
SCCS035A - SEPTEMBER 1994 - REVISED OCTOBER 2001

- **Function, Pinout, and Drive Compatible** With FCT, F, and AM29841 Logic
- Reduced V_{OH} (Typically = 3.3 V) Versions of **Equivalent FCT Functions**
- **Edge-Rate Control Circuitry for Significantly Improved Noise** Characteristics
- Ioff Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- **Fully Compatible With TTL Input and Output Logic Levels**
- **High-Speed Parallel Latches**
- **Buffered Common Latch-Enable Input**
- **3-State Outputs**
- CY54FCT841T
 - 32-mA Output Sink Current
 - 12-mA Output Source Current
- CY74FCT841T
 - 64-mA Output Sink Current
 - 32-mA Output Source Current

CY54FCT841T . . . D PACKAGE CY74FCT841T . . . P. Q. OR SO PACKAGE (TOP VIEW)

description

The 'FCT841T bus-interface latches are designed to eliminate additional packages required to buffer existing latches and provide additional data width for wider address/data paths or buses carrying parity. The 'FCT841T devices are buffered 10-bit-wide versions of the FCT373 function.

The 'FCT841T devices' high-performance interface is designed for high-capacitance-load drive capability, while providing low-capacitance bus loading at both inputs and outputs. Outputs are designed for low-capacitance bus loading in the high-impedance state.

These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

PIN DESCRIPTION

NAME	I/O	DESCRIPTION
D	I	Latch data inputs
LE	ı	Latch-enable input. The latches are transparent when LE is high. Input data is latched on the high-to-low transition.
Y	0	3-state latch outputs
ŌĒ	ı	Output-enable control. When OE is low, the outputs are enabled. When OE is high, the outputs are in the high-impedance (off) state.

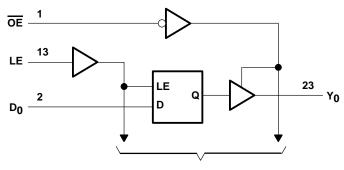
testing of all parameters.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	PACI	(AGE [†]	SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QSOP - Q	Tape and reel	5.5	CY74FCT841CTQCT	FCT841C
	SOIC - SO	Tube	5.5	CY74FCT841CTSOC	FCT841C
–40°C to 85°C	3010 - 30	Tape and reel	5.5	CY74FCT841CTSOCT	FC1041C
-40 C to 65 C	DIP – P	Tube	6.5	CY74FCT841BTPC	CY74FCT841BTPC
	SOIC - SO	Tube	9	CY74FCT841ATSOC	FCT841A
	30IC - 30	Tape and reel	9	CY74FCT841ATSOCT	FC1641A
–55°C to 125°C	CDIP – D	Tube	10	CY54FCT841ATDMB	


[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

	INPUTS			RNAL PUTS	FUNCTION		
OE	LE	D	0	Υ			
Н	Х	Χ	Х	Z			
Н	Н	L	L	Z	Z		
Н	Н	Н	Н	Z			
Н	L	Χ	NC	Z	Latched (Z)		
L	Н	L	L	L	Transparent		
L	Н	Н	Н	Н	Transparent		
L	L	Х	NC	NC	Latched		

H = High logic level, L = Low logic level, X = Don't care, NC = No change, Z = High-impedance state

logic diagram (positive logic)

To Nine Other Channels

SCCS035A - SEPTEMBER 1994 - REVISED OCTOBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential	-0.5	V to 7 V
DC input voltage range	-0.5	V to 7 V
DC output voltage range	-0.5	V to 7 V
DC output current (maximum sink current/pin)		120 mA
Package thermal impedance, θ _{JA} (see Note 1): P package		67°C/W
(see Note 2): Q package		61°C/W
(see Note 2): SO package		46°C/W
Ambient temperature range with power applied, T _A –6	35°C t	o 135°C
Storage temperature range, T _{stq}	35°C t	o 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

		CY54FCT841T			CY7	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ІОН	High-level output current			-12			-32	mA
loL	Low-level output current			32			64	mA
TA	Operating free-air temperature	-55		125	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

NOTES: 1. The package thermal impedance is calculated in accordance with JESD 51-3.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

CY54FCT841T, CY74FCT841T 10-BIT LATCHES WITH 3-STATE OUTPUTS

SCCS035A - SEPTEMBER 1994 - REVISED OCTOBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS				54FCT84	11T	CY	74FCT84	1T	LINUT
PARAMETER		TEST CONDITIO	N5	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
Vinc	$V_{CC} = 4.5 \text{ V},$	$I_{IN} = -18 \text{ mA}$			-0.7	-1.2				٧
VΙΚ	$V_{CC} = 4.75 \text{ V},$	$I_{IN} = -18 \text{ mA}$						-0.7	-1.2	V
	$V_{CC} = 4.5 \text{ V},$	I _{OH} = -12 mA		2.4	3.3					
Voн	V _{CC} = 4.75 V	$I_{OH} = -32 \text{ mA}$					2			V
	VCC = 4.75 V	$I_{OH} = -15 \text{ mA}$					2.4	3.3		
\/	V _{CC} = 4.5 V,	I _{OL} = 32 mA			0.3	0.55				V
VOL	V _{CC} = 4.75 V,	I _{OL} = 64 mA						0.3	0.55	V
V _{hys}	All inputs				0.2			0.2		V
i.	$V_{CC} = 5.5 \text{ V},$	V _{IN} = V _{CC}				5				
ΙΙ	V _{CC} = 5.25 V,	VIN = VCC							5	μΑ
	$V_{CC} = 5.5 \text{ V},$	V _{IN} = 2.7 V				±1				^
lіН	V _{CC} = 5.25 V,	V _{IN} = 2.7 V							±1	μΑ
	V _{CC} = 5.5 V,	V _{IN} = 0.5 V				±1				^
IΙL	V _{CC} = 5.25 V,	V _{IN} = 0.5 V							±1	μΑ
1	V _{CC} = 5.5 V,	V _{OUT} = 2.7 V				10				
lozh	V _{CC} = 5.25 V,	V _{OUT} = 2.7 V							10	μΑ
1	V _{CC} = 5.5 V,	V _{OUT} = 0.5 V				-10				4
lozL	V _{CC} = 5.25 V,	V _{OUT} = 0.5 V							-10	μΑ
. +	$V_{CC} = 5.5 \text{ V},$	V _{OUT} = 0 V		-60	-120	-225				mA
los [‡]	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0 V					-60	-120	-225	IIIA
l _{off}	$V_{CC} = 0 V$	$V_{OUT} = 4.5 V$				±1			±1	μΑ
loo	$V_{CC} = 5.5 \text{ V},$		$V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.1	0.2				mA
lcc			$V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.1	0.2	ША
ΔlCC		$= 3.4 \text{ V}$, $f_1 = 0$, Ou			0.5	2				mA
		$= 3.4 \text{ V}$, $f_1 = 0$, O						0.5	2	
		input switching at 5 = GND, LE = VCC,			0.06	0.12				
. •	$V_{IN} \le 0.2 \text{ V or } V_{IN}$				0.00	0.12				mA/
CCD [¶]		e input switching at			-					MHz
		itputs open, $\overline{OE} = \overline{GND}$, $\overline{LE} = \overline{V_{CC}}$, $\overline{V_{CC}} = \overline{V_{CC}} = $						0.06	0.12	
	1 1 1 2 0.2 V OI V N	= V()() = 0.2 V								

 $[\]overline{^{\dagger}}$ Typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

 $[\]S$ Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

This parameter is derived for use in total power-supply calculations.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

DADAMETER	TEST CONDITIONS			CY	54FCT84	l1T	CY74FCT841T			UNIT
PARAMETER		MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNII		
	V _{CC} = 5.5 V,	One bit switching at f ₁ = 10 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4				
	Outputs open,	at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		1	2.4				
	OE = GND, LE = V _{CC}	10 bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		1	3.2				
lc#		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		4.1	13.2				mA
ıC	One bit switching at $f_1 = 10 \text{ MHz}$	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.7	1.4	IIIA	
	V _{CC} = 5.25 V, Outputs open,	at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$					1	2.4	
	OE = GND, LE = V _{CC}	10 bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$					1	3.2	
		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$					4.1	13.2	
C _i					5	10		5	10	pF
Co					9	12		9	12	pF

† Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

 $^{\#}$ IC = ICC + \triangle ICC \times DH \times NT + ICCD (f₀/2 + f₁ \times N₁)

Where:

I_C = Total supply current

I_{CC} = Power-supply current with CMOS input levels

 ΔI_{CC} = Power-supply current for a TTL high input ($V_{IN} = 3.4 \text{ V}$)

D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

|| Values for these conditions are examples of the I_{CC} formula.

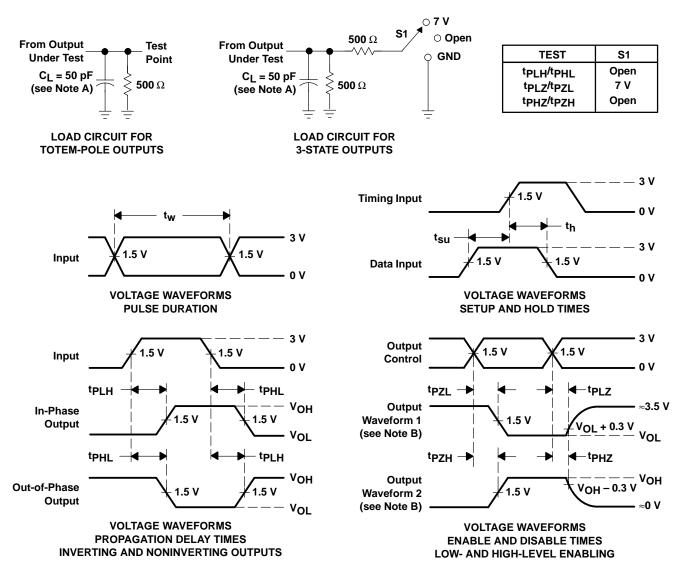
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		CY54FCT841AT		CY74FCT841AT		CY74FCT841BT		CY74FCT841CT		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
t _W	Pulse duration, LE high	5		4		4		4		ns	
t _{su}	Setup time, data before LE↑	2.5		2.5		2.5		2.5		ns	
th	Hold time, data after LE↑	3		2.5		2.5		2.5		ns	

CY54FCT841T, CY74FCT841T **10-BIT LATCHÉS WITH 3-STATE OUTPUTS**

SCCS035A - SEPTEMBER 1994 - REVISED OCTOBER 2001

switching characteristics over operating free-air temperature range (see Figure 1)


DADAMETED	FROM	ТО			841AT	CY74FCT	841AT	UNIT			
PARAMETER	(INPUT)	(OUTPUT)	TEST LOAD	MIN	MAX	MIN	MAX	UNII			
^t PLH	D	Y	C _L = 50 pF,	1.5	10	1.5	9	ns			
^t PHL		T	$R_L = 500 \Omega$	1.5	10	1.5	9	115			
^t PLH	D	Υ	C _L = 300 pF,	1.5	15	1.5	13	ns			
^t PHL	В	I	$R_L = 500 \Omega$	1.5	15	1.5	13	115			
^t PLH	LE	Υ	C _L = 50 pF,	1.5	13	1.5	12	ns			
^t PHL	LL	ı	$R_L = 500 \Omega$	1.5	13	1.5	12	115			
^t PLH	LE	Υ	C _L = 300 pF,	1.5	20	1.5	16	ns			
^t PHL	LL	I	$R_L = 500 \Omega$	1.5	20	1.5	16	115			
^t PZH	ŌĒ	Y	C _L = 50 pF,	1.5	13	1.5	11.5	ns			
^t PZL	ÜE		$R_L = 500 \Omega$	1.5	13	1.5	11.5	115			
^t PZH	ŌĒ	Υ	C _L = 300 pF,	1.5	25	1.5	23	ns			
^t PZL	ÜE	I	$R_L = 500 \Omega$	1.5	25	1.5	23	115			
^t PHZ	ŌĒ	Y	$C_L = 5 pF$,	1.5	9	1.5	7	ns			
^t PLZ	ÜE	f	$R_L = 500 \Omega$	1.5	9	1.5	7	115			
^t PHZ	ŌĒ	V	V	V	OF Y	C _L = 50 pF,	1.5	10	1.5	8	ns
t _{PLZ}	OE .	'	$R_L = 500 \Omega$	1.5	10	1.5	8	115			

switching characteristics over operating free-air temperature range (see Figure 1)

DADAMETED	FROM	то	TEST LOAD	CY74FCT	841BT	CY74FCT	841CT	LINUT
PARAMETER	(INPUT)	(OUTPUT)	TEST LOAD	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	D	Y	C _L = 50 pF,	1.5	6.5	1.5	5.5	
^t PHL	1 ້	Ť	$R_L = 500 \Omega$	1.5	6.5	1.5	5.5	ns
t _{PLH}	D	Y	C _L = 50 pF,	1.5	13	1.5	13	ns
^t PHL]	Ť	$R_L = 500 \Omega$	1.5	13	1.5	13	ris
^t PLH	LE	Y	C _L = 50 pF,	1.5	8	1.5	6.4	ns
^t PHL] "	ī	$R_L = 500 \Omega$	1.5	8	1.5	6.4	115
^t PLH	LE	Y	$C_L = 300 \text{ pF},$	1.5	15.5	1.5	15	ns
^t PHL			$R_L = 500 \Omega$	1.5	15.5	1.5	15	115
^t PZH	OE	Y $C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	C _L = 50 pF,	1.5	8	1.5	6.5	ns
tpZL	OE .		1.5	8	1.5	6.5	115	
^t PZH	OE	Y	C _L = 300 pF,	1.5	14	1.5	12	ns
t _{PZL}	OE OE	1	$R_L = 500 \Omega$	1.5	14	1.5	12	115
^t PHZ		Y	C _L = 5 pF,	1.5	6	1.5	5.7	no
t _{PLZ}	ŌĒ	Ť	$R_L = 500 \Omega$	1.5	6	1.5	5.7	ns
^t PHZ	OE	Y	C _L = 50 pF	1.5	7	1.5	6	ns
t _{PLZ}	1	,	$R_L = 500 \Omega$,	1.5	7	1.5	6	115

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265