VITESSE

256 x 4 Static RAM

FEATURES

- 256 words by 4-bit static RAM for cache and control store applications
- Very fast: Choice of 4, 5, and 6 ns maximum address access times
- · TTL compatible inputs and outputs
- Single +5.0 Volt power supply
- Very low sensitivity to radiation
- Standard 22-pin DIP
- Fully static operation equal access and cycle times
- Pin compatible with standard silicon -422 and -122 products

FUNCTIONAL DESCRIPTION

The Vitesse VS12G422T is a very high speed, fully decoded 1024-bit read write static random access memory organized as 256 words by 4 bits. All inputs and outputs of this RAM are TTL compatible and operation is from a standard +5.0 Volt power supply.

Fully static asynchronous internal circuits are used, which require no clocks or refreshing for operation. Memory expansion is provided by an active LOW chip select input $(C\overline{S}_1)$, an active HIGH chip select input (CS_2) and three-state outputs. Due to its static operation, the VS12G422T offers equal read and write cycle times, which further simplifies system design.

BLOCK DIAGRAM

TRUTH TABLE

Inputs								
ŌĒ	ŪS₁	CS ₂	WE	Output	Mode			
Х	Н	×	Х	HIGH Z	Not Selected			
X	Х	L	Х	HIGH Z	Not Selected			
L	L	Н	Н	D _{out}	READ			
X	L	Н	L	HIĞH Z	WRITE			
Н	Х	Х	Х	HIGH Z	Output Disabled			

H = HIGH Voltage Level (2.4 V)

X = Don't Care (HIGH or LOW)

L = LOW Voltage Level (0.4 V)

HIGH Z = High-Impedence

ARSOLLITE MAYIMLIM RATINGS (1)

ABSOLUTE MAXIMUM RATINGS	
Power Supply Voltage (V _{cc})	0.5 V to +6.0 V
Input Voltage Applied, (V _N)	1.0 V to +7.0 V
Input Current, (I _N), (DC, output LOW)	
Output Current, (I _{O(IT)}), (DC, output LOW)	
Case Temperature Under Bias, (T _c)	
Storage Temperature ⁽²⁾ , (T _{STO})	65° to +150°C
RECOMMENDED OPERATING CONDITIONS	
	4.75 to 5.05 V

- (1) CAUTION: Stresses listed under "Absolute Maximum Ratings" may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect device reliability.
- (2) Lower limit is ambient temperature and upper limit is case temperature.

DC CHARACTERISTICS (Over recommended operating conditions)

			Commerc				
		5,6	ns	4 ns]	
Parameters	Description	Min	Мах	Min	Max	Test Conditions	
V _{OH}	Output HIGH voltage	2.4 V	_	2.4 V	_	$V_{CC} = MIN, I_{OH} = -5.2 \text{ mA}$	
V _{OL}	Output LOW voltage	_	0.5 V	_	0.5 V	V _{CC} = MIN, I _{OL} = 8.0 mA	
V _{IH}	Input HIGH voltage	2.0 V	_	2.0 V			
V ,,	Input LOW voltage	_	0.8 V	_	0.8 V	_	
I _{IX}	Input LOAD current	-100 μ A	100 μ A	-100 µ A	100 μ A	V _{IN} = 3.3 V	
I _{OZ}	Output current (HIGH-Z)	-1.0 m A	1.0 mA	-1.0 mA	1.0 mA	$V_{OL} \le V_{OUT} \le V_{OH}$ Output Disabled	
I _{cc}	Power supply current (from V_{cc})	_	300 mA	_	300 mA	$V_{CC} = MAX$, $I_{OUT} = 0 mA$	

AC PERFORMANCE CHARACTERISTICS (1)

(Over guaranteed operating conditions, GND = 0 V)

Read Mode

-		6 ns		5 ns		4 ns		
Parameters	Description	Min	Max	Min	Max	Min	Max	Units
t _{RC}	Read cycle time	6	_	5	-	4	_	ns
t _{ACS}	Chip select time	_	4	_	3.5		2.5	ns
t _{ZRCS} ⁽²⁾	Chip select to HIGH Z	-	5	_	4	_	3.5	ns
t _{AOS}	Output enable time	_	4	-	3.5	-	2.5	ns
t _{ZROS} (2)	Output enable to HIGH Z	-	5		4		3.5	ns
t _{AA}	Address access time	_	6		5		4	ns

NOTES: 1) Test conditions assume signal transition times of 3 ns or less. Timing reference levels of 1.5 V and output loading of the specified I_{OL}I_{OH} and 30 pF load capacitance as in Figure 1 on **page X**.

2) Transition is measured at steady state HIGH level -250 mV or steady state LOW level +250 mV on the output from 1.5 V level on the input with load shown in Figure 1 on **page X**.

AC PERFORMANCE CHARACTERISTICS (con't) (1)

(Over guaranteed operating conditions, GND = 0V)

2. Write Mode

			6 ns		5 ns		s		
Paramters	Description	Min	Max	Min	Max	Min	Max	Units	
t _{wc}	Write cycle time	6		5		4		ns	
t _{zws} (2)	Write disable to HIGH Z	_	5		4		3.5	ns	
t _{wa}	Write recovery time	_	4.5	_	3.5		3	ns	
t _w ⁽³⁾	Write pulse width	4	_	3		2.5		ns	
t _{wsD}	Data setup time prior to write	0	_	0	_	0		ns	
t _{whD}	Data hold time after write	2	_	2	_	1.5		ns	
t _{WSA} (3)	Address setup time	0		0	_	0	<u> </u>	ns	
t _{WHA}	Address hold time	2	_	2	_	1.5	_	ns	
t _{wscs}	Chip select setup time	0	_	0	-	0		ns	
t _{whcs}	Chip select hold time	2	T -	2	-	1.5		ns	

NOTES:

- 1) Test conditions assume signal transition times of 3 ns or less. Timing reference levels of 1.5 V and output
- loading of the specified $I_{\rm or}/I_{\rm or}$ and 30 pF load capacitance as in Figure 1 on **page X** 2) Transition is measured at steady state HIGH level -250 mV or steady state LOW level +250 mV on the output from 1.5 V level on the input with load shown in Figure 1 on **page X**
- 3) t_w measured at $t_{wsA} = min$; t_{wsA} measured at $t_w = min$

FIGURE 1: AC TEST LOADING CONDITION

The following conditions apply to the "AC Performance Characteristics" indicated on pages \boldsymbol{X} and \boldsymbol{X} .

FIGURE 2: AC TEST INPUT LEVELS

The following conditions apply to the "AC Performance Characteristics" indicated on pages X and X.

ADDRESS DESIGNATORS

Address Name	Address Function	Pin # (22-pin DIP)
A	AX ₀	4
\mathbf{A}_{1}^{o}	AX,	3
A_2	AX ₂	2
A_3^2	AX ₃	1
A_4	AX ₄	21
A_5^7	AY ₅	5
A_6°	AY ₆	6
A_7°	AY ₇	7

CONNECTION DIAGRAM

(22-pin DIP - Top View)

PIN DESCRIPTION

Pin #	Name	1/0	Description
1-7, 21	A ₀ - A ₇	1	Address inputs
9, 11, 13, 15	D ₀ - D ₃	11	Data Inputs
19	CS,		Chip select input (Active LOW)
10, 12, 14, 16	00-03	0	Data outputs
17 CS ₂			Chip select input (Active HIGH)
20	WE	T	Write enable input (Active LOW)
18	ŌĒ	1	Output enable input (Active LOW)
22	v _{cc}		5.0 V supply connection
8	GND		Ground connection (0 V)