	Two-digit hexadecimal value	
XXXXH	Four-digit hexadecimal value	

T-49-19-59
Description
No change
Cleared to 0
Set to 1
Set or cleared according to the result
Undefined
Value saved earlier is restored

1

FC

T-49-19-16

зое **D 🖿** 6427525 оо27060 8 🛤

8- and 16-Bit Registers (mod = 11)

	· · · · · · · · · · · · · · · · · · ·	,
reg	Ó = ₩	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	AH	SP
101	CH	BP
110	DH	IX
111	BH	IY

Segment Registers

sreg	Register	
00	DS ₁	
01	PS	
10	SS	
11	DS ₀	

Memory Addressing

	· ·	•	
mem	mod = 00	mod == 01	mod = 10
000	BW + IX	BW + IX + disp8	BW + IX + disp16
001	BW + IY	BW + IY + disp8	BW + IY + disp16
010	BP + IX	BP + IX + disp8	BP + IX + disp16
011	BP + IY	BP + IY + disp8	BP + IY + disp16
100	IX	IX + disp8	IX + disp16
101	IY	IY + disp8	IY + disp16
110	Direct	BP + disp8	BP + disp16
111	BW	BW + disp8	BW + disp16

🖿 6427525 0027061 Т 🔳

30E D

μ**PD70330/332 (V35)**

T-49-19-16

Mnemonic	Operand	Clocks
ADD	reg8, reg8	2
	reg16, reg16	2
	reg8, mem8	EA+7+W
	reg16, mem16	EA+7+W
	mem8, reg8	EA+10+2W [EA+7+W]
	mem16, reg16	EA+10+2W [EA+7+W]
	reg8, imm8 reg16, imm8	5 5
	. reg16, imm16	6 *
	mem8, imm8	EA+11+2W [EA+9+2W]
	mem16, imm8	EA+9+2W [EA+7+2W]
	mem16, imm16	EA+12+2W [EA+8+2W]
	AL, imm8 AW, imm16	5 6
ADD4S	An, 1111130	
ADDC		22+(30+3W)n [22+(28+3W)n]
ADJ4A		ame as ADD
ADJ4S	·····	9
	<u> </u>	9
ADJBA		17
ADJBS		17
AND	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8	EA+10+2W [EA+7+W]
	mem16, reg16	EA+10+2W [EA+7+W]
	reg8, imm8	5
	reg16, imm16	6
	mem8, imm8 mem16, imm16	EA+11+2W [EA+9+2W]
Doord /oon		EA+12+2W [EA+8+2W]
BCWZ	ditional branch)	8 or 15
		8 or 15
BR	near-label short-label	12 12
	regptr16	
	memptr 16	EA+16+W
	far-label	15
	memptr32	EA+23+2W

		T-49-19-59
Mnemonic	Operand	Clocks
BRK	3	50+5W [38+5W]
	imm8	51+5W [39+5W]
BRKCS	·	15
BRKV		50+5W [38+5W]
BTCLR	· · · · · ·	29
BUSLOCK		2
CALL	near-proc regptr16	21+W [17+W] 21+W [17+W]
	memptr16 far-proc memptr32	EA+24+2W [EA+22+2W] 36+2W [32+2W] EA+32+4W [EA+20+4W]
CHKIND		EA+24+2W
CLR1	CY DIR	2 2
	reg8, CL reg16, CL	8
	mem8, CL mem16, CL	EA+16+2W [EA+13+W] EA+16+2W [EA+13+W]
	reg8, imm3 reg16, imm4	7 7
	mem8, imm3 mem16, imm4	EA+13+2W [EA+10+W] EA+13+2W [EA+9+W]
CMP	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+7+W EA+7+W
	reg8, imm8 reg16, imm8 reg16, imm16	5 5 6
	mem8, imm8 mem16, imm8 mem16, imm16	EA+8+W EA +9+ W EA +9+ W
	AL, imm8 AW, imm16	5 6
MP4S		22+(25+2W)n
мрвк	mem8, mem8 mem16, mem16	25+2W [21+2W] 25+2W [19+2W]

Notes:

(1) If the number of clocks is not the same for RAM enabled and RAM disabled conditions, the RAM enabled value is listed first, followed by the RAM disabled value in brackets; for example, EA+8+2W [EA+6+W].

(2) Symbols in the Clocks column are defined as follows.

 $\mathsf{EA}=\mathsf{additional}\ \mathsf{clock}\ \mathsf{cycles}\ \mathsf{required}\ \mathsf{for}\ \mathsf{calculation}\ \mathsf{of}\ \mathsf{the}\ \mathsf{effective}\ \mathsf{address}$

= 3 (mod 00 or 01) or 4 (mod 10)

 $\mathbf{W}=\mathbf{n}\mathbf{u}\mathbf{m}\mathbf{b}\mathbf{e}\mathbf{r}$ of wait states selected by the WTC register

n = number of iterations or string instructions

μ**PD7**0330/332 (V35)

Mnemonic	Operand	Clocks
CMPBKB		16+(23+2W)n
MPBKW	· · · · ·	16+(23+2W)n
OMPM	mem8 mem16	18+W 19+2W
СМРМВ		16+(16+W)n
CMPMW		16+(16+2W)n
CVTBD		19
CVTBW		
CVTDB		20
CVTWL		8
DBNZ	· · · · · · · · · · · · · · · · · · ·	8 or 17
DBNZE	· · ·	8 or 17
DBNZNE		8 or 17
DEC	reg8 reg16	5 2 .
	mem8 mem16	EA+13+2W [EA+11+2W] EA+13+2W [EA+9+2W]
DI		4
DISPOSE		11+W
DIV	AW, reg8 AW, mem8	46-56 EA+49+W to EA+59+W
	DW:AW, reg16 DW:AW, mem16	54-64 EA+57+W to EA+67+W
DIVU	AW, reg8 AW, mem8	31 EA+34+W
	DW:AW, reg16 DW:AW, mem16	39 EA+43+2W
DSO:		2
DS1:		2
El		12
EXT	reg8, reg8 reg8, imm4	41-121 42-122
FINT		2
FP01		55+5W [43+5W]
FPQ2		55+5W [43+5W]
HALT		N/A
IN	AL, imm8 AW, imm8	15+W 15+W
	AL, DW AW, DW	14+W 14+W
INC	reg8 reg16	5 2
	mem8 mem16	EA+13+2W [EA+13+2W] EA+13+2W [EA+9+2W]

ש ט י	6427525	0027062 1 N H
	····· · · · · · · · · · · · · · · · ·	
		T-49-19-59
Mnemonic	Operand	Clocks
INM	mem8, DW mem16, DW	21+2W [19+2W] 19+2W [15+2W]
	mém8, DW mem16, DW	18+(15+2W)n [18+(13+2W) 18+(13+2W)n [18+(9+2W)n
INS	reg8, reg8 reg8, imm4	63-155 64-156
LDEA		EA+2
LDM	mem8	13+W
	mem16	16+(11+W)n
LDMB	mem16	13+W
LDMW	mem8	16+(10+W)n
MOV	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+5+W [EA+2] EA+5+W [EA+2]
	reg8, imm8 reg16, imm16	5 6
	mem8, 1mm8 mem16, imm16	EA+6+W EA+6+W
	AL, dmem8 AW, dmem16	10+W 10+W
	dmem8, AL dmem16, AW	8+W [5] 8+W [5]
	sreg, reg16 sreg, mem16	4 EA+9+2W
	reg16, sreg mem16, sreg	3 EA+6+2W [EA+3]
•	AH, PSW PSW, AH	2 3
	DSO, reg16, memptr32 DS1, reg16, memptr32	EA+17+2W EA+17+2W
MOVBK	mem8, mem8 mem16, mem16	22+2W [17+W] 22+2W [17+3W]
MOVBKB	mem8, mem8	16+(18+2W)n [16+(13+W)n
MOVBKW	mem16, mem16	16+(18+2W)n [16+(10+W)n]
MOVSPA		16
MOVSPB		11
MUL	AW, AL, reg8 AW, AL, mem8	31-40 EA+34+W to EA+43+W
	DW:AW, AW, reg16 DW:AW, AW, mem16	39-48 EA+42+W to EA+51+W
	reg16, reg16, imm8 reg16, mem16, imm8	39-49 EA+42+W to EA+52+W

NEC

30E D 🖿 6427525 0027063 3 🖿

μ**PD70330/332 (V35)**

T-49-19-16

Mnemonic	Operand	Clocks
MULU	reg8 mem8	24 EA+27+W
	reg16 mem16	32 EA+33+W
NEG	reg8 reg16	5 5
	mem8 mem16	EA+13+2W [EA+10+W] EA+13+2W [EA+10+W]
NOP		4
NOT	reg8 reg16	5 5
-	mem8 mem16	EA+13+2W [EA+10+W] EA+13+2W [EA+10+W]
NOT1	CY	2
	reg8, CL reg16, CL	7 7
	mem8, CL mem16, CL	EA+15+2W [EA+12+W] EA+15+2W [EA+12+W]
	reg8, imm3 reg16, imm4	6 6
	mem8, imm3 mem16, imm4	EA+12+2W [EA+9+W] EA+12+2W [EA+9+W]
OR	reg8, reg8 reg16, reg16	2 2
	reg8, mem8 reg16, mem16	EA+7+W EA+7+W
	mem8, reg8 mem16, reg16	EA+10+2W [EA+7+W] EA+10+2W [EA+7+W]
	reg8, imm8 reg16, imm16	5 6
	mem8, imm8 mem16, imm16	EA+11+2W [EA+9+2W] EA+12+2W [EA+8+2W]
	AL, imm8 AW, imm16	5 6
OUT	imm8, AL imm8, AW	11+W 9+W
	DW, AL DW, AW	10+W 8+W
OUTM	DW, mem8 DW, mem16	21+2W [19+2W] 21+4W [17+4W]
	DW, mem8 DW, mem16	18+(15+2W)n [18+(13+2W)n 18+(13+2W)n [18+9+2W)n]
POLL		N/A
POP	reg16 mem16	11+W EA+14+2W [EA+11+W]
	DS1 SS	12+W 12+W
	DSO	12+W
	PSW	13+W

		T-49-19-5
Mnemonic	Operand	Clocks
PREPARE	imm16, imm8	imm8 = 0: 26+W imm8 = 1: 37+2W
		imm8 = n > 1: 44+19 (n-1)+2nW
PS:		2
PUSH	reg16	13+W [9+W]
	mem16	EA+16+2W [EA+12+2W]
	DS1 PS	10+W [7] 10+W [7]
	SS DSO	10+W [7] 10+W [7]
	PSW R	9+W [6] 74+8W [50]
	imm8 imm16	12+W [9] 13+W [10]
REP		2
REPE		2
REPZ		2
REPC		2
REPNC		2
REPNE		2
REPNZ		2
RET	null pop-value	19+W 19+W
	null pop-value	27+2W 28+W
RETI		40+3W [34+W]
RETRBI	· · · · · · · · · · · · · · · · · · ·	12
ROL	reg8, 1 reg16, 1	8 8
	mem8, 1 mem16, 1	EA+16+2W [EA+13+W] EA+16+2W [EA+13+W]
	reg8, CL reg16, CL	11+2n 11+2n
	mem8, CL mem16, CL	EA+19+2W+2n [EA+16+W+2n] EA+19+2W+2n [EA+16+W+2n]
	reg8, imm8 reg16, imm8	9+2n 9+2n
	mem8, imm8 mem16, imm8	EA+15+2W+2n [EA+12+W+2n] EA+15+2W+2n [EA+12+W+2n]
ROL4	reg8 mem8	17 EA+20+2W [EA+18+2W]
ROLC		Same as ROL
ROR		Same as ROL
ROR4	reg8 mem8	21 EA+26+2W [EA+24+2W]
RORC		Same as ROL
SET1	CY DIR	2 2

μ**PD7**0330/332 (V35)

Mnemonic	Operand	Clocks	
SET1 (cont)	reg8, CL reg16, CL	7 7	
	mem8, CL mem16, CL	EA+15+2W EA+15+2W	(EA+12+W) [EA+12+W]
	reg8, imm3 reg16, imm4	6 6	
	mem8, imm3 mem16, imm4	EA+12+2W EA+12+2W	[EA+9+W] [EA+9+W]
SHL		Same as ROL	
SHR		Same as ROL	
SHRA		Same as ROL	
<u>SS:</u>		2	
STM	mem8 mem16	13+W [10] 13+W [10]	
STMB	mem8	16+(9+W)n	[16+(7+W)n]
STMW	mem16	16+(9+W)n	[16+(5+W)n]
STOP		N/A	
SUB		Same as ADD	·
SUB4S)n [22+(28+3W)n]
SUBC		Same as ADD	
TEST	reg8, reg8 reg16, reg16	4	
	reg8, mem8 reg16, mem16	EA+12+W EA+11+2W	
	mem8, reg8 mem16, reg16	EA+12+W EA+11+2W	
·	reg8, imm8 reg16, imm16	7 8	
	mem8, imm8 mem16, imm16	EA+9+W EA+10+W	
	AL, imm8 AW, imm16	5 6	
TESTI	reg8, CL reg16, CL	7	
	mem8, CL mem16, CL	EA+12+W EA+12+W	
	reg8, imm3 reg16, imm4	6 6	
	mem8, imm3 mem16, imm4	EA+9+W EA+9+W	
TRANS	<u>.</u>	11+W	
TRANSB		11+W	
TSKSW		20	

<u> </u>			T-49-19-16
Mnemonic	Óperand	Clocks	T-49-19-59
ХСН	reg8, reg8 reg16, reg16	3 3	
	reg8, mem8 reg16, mem16	EA+12+2W EA+12+2W	[EA+9+W] [EA+9+W]
	mem8, reg8 mem16, reg16	EA+12+2W EA+12+2W	[EA+9+W] [EA+9+W]
	AW, reg16 reg16, AW	4	
XOR	Sa	ime as AND	

30E D H 6427525 0027064 5 H

μ**PD7**0330/332 (V35)

T-49-19-16

Instruction Clock Count for Operatio	ns		-	T-49-19-59
• • • • • • • • • • • • • • • • • • •	By	te	W	ord
	RAM Enable	RAM Disable	RAM Enable	RAM Disable
Context switch interrupt			33	33
DMA (Single-step mode)	20 + 2W	20°+ 2W	20 + 2W	20 + 2W
DMA (Demand release mode)	10 + 15n	10 + 15n	10 + 15n ·	10 + 15n (min)
DMA (Burst mode)	13 + (12 + 2W)n			
DMA (Single-transfer mode)	. 17 + W	17 +W	17 + W	17 + W
Interrupt (INT pin)		_	57 + 3W	45 + 3W
Macro service, sfr - mem	31 + W	26 + W	31 +W	26 + W
Macro service, mem ← sir	28 + W	27 + W	28 + W	27 + W
Macro service (Search char mode), sfr - mem	34 + W	34 + W	·	· · ·
Macro service (Search char mode), mem - sfr	44 + W	44 + W	_	_
Priority interrupt (Vectored mode)		_	55 + 5W	55 + 5W
NMI (Vectored mode)	<u> </u>		53 + 5W	53 + 5W

W = number of wait states inserted into external bus cycle n = number of iterations

Interrupt Latency

	Cla	icks
Source	Тур	Max
NMI pin	12 + N	18 + N
INT pin	8 + N	8 + N
All others	27 + N	15 + N

N = number of clocks to complete the instruction currently executing

Mnomnais Onors	Onerand	Daerstinn	Operation Code 7.6.5.4.3.2.1.0.7.6.5.4.3.2.1.0	No. of Flags Butes AC CV V P S 7
Data Transfer	nsfer			
NOM	reg, reg	reg 🗝 reg	1000101W11 reg reg	2
	mem, reg	(mem) + reg	1 0 0 0 1 0 0 W mod reg mem	2-4
	reg, mem	reg 🕂 (mem)	1 0 0 0 1 0 1 W mod reg mem	2-4
	mem, imm	(mem) imm	1 1 0 0 0 1 1 W mod 0 0 0 mem	3-6
	reg, imm	reg + imm	1 0 1 1 W reg	2-3
	acc, dmem	When W = 0 AL \leftarrow (dmem) When W = 1 AH \leftarrow (dmem + 1), AL \leftarrow (dmem)	101000W	3
	dmem, acc	When $W = 0$ (dmem) \leftarrow AL When $W = 1$ (dmem + 1) \leftarrow AH, (dmem) \leftarrow AL	1010.01W	°,
	sreg, reg16	sreg +- reg16 sreg : SS, DS0, DS1	1 0 0 0 1 1 1 0 1 1 0 sreg reg	2
	sreg, mem16	sreg	1 0 0 0 1 1 1 0 mod 0 sreg mem ,	24
	reg16, sreg	reg16 sreg	1 0 0 0 1 1 0 0 1 1 0 sreg reg	2
	mem16, sreg	(mem16) ← sreg	1 0 0 0 1 1 0 0 mod 0 sreg mem	24
	DSO, reg16, mem32	reg16 ← (mem32) DS0 ← (mem32 + 2)	1 1 0 0 0 1 0 1 mod reg mem	2-4
	DS1, reg16, mem32	reg16 ← (mem32) DS1 ← (mem32 + 2)	1 1 0 0 1 0 0 mod reg mem	2-4
	AH, PSW	AH + S, Z, x, AC, x, P, x, CY	1001111	-
	PSW, AH	S, Z, x, AC, x, P, x, CY - AH	10011110	1 X X X X X
LDEA	reg16, mem16	reg16 ← mem16	1 0 0 0 1 1 0 1 mod reg mem	24
TRANS	src-table	AL ←– (BW + AL)	1 1 0 1 0 1 1 1	1
XCH	reg, reg	teg +> teg	1000011W11 reg reg	2
	mem, reg or reg, mem	(mem)> reg	1 0 0 0 0 1 1 W mod reg mem	2-4
	AW, reg16 or reg16, AW	AW +> reg16	1 0 0 1 0 reg	
Repeat Prefixes	efixes			-
REPC		While CW \neq 0, the next byte of the primitive block transfer instruction is executed and CW is decremented (- 1). If there is a waiting interrupt, it is processed. When CV \neq 1, exit the loop.	01100101	T-49-
REPNC		While CW \neq 0, the next byte of the primitive block transfer instruction is executed and CW is decremented (-1). If there is a waiting interrupt, it is processed. When CV \neq 0, exit the loop.	0 1 1 0 0 1 0 0	-

μ**PD7**0330/332 (V35)

N E C ELECTRONICS INC

60

30E D 🖬 6427525 0027066 9 📰

1 **IEC** T-49-19-16

_	
Ē	
õ	
્ય	
-	
8	
S	
5	
2	
8	
- S	
5	
- 20	
5	

	7654321076543210 Bytes A	AC CY V P S Z
Per Per Mhile CW ≠ 0, the next byte of the primitive block1110PR PNEtransfer instruction is executed and CW is 		
NEWhile $(W \neq 0, the next byte of the primitive block1110PNZdecremented (-1), If there is a waiting interrupt, it isprocessed. If the primitive block transfer instructionis cumPRK or CMPM and Z \neq 0, exit the loop.Initive Block TransferWhen W = 0 (Y) \leftarrow (X + 1, Y) \leftarrow (Y + 1, Y) \leftarrow (Y + 1, Y)101VBKdst-block,When W = 1 (Y + 1, Y) \leftarrow (Y + 1, Y)10101VBKdst-block,When W = 1 (Y + 1, Y) \leftarrow (Y + 1, Y)10101NBdst + block,When W = 1 (Y + 1, Y) \leftarrow (Y + 1, Y)101011PBKsrc-block,When W = 0 (X) - (Y)Y \leftarrow (Y + 1, Y)1010111PBKsrc-block,When W = 0 (X - (X) - (Y)Y \leftarrow (Y + 1, Y)1010111PBKsrc-block,When W = 0 (X - (X) - (Y)Y \leftarrow (Y + 1, Y)101111PBKsrc-block,When W = 0 (X - (X + 1, Y) - (Y + 1, Y)Y \leftarrow (Y + 1, Y)1011111PMdst-blockWhen W = 0 (X - (X + 1, Y) - (Y + 1, Y)Y \leftarrow (Y + 1, Y)10111111111111111111111111111111111$	0 	
Imitive Block Transfer 10 1 0 1 VBK dst-block, When W = 0 (N) $\leftarrow (X)$ 1 0 1 0 1 VBK dst-block, DIR = 0: (X $\leftarrow (X - 1), (Y \leftarrow (Y + 1), (Y))$ 1 0 1 0 1 VBK src-block, DIR = 1: (X $\leftarrow (X - 1), (Y \leftarrow (Y + 1), (Y))$ 1 0 1 0 1 DIR = 1: (X $\leftarrow (X - 1), (Y + 1), (Y) \leftarrow (Y + 1), (Y)$ DIR = 0: (X $\leftarrow (X + 1), (Y + $	0 	
VBK dst-block, When W = 0 (1Y) (+ (1X), 1 0 1 0 1 0 1 VBR src-block, When W = 1 (Y + 1, 1Y) (+ (Y + 1, 1X)) 1 0 1 0 0 1 DIR = 0: (X + (X + 1, 1X)) (X + 1, 1X) (X + 1, 1X) 1 0 1 0 0 1 DIR = 0: (X + (X + 1, 1Y) (+ (Y + 1, 1X)) DIR = 0: (X + (X + 1, 1Y) (+ (Y + 1, 1Y)) 1 0 1 0 1 1 0 1 0 1 1 PBK src-block, When W = 0 (X) (Y) (Y) (Y + 1, 1Y) (Y + 1, 1Y) 1 0 1 0 1 1 DIR = 1: (X + (X - 1, 1Y) (+ (Y + 1, 1Y)) DIR = 1: (X + (X - 1, 1Y) (+ (Y + 1, 1Y)) 1 0 1 0 1 1 1 0 1 0 1		
PBK src-block, dst-block When W = 0 (X) - (Y) DIR = 0: [X + - X + 1, Y) 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 <	0	
PMdst-blockWhen W = 0 AL - (IY) DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY - 1 When W = 1 AW - (IY + 1, IY) DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 21 0 1 0 1 1 1 0 1 0 1 1MNinen W = 1 AW - (IY + 1, IY) DIR = 0: IY \leftarrow IX + 1; DIR = 1: IY \leftarrow IX - 1 DIR = 0: IX \leftarrow IX + 1; DIR = 1: IX \leftarrow IX - 1 DIR = 0: IX \leftarrow IX + 1; DIR = 1: IX \leftarrow IX - 1 DIR = 0: IX \leftarrow IX + 1; DIR = 1: IX \leftarrow IX - 21 0 1 0 1 1 0 1 0 1 0MNinen W = 1 AM \leftarrow (IX + 1, IX) DIR = 0: IY \leftarrow IX + 2; DIR = 1: IX \leftarrow IX - 21 0 1 0 1 0 1 0 1 0 1 0MNinen W = 1 AM \leftarrow (IX + 1, IY) \leftarrow AW DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 21 0 1 0 1 0 1 	0 1 1 W	× × × × ×
Image: Complex State of the state	1 1 1 W 1 1	* * * * *
I dst-block When W = 0 (IY) \leftarrow AL 1 1 0 1 1 0 1 1 0 1 <t< td=""><td></td><td></td></t<>		
Field Transfer reg8, reg8 16-Bit field ← AW 0 0 0 0 1 1 1 1 ren	-	
reg8. reg8 16-Bit field ← AW 0 0 0 1 1 1 1 rev		
621	1 -	T-49
reg8, imm4 16-Bit field ← AW 0 0 0 1 1 1 1 1 0 0 0 re	00	9-19-

c
હ
-
Q
Ű,
2
ē
-
C
2
- 22
Û,
2
-

Instructio	Instruction Set (cont)			
Mnemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 8yt	Na. of Flags Bytes AC CY V P S Z
Bit Field 1	Bit Field Transfer (cont)			
EXT	reg8, reg8	AW ← 16-Bit field	0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 3 1 1 reg reg	
	reg8, imm4	AW + 16-Bit field	0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 4 1 1 0 0 0 1 1 1 1	
0/1				
z	acc, imm8	When $W = 0 \text{ AL} \leftarrow (imm8)$ When $W = 1 \text{ AH} \leftarrow (imm8 + 1)$, AL $\leftarrow (imm8)$	1110010W	
	acc, DW	When $W = 0 \text{ AL} \leftarrow (DW)$ When $W = 1 \text{ AH} \leftarrow (DW + 1)$, AL $\leftarrow (DW)$	1 1 1 0 1 1 0 W	
OUT	imm8, acc	When W = 0 (imm8) ← AL When W = 1 (imm8 + 1) ← AH, (imm8) ← AL	1110011W	
	DW, acc	When W = 0 (DW) \leftarrow AL When W = 1 (DW + 1) \leftarrow AH, (DW) \leftarrow AL	1110111W	
Primitive L	Primitive Block I/O Transfer	fer		
WNI	dst-block, DW	When W = 0 (IY) \leftarrow (DW) DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY - 1 When W = 1 (IY + 1, IY) \leftarrow (DW + 1, DW) DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 2	0110110 W ' 1	
OUTM	DW, src-block	When W = 0 (DW) \leftarrow (IX) DIR = 0 IX \leftarrow IX $+$ 1 DIR = 1 IX \leftarrow IX $-$ 1	0 1 1 0 1 1 1 W	

X X X X X XXXX XXXXX × x x x x x × x x x x x x x × × × × × × × × 2 24 2 36 53 2 mem mem mem මු reg 0 0 0 0 0 S W 1 1 0 0 0 1 0 0 0 0 0 S W mod 0 0 0 reg Ge <u>per</u> n: number of transfers 0000001 W 11 0.0000000 W mod 0 0 0 0 0 0 1 W mod 0 0 0 0 1 0 M ÷---0 DIR = 0: $IX \leftarrow IX + 1$; DIR = 1: $IX \leftarrow IX - 1$ When W = 1 (DW + 1, DW) \leftarrow (IX + 1, IX) DIR = 0: $IX \leftarrow IX + 2$; DIR = 1: $IX \leftarrow IX - 2$ When $W = 0 AL \leftarrow AL + imm$ When $W = 1 AW \leftarrow AW + imm$ (mem) +-- (mem) + imm (mem) --- (mem) + reg reg 🔶 reg + (mem) reg 🕂 reg + imm reg 🕂 reg + reg Addition/Subtraction ADD reg. reg mem, imm reg, mem mem, reg reg, imm acc, imm reg, reg

N E C ELECTRONICS INC

 μ PD70330/332 (V35)

T-49-19-16

2

6427525 0027068

T-49-19-59

~	
E	
શુ	
Set	
ion	
uct	
Istr	
5	

Mnemonic	Operand	Operation	Uperation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Byles AC	Flags CY V	P S Z
Addition.	Addition/Subtraction (cont)	:ont)				
ADDC	reg, reg	reg + reg + reg + CY	0 0 0 1 0 0 1 W 1 1 reg reg	2 X	× ×	×××
	mem, reg	(mem) (mem) + reg + CY	0 0 0 1 0 0 0 W mod reg mem	24 x	××	× × ×
	reg, mem	reg 🕶 reg + (mem) + CY	0 0 0 1 0 0 1 W mod reg mem	2-4 X	× ×	× × ×
	reg, imm	reg 🕶 reg + imm + CY	10000SW11010 reg	3-4 ×	× ×	×××
	mem, imm	(mem) + (mem) + imm + CY	1 0 0 0 0 S W mod 0 1 0 mem	3-6 x	× ×	× × ×
	acc, imm	When $W = 0$ AL \leftarrow AL + imm + CY When $W = 1$ AW \leftarrow AW + imm + CY	0 0 0 1 0 1 0 W	2-3 x	× ×	× × ×
SUB	reg, reg	reg + reg	0 0 1 0 1 0 1 W 1 1 reg reg	2 X	××	× × ×
	mem, reg	(mem) + (mem) reg	0 0 1 0 1 0 0 W mod reg mem	, 2:4 x	××	X X X
	reg, mem	reg 🕂 reg — (mem)	0 0 1 0 1 0 1 W mod reg mem	2-4 x	× ×	× × ×
	reg, imm	reg 🗕 reg — imm	10000SW11101 reg	34 ×	××	x x x
	mem, imm	(mem) (mem) imm	1 0 0 0 0 S W mod 1 0 1 mem	• 3-6 x	× ×	x x x
	acc, imm	When W = 0 AL + AL - imm When W = 1 AW + AW - imm	0 0 1 0 1 0 W	2-3 x	× ×	×××
SUBC	reg, reg	reg 🗝 reg – reg – CY	0 0 0 1 1 0 1 W 1 1 reg reg	2 X	× ×	× × ×
	mem, reg	(mem) 🔶 (mem) – reg – CY	0 0 0 1 1 0 0 W mod reg mem	2-4 x	× ×	x x x
	reg, mem	reg 🗝 reg — (mem) — CY	0 0 0 1 1 0 1 W mod reg mem	2-4 x	x x	××
	reg, imm	reg 🖛 reg – imm – CY	100000SW11011 reg	3-4 x	× ×	x x x
	mem, imm	(mem) 🔶 (mem) – imm – CY	1 0 0 0 0 S W mod 0 1 1 mem	3-6 x	× ×	× × ×
	acc, imm	When $W = 0 \text{ AL} \leftarrow \text{AL} - \text{imm} - \text{CY}$ When $W = 1 \text{ AW} \leftarrow \text{AW} - \text{imm} - \text{CY}$	0 0 0 1 1 1 0 W	2-3 x	×	x x x

30E D 🖬 6427525 0027069 4 🖿

μ**PD7**0330/332 (V35)

T-49-19-16

T-49-19-59

4.5

.

Instruction Set (cont)	()	· · ·		Ν Ε μΙ
Mnemonic Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z	r•
BCD Operation				
ADD4S	dst BCD string + dst BCD string + src BCD string	0000111100100000	2 u x u u x	
SUB4S	dst BCD string + dst BCD string src BCD string	000011111001000010	2 u x u u x	
CMP4S	dst BCD string – src BCD string	0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0	2 u x u u u x	
R0L4 reg8	r AL 0 reg AL AL 0 Lower 4 bits Lower 4 bits	0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 reg	m	CS INC 2 (V35)
— × mem8	AL 0 mem AL 1 0 Mem	0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 mem mod 0 0 0 mem *****************************	35	
R0R4 reg8 7	AL 0 reg AL 1 Ober 4 bits Lower 4 bits	0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 0 reg	ę	ioe Ó i
mem8	AL 0 mem AL 0 Luch Ppper 4 bits Lower 4 bits	0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 mod 0 0 0 mem	35	6 427
BCD Adjust				
ADJBA	When (AL AND 0FH) >9 or AC = 1, AL \leftarrow AL + 6, AH \leftarrow AH + 1, AC \leftarrow 1, CY \leftarrow AC, AL \leftarrow AL AND 0FH	0 0 1 1 0 1 1 1		5 [°] 00 -19-1
ADJAA	When (AL AND 0FH) >9 or AC = 1, AL \leftarrow AL + 6, CY \leftarrow CY 0R AC, AC \leftarrow 1, When AL > 9FH, or CY $-$ = AL \leftarrow AL + 60H, CY \leftarrow 1	0 0 1 0 0 1 1 1	т х х л х т х х л х т т	1
ADJBS	When (AL AND 0FH) >9 or AC = 1, CY ← AC, AL ← AL AND 0FH	0011111	49- חחחח × × 1	• -
ADJ4S	When (AL AND 0FH) >9 or AC = 1, AL ← AL - 6, CY ← CY 0R AC, AC ← 1, When AL > 9FH, or CY - = AL ← AL + 60H, CY ← 1	0 0 1 0 1 1 1 1	19–59 × × × × × ×	EC

Instructiv	Instruction Set (cont)				
Mnemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z	
Incremen	Increment/Decrement				
INC	reg8	reg8 reg8 + 1	1111111011000 reg	2 x x x x x	
	mem	(mem) + (mem) + 1	111111 W mod 0 0 0 mem	2-4 X X X X X	
	reg16	reg16 reg16 + 1	0 1 0 0 0 reg	1 X X X X X	
DEC	reg8	reg8 + reg8 1	1111111011001 reg	2 X X X X X	<u>.</u>
	тет	(mem) + (mem) 1	1111111W mod 0 0 1 mem	2-4 X X X X X	
	reg16	reg16 reg16 1	0 1 0 0 1 reg	1 X X X X X	
Multiplication	ation				
MULU	reg8	AW ← AL x reg8 AH = 0: CY ← 0, V ← 0 AH ≠ 0: CY ← 1, V ← 1	1111011011100 reg	2 u x x u u	<u> </u>
	mem8	AW ← AL x (mem8) AH = 0: CY ← 0, V ← 0 AH ≠ 0: CY ← 1, V ← 1	1 1 1 1 0 1 1 0 mod 1 0 0 mem	24 u x x u u u r	
	reg16	DW, AW ← AW × reg16 DW = 0: CY ← 0, V ← 0 DW ≠ 0: CY ← 1, V ← 1	1111011111100 reg	2 u x x u u	
	mem16	$\begin{array}{c} DW, AW \longleftarrow AW \times (mem16) \\ DW = 0: CY \leftarrow 0, V \leftarrow 0 \\ DW \neq 0: CY \leftarrow -1, V \leftarrow -1 \end{array}$	11110111 mod 100 mem	24 u x x u u u	<u> </u>
MUL	reg8	AW \leftarrow AL x reg8 AH = AL sign expansion: CY \leftarrow 0, V \leftarrow 0 AH \neq AL sign expansion: CY \leftarrow 1, V \leftarrow 1	111101101101 teg	2 u x x u u u	T
	mem8	AW \leftarrow AL x (mem8) AH = AL sign expansion: CY \leftarrow 0, V \leftarrow 0 AH \neq AL sign expansion: CY \leftarrow 1, V \leftarrow 1	1 1 1 1 0 1 1 0 mod 1 0 1 mem	49-19 41 х л п п х х п т 7- 7 л х х л т 7-	49-19
	reg16	DW, AW ← AW x reg16 DW = AW sign expansion: CY ← 0, V ← 0 DW \neq AW sign expansion: CY ← 1, V ← 1	1111011111101 reg.	- 10 	-16
·	mem16	DW, AW \leftarrow AW × (memt6) DW = AW sign expansion: CY \leftarrow 0, V \leftarrow 0 DW \neq AW sign expansion: CY \leftarrow 1, V \leftarrow 1	11110111 mod 101 mem		Т-
·	reg16, reg16, imm8	reg16 \leftarrow reg16 x imm8 Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product > 16 bits: CY \leftarrow 1, V \leftarrow 1	0 1 1 0 1 1 1 1 1 reg reg	49–11 = - 	49-19
	reg16, mem16, imm8	reg16 \leftarrow (mem16) x imm8 Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product > 16 bits: CY \leftarrow 1, V \leftarrow 1	0 1 1 0 1 0 1 1 mod reg mem	35 u x x u u u 60	9-59

65

N E C ELECTRONICS INC

зое́ D 🖿 6427525°0027071 2 🎟

μ**PD70330/332 (V35)**

Instructio	Instruction Set (cont)				-
Mnemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z	٠
Multiplica	Multiplication (cont)				
MUL (cont)	reg16, reg16, imm16	reg16 \leftarrow reg16 x imm16 Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product > 16 bits: CY \leftarrow 1, V \leftarrow 1	0 1 1 0 1 0 0 1 1 1 1 reg reg	4 u x x u u u	
	reg16, mem16, imm16	reg16 \leftarrow (mem16) x imm16 Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits: CY \leftarrow 1, V \leftarrow 1	0 1 1 0 1 0 1 mod reg mem	4-6 u x x u u u	
Unsigned Division	Division				
DIVU	ຮີຍ	temp \leftarrow AW When temp \div reg8 > FFH (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 [E \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times AH \leftarrow temp % reg8, AL \leftarrow temp \div reg8	1 1 1 1 0 1 1 0 1 1 1 1 0 reg	ר ת ת ת ה ק	S INC V35)
	mem8	temp 4– AW When temp + (mem8) > FFH (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow 6 (SP - 6), BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times AH \leftarrow temp % (mem8), AL \leftarrow temp + (mem8)	1 1 1 1 0 1 1 0 mod 1 1 0 mem	24 u u u u u u	30E, D
	reg16	temp 4— AW When temp + reg16 > FFFFH (SP = 1, SP = 2) 4— PSW, (SP = 3, SP = 4) 4— PS (SP = 5, SP = 6) 4— PC, SP 4— SP = 6 (SP = 6, SR = 6) 4— PC, SP 4— (3, 2), PC 4— (1, 0) All other times AH 4— temp % reg16, AL 4— temp + reg16	1 1 1 1 0 1 1 1 1 1 1 1 0 reg	ב ב ה ה ה	■ 64275
	mem16	temp \leftarrow AW When temp \div (mem16) > FFFFH (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 [E \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) All other times AH \leftarrow temp % (mem16), AL \leftarrow temp \div (mem16)	1 1 1 1 0 1 1 1 mod 1 1 0 mem		25-00270
				Г–49–19–59	72 4 D NEC T-49-19-16

9
2
Ø.
ى
-
õ
s,
2
8
5
<u>o</u>
Ξ.
Ξ.

			No. of			
Mnemonic Operand	Operation	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1	D Bytes	Ş	CY V P S	2
Signed Division						
DIV reg8	temp \leftarrow AW When temp \div reg8 > 0 and temp \div reg8 > 7FH or When \div reg8 < 0 and temp \div reg8 < 0 - 7FH $- 1$ (SP $- 1$, SP $- 2$) \leftarrow PSW, (SP $- 3$, SP $- 4$) \leftarrow PS (SP $- 5$, SP $- 6$) \leftarrow PC, SP \leftarrow SP $- 6$ (SP $- 5$, SP $- 6$) \leftarrow PC, SP \leftarrow SP $- 6$ (SP $- 5$, SP $- 6$) \leftarrow PC, SP \leftarrow SP $- 6$ (SP $- 5$, SP $- 6$) \leftarrow PC, SP \leftarrow (3, 2), PC \leftarrow (1, 0) All other times AH \leftarrow temp % reg8, AL \leftarrow temb \div reg8	1111011011011111 reg	2	3		з ·
mem8	temp W \leftarrow When temp $+$ (mem8) > 0 and (mem8) > 7FH or temp \div (mem8) < 0 and temp \div (mem8) < 0 - 7FH -1 (SP -1 , SP -2) \leftarrow PSW, (SP -3 , SP -4) \leftarrow PS (SP -5 , SP -6) \leftarrow PC, SP \leftarrow SP -6 (SP -5 , SP -6) \leftarrow PC, SP \leftarrow (1, 0) All other times All -4 terms Al -4 terms (10)	1 1 1 0 1 1 0 mod 1 1 1 mem	а 4	3	3 3 3	=
reg 16		1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	3	3	=
mem 16		1 1 1 1 0 1 1 1 mod 1 1 1 mem	24	=	3 3 3 3	=

30E **D**

)330/332 (V35)

T-49-19-16 T-49-19-59

4b

67

N_E_C_ELECTRONICS_INC **EC**

.

0
õ
~
-
5
ശ്
v
-
- 52
0
10
77
2
3
77
22
.5
-

Insurace	monucina ser (com)			
Mnemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z
Data Co	Data Conversion			
CVTBD		AH ≁— AL ÷ 0AH, AL ← AL % 0AH	1 1 0 1 0 1 0 0 0 0 0 1 0 1 0	2 u u u x x x
CVTDB		AH 0, AL AH × 0AH + AL	1 1 0 1 0 1 0 1 0 0 0 1 0 1 0	2 U U U X X X
CVTBW		When AL $<$ 80H, AH \leftarrow 0, all other times AH \leftarrow FFH	1 0 0 1 1 0 0 0	F
CVTWL		When AL < 8000H, DW ← 0, all other times DW ← FFFFH	1 0 0 1 1 0 0 1	
Comparison	lson			
CMP	reg, reg	reg — reg	0 0 1 1 1 0 1 W 1 1 reg reg	2 X X X X X X
	mem, reg	(mem) — reg	0 0 1 1 1 0 0 W mod reg mem	2-4 X X X X X X
	reg, mem	reg – (mem)	0 0 1 1 1 0 1 W mod reg mem	2-4 X X X X X X
	reg, imm	reg – imm	10000SW11111 reg	34 × × × × × ×
	mem, imm	(mem) — imm	1 0 0 0 0 S W mod 1 1 1 mem	* 3-6 X X X X X X
	acc, imm	When $W = 0$, AL $-imm$ When $W = 1$, AW $-imm$	0 0 1 1 1 1 0 W	2-3 X X X X X X
Complement	nent			
NOT	reg	reg 🗝 reg	111011W11010 reg	2
	mem	(mem) < (mem)	1111011W mod 010 mem	2-4
NEG	Geu	reg + reg + 1	1111011W11011 reg	2 X X X X X X
	mem	(mem) ← (mem) + 1	1 1 1 1 0 1 1 W mod 0 1 1 mem	2-4 X X X X X X
Logical (Logical Operation			
TEST	reg, reg	reg AND reg	100010W11 reg reg	2 u 0 0 x x x
	mem, reg or reg, mem	(mem) AND reg	1 0 0 0 1 0 W mod reg mem	2-4 u 0 0 x x x
	reg, imm	reg AND imm	1111011W11000 reg	3-4 u 0 0 x x x
	mem, imm	(mem) AND imm	1 1 1 1 1 1 W mod 0 0 0 mem	3-6 u 0 0 x x x
	acc, imm	When $W = 0$, AL AND imm8 When $W = 1$, AW AND imm8	101010W	2-3 u 0 0 x x x
AND	reg, reg	reg 🖛 reg AND reg	0 0 1 0 0 1 W 1 1 reg reg	2 u 0 0 x x x
	mem, reg	(mem) 🔶 (mem) AND reg	0 0 1 0 0 0 W mod reg mem	2-4 u 0 0 x x x
	reg, mem	reg 🔶 reg AND (mem)	0 0 1 0 0 1 W mod reg mem	2-4 u 0 0 x x x
	reg, imm	reg 🔶 reg AND imm	100000W11100 reg	3-4 и 0 0 x x x
	mem, imm	(mem) 🔶 (mem) AND imm	1 0 0 0 0 0 W mod 1 0 0 mem	3-6 u 0 0 x x x
	acc, imm	When $W = 0$, $AL \leftarrow AL AND imm8$	0 0 1 0 0 1 0 W	2-3 u 0 0 x x x

N_E C ELECTRONICS INC μ**PD7**0330/332 (V35)

, . 30E D -6427525 0027074

8

When W = 0, $AL \leftarrow AL$ AND imm8 When W = 1, $AW \leftarrow AW$ AND imm16

Instructio	Instruction Set (cont)	
Mnemonic	Operand	Operation
Logical C	Logical Operation (cont)	

		where is the structure of the structure of the structure of the			
Mnemonic Operand	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1	543210	No. of Flags Bytes AC CY V P S Z
Logical C	Logical Operation (cont)				
Ю	reg, reg	reg + reg OR reg	0 0 0 0 1 0 1 W 1 1	reg reg	2 u 0 0 x x x
	mem, reg	(mem) + (mem) OR reg	0000100W mod	reg mem	2-4 U 0 0 X X X
	reg, mem	reg 🔶 reg OR (mem)	0 0 0 0 1 0 1 W mod	reg mem	2-4 U 0 0 X X X
	reg, imm	reg 🔶 reg OR imm	1000000W11001	0 0 1 reg	3-4 u 0 0 X X X
	mem, imm	(mem) +— (mem) OR imm	1 0 0 0 0 0 0 W mod 0 0 1	0 1 mem	3-6 U 0 0 X X X
	acc, imm	When W = 0, AL \leftarrow AL OR imm8 When W = 1, AW \leftarrow AW OR imm16	0000110W		2-3 u 0 0 x x x
XOR	reg, reg	reg + reg XOR reg	0011001W11	reg reg	2 U 0 0 X X X
	mem, reg	(mem) + (mem) XOR reg	0 0 1 1 0 0 0 W mod	reg mem	24 u 0 0 X X X
	reg, mem	reg + reg XOR (mem)	0 0 1 1 0 0 1 W mod	reg mem	24 U 0 0 X X X
	reg, imm	reg 🔶 reg XOR imm	1000000W11	11110 reg	34 u 0 0 x x x
	mem, imm	(mem) 🔶 (mem) XOR imm	1 0 0 0 0 0 W mod 1 1	1 1 0 mem	* 3-6 U 0 0 X X X
-	acc, imm	When $W = 0$, $AL \leftarrow AL XOR imm8$ When $W = 1$, $AW \leftarrow AW XOR imm16$	0011010W		2-3 U 0 0 X X X
Bit Operation	tion				
			2nd byte*	3rd byte*	

C) =	6	427	525	5 00	1271	075	T	
÷			μ	PD7	703	30.	/33	82	(V3
	T	-49	-19-	-16		T-4	49-1	9-!	59
	×	×	×	×	×	×	×	×	
	⇒	5	=	5	=	=	⊐	=	
	⊐	3	,⊏	=	⇒	3	3	3	
	n n 0 0	n n 0 0	7 0 0	л 0 0	0	Ó	•	0	
	0	-	0		л п 0 0	х п п 0 0	0 0 0	0	
	=	=	-	=	3	= .	з'	3	
	ŝ	3-5	e	3.5	4	4-6	4	46	
					-				
						_		_	
	Ceg	mem	fea	mem	Ee	mem	Leg .	mem	
3rd byte*	0	0	0	0	0	0	0	0	3rd byte"
2	•	0 0	0	0	0	0	0	0	q p
m	0	0	0	•	0	0	0	0	3
	000100011000	0 0 0 1 0 0 0 0 mod	000100111000	0 0 0 1 0 0 0 1 mod 0 0 0	0001100011000	0 0 0 1 1 0 0 0 mod 0 0 0	001100111000	0 0 0 1 1 0 0 1 mod 0 0 0	
	0	0		-	ο.	0	-	-	т
	0	0	o	0	0	0	0	0	Ë.
	0	•	0	0	0	0	•	0	* 9
ž	0	0	0	0	-		-	 .	byte
2nd byte"	-	+-	-	-	*			· ~	irst
2	•	0	0	0	0	0	0	0	21
	0	0	0	0	0	0	0	0	2nd byte* *Note: First byte = 0FH
	0	0	0	0	0	0	0	0	4
	i								

35)

69

4b

(mem16) bit no. imm4 = 0: $Z \leftarrow 1$ (mem16) bit no. imm4 = 1: $Z \leftarrow 0$

mem16, imm4

÷

reg16 bit no, imm4 = 0: $Z \leftarrow 1$ reg16 bit no. imm4 = 1: $Z \leftarrow 0$

(mem8) bit no. imm $3 = 0: Z \leftarrow 1$ (mem8) bit no. imm $3 = 1: Z \leftarrow 0$

mem8, imm3

reg8, imm3

reg16, imm4

reg8 bit no. imm3 = 0; $Z \leftarrow 1$ reg8 bit no. imm3 = 1; $Z \leftarrow 0$

(mem16) bit no. $CL = 0: Z \leftarrow 1$ (mem16) bit no. $CL = 1: Z \leftarrow 0$

mem16, CL

reg16 bit no. CL = 0: $Z \leftarrow 1$ reg16 bit no. CL = 1: $Z \leftarrow 0$

(mem8) bit no. CL = 0: Z \leftarrow 1 (mem8) bit no. CL = 1: Z \leftarrow 0

mem8, CL

reg8, CL

TEST1

reg16, CL

reg8 bit no. CL = 0: Z \leftarrow 1 reg8 bit no. CL = 1: Z \leftarrow 0

C

30E[.]

Mnemonic	Mnemonic Operand	Operation	Deration Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z
3it Opera	Bit Operation (cont)			
			2nd byte" 3rd byte*	
LION	rea8. CL	reg8 bit no. CL <table-cell-rows> reg8 bit no. CL</table-cell-rows>	0001011011000 reg	3
	mem8. CL	(mem8) bit no. CL ← (mem8) bit no. CL	0 0 0 1 0 1 1 0 mod 0 0 0 mem	3-5
	rea16. CL	reg16 bit no. CL ← reg16 bit no. CL	0 0 0 1 0 1 1 1 1 1 0 0 0 reg	ũ
	mem16. CL	(mem16) bit no. CL + (mem16) bit no. CL	0 0 0 1 0 1 1 1 mod 0 0 0 mem	3-5
	rea8. imm3	reg8 bit no. imm3 + reg8 bit no. imm3	0001111011000 reg	4
	mem8. imm3	(mem8) bit no. imm3 (mem8) bit no. imm3	0 0 0 1 1 1 1 0 mod 0 0 0 mem	46
	rea16, imm4	rea16 bit no. imm4 ← (reg16) bit no. imm4	0001111111000 reg	4
	mem16, imm4	(mem16) bit no. imm4 + (mem16) bit no. imm4	0 0 0 1 1 1 1 1 mod 0 0 0 mem	4-6
			2nd byte* 3rd byte* *Note: First byte = 0FH	L
	СY	CY ← CY	1 1 1 1 0 1 0 1	1 X
			2nd byte* 3rd byte*	
CI R1	rea8. CL	rea8 bit no. CL ← 0	0 0 0 1 0 1 0 1 1 0 0 0 reg	3
	mem8. CL	(mem8) bit no. CL + 0	0 0 0 1 0 0 1 0 mod 0 0 0 mem	3-5
	req16, CL	reg16 bit no. CL ← 0	0001001111000 reg	3
	mem16, CL	(mem16) bit no. CL $\leftarrow 0$	0 0 0 1 0 0 1 1 mod 0 0 0 mem	3-5
	req8, imm3	reg8 bit no. imm3 + 0	00011010110000 reg	4
	mem8, imm3	(mem8) bit no. imm3 ← 0	0 0 0 1 1 0 1 0 mod 0 0 0 mem	4-6
	reg16, imm4	reg16 bit no. imm4 + 0	0001101111000 reg	4
. '	mem16, imm4	(mem16) bit no. imm4 ← 0	0 0 0 1 1 0 1 1 mod 0 0 0 mem-	4-6
			2nd byte* 3rd byte* *Note: First byte = 0FH	•
	CV	CY ← 0	1 1 1 1 1 0 0 0	1 0
÷	DIR	DIR ← 0	1 1 1 1 1 0 0	-

N E C ELECTRONICS INC 30E D 🖬 6427525 0027076 1 🖿

μ**PD70330/332 (V35)**

70

NEC T-49-19-16

_49_19-59

s and a second
5
5
5
5
5
5
5
5
5
ction
iction
uction
ruction

	mon action out (court)				
Mnemonic	Operand	Operation	Operation Code 0	No. of Flags Bytes AC CY V P S Z	
Bit Oper-	Bit Operation (cont)				
SET1	reg8, CL	reg8 bit no. CL + 1	0001010010000 reg	3	
	mem8, CL	(mem8) bit no. CL + 1	0 0 0 1 0 1 0 0 mod 0 0 0 mem	3-5	
	reg16, CL	reg16 bit no. CL + 1	0001010111000 reg	3	
	mem16, CL	(mem16) bit no. CL + 1	0 0 0 1 0 1 0 1 mod 0 0 0 mem	3-5	
	reg8, imm3	reg8 bit no. imm3 1	0001110011000 reg	4	
	mem8, imm3	(mem8) bit no. imm3 + 1	0 0 0 1 1 1 0 0 mod 0 0 0 mem	4-6	
	reg16, imm4	reg16 bit no. imm4 + 1	0001110111000 reg	4	
	mem16, imm4	(mem16) bit no. imm4 + 1	0 0 0 1 1 1 0 1 mod 0 0 0 mem	4-6	
			2nd byte* 3rd byte* *Note: First byte = 0FH		
	c۸	CY +1	1111001	1	
	DIR	DIR ← 1	1111101	,	
Shift					
SHL	reg, 1	CY ← MSB of reg, reg ← reg x 2 When MSB of reg \neq CY, V ← 1 When MSB of reg = CY, V ← 0	110100W11100 reg	2 U X X X X X	
	mem, 1	CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x 2 When MSB of (mem) \neq CY, V \leftarrow 1 When MSB of (mem) = CY, V \leftarrow 0	1 1 0 1 0 0 W mod 1 0 0 mem	24 U X X X X	
	reg, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← MSB of reg. reg ← reg x 2, temp ← temp − 1	110101W11100 reg	2 u x u x x x	_
	mem, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← MSB of (mem), (mem) ← (mem) x 2, temp ← temp − 1	1 1 0 1 0 1 W mod 1 0 0 mem	24 U X U X X	T-49
	reg, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← MSB of reg, reg ← reg x 2, temp ← temp − 1	110000W11100 reg	3 U X U X X	-19-1
	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← MSB of (mem), (mem) ← (mem) x 2, temp ← temp − 1	1 1 0 0 0 0 W mod 1 0 0 mem n: number of shifts	3-5 u x u x x x	6 1
ЯЯ	reg, 1	CY \leftarrow LSB of reg. reg \leftarrow reg \div 2 When MSB of reg \neq bit following MSB of reg: V \leftarrow 1 When MSB of reg = bit following MSB of reg: V \leftarrow 0	1101000W11101 reg	2 и х х х х	-49-19-
·					59

4b

N E C ELECTRONICS INC

μ**PD7**0330/332 (V35)

N E C ELECTRONICS INC 30E D 🖬 6427525 0027078 5 🖿

µ**PD7**0330∕332 (V35)

72

EC T-49-19-16 T-49-19-59

Maemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	Bytes /	AC CY		P S
Shift (cont)	it)						
SHR (cont)	mem, 1	CY \leftarrow LSB of (mem), (mem) \leftarrow (mem) \div 2 When MSB of (mem) \neq bit following MSB of (mem): V \leftarrow 1 When MSB of (mem) = bit following MSB of (mem): V \leftarrow 0	1 1 0 1 0 0 W mod 1 0 1 mem	54	×	×	× ×
	reg, CL	temp ←– CL, while temp ≠ 0, repeat this operation, CY ←– LSB of reg, reg ←– reg ÷ 2, temp ←– temp −– 1	1101001W11101 reg	5	×	3	× ×
	mem, CL	temp ← CL, while temp ≠ 0. repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp − 1	11010101W mod 101 mem	54	×	3	× ×
	reg, imm8	temp \leftarrow imm8, while temp \neq 0, repeat this operation, CY \leftarrow LSB of reg, reg \leftarrow reg \div 2, temp \leftarrow temp -1	110000W11101 reg	ю ,	×	•	××
	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp − 1	1 1 0 0 0 0 W mod 1 0 1 mem n: number of shifts	3-5	×	3	××
SHRA	reg, 1	CY ← LSB of reg, reg ← reg ÷ 2, V ← 0 MSB of operand does not change	1101000W11111 reg	5	×.	0	××
	mem, 1	CY \leftarrow LSB of (mem), (mem) \leftarrow (mem) \div 2, V \leftarrow 0, MSB of operand does not change	1 1 0 1 0 0 W mod 1 1 1 mem	54	×	•	×
	reg, CL	temp + CL, while temp ≠ 0, repeat this operation, CY +- LSB of reg. reg + reg ÷ 2, temp + temp 1 MSB of operand does not change	1101001W11111 reg	2	×	9	××
	mem, CL	temp \leftarrow CL, while temp \neq 0, repeat this operation, CY \leftarrow LSB of (mem), (mem) \leftarrow (mem) \div 2, temp \leftarrow temp $-$ 1 MSB of operand does not change	1 1 0 1 0 0 1 W mod 1 1 1 mem	54	х п	3	××
	reg, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, temp ← temp − 1 MSB of operand does not change	110000W11111 reg	e	×	⇒	××
	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of (mem), (mem) ← (mem) ÷ 2, temp ← temp − 1 MSB of operand does not change	1 1 0 0 0 0 W mod 1 1 1 mem n: number of shifts	3-5	х л	-	×

~
U
e 🔪
-
-
-
•
4 x
U J
2
~
-
77
0
÷.
-
24
-

Instructio	Instruction Set (cont)			
Mnemonic	Operand	Operation	Operation Code No. of 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 8 9 8 9	AC
Rotation				
ROL	reg, 1	CY ← MSB of reg, reg ← reg x 2 + CY MSB of reg \neq CY: V ← 1 MSB of reg = CY: V ← 0	1101000W11000 reg 2	Î
	mem, 1	CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x 2 + CY MSB of (mem) \neq CY: V \leftarrow 1 MSB of (mem) $=$ CY: V \leftarrow 0	1 1 0 1 0 0 W mod 0 0 0 mem 24	
	reg, CL	temp ← CL, while temp ≠ 0, repeat this operation, CY ← MSB of reg, reg ← reg x 2 + CY temp ← temp − 1	110101W11000reg 2	^ .
	mem, CL	temp \leftarrow CL, while temp \neq 0, repeat this operation, CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x 2 + CY temp \leftarrow temp $-$ 1	1 1 0 1 0 0 1 W mod 0 0 0 reg 24	
	reg, imm8	temp \leftarrow imm8, while temp \neq 0, repeat this operation, CY \leftarrow MSB of reg, reg \leftarrow temp \times 2 + CY temp \leftarrow temp $-$ 1	110000W11000 reg 3	
	mem, imm8	temp \leftarrow imm8, while temp \neq 0, repeat this operation, CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x2 + CY temp \leftarrow temp $-$ 1	1 1 0 0 0 0 W mod 0 0 0 mem 3-5 n: number of shifts	*
ROR	reg, 1	CY \leftarrow LSB of reg, reg \leftarrow reg \div 2 MSB of reg \leftarrow CY MSB of reg \ne bit following MSB of reg: V \leftarrow 1 MSB of reg $=$ bit following MSB of reg: V \leftarrow 0	110100W11001 reg 2	Î
	mem, 1	CY \leftarrow LSB of (mem), (mem) \leftarrow (mem) \div 2 MSB of (mem) \leftarrow CY MSB of (mem) \ne bit following MSB of (mem): V \leftarrow 1 MSB of (mem): V \leftarrow 0 of (mem): V \leftarrow 0	1 1 0 1 0 0 W mod 0 0 1 mem 2-4	×
	reg, CL	temp \leftarrow CL, while temp \neq 0, repeat this operation, CY \leftarrow LSB of reg, reg \leftarrow reg \div 2, MSB of reg \leftarrow CY temp \leftarrow temp $-$ 1	110101W11001 reg 2	×
	nem Cl	tamn 🗕 Pl while tamn 🔟 D	1 1 0 1 0 1 W mod 0 0 1 mom 0 1	,

п х

× ×

××

ז א

⊐

×

∍

×

30E D 🔳 6427525 0027079 7 🖿

⇒

×

μ**PD7**0330/332 (V35) T-49-19-16

∋

×

2-4

mem

temp \leftarrow CL, while temp \neq 0, repeat this operation, CY \leftarrow LSB of (mem), (mem) \leftarrow (mem) + 2, MSB of (mem) \leftarrow CY temp \leftarrow temp - 1

mem, CL

n:number of shifts

4b

T-49-19-59

73

N E C ELECTRONICS INC **EC**

× ×

×

×

Flags CY V P S Z

Instructio	Instruction Set (cont)				<u> </u>
Mnemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	NO. OT TIAUS Bytes AC CY V P S Z	
Rotation (cont)	(cont)				
ROR (cont)	reg, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← CY temp ← temp − 1	1100000W11001 reg	т х м	
	mem, imm8	temp \leftarrow imm8, while temp \neq 0, repeat this operation, CY \leftarrow LSB of (mem), (mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1	1 1 0 0 0 0 W mod 0 0 1 mem n: number of shifts	3-5 X L	
Rotate					
ROLC	reg, 1	tmpcy \leftarrow CY, CY \leftarrow MSB of reg reg \leftarrow reg x 2 + tmpcy MSB of reg = CY: V \leftarrow 0 MSB of reg \neq CY: V \leftarrow 1	1 1 0 1 0 0 W 1 1 0 1 0 Feg	2 . x x	
	mem, 1	trupcy \leftarrow CY, CY \leftarrow MSB of (mem) (mem) \leftarrow (mem) x 2 + trupcy MSB of (mem) = CY: V \leftarrow 0 MSB of (mem) \neq CY: V \leftarrow 1	1 1 0 1 0 0 W mod 0 1 0 mem	* 24 × ×	
	reg, CL	temp \leftarrow CL, while temp \neq 0, repeat this operation, tmpcy \leftarrow CY, CY \leftarrow MSB of reg, reg \leftarrow reg x 2 + tmpcy temp \leftarrow temp -1	110101W11010 reg	2 х ц	
	mem, CL	temp \leftarrow CL, while temp \neq 0, repeat this operation, tmpcy \leftarrow CY, CY \leftarrow MSB of (mem), (mem) \leftarrow (mem) x 2 + tmpcy temp \leftarrow temp $-$ 1	1 1 0 1 0 1 W mod 0 1 0 mem	2-4 X L	<u> </u>
	reg, imm8	temp \leftarrow imm8, while temp \neq 0, repeat this operation, tmpcy \leftarrow CY, CY \leftarrow MSB of reg, reg \leftarrow reg x 2 + tmpcy temp \leftarrow temp $-$ 1	110000W11010 reg	л х х	
	mem, imm8	temp \leftarrow imm8, while temp \neq 0, repeat this operation, tmpcy \leftarrow CY, CY \leftarrow MSB of (mem) (mem) \leftarrow (mem) x 2 + tmpcy temp \leftarrow temp $-$ 1	1 1 0 0 0 0 W mod 0 1 0 mem n: number of shifts	4–) ح × ×	— Т-4 Т- 4

N_E C ELECTRONICS INC

.

74

μ**PD7**0330/332 (V35)

EC

ľ

ſ

T-49-19-16 T-49-19-59

30E **D**

ont)	
ى.	
Set (
2	
õ	
5	
ü	
5	
st	
2	

Instructio	Instruction Set (cont)			
Maemonic	Operand	Operation	Operation Code 1076543210 No	No. of Flags Bytes AC CY V P S Z
Rotate (cont)	cont)			-
RORC	reg, 1	tmpcy \leftarrow CY, CY \leftarrow LSB of reg reg \leftarrow reg \div 2, MSB of reg \leftarrow tmpcy MSB of reg \neq bit following MSB of reg: V \leftarrow 1 MSB of reg = bit following MSB of reg: V \leftarrow 0	110100W11011 reg 2	×
	mem, 1	tmpcy \leftarrow CY, CY \leftarrow LSB of (mem) (mem) \leftarrow (mem) \div 2, MSB of (mem) \leftarrow tmpcy MSB of (mem) \neq bit following MSB of (mem): V \leftarrow 1 MSB of (mem) = bit following MSB of (mem): V \leftarrow 0	110100W mod 011 mem 2	24 X X
	reg, cL	temp ← CL, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of reg, reg ← reg ÷ 2, MSB of reg ← tmpcy, temp ← temp − 1	110101W11011 reg 2	н х х
	mem, CL	temp ← CL, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of (mem), (mem) ← (mem) ÷ 2 MSB of (mem) ← tmpcy, temp ← temp − 1	1101001W mod 011 mem 24	4 X E
	reg, imm8	temp ← imm8, while temp ≠ 0 repeat this operation, tmpcy ← CY, CY ← LSB of reg, reg ← reg ÷ 2 MSB of reg ← tmpcy, temp ← temp − 1	110000W11011 reg 3	-
	mem, imm8	temp ← imm8, while temp ≠ 0, repeat this operation, tmpcy ← CY, CY ← LSB of (mem), (mem) ← (mem) ÷ 2 MSB of (mem) ← tmpcy, temp ← temp − 1	1100000 W mod 011 mem 35	5 x L
Subroutir	Subroutine Control Transfer	ister		
CALL	near-proc	(SP - 1, SP - 2) ← PC, SP ← SP - 2 PC ← PC + disp	11101000	
	regptr16	(SP - 1, SP - 2) - PC, SP 2 PC regotr16	111111111010 reg 2	
	memptr16	$(SP - 1, SP - 2) \leftarrow PC, SP \leftarrow SP - 2$ PC \leftarrow (memptr16)	11111111mod 010mem 24	4
	far-proc	(SP 1, SP 2) -← PS, (SP 3, SP 4) -← PC SP -← SP 4, PS -← seg, PC -← offset	10011010	

30E **D**

μ**PD**70330/332 (V35)

T-49-19-16 T-49-19-59

24

mem

 $\begin{array}{l} (SP-1, SP-2) \leftarrow PS, (SP-3, SP-4) \leftarrow PC\\ SP \leftarrow SP-4, PS \leftarrow (memptr32+2),\\ PC \leftarrow (memptr32) \end{array}$

memptr32

■ 6427525⁰0027081 5 ■

4b

75

N E C ELECTRONICS INC EC

,

4.7
2
O.
Ū.
÷
-
ĊD.
٥,
~
5
0
5
77
2
3
72
2
5

Instructic	Instruction Set (cont)			
Mnemonic	Operand	Operation	0peration Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z
Subrouti	Subroutine Control Transfer (co	nsfer (cont)		
RET		PC + (SP + 1, SP), SP + SP + 2	1 1 0 0 0 1 1	
	pop-value	PC ← (SP + 1, SP) SP ← SP + 2, SP ← SP + pop-value	. 1100010	3
		PC ← (SP + 1, SP), PS ← (SP + 3, SP + 2) SP ← SP + 4	1100101	-
	pop-value	PC \leftarrow (SP + 1, SP), PS \leftarrow (SP + 3, SP + 2) SP \leftarrow SP + 4, SP \leftarrow SP + pop-value	1 1 0 0 1 0 1 0	ß
Stack Ma	Stack Manipulation			
PUSH	mem16	(SP - 1, SP - 2) ← (mem16), SP ← SP - 2	111111111mod 110 mem .	2-4
	reg16	(SP - 1, SP - 2) ← reg16, SP ← SP - 2	0 1 0 1 0 reg	-
	sreg	(SP- 1, SP- 2) sreg, SP SP 2	0 0 0 Sreg 1 1 0	-
	PSW	(SP 1, SP 2) ←- PSW, SP ←- SP 2	10011100	
	R	Push registers on the stack	0 1 1 0 0 0 0 0	-
	imm	$(SP - 1, SP - 2) \leftarrow imm$ SP $\leftarrow SP - 2$, When S = 1, sign extension	0 1 1 0 1 0 2 0	2-3
POP	mem16	(mem16) ← (SP + 1, SP), SP ← SP + 2	10001111 mod 000 mem	24
	reg16	reg16 (SP + 1, SP), SP SP + 2	0 1 0 1 1 reg	-
	sreg	sreg ← (SP + 1, SP) sreg : SS, DS0, DS1 SP ← SP + 2	0 0 0 sreg 1 1 1	-
	PSW	PSW ← (SP + 1, SP), SP ← SP + 2	10011101	1 R R R R R R
	В	Pop registers from the stack	0110001	1
PREPARE	imm16, imm8	Prepare new stack frame	1 1 0 1 0 0 0 **imm8=0 16	4
		-	imm8 > 1; 25 + 16 (imm8 - 1)	
DISPOSE		Dispose of stack frame	1 1 0 0 1 0 0 1	-

C ELECTRONICS INC Ε N

0 (V2E)

30E **D**

T-49-19-16

T-49-19-59

24 2-4 2 2 ო

reg

PC - PC + ext-disp8

PC +-- regptr16

PC ← PC + disp

near-label short-label

Branch BR

PS --- (memptr32 + 2), PC --- (memptr32)

memptr32 far-label

PS ← seg, PC ← offset

PC +-- (memptr16)

memptr16 regptr16

11101010

Ilitoma Branch Ilito 1 Sinribiel IY = UP - PP + exclusion 0 11 11 0 0 10 2 Sinribiel IY = UP - PP + exclusion 0 11 11 0 0 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 0 0 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 0 0 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 0 0 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 11 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 2 Sinribiel IY = UP - PP + exclusion 0 11 11 10 2 Sinribiel IY = QP - PP + exclusion 0 11 11 10 2 Sinribiel IY = QP - PP + exclusion 0 11 11 10 <td< th=""><th>Mnemonic</th><th>Operand</th><th>Operation</th><th>Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0</th><th>No. of Flags Bytes AC CY V P S Z</th></td<>	Mnemonic	Operand	Operation	Operation Code 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	No. of Flags Bytes AC CY V P S Z
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	onditio	nal Branch			
Survitable If V=0, PC + PC + exclusion 0 1 1 0 1 0 1 0 2 M. Survitable If Z=1, PC + PC + exclusion 0 1 1 0 1 0 2 M. Survitable If Z=1, PC + PC + exclusion 0 1 1 0 1 0 2 Survitable If Z=1, PC + PC + exclusion 0 1 1 1 0 1 1 0 2 M. Survitable If Z=1, PC + PC + exclusion 0 1 1 1 0 0 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 0 0 2 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 0 0 2 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 0 0 2 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 0 1 2 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 1 1 1 1 2 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 1 1 1 1 1 2 2 Survitable If Z=0, PC + PC + exclusion 0 1 1 1 1 1 1 1 1 1		short-label		111000	2
Michael If Cr = 1, Cr = 7, Cr	٨	short-label	11	1 1 1 0 0 0	2
M. Stort-label If $V = 0, P - PC + redisjon 0 11 11 0 11 0 2 M. Stort-label If V = 0, P - PC + redisjon 0 11 11 0 11 0 2 M. Stort-label If Z = 1, P - PC + redisjon 0 11 11 0 1 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 10 0 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 10 0 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 10 0 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 10 0 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 10 0 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 10 0 10 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 11 0 0 2 2 Stort-label If Z = 0, P - PC + redisjon 0 11 11 1 1 0 0 2 2 Stort-label If Z = 0, P - PC + redisjon 0 11 1 1 1 0 0 2 2 Stort-label If Z = 0, P - PC + redisjon 0 1 1 1 1 1 0 0 2 2 Stort-label If Z = 0, P - PC + redidjon 0 1 1 1 1 0 0 2$	BL	short-label	ļţ	1 1 1 0 0 1	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BNC, BNL	short-label	 	111001	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BZ	short-label	11	111010	2
Stort-label If (CY 0R2 = 1, PC - PC + ext-disple 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 </td <td>E, BNZ</td> <td>short-label</td> <td>11</td> <td>111010</td> <td>2</td>	E, BNZ	short-label	11	111010	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ŧ	short-label		1 1 1 0 1 1	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label	if CY OR $Z = 0$, PC \leftarrow PC + ext-disp8	111011	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label		1 1 1 1 0 0	. 2 .
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label	1	111100	2
Stort-label If P=0, PC - PC + ext-disp8 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1		short-label	11	111101	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label	if P = 0, PC + PC + ext-disp8	111101	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label	PC →	1 1 1 1 1 1 0	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label		111110	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label		111111	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		short-label		11111	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IZNE	short-label	$CW \leftarrow CW - 1$ if $Z = 0$ and $CW \neq 0$, $PC \leftarrow PC + ext-disp8$	110000	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IZE	short-label	$CW \leftarrow CW - 1$ if Z = 1 and $CW \neq 0$, PC \leftarrow PC + ext-disp8	11000	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	short-label	$CW \leftarrow CW - 1$ if $CW \neq 0$, $PC \leftarrow PC + ext-disp8$	1 1 0 0 0 1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Z	short-label	↓	10001	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	LR	str. imm3, short-label	If bit no. imm3 of $(sfr) = 1$, PC \leftarrow PC + ext $-$ disp8, bit no. imm3 of $(sfr) \leftarrow 0$	0 0 0 1 1 1 1 1 0 1 1 1 1 0	à
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	errupt				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		m	← PSW, (SP - 3, SP - 4) ← ← PC, SP ← SP - 6 0 C ← (13, 12)	0110	T
	·.	imm8 (≠ 3)	← PSW, (SP - 3, SP - 4) ← ← PC, SP ← SP - 6 1 ∩ x 4) ∩ x 4 + 2) n = imm8	1 1	49–19–59
				46	

N E C ELECTRONICS INC 30E D 🖬 6427525 0027083 9 🖬

-
-
- 2
0
<u>.</u> 0
~
-
6
- X
S
-
-
- Ő
0
- S.
~~
-2
6
- 24
_

2. 216

Moemonic And			Descrition Parks	
	Operand	Operation	uperaton coue 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	Bytes AC CY V P S Z
Interrupt (cont)	at)			
BRKV		When $V = 1$ (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS, (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP \leftarrow 6 IE \leftarrow 0, BRK \leftarrow 0 PS \leftarrow (19, 18), PC \leftarrow (17, 16)	11001110	
RETI		PC (SP + 1, SP), PS (SP + 3, SP + 2), PSW (SP + 5, SP + 4), SP SP + 6	11001111	1 R R R R R R R
RETRBI		PC Save PC, PSW Save PSW	0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1	2 R R R R R R R
FINT		Indicates that interrupt service routine to the interrupt controller built in the CPU has been completed	0000111110010010	₽.
Tec CHKIND	reg16, mem32	When (mem32) > reg16 or (mem32 + 2) < reg16 (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS, (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (23, 22), PC \leftarrow (21, 20)	0 1 1 0 0 1 0 mod reg mem	24
CPU Control				
HALT		CPU Halt	1 1 1 0 1 0 0	
STOP		CPU Halt	0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0	-
BUSLOCK		Bus Lock Prefix	1 1 1 1 0 0 0 0	-
FP01 (Note 1) fp-op	do-	No Operation	1 1 0 1 1 X X 1 1 Y Y Y Z Z Z	2
\$	fp-op, mem	data bus ← (mem)	11011XX mod Y Y mem	24
FP02 (Note 1) fp-op	do	No Operation	0 1 1 0 0 1 1 X 1 1 Y Y Y Z Z Z	2
ι¢.	fp-op, mem	data bus ← (mem)	0 1 1 0 0 1 1 X mod Y Y Y mem	2-4
POLL		Poll and wait	10011011	-
NOP		No Operation	1001000	-
D		IE ← 0	1 1 1 1 1 0 1 0	-
. 8		E←1	11111011	-
DSO; DS1; PS; SS		Segment override prefix	0 0 1 sreg 1 1 0	-
Notes:		Notes:		-49-

_ ■ 6427525 0027084 0

эое **D**

N.E C ELECTRONICS INC

μ**PD70330/332 (V35)**

Γ T-49-19-16

T-49-19-59

C

BHKGS reg16 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1	0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 <th>MOVSPA</th> <th>0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1</th> <th>1</th> <th></th> <th></th>	MOVSPA	0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1	1		
0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0	0 0 1 1 1 0 1 1 3 1 1 1 1 1 1 1 3	BRKCS reg16	0 0 0 1 1 1 1 0 0 1 0 1 1 1 0	3		
reg16 10100 3 X X X X X X X X X X X X X X X X X X	reg16 0 0 0 0 1 0 1 0 0 1 0 1 0 3 X X X X X X X X X X X X X X X X X X	MOVSPB reg16	0 0 0 1 1 1	e		
			0 0 0 1 1 1 1 1 1 1	3	××	××
				. •	-	
				ł		
			-			

μ**PD70330/332 (V35)**

- T-49-19-16 **T-49-19-59**

4b