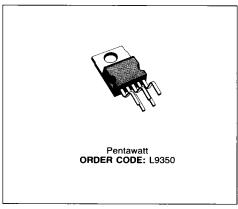
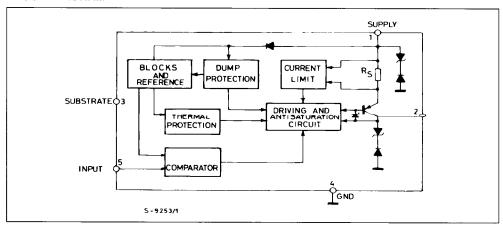


HIGH SIDE DRIVER


ADVANCE DATA

- LOW SATURATION VOLTAGE
- TTL COMPATIBLE INPUT
- WIDE SUPPLY VOLTAGE
- NO EXTERNAL COMPONENTS
- INTERNAL RECIRCULATION PATH FOR FAST DECAY OF INDUCTIVE LOAD CURRENT
- SHORT CIRCUIT PROTECTION
- FAILSAFE OPERATION : OUTPUT IS OFF IF THE LOGIC INPUT IS LEFT OPEN

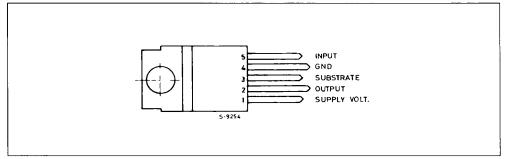
DESCRIPTION


The L9350 is a monolithic integrated circuit designed to drive grounded resistive, inductive or mixed loads from the power supply positive side. Very low standby current (100/A typ.) and internally implemented protections against load dump and reverse voltages make the device very useful in automotive applications. No external components are required because the output recirculation clamping zener is included in the chip. This zener can withstand a recirculation peak current of 550mA on a 80mH/25 load.

The device is self-protected against overtemperature, overvoltage and overcurrent conditions. The

L9350 operates over the full battery voltage range, from 4.5V (cold cranking) up to 24V (jump starting). The L9350 withstands revers battery conditions (- 13V) and supply voltage transients up to 100V limiting the maximum output transistor V_{EC} to 70V by an internal zener. ON and OFF delay times of 25/s max in any output status, including recirculating situation, allow PWM use of L9350.

BLOCK DIAGRAM


February 1989

1/4

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

133

PIN CONNECTIONS (top view)

Note: Pin 3 must be left open or connected to ground.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	D.C. Supply Voltage	24	V	
	D.C. Reverse Supply Voltage	- 13	V	
	Load Dump: $5ms \le t_{rise} \le 10ms$	60	V	
	τ_{f} Fall Time Constant = 100ms, $R_{\text{source}} \geq 0.5\Omega$	ļ		
	Low Energy Spikes : $R_{source} \ge 10\Omega$, $t_{rise} = 1\mu s$, $tf = 2ms$, $trace for the source of the$	± 100	V	
Vı	Input Voltage	- 0.3 to 7	V	
lo	Output Current	Internally Limited		
P _{tot}	Total Power Dissipation at T _{case} = 90°C	17.1	W	
T _{JI} T _{stq}	Junction and Storage Temperature	- 55 to 150	°C	

THERMAL DATA

R _{th} j-amb	Thermal Resistance Junction-ambient	Max	80	°C/W
R _{th} j-case	Thermal Resistance Junction-case	Max	3.5	°C/W

ELECTRICAL CHARACTERISTICS

 $(V_S = 14.4V, -40^{\circ}C \le Tj \le + 125^{\circ}C$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Operating Supply Voltage		4.5		24	V
V _{IH}	Input Voltage High	4.5 < V _S < 24	2.0			V
V _{IL}	Input Voltage Low			1	0.8	
I _I	Input Current	0.8 < V ₁ < 5.5V		80	300	μА
I _{PL}	Output Leakage Current	$V_O = 0V V_S = 24V V_1 < 0.8V$			1	mA
V _{sat}	Output Saturation Voltage	$I_0 = 125 \text{mA} \ V_S = 4.5 \text{V}$		0.3	0.7	V
		$I_{O} = 225 \text{mA} \ V_{S} = 14.4 \text{V}$		0.5	0.8	>
		$I_{O} = 550 \text{mA} \ V_{S} = 14.4 \text{V}$		0.7	1.1	V
I _{SC}	Output Short Circuit Current		0.6	1.5		Α
la	Quiescent Current	V ₁ > 2V		50	100	mA
		V _I < 0.8V Stand-by Condition		100	200	μА
V _{zo}	Negative Output Zener Voltage	$R_L = 25\Omega$ L = 80mH on V _I Transition from "1" to "0"	- 36	- 30	- 24	٧
Ton	Turn ON Delay	Resistive Load R _L = 25Ω , T _j = 25° C (fig.2)			20	μs
T _{off}	Turn OFF Delay				25	μs
T _{dc}	Turn On Delay While Output is Clamped	R _L = 25Ω L = 80mH Any Time During Internal Clamping (fig.3)			20	μs

Figure 1: Typical Automotive Application Circuit.

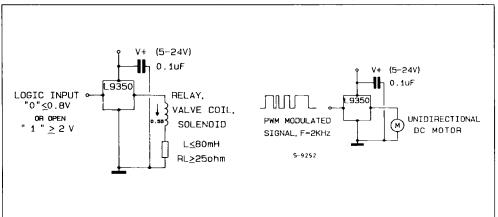


Figure 2: Resistive Load.

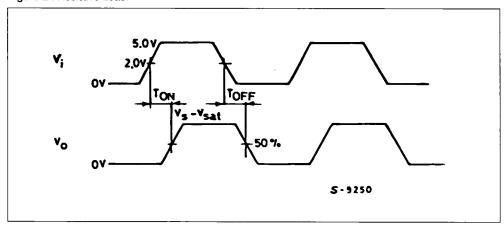
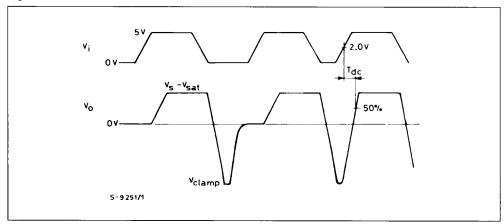



Figure 3: Inductive Load.

