VITESSE # 256 x 4 Static RAM #### **FEATURES** - 256 words by 4-bit static RAM for cache and control store applications - Very fast: Choice of 4, 5, and 6 ns maximum address access times - · TTL compatible inputs and outputs - Single +5.0 Volt power supply - Very low sensitivity to radiation - Standard 22-pin DIP - Fully static operation equal access and cycle times - Pin compatible with standard silicon -422 and -122 products #### **FUNCTIONAL DESCRIPTION** The Vitesse VS12G422T is a very high speed, fully decoded 1024-bit read write static random access memory organized as 256 words by 4 bits. All inputs and outputs of this RAM are TTL compatible and operation is from a standard +5.0 Volt power supply. Fully static asynchronous internal circuits are used, which require no clocks or refreshing for operation. Memory expansion is provided by an active LOW chip select input $(C\overline{S}_1)$, an active HIGH chip select input (CS_2) and three-state outputs. Due to its static operation, the VS12G422T offers equal read and write cycle times, which further simplifies system design. # **BLOCK DIAGRAM** #### TRUTH TABLE | Inputs | | | | | | | | | |--------|-----|-----------------|----|------------------|-----------------|--|--|--| | ŌĒ | ŪS₁ | CS ₂ | WE | Output | Mode | | | | | Х | Н | × | Х | HIGH Z | Not Selected | | | | | X | Х | L | Х | HIGH Z | Not Selected | | | | | L | L | Н | Н | D _{out} | READ | | | | | X | L | Н | L | HIĞH Z | WRITE | | | | | Н | Х | Х | Х | HIGH Z | Output Disabled | | | | H = HIGH Voltage Level (2.4 V) X = Don't Care (HIGH or LOW) L = LOW Voltage Level (0.4 V) HIGH Z = High-Impedence ## ARSOLLITE MAYIMLIM RATINGS (1) | ABSOLUTE MAXIMUM RATINGS | | |--|-----------------| | Power Supply Voltage (V _{cc}) | 0.5 V to +6.0 V | | Input Voltage Applied, (V _N) | 1.0 V to +7.0 V | | Input Current, (I _N), (DC, output LOW) | | | Output Current, (I _{O(IT)}), (DC, output LOW) | | | Case Temperature Under Bias, (T _c) | | | Storage Temperature ⁽²⁾ , (T _{STO}) | 65° to +150°C | | RECOMMENDED OPERATING CONDITIONS | | | | 4.75 to 5.05 V | - (1) CAUTION: Stresses listed under "Absolute Maximum Ratings" may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect device reliability. - (2) Lower limit is ambient temperature and upper limit is case temperature. # DC CHARACTERISTICS (Over recommended operating conditions) | | | | Commerc | | | | | |------------------------|---------------------------------------|-----------------|----------------|-----------------|----------------|---|--| | | | 5,6 | ns | 4 ns | |] | | | Parameters | Description | Min | Мах | Min | Max | Test Conditions | | | V _{OH} | Output HIGH voltage | 2.4 V | _ | 2.4 V | _ | $V_{CC} = MIN, I_{OH} = -5.2 \text{ mA}$ | | | V _{OL} | Output LOW voltage | _ | 0.5 V | _ | 0.5 V | V _{CC} = MIN, I _{OL} = 8.0 mA | | | V _{IH} | Input HIGH voltage | 2.0 V | _ | 2.0 V | | | | | V ,, | Input LOW voltage | _ | 0.8 V | _ | 0.8 V | _ | | | I _{IX} | Input LOAD current | -100 μ A | 100 μ A | -100 µ A | 100 μ A | V _{IN} = 3.3 V | | | I _{OZ} | Output current (HIGH-Z) | -1.0 m A | 1.0 mA | -1.0 mA | 1.0 mA | $V_{OL} \le V_{OUT} \le V_{OH}$
Output Disabled | | | I _{cc} | Power supply current (from V_{cc}) | _ | 300 mA | _ | 300 mA | $V_{CC} = MAX$, $I_{OUT} = 0 mA$ | | # AC PERFORMANCE CHARACTERISTICS (1) (Over guaranteed operating conditions, GND = 0 V) #### Read Mode | - | | 6 ns | | 5 ns | | 4 ns | | | |----------------------------------|-------------------------|------|-----|------|-----|------|-----|-------| | Parameters | Description | Min | Max | Min | Max | Min | Max | Units | | t _{RC} | Read cycle time | 6 | _ | 5 | - | 4 | _ | ns | | t _{ACS} | Chip select time | _ | 4 | _ | 3.5 | | 2.5 | ns | | t _{ZRCS} ⁽²⁾ | Chip select to HIGH Z | - | 5 | _ | 4 | _ | 3.5 | ns | | t _{AOS} | Output enable time | _ | 4 | - | 3.5 | - | 2.5 | ns | | t _{ZROS} (2) | Output enable to HIGH Z | - | 5 | | 4 | | 3.5 | ns | | t _{AA} | Address access time | _ | 6 | | 5 | | 4 | ns | NOTES: 1) Test conditions assume signal transition times of 3 ns or less. Timing reference levels of 1.5 V and output loading of the specified I_{OL}I_{OH} and 30 pF load capacitance as in Figure 1 on **page X**. 2) Transition is measured at steady state HIGH level -250 mV or steady state LOW level +250 mV on the output from 1.5 V level on the input with load shown in Figure 1 on **page X**. # AC PERFORMANCE CHARACTERISTICS (con't) (1) (Over guaranteed operating conditions, GND = 0V) # 2. Write Mode | | | | 6 ns | | 5 ns | | s | | | |-------------------------------|--------------------------------|-----|------|-----|------|-----|----------|-------|--| | Paramters | Description | Min | Max | Min | Max | Min | Max | Units | | | t _{wc} | Write cycle time | 6 | | 5 | | 4 | | ns | | | t _{zws} (2) | Write disable to HIGH Z | _ | 5 | | 4 | | 3.5 | ns | | | t _{wa} | Write recovery time | _ | 4.5 | _ | 3.5 | | 3 | ns | | | t _w ⁽³⁾ | Write pulse width | 4 | _ | 3 | | 2.5 | | ns | | | t _{wsD} | Data setup time prior to write | 0 | _ | 0 | _ | 0 | | ns | | | t _{whD} | Data hold time after write | 2 | _ | 2 | _ | 1.5 | | ns | | | t _{WSA} (3) | Address setup time | 0 | | 0 | _ | 0 | <u> </u> | ns | | | t _{WHA} | Address hold time | 2 | _ | 2 | _ | 1.5 | _ | ns | | | t _{wscs} | Chip select setup time | 0 | _ | 0 | - | 0 | | ns | | | t _{whcs} | Chip select hold time | 2 | T - | 2 | - | 1.5 | | ns | | NOTES: - 1) Test conditions assume signal transition times of 3 ns or less. Timing reference levels of 1.5 V and output - loading of the specified $I_{\rm or}/I_{\rm or}$ and 30 pF load capacitance as in Figure 1 on **page X** 2) Transition is measured at steady state HIGH level -250 mV or steady state LOW level +250 mV on the output from 1.5 V level on the input with load shown in Figure 1 on **page X** - 3) t_w measured at $t_{wsA} = min$; t_{wsA} measured at $t_w = min$ # FIGURE 1: AC TEST LOADING CONDITION The following conditions apply to the "AC Performance Characteristics" indicated on pages \boldsymbol{X} and \boldsymbol{X} . ### FIGURE 2: AC TEST INPUT LEVELS The following conditions apply to the "AC Performance Characteristics" indicated on pages X and X. #### **ADDRESS DESIGNATORS** | Address
Name | Address
Function | Pin #
(22-pin DIP) | |----------------------|---------------------|------------------------------| | A | AX ₀ | 4 | | \mathbf{A}_{1}^{o} | AX, | 3 | | A_2 | AX ₂ | 2 | | A_3^2 | AX ₃ | 1 | | A_4 | AX ₄ | 21 | | A_5^7 | AY ₅ | 5 | | A_6° | AY ₆ | 6 | | A_7° | AY ₇ | 7 | # **CONNECTION DIAGRAM** (22-pin DIP - Top View) # PIN DESCRIPTION | Pin # | Name | 1/0 | Description | |--------------------|---------------------------------|-----|----------------------------------| | 1-7, 21 | A ₀ - A ₇ | 1 | Address inputs | | 9, 11, 13, 15 | D ₀ - D ₃ | 11 | Data Inputs | | 19 | CS, | | Chip select input (Active LOW) | | 10, 12, 14, 16 | 00-03 | 0 | Data outputs | | 17 CS ₂ | | | Chip select input (Active HIGH) | | 20 | WE | T | Write enable input (Active LOW) | | 18 | ŌĒ | 1 | Output enable input (Active LOW) | | 22 | v _{cc} | | 5.0 V supply connection | | 8 | GND | | Ground connection (0 V) |