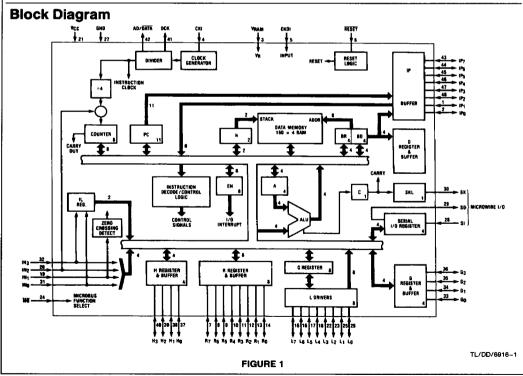


COP404 ROMIess N-Channel Microcontroller


General Description

The COP404 ROMless N-Channel Microcontrollers are members of the COPSTM family, fabricated using N-channel, silicon gate MOS technology. Each microcontroller contains all system timing, internal logic, RAM and I/O necessary to implement dedicated control functions in a variety of applications, and is identical to the COP440/COP340 devices, except that the ROM has been removed; pins have been added to output the ROM address and to input ROM data. In a system, the COP404 will perform exactly as the COP440; this important benefit facilitates development and debug of a COP440 program prior to masking the final part. Features include single supply operation, various output configurations, and an instruction set, internal architecture. and I/O scheme designed to facilitate keyboard input, display output and data manipulation. Standard test procedures and reliable high-density fabrication techniques provide the medium to large volume customers with a controller-oriented processor at a low end-product cost.

For extended temperature range (-40°C to +85°C) COP304 available on special order.

Features

- Exact circuit equivalent of COP440
- Standard 48-pin duat-in-line package
- Interfaces with standard PROM or ROM
- Enhanced, more powerful instruction set
- lacktriangle 160 imes 4 RAM, addresses up to 2k imes 8 ROM
- MICROBUS™ compatible
- Zero-crossing detect circuitry with hysteresis
- True multi-vectored interrupt from four selectable sources (plus restart)
- Four-level subroutine stack (in RAM)
- 4 µs cycle time
- Single supply operation (4.5V-6.3V)
- Programmable time-base counter for real-time processing
- Internal binary counter/register with MICROWIRE™ compatible serial I/O
- General purpose and TRI-STATE® outputs
- TTL/CMOS compatible in and out
- Software/hardware compatible with other members of COP400 family
- Compatible dual CPU device available

Absolute Maximum Ratings

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Zero-Crossing Detect Pin

Relative to GND

-1.2V to +15V

Voltage at Any Other Pin Relative to GND

-0.5V to +7V

Ambient Operating Temperature Ambient Storage Temperature

0°C to +70°C

Lead Temperature (Soldering, 10 sec.)

-65°C to +150°C 300°C

Power Dissipation

0.75W at 25°C 0.4W at 70°C

Total Source Current

150 mA

Total Sink Current

90 mA

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at

absolute maximum ratings.

DC Electrical Characteristics $0^{\circ}C \le T_{A} \le +70^{\circ}C$, 4.5V $\le V_{CC} \le 6.3$ V unless otherwise noted

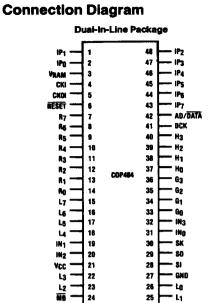
Parameter	Conditions	Min	Max	Units
Operating Voltage (V _{CC})	(Note 4)	4.5	6.3	٧
Power Supply Ripple	(Peak to Peak)		0.4	٧
Operating Supply Current	(All Inputs and Outputs Open)			
-F	$T_A = 0^{\circ}C$		44	mA
	T _A = 25°C		37	mA
	T _A = 70°C		30	mA.
V _R RAM Power Supply Current	V _B = 3.3V		3	mA
Input Voltage Levels				
CKI Input Levels (÷16)				
Logic High (V _{IH})	V _{CC} = Max.,	2.5		l v
Logic High (V _{IH})	V _{CC} = 5V±5%	2.0		ĺ
	VCC = 34 ± 3 %	-0.3	0.4	ľ
Logic Low (V _{IL})	(Schmitt Trigger Input)	0.5	0.4	,
RESET Input Levels	(Schmitt i rigger input)	0.71/		v
Logic High		0.7 V _{CC}		v
Logic Low		-0.3	0.6	V
Zero-Crossing Detect Input (IN ₁)	Zero-Crossing Interrupt			
	Input; INIL Instruction			
Trip Point		-0.15	0.15	٧
Logic High (V _{IH}) Limit			12	V
Logic Low (VII) Limit		-0.8		V
IN ₁	i			
Logic High	Interrupt Input;			Į.
209.07.19.1	ININ Instruction;	3.0		l v
Logic Low	MICROBUS Input	-0.3	0.8	v
All Other Inputs	Will to boo hipst	0.0	""	1
	V _{CC} = Max.	2.5		l v
Logic High		2.0		Ιv̈́
Logic High	$V_{CC} = 5V \pm 5\%$	-0.3	0.8	ľ
Logic Low	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-
IN ₁ Input Resistance to Ground	V _{IH} = 1.0V	1.5	4.6	kΩ
Input Load Source Current	V _{IH} = 2.0V, V _{CC} = 4.5V	14	230	μΑ
Input Capacitance			7.0	pF
Hi-Z Input Leakage		-1.0	+1.0	μA
Output Voltage Levels				
Standard Output				
TTL Operation		1 .		١,,,
Logic High (V _{OH})	$I_{OH} = -100 \mu A$	2.4		Į V
Logic Low (V _{OL})	I _{OL} = 1.6 mA		0.4	V
CMOS Operation (Note 1)		İ		l
Logic High (V _{OH})	$I_{OH} = -10 \mu$ A	V _{CC} 0.4		V
Logic Low (VOL)	$I_{OL} = 10 \mu\text{A}$		0.2	V
TRI-STATE Output				Į.
TTL Operation				
Logic High (V _{OH})	$I_{OH} = -100 \mu A$	2.4	1	\ \ \
Logic Low (VOL)	I _{OL} = 1.6 mA		0.4	V
CMOS Operation (Note 1)	$33 \text{ k}\Omega \geq \text{R}_{\text{L}} \geq 4.7 \text{ k}\Omega$	1		
Logic High (V _{OH})	$I_{OH} = -10 \mu\text{A}$	V _{CC} - 0.5		l v
Logic Low (VOL)	I _{OL} = 1.6 mA	100 0.0	0.4	ľ
	-OL 1.0 11/1	<u> </u>		
Output Current Levels		100		
Standard Output Source Current	$V_{CC} = 4.5V, V_{OH} = 2.4V$	-100	-650	μA
TRI-STATE Output Leakage Current	1	-2.5	+ 2.5	μΑ

DC Electrical Characteristics $0^{\circ}C \le T_A \le +70^{\circ}C$, $4.5V \le V_{CC} \le 6.3V$ unless otherwise noted (Continued)

Parameter	Conditions	Min	Max	Units
Total Sink Current Allowed				4
All I/O Combined	i		90	mA
Each L, R Port	i		20	mA
Each D, G, H Port			10	mĄ
SO, SK			2.5	mĄ
IP .			1.8	mA
Total Source Current Allowed	(Note 5)			
All I/O Combined	· ·		150	mA
L Port			120	mA.
L7-L4			70	mA
-,, L3-L0			70	mA
Each L Pin		l .	23	mA
All Other Output Pins			1.6	mA

Note 1: TRI-STATE configuration is excluded.

AC Electrical Characteristics $0^{\circ}C \le T_{A} \le +70^{\circ}C$, $4.5V \le V_{CC} \le 6.3V$ unless otherwise noted


Parameter	Conditions	Min	Max	Units
Instruction Cycle Time—t _E		4.0	10	μs
CKI Frequency	÷ 16 Mode	1.6	4.0	MHz
Duty Cycle (Note 2)	fı = 4 MHz	30	60	%
Rise Time	fi = 4 MHz		60	ns
Fall Time	f _i = 4 MHz		40	ns
INPUTS: (Figure 3)				
SI				
ISETUP		0.3		με
thold		300		ns
IP TO THE REPORT OF THE PERSON				
tsetup		0.25		μs
thorp.		250		ns
tHOLD	From AD/DATA Rising Edge	0		ns
All Other Inputs				
tsetup .		1.7		μ8
tHOLD		300		ns
OUTPUT PROPAGATION DELAY	Test Condition:			
IP	$C_{L} = 50 \text{ pF}, V_{OUT} = 1.5V$			
tod1A, tod0A	1		1.94	μ8
lod1B, lod0B			0.94	μS
DCK				
-			375	ns
t _{od1} , t _{od} o AD/DATA	1	1		
tod1, tod0		1	300	ns
SO, SK				
t _{od1} , t _{od0}	$R_1 = 2.4 k\Omega$		1.0	μs
All Other Outputs	$R_L = 5.0 \mathrm{k}\Omega$	1	1.4	με
MICROBUS TIMING	$C_L = 100 \text{ pF}, V_{CC} = 5V \pm 5\%$			
Read Operation	TRI-STATE outputs			l
Chip Select Stable Before RD—t _{CSR}	1	65		ns
Chip Select Hold Time for RD—tacs		20	1	ns
RD Pulse Width—tag		400		ns
Data Delay from RD—t _{RD}			375	ns
RD to Data Floating—toF			250	ns
Write Operation				
Chip Select Stable Before WRt _{CSW}	Ī	65		ns
Chip Select Hold Time for WR—twos		20		ns
WR Pulse Width—tww		400		กร
Data Set-Up Time for WRtpw		320		ns
Data Hold Time for WR—twp	1	100	1	ns
INTR Transition Time from WR—twi	1	1	700	ns

Note 2: Duty Cycle = $t_{WI}/(t_{WI} + t_{WO})$.

Note 3: See Figure for additional I/O Characteristics.

Note 4: V_{CC} voltage change must be less than 0.5V in a 1 ms period to maintain proper operation.

Note 5: Exercise great care not to exceed maximum device power dissipation limits when direct-driving LEDs (or sourcing similar loads) at high temperature.

Pin Descriptions

– -	
Pin	Description
L ₇ -L ₀	8-bit bidirectional TRI-STATE I/O port
G ₃ G ₀	4-bit bidirectional I/O port
IN ₃ -IN ₀	4-bit general purpose input port
$H_3 - H_0$	4-bit bidirectional I/O port.
R7-R0	8-bit bidirectional TRI-STATE I/O port
SI	Serial input
SO	Serial output (or general purpose output)
SK	Logic-controlled clock (or general purpose output)
CKI	System oscillator input
CKOI	General purpose input
VRAM	Power supply to first 4 registers of RAM
MB	MICROBUS function select
DCK	Clock output to latch D outputs and high order address bits
AD/DATA	Address out/data in flag
IP1-IP0	8-bit bidirectional port for ROM address, ROM data and D outputs

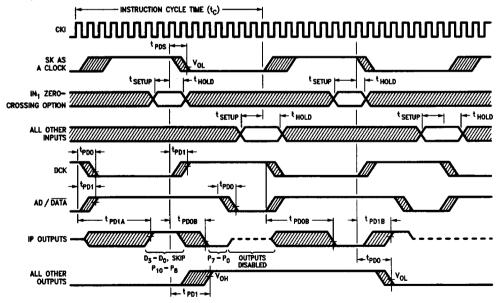
System reset input

Power Supply

Ground

TL/DD/6916-2

RESET


Vcc

GND

Top View FIGURE 2

Order Number COP404N See NS Package Number N48A

Timing Diagram

TL/DD/6916-3

Functional Description

The COP404 is a ROMless microcontroller for emulating the COP440 or for stand-alone applications. Please refer to the COP440 description for detail functional description. The following describes functions that are unique to the COP404 or are different from those in COP404. Figures 1 and 2 show the COP404 block diagram and pin-out.

PROGRAM MEMORY

Program memory consists of 2048 bytes of external memory (on-chip in the COP440) that can be accessed through the IP port. See External Memory Interface below.

D DORT

The D3-D0 outputs are missing from this 48-pin package, but may be recovered through the IP port (see External Memory Interface below). Note that the recovered signals have the same timing but different output drive capability as those from the COP440 (see D Port Characteristics below).

MICROBUS AND ZERO-CROSSING DETECT INPUT OPTION

The MICROBUS compatible I/O, selected by a mask option on the COP440, is selected by tying the $\overline{\text{MB}}$ pin directly to ground. When the MICROBUS compatible I/O is not desired, the $\overline{\text{MB}}$ pin should be tied to V_{CC} . Note that none of the IN inputs are Hi-Z. Since zero-crossing detect input (used by INIL instruction and zero-crossing interrupt feature) is chosen for IN1, the IN1 input "1" level for ININ instruction, IN1 interrupt, and MICROBUS input is 3V. Even though the MICROBUS option and zero-crossing detector option appear on the COP404, they are mutually exclusive on the COP440.

OSCILLATOR

CKI is an external clock input signal. The clock frequency is divided by 16 to give the execution frequency.

CKO PIN OPTIONS

Two different CKO functions of the COP440 are available on the COP404. V_{RAM} supplies power to the lower four registers of RAM, and CKOI is an interrupt input or a general purpose input, reading into bit 2 of A (accumulator) through the INIL instruction.

EXTERNAL MEMORY INTERFACE

The COP404 is designed for use with an external program memory. This memory may be implemented using any devices having the following characteristics:

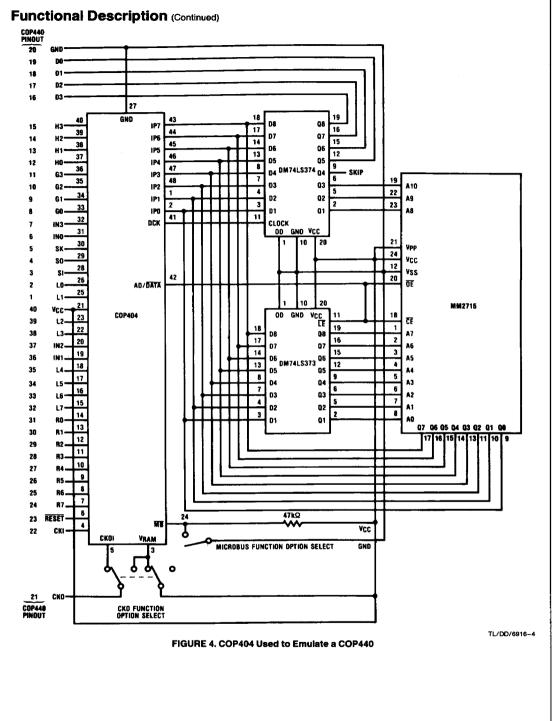
- Random addressing
- 2. TTL-compatible TRI-STATE outputs
- 3. TTL-compatible inputs
- 4. Access time = 450 ns maximum

Typically these requirements are met using bipolar or ${\sf MOS}$ PROMs.

Figure 3 shows the timings for IP port and the external memory interface clocks--DCK and AD/DATA. While DCK is low, the upper three address bits, P10-P8, of the next instruction to be executed appear at IP2-IP0 respectively; D3-D0 appear at IP7-IP4 and IP3 contains the SKIP output used by the COPS Program Development System (PDS). The rising edge of DCK clocks these data into D flip-flops. e.g., 74LS374. The timing of D port data is then the same for COP404 and COP440. After DCK has risen to a "1" level, the remaining address bits (P7-P0) appear at IP7-IP0. The falling edge of AD/DATA latches these data into flowthrough latches, e.g., 74LS373. The latched addresses provide the inputs to the external memory. When AD/DATA goes low, the IP outputs are disabled and the IP lines become program memory inputs from the external memory. Note that DCK has a duty cycle of about 50% and AD/DATA has a duty cycle of about 75%. Figure 4 shows how to emulate the COP440 using a COP404 and an EP-ROM as the external memory.

I/O OPTIONS

All inputs except IN1 and CKI have on-chip depletion load devices to V_{CC}. IN1 has a resistive load to GND due to the zero-crossing input. CKI is a Hi-Z input.


G and H ports have standard outputs. L and R ports have TRI-STATE outputs. IP port, DCK, AD/DATA, SO and SK have push-pull outputs.

LED DRIVE

The TRI-STATE outputs of L port may be used to drive the segments of an LED display. External current limiting resistors of 100Ω must be connected between the L outputs and the LED segments.

D PORT CHARACTERISTICS

Since the D port is recovered through an external latch, the output drive is that of the latch and not that of COP440. Using the set-up as shown in *Figure 4*, at an output "0" level of 0.4V, the 74LS374 may sink 10 times as much current as the COP440. At an output "1" level of 2.4V, the 74LS374 may source 10 times as much current as the COP440. On the other hand, the output "1" level of 74LS374 latch does not go to V_{CC} without an external pull-up resistor. In order to better approximate the COP440 output characteristics, add a 74C906 buffer to the output of the 74LS374, thus emulating an open drain D output. A pull-up resistor of 10k should be added to the input of the buffer. To emulate the standard output, add a pull-up resistor between 2.7k and 15k to the output of the 74C906.

Option Table

COP404 MASK OPTIONS

The following COP440 options have been implemented in the COP404.

Option Value	Comment	Option Va	lue	Comment
Option $1-2 = 3$	L outputs are TRI-STATE	Option 22	= 0	CKI is input clock divided by 16
Option $3 = 0$	SI has load to V _{CC}	Option 23	- 0	RESET has load to V _{CC}
Option $4 = 2$	SO is push-pull output	Option 24-31	= 3	R outputs are TRI-STATE
Option $5 = 2$	SK is push-pull output	Option 32-35	= 3	L outputs are TRI-STATE
Option $6 = 0$	IN0 has load to V _{CC}	Option 36	= 2	IN1 is zero-crossing detect input
Option $7 = 0$	IN3 has load to V _{CC}	Option 37	= 0	IN2 has load to V _{CC}
Option $8-11 = 0$	G outputs are standard	Option 38-39	= 3	L outputs are TRI-STATE
Option $12-15 = 0$	H outputs are standard	Option 40	= N/A	V _{CC} —No option available
Option 16-19 = N/A	D outputs are derived from external	Option 41	== 0,1	MICROBUS option is pin selectable
	latch, see <i>Figure 4</i>	Option 42-48	= 0	Inputs have standard TTL levels
Option 20 = N/A	GND—No option	Option 49	= N/A	No option available
Option 21 = 1,2	CKO is replaced by V _{RAM} and CKOI	Option 50	= N/A	48-pin package