

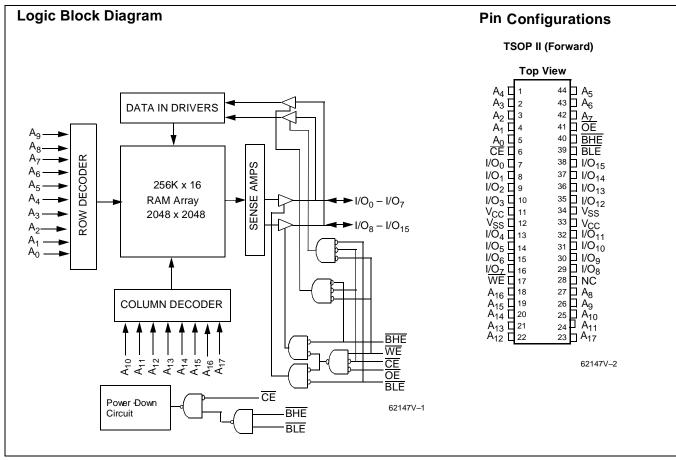
CY62147V MoBL™ CY62147V18 MoBL2™

Features

- Low voltage range:
 - -CY62147V: 2.7V-3.6V
 - CY62147V18: 1.65V-1.95V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

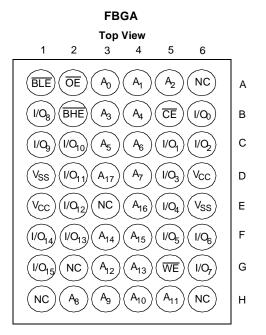
The CY62147V and CY62147V18 are high-performance CMOS static RAMs organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBLTM) in portable applications such as cellular telephones. The devices also have an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The <u>device</u> can also be <u>put</u> into standby mode when deselected (\overrightarrow{CE} HIGH) or when \overrightarrow{CE} is LOW and both \overrightarrow{BLE} and \overrightarrow{BHE} are HIGH. The input/output


256K x 16 Static RAM

pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), \overline{BHE} and \overline{BLE} are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.


The CY62147V and CY62147V18 are available in 48-ball FBGA and standard 44-pin TSOP Type II (forward pinout) packaging.

MoBL, MoBL2, and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configurations (continued)

62147V-3

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State ^[1] –0.5V to V_{CC} + 0.5V
DC Input Voltage ^[1] 0.5V to V _{CC} + 0.5V

Output Current into Outputs (LOW) 20 mA Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015) Latch-Up Current...... >200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62147V18	Industrial	-40°C to +85°C	1.65V to 1.95V
CY62147V	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Power Dis	sipation (In	dustrial)
	V _{CC} Range				Operat	ing (I _{CC})	St	andby (I _{SB2})
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Speed	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62147V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	2 μΑ	20 µA
CY62147V18	1.65V	1.8V	1.95V	70 ns	3 mA	7 mA		15 μA

Shaded areas contain preliminary information.

Notes:

V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

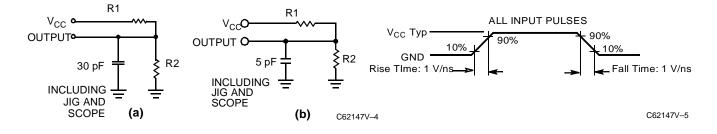
				CY62147V			
Parameter	Description	Test Condit	tions	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
IX	Input Load Current	$GND \leq V_I \leq V_{CC}$	1	-1	±1	+1	μA
I _{OZ}	Output Leakage Current	GND <u><</u> V _O ≤ V _{CC} , Ou	tput Disabled	-1	+1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ f = f _{MAX} = 1/t _{RC} , CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MI CMOS Levels	Ηz,		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.3V, \\ V_{IN} &\geq V_{CC} - 0.3V \text{ or} \\ V_{IN} &\leq 0.3V, f = f_{MAX} \end{split}$			100	μA	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.3V \\ V_{IN} &\geq V_{CC} - 0.3V \\ \text{or } V_{IN} &\leq 0.3V, \ f = 0 \end{split}$	$V_{CC} = LL$ 3.6V		2	20	μA
					CY62147V	18	
Parameter	Description	Test Condit	ions	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	V _{CC} = 1.65V	1.5			V
V _{OL}	Output LOW Voltage	$I_{OL} = 0.1 \text{ mA}$	V _{CC} = 1.65V			0.2	V
V _{IH}	Input HIGH Voltage		V _{CC} = 1.95V	1.4		V _{CC} + 0.3V	V
VIL	Input LOW Voltage		V _{CC} = 1.65V	-0.5		0.4	V
IIX	Input Load Current	$GND \leq V_{I} \leq V_{CC}$		-1	±1	+1	μA
l _{oz}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Out	out Disabled	-1	+1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS Levels	V _{CC} = 1.95V		3	7	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
SB1	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:cc_constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.3V, \\ V_{IN} &\geq V_{CC} - 0.3V \text{ or} \\ V_{IN} &\leq 0.3V, \text{ f} = \text{f}_{MAX} \end{split}$				100	μA
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:cell} \begin{array}{l} \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ \text{or } V_{IN} \leq 0.3V, \ f=0 \end{array}$	V _{CC} = LL 1.95V		2	15	μΑ

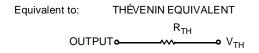
Shaded areas contain preliminary information.

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Note:


3. Tested initially and after any design or process changes that may affect these parameters.



Thermal Resistance

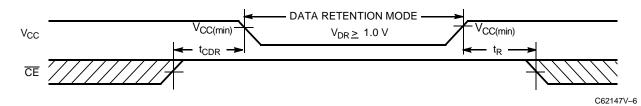
Description	Test Conditions	Symbol	Others	BGA	Units
[0]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	TBD	TBD	°C/W
Thermal Resistance (Junc- tion to Case) ^[3]		Θ _{JC}	TBD	TBD	°C/W

AC Test Loads and Waveforms

Parameters	3.0V	1.8V	Unit
R1	1105	15294	Ohms
R2	1550	11300	Ohms
R _{TH}	645	6500	Ohms
V _{TH}	1.75V	0.85V	Volts

Shaded areas contain preliminary information.

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions		Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention (CY62147V18)			1.0		1.95	V
V _{DR}	V _{CC} for Data Retention (CY62147V)			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\label{eq:constraint} \begin{split} & \frac{V_{CC}}{CE} = 1.0V \\ & \overline{CE} \ge V_{CC} - 0.3V, \\ & V_{IN} \ge V_{CC} - 0.3V \text{ or} \\ & V_{IN} \le 0.3V \\ & \text{No input may exceed} \\ & V_{CC} + 0.3V \end{split}$	LL		0.2	5.5	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			100			μs

Note:

4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 10 μ s or stable at V_{CC(min.)} >10 μ s.

Data Retention Waveform

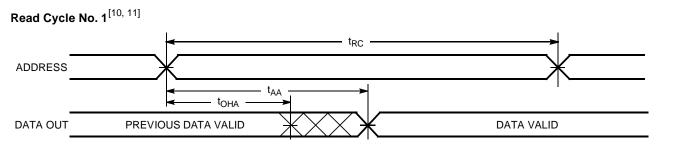
Switching Characteristics Over the Operating Range^[5]

		70		
Parameter	Description	Min.	Max.	Unit
READ CYCLE	L			•
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6, 7]	5		ns
t _{HZOE}	OE HIGH to High Z ^[7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns
t _{LZBE}	BHE / BLE LOW to Low Z	5		ns
t _{HZBE}	BHE / BLE HIGH to High Z		25	ns
WRITE CYCLE ^[8, 9]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{BW}	BHE / BLE Pulse Width	60		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns

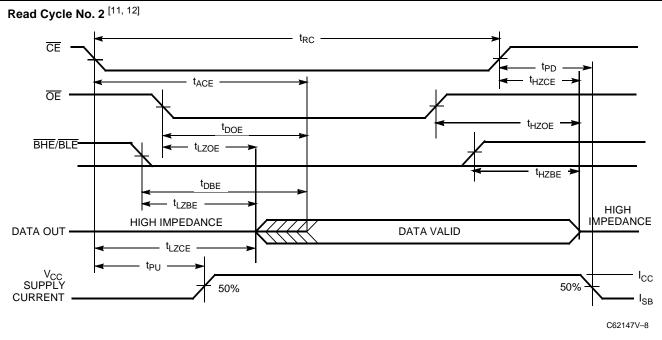
Notes:

Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the 5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to $v_{CC(typ.)}$, and output loading or the specified I_{OL}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} .

6.

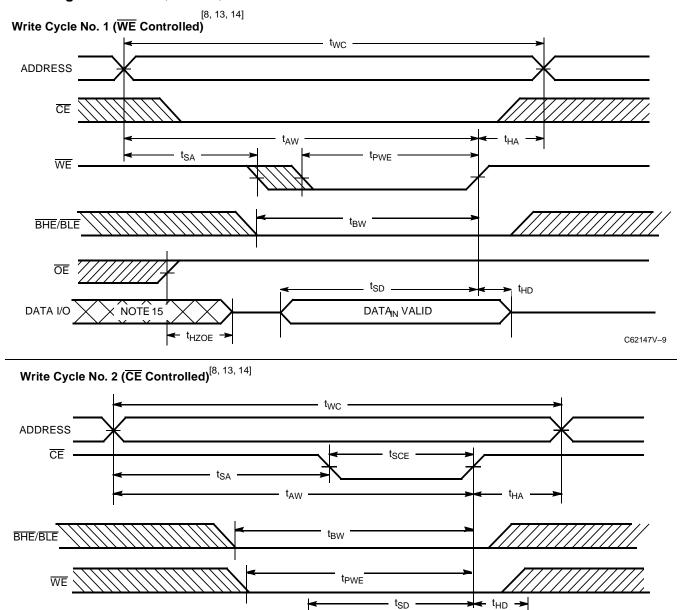

7.

8.


9.

Switching Waveforms

C62147V-7

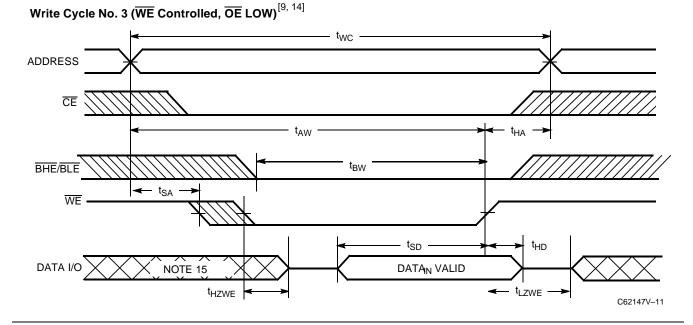

Notes:

10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 11. \overline{WE} is HIGH for read cycle. 12. Address valid prior to or coincident with \overline{CE} transition LOW.

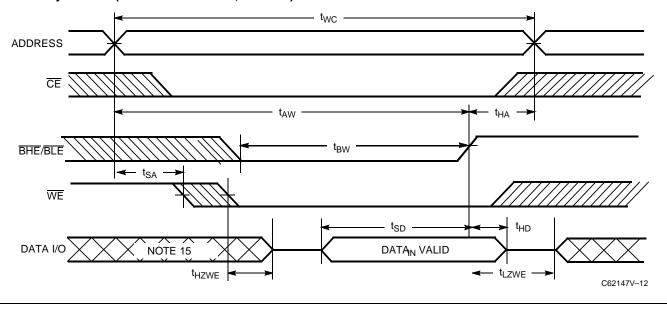
C62147V-10

Switching Waveforms (continued)

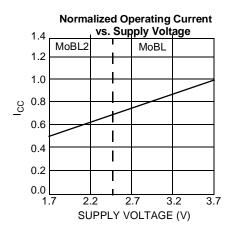
Notes:

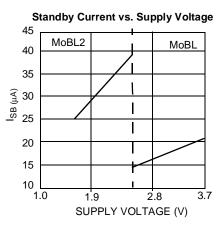

DATA I/O-

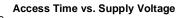
Data I/O is high-impedance if OE = V_{IH}.
If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
During this period, the I/Os are in output state and input signals should not be applied.

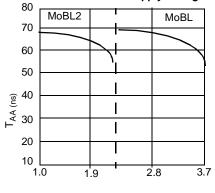

DATĄ_N VALID

Switching Waveforms (continued)




Write Cycle No. 4 ($\overline{\text{BHE}}/\overline{\text{BLE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[15]





Typical DC and AC Characteristics

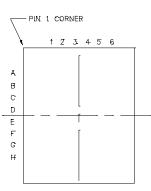
SUPPLY VOLTAGE (V)

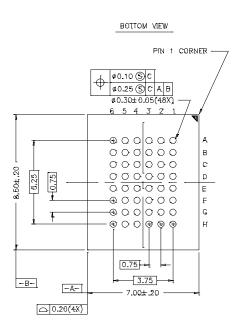
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); Read I/O ₀ –I/O ₇ in High Z		Active (I _{CC})
L	Н	Н	L	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); Write I/O ₈ –I/O ₁₅ in High Z		Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

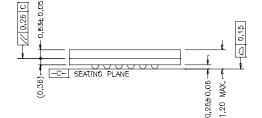
Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62147VLL-70ZI	Z44	44-Pin TSOP II	Industrial
	CY62147VLL-70BAI	BA49	48-Ball Fine Pitch BGA	
70	CY62147V18LL-70BAI	BA49	48-Ball Fine Pitch BGA	


Shaded areas contain preliminary information.

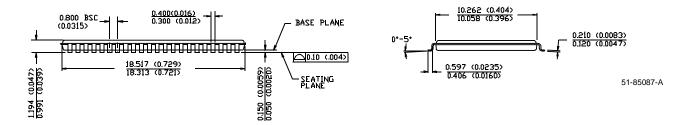

Document #: 38-00757-B

Package Diagrams


48-Ball (7.00 mm x 8.5 mm x 1.5 mm) FBGA BA49

51-85106-A

* THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC M0192 (LOW PROFILE BGA FAMILY)


Package Diagrams (continued)

DIMENSION IN MM (INCH)

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.